Differential characteristics

Boomerang Attacks against ARX Hash Functions

Gaëtan Leurent

University of Luxembourg

January 24, 2012

G. Leurent (uni.lu)

Differential characteristics

An Ideal Hash Function: the Random Oracle

- Public Random Oracle
- The output can be used as a fingerprint of the document

G. Leurent (uni.lu)

Boomerang Attacks

Differential characteristics

An Ideal Hash Function: the Random Oracle

0x1d66ca77ab361c6f

Public Random Oracle

The output can be used as a fingerprint of the document

G. Leurent (uni.lu)

Introduction

Differential characteristics

A Concrete Hash Function

• A public function with no structural property.

Cryptographic strength without any key!

▶
$$F: \{0,1\}^* \to \{0,1\}^n$$

0x1d66ca77ab361c6f

Introduction

Differential characteristics

A Concrete Hash Function

- A public function with no structural property.
 - Cryptographic strength without any key!

▶
$$F: \{0,1\}^* \to \{0,1\}^n$$

0x1d66ca77ab361c6f

Introduction

Boomerang Attacks

Differential characteristics

Security goals

Preimage attack

Given F and \overline{H} , find M s.t. $F(M) = \overline{H}$. Ideal security: 2^n .

G. Leurent (uni.lu)

Introduction

Differential characteristics

Security goals

Second-preimage attack

Given F and M_1 , find $M_2 \neq M_1$ s.t. $F(M_1) = F(M_2)$. Ideal security: 2^n .

G. Leurent (uni.lu)

Introduction

Boomerang Attacks

Differential characteristics

Security goals

Collision attack

Given *F*, find $M_1 \neq M_2$ s.t. $F(M_1) = F(M_2)$. Ideal security: $2^{n/2}$.

G. Leurent (uni.lu)

Introduction

Boomerang Attacks

Differential characteristics

Using Hash Functions

Hash functions are used in many different contexts:

- To generate unique identifiers
 - Hash-and-sign signatures
 - Commitment schemes
- As a one-way function
 - One-Time-Passwords
 - Forward security
- To break the structure of the input
 - Entropy extractors
 - Key derivation
 - Pseudo-random number generator

To build MACs

- HMAC
- Challenge/response authentication

Differential characteristics

Security definitions: difficulties

```
int getRandomNumber()
{
return 4; // chosen by fair dice roll.
// guaranteed to be random.
}
```

http://xkcd.com/221/

- A single function can not be collision resistant.
 - Precomputation is allowed in standard security definition
 - Define a family of function
- Obvious relations between the security definitions do not hold.
 - Even more mess with families of functions!

Introduction

Differential characteristics

Hash function design

Build a small compression function, and iterate.

- Cut the message in chunks M₀, ... M_k
- $\bullet H_i = f(M_i, H_{-1})$
- $F(M) = H_k$

Differential characteristics

Security proof (Merkle, Damgård)

Theorem

If one finds a collision in the hash function, then one has a collision in the compression function.

• If $|M| \neq |M'|$, collision in last block.

• Else, look for last block with $H_i = H'_i$.

The converse is not true

G. Leurent (uni.lu)

Differential characteristics

Security proof (Merkle, Damgård)

Theorem

If one finds a collision in the hash function, then one has a collision in the compression function.

• If $|M| \neq |M'|$, collision in last block.

- Else, look for last block with $H_i = H'_i$.
- The converse is not true

G. Leurent (uni.lu)

Compression Function Attacks

Fist results usually target the compression function

- Because it's easier: more degrees of freedom
- Because good compression function imply good hash function

Compression Function Attacks

- Hash function collision:
- Free-start collision:
- Semi-free-start collision:
- Near-collision:
- Zero-sum:
 - m: $\sum h_i = 0, \ \sum m_i =$
- Attack on a truncated output, Bias, …

f(IV, m) = f(IV, m')f(h, m) = f(h, m')f(h, m) = f(h', m')

 $hw(f(h,m) \oplus f(h',m')) \text{ small}$ $\sum h_i = 0, \ \sum m_i = 0, \ \sum f(h_i,m_i) = 0$

Compression Function Attacks

Fist results usually target the compression function

- Because it's easier: more degrees of freedom
- Because good compression function imply good hash function

MD5 cryptanalysis

1993: Free-start collisions	[den Boer and Bosselaers]
1996: Semi-free-start collisions	[Dobbertin]
2005: Collisions	[Wang et. al]
2009: Rogue certificate	[Stevens et. al]

Wang's and Stevens's attacks are based on the dBB path

Introduction

Boomerang Attacks

Differential characteristics

Operations used

Two main categories of designs:

ARX designs

- Additions, Rotations, Xors
- Inspired by MD/SHA
- Lots of light rounds
- Bit-level attack
- Known attacks techniques, but finding paths is hard

SBox designs

- SBoxes and Linear Layers
- Inspired by the AES
- Few heavy rounds
- SBox-level attacks
- New attacks techniques, e.g. rebound attack

Introduction

Boomerang Attacks

Differential characteristics

Wang et. al's attacks

Based on a differential attack:

- Consider a pair of message with a small difference
- Try to control the propagation of the differences

New ideas:

- Use a signed difference
- Use a set of sufficient conditions
- Some conditions are easy to satisfy: message modification

G. Leurent (uni.lu)

Introduction

Differential characteristics

Wang et al.'s Attack

1 Precomputation:

- Choose a message difference.
- Build a differential path.
- Derive a set of sufficient conditions.

- Start with a random message, check the conditions
- Use message modifications

Introduction

Differential characteristics

Wang et al.'s Attack

Precomputation:

- Choose a message difference.
- Build a differential path
- Derive a set of sufficient conditions.

- Start with a random message, check the conditions
- Use message modifications

Introduction

Differential characteristics

Wang et al.'s Attack

Precomputation:

- Choose a message difference.
- Build a differential path.
- Derive a set of sufficient conditions.

