

œ

Methodology for the Fault Analysis and Evaluation of True Random Number Generators

Mathilde Soucarros, Jessy Clédière, Cécile Dumas, Philippe Elbaz-Vincent

DGA/CEA/Institut Fourier

21/06/2012

MINATEC CAMPUS

Outline

Introduction

- 2 Random Number Generators
- 3 Statistical tests
- 4 Test benches
- 5 Experimentation

6 Conclusion

Outline

Introduction

- 2 Random Number Generators
- 3 Statistical tests
- 4 Test benches
- 5 Experimentation

6 Conclusion

- Utilizations of random numbers :
 - gaming,
 - numerical simulation,
 - security, etc.
 - More precisely in cryptography :
 - keys,

- signatures,
- nonces,
- countermeasures, etc.
- Desired properties : independant and identically distributed numbers + unpredictable
- Consequences of deviations : PS3, RSA public keys

- Utilizations of random numbers :
 - gaming,
 - numerical simulation,
 - security, etc.
- More precisely in cryptography :
 - keys,

- signatures,
- nonces,
- countermeasures, etc.
- Desired properties : independent and identically distributed numbers + unpredictable
- Consequences of deviations : PS3, RSA public keys

- Utilizations of random numbers :
 - gaming,
 - numerical simulation,
 - security, etc.
- More precisely in cryptography :
 - keys,

- signatures,
- nonces,
- countermeasures, etc.
- Desired properties : independant and identically distributed numbers + unpredictable
- Consequences of deviations : PS3, RSA public keys

- Utilizations of random numbers :
 - gaming,
 - numerical simulation,
 - security, etc.
- More precisely in cryptography :
 - keys,

- signatures,
- nonces,
- countermeasures, etc.
- Desired properties : independant and identically distributed numbers + unpredictable
- Consequences of deviations : PS3, RSA public keys

Outline

1 Introduction

- 2 Random Number Generators
- 3 Statistical tests
- 4 Test benches
- 5 Experimentation

6 Conclusion

Conception

Methodology for the Fault Analysis and Evaluation of True Random Number Generators - 21/06/2012 | 6 © CEA. All rights reserved

Entropy sources

- True Random Number Generators :
 - radioactive decay,
 - thermal noise,
 - phase jitter of oscillators,
 - quantum optics, etc.

Pseudo-Random Number Generators :

- linear congruential generators,
- LFSRs,
- cryptographic algorithms, etc.

Entropy sources

- True Random Number Generators :
 - radioactive decay,
 - thermal noise,
 - phase jitter of oscillators,
 - quantum optics, etc.
- Pseudo-Random Number Generators :
 - linear congruential generators,
 - LFSRs,
 - cryptographic algorithms, etc.

TRNGs perturbation

Perturbation of True Random Number Generators :

- voltage,
- clock,
- temperature,
- surounding activity,
- frequency injection, etc.

Outline

1 Introduction

- 2 Random Number Generators
- 3 Statistical tests
- 4 Test benches
- 5 Experimentation

6 Conclusion

What is randomness? 01001101 00000000 01010101

No universal test of randomness

Evaluation of the properties of bit sequences

Comparison with a real sequence of random bits

- What is randomness?
 01001101
 00000000
 01010101
- No universal test of randomness
- Evaluation of the properties of bit sequences
- Comparison with a real sequence of random bits

- What is randomness?
 01001101
 00000000
 01010101
- No universal test of randomness
- Evaluation of the properties of bit sequences
- Comparison with a real sequence of random bits

- What is randomness?
 01001101
 00000000
 01010101
- No universal test of randomness
- Evaluation of the properties of bit sequences
- Comparison with a real sequence of random bits

Existing tests

Most used :

- One standard : AIS 31
- Individual tests : FIPS, ENT
- Batteries : Diehard, NIST, TestU01

Methodology :

- Compute statistics and probabilities that a sequence is random (p-values)
- Decide if the sequence is random (threshold)
- Observe the total fail rate
- Decide if the generator is random

Existing tests

- Most used :
 - One standard : AIS 31
 - Individual tests : FIPS, ENT
 - Batteries : Diehard, NIST, TestU01
- Methodology :
 - Compute statistics and probabilities that a sequence is random (p-values)
 - Decide if the sequence is random (threshold)
 - Observe the total fail rate
 - Decide if the generator is random

Limitations

 Concrete information gained thanks to the tests results (detected flaws and their importance) Hidden biases

