Introduction	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results	Conclusion
000000000000		000000000000	000000	000

Symbolic Methods for the Automatic Search of Attacks Against Some Block Ciphers

Charles Bouillaguet (joint work with Patrick Derbez and Pierre-Alain Fouque)

Université de Versailles St-Quentin en Yvelines

LSV Seminar November 15, 2011 Results

Conclusion

A (Very Brief) Introduction to Cryptography: Encryption

Introduction Low-Data Complexity Cryptanalysis Results **Block-Cipher Cryptanalysis: the Object Plaintext** Κ Ciphertext

Block-Cipher Cryptanalysis: the Subject

an Attacker

- Goal :
 - In Theory: distinguish from random permutation
 - In Practice: recover the secret key
- Resources:
 - Time: less than 2^k encryptions
 - Data: less than 2ⁿ plaintext/ciphertext pairs

Introduction 00000000000 Low-Data Complexity Cryptanalysis

Symbolic Tools

Results 000000 Conclusion 000

Block-Cipher Cryptanalysis: the Game

plaintext

ciphertext

Introduction 00000000000 Low-Data Complexity Cryptanalysis

Symbolic Tools

Results 000000 Conclusion 000

Block-Cipher Cryptanalysis: the Game

Introduction 00000000000 Low-Data Complexity Cryptanalysis

Symbolic Tools

sults

Conclusion 000

Block-Cipher Cryptanalysis: the Game

What Can We Do When Block Ciphers Are Too Strong For Us?

Introduction	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results	Conclusion
000000000000		000000000000	000000	000

- Solution # 2:
 - we get stronger, then break it
 - (adaptively) chosen ciphertexts, related keys, etc.

ciphertext

Introduction 000000000000	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results 000000	Conclusion 000
			_	

- Solution # 2:
 - we get stronger, then break it
 - (adaptively) chosen ciphertexts, related keys, etc.

plaintext

Introduction 000000000000	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results 000000	Conclusion 000

- Solution # 2:
 - we get stronger, then break it
 - (adaptively) chosen ciphertexts, related keys, etc.

plaintext

Introduction	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results	Conclusion
000000000000	00000000	00000000000	000000	000

- Solution # 3:
 - change the rules, then break it
 - side channels, fault injection, different attack games...

Introduction	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results	Conclusion
000000000000				

- Solution # 3:
 - change the rules, then break it
 - side channels, fault injection, different attack games...

Introduction	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results	Conclusion
000000000000				

- Solution # 3:
 - change the rules, then break it
 - side channels, fault injection, different attack games...

Introduction	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results	Conclusion
000000000000				

- Solution # 3:
 - change the rules, then break it
 - side channels, fault injection, different attack games...

Introduction	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results	Conclusion
0000000000000		000000000000	000000	000
In this talk :				

Low Data Complexity Attacks

- Must be faster than exhaustive search
- Only very few plaintext/ciphertext pairs available

Why ?

- Rather unexplored territory
- What is harder in practice?
 - **performing** 2⁵⁰ elementary operations?
 - or acquiring 50 Plaintext/Ciphertext pairs?
- LDC attacks can sometimes be recycled, and used as sub-components in other attacks
 - e.g. attack on GOST uses a 2-plaintext attack on 8 rounds

Introduction	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results	Conclusion
00000000000000				

Target Block Cipher: the Advanced Encryption Standard

- Designed by Rijmen and Daemen
- Winner of AES competition in 2001
- One of the most widely used encryption primitive

AES basic structures

- Substitution-Permutation network
- Block size: 128 bits
- key lengths: 128, 192 or 256 bits
- 10 rounds for the 128-bit version

Introduction	Low-Data Complexity Cryptanalysis	Symbolic Tools 000000000000	Results 000000	Conclusion 000
Description of the AES				

Description	of the AES			
Introduction	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results	Conclusion
0000000000000		00000000000	000000	000

Description o	of the AES			
Introduction	Low-Data Complexity Cryptanalysis	Symbolic Tools 000000000000	Results 000000	Conclusion 000

Description	of the AES			
Introduction	Low-Data Complexity Cryptanalysis	Symbolic Tools 000000000000	Results 000000	Conclusion 000

Descrip	otion o	of the AES			
Introduction	000	Low-Data Complexity Cryptanalysis	Symbolic Tools 0000000000000	Results 000000	Conclusion 000