- Start with a random message, check the conditions
- Use message modifications

Introduction

Differential characteristics

Wang et al.'s Attack

1 Precomputation:

- Choose a message difference.
- Build a differential path.
- Derive a set of sufficient conditions.

- Start with a random message, check the conditions
- Use message modifications

Introduction

Differential characteristics

Wang et al.'s Attack

1 Precomputation:

- Choose a message difference.
- Build a differential path.
- Derive a set of sufficient conditions.

- Start with a random message, check the conditions
- Use message modifications

Introduction

Differential characteristics

Wang et al.'s Attack

1 Precomputation:

- Choose a message difference.
- Build a differential path.
- Derive a set of sufficient conditions.

- Start with a random message, check the conditions
- Use message modifications

Introduction

Differential characteristics

Wang et al.'s Attack

Precomputation:

- Choose a message difference.
- Build a differential path.
- Derive a set of sufficient conditions.

- Start with a random message, check the conditions
- Use message modifications

Introduction

Differential characteristics

Wang et al.'s Attack

Precomputation:

- Choose a message difference.
- Build a differential path.
- Derive a set of sufficient conditions.

- Start with a random message, check the conditions
- Use message modifications

Introduction

Boomerang Attacks

Differential characteristics

The SHA-3 competition

After the attacks on the MD4 family, we need new hash functions

The SHA-3 competition

- Organized by NIST
- Similar to the AES competition
- Submission deadline was October 2008: 64 candidiates
- 51 valid submissions
- 14 in the second round (July 2009)
- 5 finalists in December 2010
- Winner in 2012?

Introduction

Boomerang Attacks

Differential characteristics

Introduction

Hash Functions Wang et al.'s attack

Boomerang Attacks

Boomerang Attacks and Hash Function Application to Skein Application to Blake

Differential characteristics

How to describe a differential characteristic S-function Analysis Application to Analysis of Differential Paths Incompatibilities

G. Leurent (uni.lu)

Differential characteristics

Boomerang Attacks

- Introduced by Wagner, many later improvements
- Combine two short differentials instead of using a long one.
 - $f = f_b \circ f_a$
 - for f_a , $\alpha \to \alpha'$ with probability p_a
 - for f_b , $\gamma \rightarrow \gamma'$ with probability p_b
- Uses an encryprion oracle together with a decryption oracle

Introduction

Differential characteristics

Boomerang Attacks

Start with P⁽⁰⁾, P⁽¹⁾
 Compute C⁽⁰⁾, C⁽¹⁾
 Build C⁽²⁾, C⁽³⁾
 Compute P⁽²⁾, P⁽³⁾

 $C = \frac{1}{p_a} \frac{1}{p_b^2} \frac{1}{p_a}$

 $P^{(0)} \oplus P^{(1)} = \alpha$ $P^{(2)} \oplus P^{(3)} = \alpha$ $C^{(0)} \oplus C^{(1)} = \gamma'$ $C^{(2)} \oplus C^{(3)} = \gamma'$

Introduction

Differential characteristics

Boomerang Attacks

Start with P⁽⁰⁾, P⁽¹⁾
 Compute C⁽⁰⁾, C⁽¹⁾
 Build C⁽²⁾, C⁽³⁾
 Compute P⁽²⁾, P⁽³⁾

 $C = \frac{1}{p_a} \frac{1}{p_b^2} \frac{1}{p_a}$

 $P^{(0)} \oplus P^{(1)} = \alpha$ $P^{(2)} \oplus P^{(3)} = \alpha$ $C^{(0)} \oplus C^{(1)} = \gamma'$ $C^{(2)} \oplus C^{(3)} = \gamma'$

Introduction

Differential characteristics

Boomerang Attacks

Start with P⁽⁰⁾, P⁽¹⁾
 Compute C⁽⁰⁾, C⁽¹⁾
 Build C⁽²⁾, C⁽³⁾
 Compute P⁽²⁾, P⁽³⁾

 $C = \frac{1}{p_a} \frac{1}{p_b^2} \frac{1}{p_a}$

 $P^{(0)} \oplus P^{(1)} = \alpha$ $P^{(2)} \oplus P^{(3)} = \alpha$ $C^{(0)} \oplus C^{(1)} = \gamma'$ $C^{(2)} \oplus C^{(3)} = \gamma'$

Introduction

Differential characteristics

Boomerang Attacks

Start with P⁽⁰⁾, P⁽¹⁾
 Compute C⁽⁰⁾, C⁽¹⁾
 Build C⁽²⁾, C⁽³⁾
 Compute P⁽²⁾, P⁽³⁾

 $C = \frac{1}{p_a} \frac{1}{p_b^2} \frac{1}{p_a}$

 $P^{(0)} \oplus P^{(1)} = \alpha$ $P^{(2)} \oplus P^{(3)} = \alpha$ $C^{(0)} \oplus C^{(1)} = \gamma'$ $C^{(2)} \oplus C^{(3)} = \gamma'$

Introduction

Differential characteristics

Boomerang Attacks

- **1** Start with $P^{(0)}$, $P^{(1)}$
- 2 Compute *C*⁽⁰⁾, *C*⁽¹⁾
- 3 Build $C^{(2)}$, $C^{(3)}$

4 Compute *P*⁽²⁾, *P*⁽³⁾

$$C = \frac{1}{p_a} \frac{1}{p_b^2} \frac{1}{p_a}$$

 $P^{(0)} \oplus P^{(1)} = \alpha$ $P^{(2)} \oplus P^{(3)} = \alpha$ $C^{(0)} \oplus C^{(1)} = \gamma'$ $C^{(2)} \oplus C^{(3)} = \gamma'$

Introduction

Differential characteristics

Boomerang Attacks

- **1** Start with $P^{(0)}$, $P^{(1)}$
- **2** Compute $C^{(0)}$, $C^{(1)}$
- 3 Build $C^{(2)}$, $C^{(3)}$