Evolution in time
 Bias 1 + Bias 2 = Bias 3
 Short disturbances

Limitations

 Concrete information gained thanks to the tests results (detected flaws and their importance) Hidden biases

Evolution in time Bias 1 + Bias 2 = Bias 3

Short disturbances

Limitations

 Concrete information gained thanks to the tests results (detected flaws and their importance) Hidden biases

Evolution in time Bias 1 + Bias 2 = Bias 3

Short disturbances

Outline

1 Introduction

- 2 Random Number Generators
- 3 Statistical tests
- 4 Test benches
- 5 Experimentation

6 Conclusion

(a) Liquid nitrogen

(b) Fan instead of heatsink

Methodology for the Fault Analysis and Evaluation of True Random Number Generators - 21/06/2012 | 14 © CEA. All rights reserved

Laser

leti

Methodology for the Fault Analysis and Evaluation of True Random Number Generators - 21/06/2012 | 15 © CEA. All rights reserved

Outline

1 Introduction

- 2 Random Number Generators
- 3 Statistical tests
- 4 Test benches
- 5 Experimentation

6 Conclusion

Studied TRNG

- Design of the entropy source based on the sampling of a high frequency oscillator by a slow frequency clock
- Accumulation of jitter

Temperature variations : test results

Temperature from 0°C up to 100°C

Rate of failed tests with variations of temperature

Methodology for the Fault Analysis and Evaluation of True Random Number Generators - 21/06/2012 18 © CEA. Al rights reserved

Temperature variations : byte distribution

Deviation in the byte distribution from the uniformity : $D_i = \frac{P_i - Pt_i}{Pt_i}$

Laser shots : processor

No information on the TRNG localization

(a) Photography of the processor

(b) Block diagram of the processor

Laser shots : cartography

- Processor entirely sweeped by steps of 50 µm and a power of 1.05 W then 30 µm and 3.75 W
- Entropy at every point : $H = -\sum_{i=0}^{255} P_i log(P_i)$

(a) Cartography of the entropy

(b) Zoom of an interesting zone

Combination of temperature and laser

Laser shots focalized on the point of lowest entropy

leti

Methodology for the Fault Analysis and Evaluation of True Random Number Generators - 21/06/2012 22 © CEA. All rights reserved

Combination of temperature and laser

Laser shots focalized on the point of lowest entropy

leti

Methodology for the Fault Analysis and Evaluation of True Random Number Generators - 21/06/2012 22 © CEA. Al rights reserved

Post-processing : XOR

Deviation in the distribution of 1-byte words

Methodology for the Fault Analysis and Evaluation of True Random Number Generators - 21/06/2012 23 © CEA. Al right reserved

Post-processing : XOR

Deviation in the distribution of 1-byte words

Methodology for the Fault Analysis and Evaluation of True Random Number Generators - 21/06/2012 23 © CEA. All rights reserved

Post-processing : von Neumann corrector

Deviation in the distribution of 1-byte words

Methodology for the Fault Analysis and Evaluation of True Random Number Generators - 21/06/2012 24 © CEA. All rights reserved

Post-processing : von Neumann corrector

Deviation in the distribution of 1-byte words

Methodology for the Fault Analysis and Evaluation of True Random Number Generators - 21/06/2012 24 © CEA. All rights reserved

Post-processing : SHA-256

Deviation in the distribution of 1-byte words

Methodology for the Fault Analysis and Evaluation of True Random Number Generators - 21/06/2012 25 © CEA. All rights reserved

Post-processing : SHA-256

Deviation in the distribution of 1-byte words

Methodology for the Fault Analysis and Evaluation of True Random Number Generators - 21/06/2012 25 © CEA. All rights reserved

Post-processing : AES-128

Deviation in the distribution of 1-byte words

Methodology for the Fault Analysis and Evaluation of True Random Number Generators - 21/06/2012 26 © CEA. All rights reserved

Post-processing : AES-128

Deviation in the distribution of 1-byte words

Methodology for the Fault Analysis and Evaluation of True Random Number Generators - 21/06/2012 26 © CEA. Al right reserved

Outline

1 Introduction

- 2 Random Number Generators
- 3 Statistical tests
- 4 Test benches
- 5 Experimentation

6 Conclusion

Conclusion

- The security of cryptographic schemes depends on the randomness of the numbers used so the behavior of TRNGs under stress must be studied
- Simple experiments can be enough to pertub the workings of a TRNG
- Need to adapt entropy designs and post-processings for best efficiency
- Meaning of test results must be examined carefully