Introduction	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results 000000	Conclusion 000		
Description of the AES						

Introduction 000000000000	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results 000000	Conclusion 000
Description o	of the AES			

Introduction	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results	Conclusion
000000000000				

ki

Introduction	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results	Conclusion
00000000000				

000000000000000000000000000000000000000		000000000000	000000	000
Introduction	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results	Conclusion

ki

Introduction	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results	Conclusion
	000000000	00000000000	000000	000

		_		
Introduction	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results 000000	Conclusion

Introduction	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results
	0000000		

Techniques for Low Data Complexity Attacks

The problem with "Usual" attack techniques

- Statistical attacks (e.g., [impossible] differential, linear)
- "Golden-plaintext" attacks (e.g., reflexion, slide)

They require (VERY) LARGE QUANTITY of data

What's Left?

- Algebraic Attacks
- Meet-in-the-Middle attacks
- Guess-and-Determine attacks

Introduction	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results
	0000000		

Conclusion

Techniques for Low Data Complexity Attacks

The problem with "Usual" attack techniques

- Statistical attacks (e.g., [impossible] differential, linear)
- "Golden-plaintext" attacks (e.g., reflexion, slide)

They require (VERY) LARGE QUANTITY of data

What's Left?

- Algebraic Attacks
- Meet-in-the-Middle attacks
- Guess-and-Determine attacks

Introduction 000000000000	Low-Data Complexity Cryptanalysis ●●○○○○○○	Symbolic Tools 000000000000	Results 000000	Conclusion 000
The AES Has	a Clean Description ov	er \mathbb{F}_{256}		
$x_0[j] = I$ $y_i[j] = S$	$P[j] + k_0[j]$ $S(x_i[j])$			

$$x_{i+1} = \begin{pmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{pmatrix} \begin{pmatrix} y_i[0] & y_i[4] & y_i[8] & y_i[12] \\ y_i[5] & y_i[9] & y_i[13] & y_i[1] \\ y_i[10] & y_i[14] & y_i[2] & y_i[6] \\ y_i[15] & y_i[3] & y_i[7] & y_i[11] \end{pmatrix} + k_{i+1}$$

- Equation = linear combination of Terms over F₂₅₆
- **Term** = X_i or $S(X_i)$

The equations are:

- sparse: each equation relates, at most, five variables
- structured: each variable appears in, at most, four equations
 - A Gröbner basis of the equations is known (but useless)

Introduction 000000000000	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results 000000	Conclusion 000
Working Wit	th the Equations			

Is it a Problem?

 Concerns about the AES's algebraic simplicity have been expressed several times

Algebraic Cryptanalysis: the Direct Approach

2002 : Claims that a Gröbner-like solver 2 breaks 2 AES

- 2005 : Previous claim debunked
 - No practical results
 - No interesting upper-bound on solving time

Introduction 000000000000	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results 000000	Conclusion 000
Working Wit	th the Equations			

Is it a Problem?

 Concerns about the AES's algebraic simplicity have been expressed several times

- 2002 : Claims that a Gröbner-like solver 2 breaks 2 AES
- 2005 : Previous claim debunked
 - No practical results
 - No interesting upper-bound on solving time

Low-Data Complexity Cryptanalysis

Symbolic Tools

Results 000000 Conclusion 000

The Problem With Algebraic Attacks

Why is it failing?

- Main obstacle = S-box
- has only "bad" representations

Pluging the description of the S-box into the equations makes them hard.

⇒ Could we not do that?

Goal

Find a way to solve the equations **independently of a particular choice of** *S*

Low-Data Complexity Cryptanalysis

Symbolic Tools

Results 000000 Conclusion 000

Paradigm Shift

Old Goal

Break Cryptographic Stuff

Low-Data Complexity Cryptanalysis

Symbolic Tools

Results 000000 Conclusion 000

Paradigm Shift

New Goal

(efficiently) Solve linear equations over \mathbb{F}_{256} with an uninterpreted permutation symbol

Low-Data Complexity Cryptanalysis

Symbolic Tools

Results 000000 Conclusion

Paradigm Shift

New Goal

(efficiently) Solve linear equations over \mathbb{F}_{256} with an uninterpreted permutation symbol

DISCLAIMER: there is (probably) a lot of existing litterature devoted to this particular problem, or to similar-looking ones, that I am not aware of.