4 Compute *P*⁽²⁾, *P*⁽³⁾

$$C = \frac{1}{p_a} \frac{1}{p_b^2} \frac{1}{p_a}$$

 $P^{(0)} \oplus P^{(1)} = \alpha$ $P^{(2)} \oplus P^{(3)} = \alpha$ $C^{(0)} \oplus C^{(1)} = \gamma'$ $C^{(2)} \oplus C^{(3)} = \gamma'$

Introduction

Differential characteristics

Boomerang Attacks

- Start with P⁽⁰⁾, P⁽¹⁾
 Compute C⁽⁰⁾. C⁽¹⁾
- 3 Build $C^{(2)}, C^{(3)}$

4 Compute $P^{(2)}$, $P^{(3)}$

$$C=\frac{1}{p_a}\frac{1}{p_b^2}\frac{1}{p_a}$$

 $P^{(0)} \oplus P^{(1)} = \alpha$ $P^{(2)} \oplus P^{(3)} = \alpha$ $C^{(0)} \oplus C^{(1)} = \gamma'$ $C^{(2)} \oplus C^{(3)} = \gamma'$

Introduction

Differential characteristics

Improvements to the Boomerang Attack

1 Amplified probabilities

• Do not specify α' and γ

$$\hat{p}_{a} = \sqrt{\sum_{\alpha'} \Pr\left[\alpha \to \alpha'\right]}$$
$$\hat{p}_{b} = \sqrt{\sum_{\gamma} \Pr\left[\gamma \to \gamma'\right]}$$

2 Related-key

January 24, 2012 17 / 54
Introduction

Differential characteristics

Improvements to the Boomerang Attack

1 Amplified probabilities

• Do not specify α' and γ

$$\hat{p}_{a} = \sqrt{\sum_{\alpha'} \Pr\left[\alpha \to \alpha'\right]}$$
$$\hat{p}_{b} = \sqrt{\sum_{\gamma} \Pr\left[\gamma \to \gamma'\right]}$$

2 Related-key • $p_a = \Pr\left[\alpha \xrightarrow{\alpha_k} \alpha'\right]$ $p_b = \Pr\left[\gamma \xrightarrow{\gamma_k} \gamma'\right]$

January 24, 2012 17 / 54

Differential characteristics

Boomerang in the Known-key Setting

A boomerang attack gives a quartet:

$$P^{(0)} \oplus P^{(1)} = \alpha \qquad P^{(2)} \oplus P^{(3)} = \alpha \qquad \sum P^{(i)} = 0$$
$$C^{(0)} \oplus C^{(1)} = \gamma' \qquad C^{(2)} \oplus C^{(3)} = \gamma' \qquad \sum C^{(i)} = 0$$

Even if the key is known, this is hard:

- With fixed α, γ', complexity 2ⁿ
 With fixed α, and ∑ C⁽ⁱ⁾ = 0, complexity 2^{n/2}
 - $\sum P^{(i)} = 0$, $\sum C^{(i)} = 0$, best attack $2^{n/2}$, lower bound $2^{n/3}$
- With a known key, one can start from the middle
 - Message modification

Boomerang Attacks on Hash Functions

• A (related-key) boomerang attack gives a quartet:

$$\sum P^{(i)} = 0 \qquad \sum C^{(i)} = 0 \qquad \sum K^{(i)} = 0$$

Most hash functions are based on a block cipher:

Davies-Meyer $f(h, m) = E_m(h) \oplus h$ Matyas-Meyer-Oseas $f(h, m) = E_h(m) \oplus m$

The boomerang quartet gives:

$$\sum h^{(i)} = 0 \qquad \sum m^{(i)} = 0 \qquad \sum f(h^{(i)}, m^{(i)}) = 0$$

$$DM \ h^{(i)} = P^{(i)} \qquad m^{(i)} = K^{(i)} \qquad f(h^{(i)}, m^{(i)}) = P^{(i)} \oplus C^{(i)}$$

$$MMO \ h^{(i)} = K^{(i)} \qquad m^{(i)} = P^{(i)} \qquad f(h^{(i)}, m^{(i)}) = P^{(i)} \oplus C^{(i)}$$

- In general this is hard:
 - ▶ $\sum f(h,m) = 0$, best attack $2^{n/3}$, lower bound $2^{n/4}$ ▶ $\sum f(h,m) = \sum h = \sum m = 0$, best attack $2^{n/2}$, lower bound $2^{n/3}$

New Technique: Using Auxiliary Paths

- Divide f in three sub-functions: $f = f_c \circ f_b \circ f_a$
 - for f_a , $\alpha \to \alpha'$ with probability p_a
 - for f_b , $\beta_j \rightarrow \beta'_j$ with probability p_b
 - for f_c , $\gamma \rightarrow \gamma'$ with probability p_c
- Start with a boomerang quartet for f_b:

$$U^{(1)} = U^{(0)} + \alpha' \qquad U^{(3)} = U^{(2)} + \alpha' V^{(2)} = V^{(0)} + \gamma \qquad V^{(2)} = V^{(1)} + \gamma$$

► Construct $U_*^{(i)} = U^{(i)} + \beta_j$. With probability $p_{b'}^4 V_*^{(i)} = V^{(i)} + \beta'_j$: $U_*^{(1)} = U_*^{(0)} + \alpha'$ $U_*^{(3)} = U_*^{(2)} + \alpha'$ $V_*^{(2)} = V_*^{(0)} + \gamma$ $V_*^{(2)} = V_*^{(1)} + \gamma$

Differential characteristics

New Technique: Using Auxiliary Paths

- Also with related-key paths
- Similar to "Boomerang" of Joux and Peyrin
- Similar to message modifications for Boomerang attacks
 - BlakeSHA-2
 - HAVAL
 - Skein/Threefish

Complexity:

$$\frac{1}{p_a^2 p_c^2} \left(\frac{C}{b \cdot p_b^4} + 1 \right)$$

- Cost C to build an initil quartet
- b paths with probability p_b for f_b
- Very efficient with a large family of probability 1 paths

G. Leurent (uni.lu)

Boomerang Attacks against ARX Hash Functions

[BNR '11] [ML '11] [Sasaki '11] [ACMPV '09, Chen & Jia '10]

Introduction

Differential characteristics

Building the Initial Quartet

Usually by extending the top and bottom paths

Special tricks depending on the function...

