Anna Grocholewska-Czuryło

Division of Information System Security Poznań University of Technology

HaF - A new family of hash functions

Poznan University of Technology

Introduction

- Hash functions
- HAF a family of parameterized hash functions
- Design principles
- Security considerations

Design Principles

- Parametrization
- Selectable message digest length
- Flexibility between security and performance
- Resistance to known attacks
- HAIFA iteration mode

General model of HaF

Compression Function

Round Function

Step Function

Security Considerations

HaF S-boxes

- S-boxes based on inversion mapping with modifications to remove affine equivalence between component functions
- balancedness
- lowest possible value in XOR profile
- complex agebraic description
- No cycles
- Size: |6x|6 bits
- S-box nonlinearity: 32510
- Degree: I5

Inverse mapping

- Irreducible polynomial to define Galois
 Field (in AES it is \$11b)
- Another polynomial as generator
- n-bit elements treates as polynomials:
 - b₇b₆b₅b₄b₃b₂b₁b₀ ->
 - $\circ b_7 x^7 + b_6 x^6 + b_5 x^5 + b_4 x^4 + b_3 x^3 + b_2 x^2 + b_1 x^1 + b_0$

Inverse mapping continued

- An multiplicative inverse of polynomial g in GF(2ⁿ) is such a polynomial h that gh=\$01
- Element \$00 doesn't have an inverse in GF.
 Inverse of \$01 is \$01
- Nonlinearity of such a mapping is $2^{n-1}-2^{n/2}$
 - 112 for *n*=8, 32512 for *n*=16
- Inverse mapping is different for every irreducible polynomial. It doesn't depend on a selected generator polynomial.

Affine transform

To avoid algebraic attack
Must be a full permutation

 b_i

• in AES:

$$= b_i \oplus b_{(i+4) \mod 8} \oplus b_{(i+5) \mod 8} \oplus b_{(i+6) \mod 8} \oplus b_{(i+7) \mod 8} \oplus c_i$$

[1	0	0	0	1	1	1	1]	$\begin{bmatrix} X_0 \end{bmatrix}$		[1]
1	1	0	0	0	1	1	1	X	+	1
1	1	1	0	0	0	1	1	<i>X</i> ₂		0
1	1	1	1	0	0	0	1	<i>X</i> ₃		0
1	1	1	1	1	0	0	0	<i>X</i> ₄		0
0	1	1	1	1	1	0	0	<i>X</i> ₅		1
0	0	1	1	1	1	1	0	<i>X</i> ₆		1
0	0	0	1	1	1	1	1	<i>X</i> ₇		0

Removing cycles

- Each HaF S-box should be just one cycle
- Removal of cycles done in two steps:
 - Selecting such affine transformation so that the resulting S-box has only two cycles
 - Joining the two cycles while removing affine equivalence from the S-box

Removing affine equivalence

- All S-boxes based on inverse mapping have linear redundancy
- To remove: find two pairs of S-box elements that, when switched, remove this affine equivalance
- Mariginal loss of nonlinearity reduced by 2.
- Joining two cycles of an S-box into one.

How to check if affine equivalance exists in a S-box?

- Algebraic degree and nonlinearity remain unchanged by affine transform
- Absolute values of Walsh transform and autocorrelation function are both rearranged

Modified AES S-box example

•	63	7 <i>C</i>	77	7B	म 2	6B	ራፑ	C5	30	01	67	2B	FE	דם	AB	76
													\checkmark			
•	ĊA	82	С9	7D				FΟ		D4	AZ	AF	PC	A4	72	CU
٠	В7	FD	93	26	36	ЗF	F7	СС	34	Α5	Е5	F1	1 1	D8	31	15
•	04	С7	23	CЗ	18	96	05	9A	07	12	80	E2	EB	27	В2	75
٠	09	83	2C	1A	1B	6E	5A	AO	52	3B	D6	ВВ	29	ЕЗ	2F	84
٠	53	D1	00	ΕD	20	FC	В1	5B	6A	СВ	BE	39	4A	4C	58	CF
•	DO	ΕF	AA	FΒ	43	4D	33	85	45	F9	02	7 F	50	3C	9F	A8
•	51	A3	40	8F	92	9D	38	F5	BC	В6	DA	21	10	FF	F3	D2
٠	CD	0 C	13		-	97			C4	Α7	7E	ЗD	64	5D	19	73
•	60	81	4F	DC	22	2A	90	88	46	ΕE	В8	14	DE	5E	0B	DB
•	ΕO	32	ЗA	0A	49	06	24	5C	C2	DЗ	AC	62	91	95	E4	79
•	E7	C8	37	6D	8D	D5	4E	A9	6C	56	F4	ΕA	65	7A	AE	08
•	ΒA	78	25	2E	1C	A6	В4	C6	E8	DD	74	1F	4B	BD	8B	8A
٠	70	3E	В5	66	48	03	Fб	ΟE	61	35	57	В9	86	C1	1D	9E
•	E1	F8	98		69	D9	8E	94	9B	1E	87	E9	CE	55	28	DF
٠	8C	A1	89	0 D	BF	Е6	42	68	41	99	2D	0 F	В0	54	ΒB	16

Association with round key

Conclusions I

- AES-like S-boxes are an excellent base for generating cryptographically strong Sboxes for various purposes
- Affine equivalence can be removed at relatively low cost (reduced nonlienarity)
- Cycles can be removed without any influence to nonlinear properties

Conclusions 11

 Elaborated scheme of HaF hash function family

 Currently experimenting with fault attacks on HaF to verify advantages

Thank you..

http://css.umcs.lublin.pl/publications/index.html