In this talk, I present our own answers, which are based on cryptographic techniques.

They crucially rely on the fact that variables live in a finite domain.

ntroduction	Low-Data
000000000000	00000

ow-Data Complexity Cryptanalysis

Symbolic Tools

Results 000000 Conclusion 000

Techniques for Low Data Complexity Attacks

The problem with "Usual" attack techniques

- Statistical attacks (e.g., [impossible] differential, linear)
- "Golden-plaintext" attacks (e.g., reflexion, slide)

They require (VERY) LARGE QUANTITY of data

What's Left?

- Algebraic Attacks
- Meet-in-the-Middle attacks
- Guess-and-Determine attacks

$2DES_{k_1,k_2} = DES_{k_2} \circ DES_{k_1}$

- Initialize a Hash Table
- For all k_1 , store $M = DES_{k_1}(P) \rightarrow k_1$
- For all k_2 , look-up $M = DES_{k_2}^{-1}(C)$

 $2DES_{k_1,k_2} = DES_{k_2} \circ DES_{k_1}$

Initialize a Hash Table

- For all k_1 , store $M = DES_{k_1}(P) \rightarrow k_1$
- For all k_2 , look-up $M = DES_{k_2}^{-1}(C)$

Time complexity $\approx 2^k$ encryptions, with 2k-bit keys!

Introduction	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results	Conc
000000000000		000000000000	000000	000

lusion

- Initialize a Hash Table
- For all k_1 , store $M = DES_{k_1}(P) \rightarrow k_1$
- For all k_2 , look-up $M = DES_{k_2}^{-1}(C)$

Time complexity $\approx 2^k$ encryptions, with 2k-bit keys!

Introduction	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results
	000000000		

Meet-in-the-Middle Attacks

- Initialize a Hash Table
- For all k_1 , store $M = DES_{k_1}(P) \rightarrow k_1$
- For all k_2 , look-up $M = DES_{k_2}^{-1}(C)$

Time complexity $pprox 2^k$ encryptions, with 2k-bit keys!

Introduction	Low-Data Complexity Cryptanalysis	Symbolic Tools
	00000000	

Results 000000 Conclusion

Meet-in-the-Middle Attacks

- Initialize a Hash Table
- For all k_1 , store $M = DES_{k_1}(P) \rightarrow k_1$
- For all k_2 , look-up $M = DES_{k_2}^{-1}(C)$

Time complexity $\approx 2^k$ encryptions, with 2k-bit keys!

Introduction	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results	Conclusion
	00000000			

Guess the value of some variables

- Complexity is **exponential** in *#* guessed variables
- 2 Determine the values of the others w/ quick computation
- 3 Check all the equations

Introduction	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results	Conclusion
	00000000			

1 Guess the value of some variables

- Complexity is **exponential** in *#* guessed variables
- 2 Determine the values of the others w/ quick computation
- 3 Check all the equations

Introduction	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results	Conclusion
	00000000			

1 Guess the value of some variables

- Complexity is **exponential** in *#* guessed variables
- 2 Determine the values of the others w/ quick computation
- 3 Check all the equations

Introduction	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results	Conclusion
	00000000			

Guess the value of some variables

- Complexity is **exponential** in *#* guessed variables
- 2 Determine the values of the others w/ quick computation
- 3 Check all the equations

Introduction	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results	Conclusion
	00000000			

Guess the value of some variables

- Complexity is **exponential** in *#* guessed variables
- 2 Determine the values of the others w/ quick computation
- 3 Check all the equations

Introduction	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results	Conclusion
	00000000			

Guess the value of some variables

- Complexity is **exponential** in *#* guessed variables
- 2 **Determine** the values of the others w/ quick computation
- 3 Check all the equations

Introduction	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results	Conclusion
	00000000			

Guess the value of some variables

- Complexity is **exponential** in *#* guessed variables
- 2 **Determine** the values of the others w/ quick computation
- 3 Check all the equations

Introduction	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results	Conclusion
	00000000			

Guess the value of some variables

- Complexity is **exponential** in *#* guessed variables
- 2 **Determine** the values of the others w/ quick computation
- 3 Check all the equations