G. Leurent (uni.lu)

Differential characteristics

Application to ARX designs

- Several recent design are based on the ARX design
 - Use only Addition, Rotation, Xor
 - Skein, Blake are SHA-3 finalists
 - Short RK paths with high probability

Hard to build

controlled characteristics

G. Leurent (uni.lu)

Boomerang Attacks

Differential characteristics

Application to ARX designs

- Several recent design are based on the ARX design
 - Use only Addition, Rotation, Xor
 - Skein, Blake are SHA-3 finalists

Boomerang Attacks

Skein

Threefish-256 round

MMO mode

SHA-3 finalist

- ARX design
 - 64-bit words
 - ▶ MIX(*a*, *b*) :=
 - $\left((a+b) \mod 2^{64}, (b \lll R) \oplus c\right)$
 - Word permutations
 - Key addition every four rounds
- Threefish-256:
 - 256-bit key: K₀, K₁, K₂, K₃
 - 128-bit tweak: T₀, T₁
 - 256-bit text

Differential characteristics

Skein: Differential Trails

Round

Key schedule (Threefish-256):

- 256-bit key: K₀, K₁, K₂, K₃
- 128-bit tweak: T₀, T₁
- $K_4 := K_0 \oplus K_1 \oplus K_2 \oplus K_3 \oplus C$
- $\blacktriangleright T_2 := T_0 \oplus T_1$

0	K ₀	$K_{1} + T_{0}$	$K_{2} + T_{1}$	$K_{3} + 0$
4	K_1	$K_{2} + T_{1}$	$K_{3} + T_{2}$	<i>K</i> ₄ + 1
8	<i>K</i> ₂	$K_{3} + T_{2}$	$K_{4} + T_{0}$	<i>K</i> ₀ + 2
12	K_3	$K_{4} + T_{0}$	$K_0 + T_1$	<i>K</i> ₁ + 3
16	K_4	$K_0 + T_1$	$K_{1} + T_{2}$	<i>K</i> ₂ + 4

16-round trail:

Differential characteristics

Skein: Differential Trails

Round

Key schedule (Threefish-256):

- 256-bit key: K₀, K₁, K₂, K₃
- 128-bit tweak: T₀, T₁
- $\blacktriangleright K_4 := K_0 \oplus K_1 \oplus K_2 \oplus K_3 \oplus C$
- $\blacktriangleright T_2 := T_0 \oplus T_1$

0	K ₀	$K_1 + T_0$	$K_{2} + T_{1}$	<u>K</u> ₃ + 0
4	K_1	$K_{2} + T_{1}$	$K_{3} + T_{2}$	<i>K</i> ₄ + 1
8	<i>K</i> ₂	$K_{3} + T_{2}$	$K_{4} + T_{0}$	<i>K</i> ₀ + 2
12	<i>K</i> 3	$K_{4} + T_{0}$	$K_0 + T_1$	<i>K</i> ₁ + 3
16	<i>K</i> 4	$K_0 + T_1$	$K_1 + T_2$	<i>K</i> ₂ + 4

16-round trail:

Boomerang Attacks

Differential characteristics

Skein: Description of the Attack

Boomerang Attacks

Differential characteristics

Skein: Description of the Attack

Introduction

Differential characteristics

Differential characteristics

Skein: Results

Attack	CF/KP	Rounds	CF/KP calls	Ref.
Unknown Key				
Near collisions (Skein-256)	CF	24	2 ⁶⁰	[CANS '10]
Boomerang dist. (Threefish-512)	KP	32	2 ¹⁸⁹	[ISPEC '10] ¹
Key Recovery (Threefish-512)	KP	34	2 ^{474.4}	[ISPEC '10] ¹
Key Recovery (Threefish-512)	KP	32	2 ³¹²	[AC '09]
Open key				
Boomerang dist. (Threefish-512)	KP	35	2 ⁴⁷⁸	[AC '09]
Near collisions (Skein-256)	CF	32	2 ¹⁰⁵	[ePrint '11] ¹
Boomerang dist. (Skein-256)	CF and KP	24	2 ¹⁸	
Boomerang dist. (Threefish-256)	KP	28	2 ²¹	
Boomerang dist. (Skein-256)	CF	28	2 ²⁴	
Boomerang dist. (Threefish-256)	KP	32	2 ⁵⁷	
Boomerang dist. (Skein-256)	CF	32	2 ¹¹⁴	

¹ problems with paths

Introduction 00000000000000

Blake

Differential characteristics

- Column step: G(a₀, b₀, c₀, d₀) G(a₁, b₁, c₁, d₁) G(a₂, b₂, c₂, d₂) G(a₃, b₃, c₃, d₃)
- Diagonal step: G(a₀, b₁, c₂, d₃) G(a₁, b₂, c₃, d₀) G(a₂, b₃, c₀, d₁) G(a₃, b₀, c₁, d₂)

Introduction 00000000000000

Differential characteristics

- Column step: G(a₀, b₀, c₀, d₀) G(a₁, b₁, c₁, d₁) G(a₂, b₂, c₂, d₂) G(a₃, b₃, c₃, d₃)
- Diagonal step: G(a₀, b₁, c₂, d₃) G(a₁, b₂, c₃, d₀) G(a₂, b₃, c₀, d₁) G(a₃, b₀, c₁, d₂)

Introduction 00000000000000

Differential characteristics

- Column step: G(a₀, b₀, c₀, d₀) G(a₁, b₁, c₁, d₁) G(a₂, b₂, c₂, d₂) G(a₃, b₃, c₃, d₃)
- Diagonal step: G(a₀, b₁, c₂, d₃) G(a₁, b₂, c₃, d₀) G(a₂, b₃, c₀, d₁) G(a₃, b₀, c₁, d₂)