Introduction	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results	Conclusion
	00000000			

Guess the value of some variables

- Complexity is **exponential** in *#* guessed variables
- 2 **Determine** the values of the others w/ quick computation
- 3 Check all the equations

Introduction	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results	Conclusion
	00000000			

Guess the value of some variables

- Complexity is **exponential** in *#* guessed variables
- 2 **Determine** the values of the others w/ quick computation
- 3 Check all the equations

Introduction	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results	Conclusion
	00000000			

Guess the value of some variables

- Complexity is **exponential** in *#* guessed variables
- 2 **Determine** the values of the others w/ quick computation
- 3 Check all the equations

Introduction	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results	Conclusion
	00000000			

Guess the value of some variables

- Complexity is **exponential** in *#* guessed variables
- 2 Determine the values of the others w/ quick computation
- 3 Check all the equations

Introduction	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results	Conclusion
	00000000			

Guess the value of some variables

- Complexity is **exponential** in *#* guessed variables
- 2 Determine the values of the others w/ quick computation
- 3 Check all the equations

Introduction	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results	Conclusion
	00000000			

Guess the value of some variables

- Complexity is **exponential** in *#* guessed variables
- 2 Determine the values of the others w/ quick computation
- 3 Check all the equations

Introduction	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results	Conclusion
	00000000			

1 Guess the value of some variables

- Complexity is **exponential** in *#* guessed variables
- 2 **Determine** the values of the others w/ quick computation
- 3 Check all the equations

Introduction	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results	Conclusion
	00000000			

Guess the value of some variables

- Complexity is **exponential** in *#* guessed variables
- 2 **Determine** the values of the others w/ quick computation
- 3 Check all the equations

Simple in Theory						
Introduction	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results	Conclusion		
000000000000		000000000000	000000	000		

- After a few Hours of doing this by hand
- larger systems (more rounds) \rightarrow it gets even harder

Simple in Theory						
Introduction 000000000000	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results 000000	Conclusion 000		

- After a few Days of doing this by hand
- larger systems (more rounds) \rightarrow it gets even harder

Introduction	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results	Conclusion	
000000000000		00000000000	000000	000	
Simple in Theory					

• less guessed variables \rightarrow it gets harder

• larger systems (more rounds) \rightarrow it gets even harder

Introduction	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results	Conclusion	
000000000000		000000000000	000000	000	
Simple in Theory					

- less guessed variables \rightarrow it gets harder
- larger systems (more rounds) \rightarrow it gets even harder

Introduction	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results	Conclusion
		0 0000 000000		

Finding Guess-and-Determine Attacks Automatically

The equations are **sparse**

All terms known except one \rightarrow knowledge propagation

$$e.g. \quad \mathbf{x}_i + S(\mathbf{z}_j) + 03 \cdot \mathbf{z}_k = \mathbf{0}$$

The equations are (essentially) linear

Gaussian elimination allows more knowledge propagation:

e.g.
$$\begin{cases} x_i + S(z_j) + 03 \cdot z_k + 7f \cdot u_\ell = 0\\ 3d \cdot x_j + 56 \cdot z_k + S(v_r) + 9a \cdot u_\ell = 0\\ c2 \cdot y_s + 84 \cdot z_k + cf \cdot S(v_r) = 0 \end{cases}$$

All terms known except one in a linear combination

	A DPLL-Like Search Procedure						
Introduction Low-Data Complexity Cryptanalysis Symbolic Tools Results Con	Introduction 000000000000	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results 000000	Conclus 000	on	

The DPLL procedure for SAT-solvers (big success story!)

- Propagate constraints as much as possible
- ► SAT → Return model
- When stuck, choose a variable and guess it
- UNSAT \rightarrow Backtrack
- Tricks to prune the search-space (backjumping, learning)

The DPLL procedure for... Us?

- Propagate knowledge as much as possible
- Everything known \rightarrow store solution and Backtrack
- When stuck, choose a variable and guess it
- Worse than best known solution \rightarrow Backtrack
- Pruning tricks (subsumption tests, linear variables)

000000000000000000000000000000000000000	000000000	000000000000000000000000000000000000000	000000	000
	Level Data Consultation Constantion	Construction To allo	D lt .	

A DPLL-Like Search Procedure

The DPLL procedure for SAT-solvers (big success story!)