Blake: Differential Trails

Key schedule: permutation based σ₃: 7 9 3 1 13 12 11 14 2 6 5 10 4 0 15 8 σ₄: 9 0 5 7 2 4 10 15 14 1 11 12 6 8 3 13

Choose a message word used

- at the beginning of a round
- at the end of the next round
- 4-round trail:

Blake: Differential Trails

- Key schedule: permutation based σ_3 : 7 9 3 1 13 12 11 14 2 6 5 10 4 0 15 8 σ_4 : 9 0 5 7 2 4 10 15 14 1 11 12 6 8 3 13
- Choose a message word used
 - at the beginning of a round
 - at the end of the next round

Blake: Differential Trails

- Key schedule: permutation based σ_3 : 7 9 3 1 13 12 11 14 2 6 5 10 4 0 15 8 σ_4 : 9 0 5 7 2 4 10 15 14 1 11 12 6 8 3 13
- Choose a message word used
 - at the beginning of a round
 - at the end of the next round
- 4-round trail:

Blake: Description of the Attack

The hard part is the middle round

- Column step is part of the top path
- Diagonal step is part of the bottom path
- I Find (state, message) candidates for each diagonal G function
 - Start with middle quartets with all differences fixed
- 2 Look for combinations of candidates that follow the first part of the diagonal step
 - Use the message to randomize
- 3 Look for candidates that follow the full diagonal step
 - Use the message to randomize

Boomerang Attacks

Differential characteristics

Blake-256: Results

Attack	CF/KP	Rounds	CF/KP calls	Ref.
Unknown Key				
Boomerang dist. Boomerang dist.	КР КР	7 8	2 ¹²² 2 ²⁴²	[FSE '11] [FSE '11] ¹
Open Key				
Boomerang dist.	CF w/ Init	7	2 ²³²	[FSE '11]
Boomerang dist. Boomerang dist.	КР КР	7 8	2 ³² 2 ¹ xx	

¹ problems with paths

G. Leurent (uni.lu)

Boomerang Attacks

Differential characteristics

Limitations of the Technique

Why not attack more rounds?

Paths are incompatible!

G. Leurent (uni.lu)

Boomerang Attacks

Differential characteristics

Limitations of the Technique

Why not attack more rounds?

Paths are incompatible!

G. Leurent (uni.lu)

Differential characteristics

Incompatibilities in Boomerang Paths

- For a Boomerang attack, we usually assume that the path are independent
- We are building a quartet $X^{(0)}$, $X^{(1)}$, $X^{(2)}$, $X^{(3)}$:

$$\begin{array}{l} (X^{(0)}, X^{(1)}) \xrightarrow{f_a} \alpha & (X^{(2)}, X^{(3)}) \xrightarrow{f_a} \alpha \\ (X^{(0)}, X^{(2)}) \xrightarrow{f_b} \gamma' & (X^{(1)}, X^{(3)}) \xrightarrow{f_b} \gamma' \end{array}$$

But these events are not independent!

[Murphy 2011]

► To explain this behaviour, we have to study differential paths

G. Leurent (uni.lu)

 $\delta a = 1$

 $\delta b = 5$

 $\delta c = 8$

Differential characteristics \u00ed{0}
 \u0ed{0}
 \u00ed{0}
 \u00ed{0}

Differential Characteristic

- A differential only specifies the input and output difference
- A difference characteristic specifies
- Wang introduced a signed difference.

Boomerang Attacks against ARX Hash Functions

 $\delta v = 1$

c = a + bu = c + d $v = u \ll 2$

G. Leurent (uni.lu)

 $\delta a = 1$

 $\delta d = c$

 $\delta u = 4$

 $\delta v = 1$

c = a + bu = c + d $v = u \ll 2$

 $\delta b = 5$

 $\delta c = 8$

Differential characteristics \u00ed{0}
 \u0ed{0}
 \u00ed{0}
 \u00ed{0}

Differential Characteristic

- ► Choose a difference operation: ⊕
- A differential only specifies the input and output difference
- A difference characteristic specifies the difference of each internal variable
 - Compute probability for each operation
- Wang introduced a signed difference.

Boomerang Attacks against ARX Hash Functions

G. Leurent (uni.lu)

Introduction

Differential characteristics

Differential Characteristic

 $\delta b = -x - x$ $\delta a = --x$ $\delta d = xx^{--}$ $\delta c = x - - \delta u = -x - \delta \mathbf{v} = --\mathbf{x}$

G. Leurent (uni.lu)

- Choose a difference operation: \oplus
- A differential only specifies the input and output difference
- A difference characteristic specifies the difference of each internal variable
 - Compute probability for each operation
- Wang introduced a signed difference.
 - A path defines a set of good pairs: $\{x, x' : x' = x \oplus \alpha\}$
 - We want to capture:
 - $\{x, x' : x' = x \oplus \alpha \text{ and } x' = x \boxplus \beta\}$ Sign each active bit

Differential characteristics

Problems with Xor-Characteristics

$$\delta a = -x - \delta b = ---x$$

$$\delta d = --x \quad \delta c = ---x$$

$$\delta d = ---x$$

$$\delta u = ----$$

$$c = a + b$$
$$u = c + d$$

- ▶ Probability: 2⁻³ · 2⁻²
- Obviously wrong if you consider modular differences

•
$$\delta a \rightsquigarrow \pm 4$$

•
$$\delta c \rightsquigarrow \pm 1$$

Differential characteristics

Problems with Xor-Characteristics

$$\delta a = -x - \delta b = ---x$$

$$\delta d = --x \quad \delta c = ---x$$

$$\delta d = ---x$$

$$\delta u = ----$$

$$c = a + b$$
$$u = c + d$$

- ▶ Probability: 2⁻³ · 2⁻²
- Obviously wrong if you consider modular differences

•
$$\delta a \rightsquigarrow \pm 4$$

δc → ±1

Introduction

Differential characteristics

Differential Characteristic

 $\delta \mathbf{h} = -\mathbf{x} - \mathbf{x}$ $\delta a = --x$ $\delta d = xx^{--}$ $\delta c = x - - \delta u = -x - \delta \mathbf{v} = --\mathbf{x}$

G. Leurent (uni.lu)

- Choose a difference operation: \oplus
- A differential only specifies the input and output difference
- A difference characteristic specifies the difference of each internal variable
 - Compute probability for each operation
- Wang introduced a signed difference.
 - A path defines a set of good pairs: $\{x, x' : x' = x \oplus \alpha\}$
 - We want to capture: {x,x' : x' = x ⊕ α and x' = x ⊞ β}
 Sign each active bit

Introduction

Differential characteristics

Differential Characteristic

G. Leurent (uni.lu)

- Choose a difference operation: \oplus
- A differential only specifies the input and output difference
- A difference characteristic specifies the difference of each internal variable
 - Compute probability for each operation
- Wang introduced a signed difference.
 - A path defines a set of good pairs: $\{x, x' : x' = x \oplus \alpha\}$
 - We want to capture: $\{x, x' : x' = x \oplus \alpha \text{ and } x' = x \boxplus \beta\}$
 - Sign each active bit

Generalized constraints [De Cannière & Rechberger 06]

	(<i>x</i> , <i>x</i> '):	(0,0)	(0,1)	(1,0)	(1,1)
?	anything	\checkmark	\checkmark	\checkmark	\checkmark
-	x = x'	\checkmark	-	-	\checkmark
x	x eq x'	-	\checkmark	\checkmark	-
0	x = x' = 0	\checkmark	-	-	-
u	(x, x') = (0, 1)	-	\checkmark	-	-
n	(x, x') = (1, 0)	-	-	\checkmark	-
1	x = x' = 0	-	-	-	\checkmark
#	incompatible	-	-	-	-
3	<i>x</i> = 0	\checkmark	\checkmark	-	-
5	x' = 0	\checkmark	-	\checkmark	-
7		\checkmark	\checkmark	\checkmark	-
Α	x' = 1	-	\checkmark	-	\checkmark
В		\checkmark	\checkmark	-	\checkmark
С	<i>x</i> = 1	-	-	\checkmark	\checkmark
D		\checkmark	-	\checkmark	\checkmark
Е		-	\checkmark	\checkmark	\checkmark

Boomerang Attacks

Differential characteristics

Definition

- *T-function* $\forall t, t$ bits of the output can be computed from t bits of the input.
- S-function There exist a state S so that: $\forall t$, bit t of the output and state S[t] can be computed from bit t of the input, and the state S[t-1]. S-system f(P, x) = 0f is an S-function, P is a parameter, x is an unknown

Addition, Xor, and Boolean operations are S-functions

G. Leurent (uni.lu)
Boomerang Attacks

Differential characteristics

Solving S-Systems

Important Example

$\mathbf{x} \oplus \Delta = \mathbf{x} \boxplus \delta$

- On average one solution
- Easy to solve because it's a T-function.
 - Guess LSB, check, and move to next bit
- How easy exactly?
- ► Backtracking is exponential in the worst case: x ⊕ 0x8000000 = x

For random δ , Δ , most of the time the system is inconsistent

G. Leurent (uni.lu)

Boomerang Attacks

Differential characteristics

Solving S-Systems

Important Example

$\mathbf{x} \oplus \Delta = \mathbf{x} \boxplus \delta$

- On average one solution
- Easy to solve because it's a T-function.
 - Guess LSB, check, and move to next bit

How easy exactly?

► Backtracking is exponential in the worst case: x ⊕ 0x80000000 = x

For random δ , Δ , most of the time the system is inconsistent

G. Leurent (uni.lu)

Introduction

Differential characteristics

Solving S-Systems

Important Example

$\mathbf{x} \oplus \Delta = \mathbf{x} \boxplus \delta$

- On average one solution
- Easy to solve because it's a T-function.
 - Guess LSB, check, and move to next bit
- How easy exactly?
- ► Backtracking is exponential in the worst case: x ⊕ 0x8000000 = x

For random δ , Δ , most of the time the system is inconsistent

G. Leurent (uni.lu)

Introduction

Differential characteristics

Solving S-Systems

Important Example

$\mathbf{x} \oplus \Delta = \mathbf{x} \boxplus \delta$

- On average one solution
- Easy to solve because it's a T-function.
 - Guess LSB, check, and move to next bit
- How easy exactly?
- ► Backtracking is exponential in the worst case: $x \oplus 0x8000000 = x$
- For random δ , Δ , most of the time the system is inconsistent

G. Leurent (uni.lu)

Boomerang Attacks

Differential characteristics

Transition Automata

We use automata to study S-systems:

- States represent the carries
- Transitions are labeled with the variables

Carry transitions for $x \oplus \Delta = x \boxplus \delta$ *.*

Δ	δ	х	c'	с	Δ	δ	х	0
0	0	0	0	1	0	0	0	
0	0	1	0	1	0	0	1	
0	1	0	-	1	0	1	0	
0	1	1	-	1	0	1	1	
1	0	0	-	1	1	0	0	
1	0	1	-	1	1	0	1	
1	1	0	0	1	1	1	0	
1	1	1	1	1	1	1	1	

[Mouha et. al]

G. Leurent (uni.lu)

Boomerang Attacks

Differential characteristics

[Mouha et. al]

Transition Automata

We use automata to study S-systems:

- States represent the carries
- Transitions are labeled with the variables

Introduction

Differential characteristics

Decision Automata

Remove x from the transitions

Convert the non-deterministic automata to deterministic.

• Can decide whether a given Δ , δ is compatible.

G. Leurent (uni.lu)

Boomerang Attacks

Differential characteristics

Decision Automata

Remove x from the transitions

Convert the non-deterministic automata to deterministic.

• Can decide whether a given Δ , δ is compatible.

G. Leurent (uni.lu)

Differential characteristics

Decision Automata

- Remove x from the transitions
- Convert the non-deterministic automata to deterministic.

• Can decide whether a given Δ , δ is compatible.

G. Leurent (uni.lu)

Differential characteristics

Solving S-systems

Take an S-system with variables and parameters. e.g. $x \oplus \Delta = x \boxplus \delta$

- 1 Compute carry transitions
- 2 Build transition automaton
- **3** Remove variables and compute equivalent deterministic automaton

For each values of the parameters:

- Test if system is coherent in linear time
- Count solutions in linear time
- Find a solution in linear time

Can also study properties of the systems.

G. Leurent (uni.lu)

Generalized Characteristics

• We can write generalized constraints as an S-system:

$$\begin{array}{ll} P_0 = 0 \Rightarrow (x,x') \neq (0,0) & P_1 = 0 \Rightarrow (x,x') \neq (0,1) \\ P_2 = 0 \Rightarrow (x,x') \neq (1,0) & P_3 = 0 \Rightarrow (x,x') \neq (1,1) \end{array}$$

• We can now compute the probability of a generalized characteristic.

- Addition, Xor, Boolean functions are S-functions
- Rotations just rotate the constraints

	(<i>x</i> , <i>x</i> ′):	(0, 0)	(0,1)	(1,0)	(1,1)	<i>P</i> ₀	<i>P</i> ₁	P ₂	P3
?	anything	\checkmark	\checkmark	\checkmark	\checkmark	1	1	1	1
-	x = x'	\checkmark	-	-	\checkmark	1	0	0	1
x	x eq x'	-	\checkmark	\checkmark	-	0	1	1	0
0	x = x' = 0	\checkmark	-	-	-	1	0	0	0
u	(x, x') = (0, 1)	-	\checkmark	-	-	0	1	0	0
n	(x, x') = (1, 0)	-	-	\checkmark	-	0	0	1	0
1	x = x' = 0	-	-	-	\checkmark	0	0	0	1
#	incompatible	-	-	-	-	0	0	0	0

Differential characteristics

New Constraints

- Carry propagation leads to constraints of the form $x^{[i]} = x^{[i-1]}$
- We use new constraints to capture this information
- We consider subsets of $\left\{x^{[i]}, x'^{[i]}, x^{[i-1]}\right\}$ instead of $\left\{x^{[i]}, x'^{[i]}\right\}$
- This can still be written as an S-system with Boolean filtering on x, x', x ⊞ x.

G. Leurent (uni.lu)

Introduction

Differential characteristics

New Constraints Table

(<i>x</i>	$x \oplus x', x \oplus 2x, x)$:	(0, 0, 0)	(0, 0, 1)	(0, 1, 0)	(0, 1, 1)	(1,0,0)	(1, 0, 1)	(1,1,0)	(1, 1, 1)
?	anything	\checkmark							
-	x = x'	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-
x	x eq x'	-	-	-	-	\checkmark	\checkmark	\checkmark	\checkmark
0	x = x' = 0	\checkmark	-	\checkmark	-	-	-	-	-
u	(x, x') = (0, 1)	-	-	-	-	\checkmark	-	\checkmark	-
n	(x, x') = (1, 0)	-	-	-	-	-	\checkmark	-	\checkmark
1	x = x' = 0	-	\checkmark	-	\checkmark	-	-	-	-
#	incompatible	-	-	-	-	-	-	-	-
3	<i>x</i> = 0	\checkmark	-	\checkmark	-	\checkmark	-	\checkmark	-
С	<i>x</i> = 1	-	\checkmark	-	\checkmark	-	\checkmark	-	\checkmark
5	x'=0	\checkmark	-	\checkmark	-	-	\checkmark	-	\checkmark
A	<i>x</i> ′ = 1	-	\checkmark	-	\checkmark	\checkmark	-	\checkmark	-
=	x = x' = 2x	\checkmark	\checkmark	-	-	-	-	-	-
1	$x = x' \neq 2x$	-	-	\checkmark	\checkmark	-	-	-	-
>	$x \neq x' = 2x$	-	-	-	-	\checkmark	\checkmark	-	-
<	$x \neq x' \neq 2x$	-	-	-	-	-	-	\checkmark	\checkmark
	G. Leurent (uni.lu) Boomerang Attacks against ARX Hash Functions January 24, 2012 4								2 46/54

Differential characteristics

Propagation of constraints

We use S-systems to propagate constraints:

- **1** Split subsets in two smaller subsets
- 2 If one subset gives zero solutions, the characteristic can be restricted to the other subset.

Boomerang Attacks

Differential characteristics

Summary

- Wang looks for *sufficient* conditions.
- We compute *necessary* conditions.
- This allows to detect cases of incompatibility
- We use a graphic tool to tune paths
- To finish this talk, we will show some problems that can appear in differential paths

Introduction

Differential characteristics

Detecting problems

$$c = a + b$$
$$u = c + d$$

- Consider the 1st addition
 Constraint: c^[1] = c^[0]
- Consider the 2nd addition
 Constraint: c^[1] ≠ c^[0]
- Incompatible!
 - Detected with the new constraints

Introduction

Differential characteristics

Detecting problems

$$c = a + b$$
$$u = c + d$$

Consider the 1st addition
 Constraint: c^[1] = c^[0]

Consider the 2nd addition
 Constraint: c^[1] ≠ c^[0]

- Incompatible!
 - Detected with the new constraints

Introduction

Differential characteristics

Detecting problems

- Consider the 1st addition
 Constraint: c^[1] = c^[0]
- Consider the 2nd addition
 Constraint: c^[1] ≠ c^[0]
- Incompatible!
 - Detected with the new constraints

Introduction

Differential characteristics

Detecting problems

- Consider the 1st addition
 Constraint: c^[1] = c^[0]
- Consider the 2nd addition
 Constraint: c^[1] ≠ c^[0]
- Incompatible!
 - Detected with the new constraints

Introduction

Differential characteristics

Incompatibility in the low bits

	Active b	it:
		х
$\delta a = -\mathbf{x} \qquad \delta b = -\mathbf{x} \qquad \delta c = -\mathbf{x}$	a b c u a+b+c	0 0 1 0
$\delta u = -x$ $u = a + b + c$	► Wla	og,

Wlog, we can put signs

x′

- Compute a + b + c
- Contradiction!

Introduction

Differential characteristics

Incompatibility in the low bits

- Compute a + b + c
- Contradiction!

Differential characteristics

Incompatibility in the low bits

- Wlog, we can put signs
- Compute a + b + c
- Contradiction!

Introduction

Differential characteristics

Carry incompatibility

$$u = a + b$$

Incompatible!

No simple explanation...

Introduction

Differential characteristics

Carry incompatibility (II)

- Consider the 1st addition
 Constraint: c^[2] ≠ c^[3]
- Consider the 2nd addition
 Constraint: c^[2] = c^[3]
- Incompatible!
 - Detected with the new constraints

u = c + d

Introduction

Differential characteristics

Carry incompatibility (II)

$$\delta a = -xx - \qquad \delta b = xxx -$$

$$\delta c = -\neq -- \qquad \delta d = -xx -$$

$$\delta u = -xx -$$

$$c = a + b$$
$$u = c + d$$

Consider the 1st addition
 Constraint: c^[2] ≠ c^[3]

Consider the 2nd addition
 Constraint: c^[2] = c^[3]

- Incompatible!
 - Detected with the new constraints

Introduction

Differential characteristics

Carry incompatibility (II)

$$\delta a = -xx - \qquad \delta b = xxx - \delta b = -xx - \delta$$

- Consider the 1st addition
 Constraint: c^[2] ≠ c^[3]
- Consider the 2nd addition
 Constraint: c^[2] = c^[3]
- Incompatible!
 - Detected with the new constraints

u = c + d

Introduction

Differential characteristics

Carry incompatibility (II)

$$\delta a = -xx - \qquad \delta b = xxx -$$

$$\delta c = -\# - \qquad \delta d = -xx -$$

$$\delta u = -xx -$$

$$c = a + b$$

- Consider the 1st addition
 Constraint: c^[2] ≠ c^[3]
- Consider the 2nd addition
 Constraint: c^[2] = c^[3]
- Incompatible!
 - Detected with the new constraints

u = c + d

Introduction

Differential characteristics

Boomerang incompatibility

Top path:
$$(a^{(0)}, b^{(0)}; a^{(2)}, b^{(2)}) (a^{(1)}, b^{(1)}; a^{(3)}, b^{(3)})$$

Bottom path: $(a^{(0)}, b^{(0)}; a^{(1)}, b^{(1)}) (a^{(2)}, b^{(2)}; a^{(3)}, b^{(3)})$

	<i>x</i> ⁽⁰⁾	x ⁽¹⁾	<i>x</i> ⁽²⁾	x ⁽³⁾
а	0	1	1	0
b	1	0	0	1

- Wlog, assume $a^{(0)} = 0$
- Compute a⁽ⁱ⁾, deduce sign of b
- Contradiction for b!

Introduction

Differential characteristics

Boomerang incompatibility

Top path:
$$(a^{(0)}, b^{(0)}; a^{(2)}, b^{(2)}) (a^{(1)}, b^{(1)}; a^{(3)}, b^{(3)})$$

Bottom path: $(a^{(0)}, b^{(0)}; a^{(1)}, b^{(1)}) (a^{(2)}, b^{(2)}; a^{(3)}, b^{(3)})$

	x ⁽⁰⁾	x ⁽¹⁾	<i>x</i> ⁽²⁾	x ⁽³⁾
а	0	1	1	0
b	1	0	0	1

- Wlog, assume $a^{(0)} = 0$
- Compute a⁽ⁱ⁾, deduce sign of b

Contradiction for b!

Introduction

Differential characteristics

Boomerang incompatibility

Top path:
$$(a^{(0)}, b^{(0)}; a^{(2)}, b^{(2)}) (a^{(1)}, b^{(1)}; a^{(3)}, b^{(3)})$$

Bottom path: $(a^{(0)}, b^{(0)}; a^{(1)}, b^{(1)}) (a^{(2)}, b^{(2)}; a^{(3)}, b^{(3)})$

	<i>x</i> ⁽⁰⁾	x ⁽¹⁾	<i>x</i> ⁽²⁾	x ⁽³⁾
a	0	1	1	0
b	1	0	0	1

- Wlog, assume $a^{(0)} = 0$
- Compute a⁽ⁱ⁾, deduce sign of b

Contradiction for b!

Introduction

Differential characteristics

Boomerang incompatibility

Bottom path: $(a^{(0)}, b^{(0)}; a^{(1)}, b^{(1)}) (a^{(2)}, b^{(2)}; a^{(3)}, b^{(3)})$

	<i>x</i> ⁽⁰⁾	x ⁽¹⁾	<i>x</i> ⁽²⁾	x ⁽³⁾
a	0	1	1	0
b	1	0	0	1

- Wlog, assume $a^{(0)} = 0$
- Compute $a^{(i)}$, deduce sign of b

Contradiction for b!

Introduction

Differential characteristics

Boomerang incompatibility

Top path:
$$(a^{(0)}, b^{(0)}; a^{(2)}, b^{(2)}) (a^{(1)}, b^{(1)}; a^{(3)}, b^{(3)})$$

Bottom path: $(a^{(0)}, b^{(0)}; a^{(1)}, b^{(1)}) (a^{(2)}, b^{(2)}; a^{(3)}, b^{(3)})$

	<i>x</i> ⁽⁰⁾	x ⁽¹⁾	<i>x</i> ⁽²⁾	x ⁽³⁾
a	0	1	1	0
b	1	0	0	1

- Wlog, assume $a^{(0)} = 0$
- Compute $a^{(i)}$, deduce sign of b
- Contradiction for b!

Boomerang Attacks

Differential characteristics

Conclusion

1 Boomerang attack on hash functions

- Use auxiliary path to avoid middle rounds
- Significant improvement over previous results
- 2 Analysis of differentials paths
 - New constraints for carries
 - Tools for constraint propagations
 - Problems found in several previous works