- Propagate constraints as much as possible
- ► SAT → Return model
- When stuck, choose a variable and guess it
- UNSAT \rightarrow Backtrack
- Tricks to prune the search-space (backjumping, learning)

The DPLL procedure for... Us?

- Propagate knowledge as much as possible
- Everything known ightarrow store solution and Backtrack
- When stuck, choose a variable and guess it
- Worse than best known solution ightarrow Backtrack
- Pruning tricks (subsumption tests, linear variables)

Low-Data Complexity Cryptanalysis

Symbolic Tools

Results 000000 Conclusion 000

Attacking 1 round: Trace (\geq 20 variables)

Introduction	

Low-Data Complexity Cryptanalysis

Symbolic Tools

Results 000000 Conclusion 000

Implementation Details

Actual Implementation

- 5000 lines of OCaml
- Efforts put into efficiency
- Non-trivial sparse linear algebra
 - Triangular solver, re-echelonization
- Distributed: Home-made MapReduce on top of OcamIMPI
 - \blacktriangleright Run on pprox 500 MIPS-like cores for a month without problem
- Generates C code of the solver

The Teel Put to Werk					
Introduction	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results	Conclusion	
00000000000	00000000		000000	000	

	Results on round-	reduced vers	sion of the AES-128	
--	-------------------	--------------	---------------------	--

		Tool-found	Human-found
#Rounds	Data	Time	Time
1	1 pair	2 ⁴⁰	2 ⁴⁸
2	1 pair	2 ⁸⁰	2 ⁹⁶
3	1 pair	2 ¹²⁰	not found

- The 1-round attack generated by the tool does work in 18h
- These attacks are guaranteed to be the best in this category
- \implies (\leq 3 round)-AES: Exhaustively explored the search space

Introduction 0000000000000	Low-Data Complexity Cryptanalysis	Symbolic Tools	COOOOOO	Conclusion

Finding Meet-in-the-Middle Solvers

Idea: Partition the Set of Variables in Two

Meet-in-the-Middle Solver

- ▶ for all x, y, z, store $G(x, y, z) \mapsto (x, y, z)$ in a hash table
- for all u, v, t, look-up H(u, v, t) in the hash table
 - ► On average one value of (*x*, *y*, *z*) per value of (*u*, *v*, *t*).

00000000000	00000000	000000000000	000000	000		
Introduction	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results	Conclusior		

Finding Meet-in-the-Middle Solvers

Idea: Partition the Set of Variables in Two

$$F(x, y, z, t, u, v) = 0 \iff G(x, y, z) = H(t, u, v)$$

Meet-in-the-Middle Solver

- ▶ for all x, y, z, store $G(x, y, z) \mapsto (x, y, z)$ in a hash table
- for all u, v, t, look-up H(u, v, t) in the hash table
 - ► On average one value of (*x*, *y*, *z*) per value of (*u*, *v*, *t*).

Introduction 000000000000	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results 000000	Conclusion 000
Variable Elim	nination			

Suppose we have a partition $X \cup Y$ of the variables.

Question: are there equations in only X (resp. Y)?

- Intuition: yes, because equations are very sparse
- How to find them?
- Generic Problem known as Elimination
 - Want to get rid of some variable(s)
- Just selecting a subset of the initial system seems bad
- Polynomial systems: computation of Elimination Ideals
 - Gröbner Basis computation with ad hoc term order

A Compromise Solution

- easy to find the linear combinations with variables in X
 - Vector-space Intersection, Polynomial time complexity

Posursive Ten Down Annroach						
00000000000	00000000	00000000000000	000000	000		
Introduction	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results	Conclusion		

Recursive Top-Down Approach

Objective: Find Balanced partition such that

$$F(x, y, z, t, u, v) = 0 \iff \begin{cases} G_1(x, y, z) = H_1(t, u, v) \\ G_2(x, y, z) = 0 \\ 0 = H_2(t, u, v) \end{cases}$$

Improved Solving Algorithm

- for all solutions of $G_2(x, y, z) = 0$
 - Store $G_1(x, y, z) \rightarrow (x, y, z)$ in a hash table
- for all solutions of $H_2(u, v, t) = 0$
 - ▶ **Look-up** *H*₁(*u*, *v*, *t*) in the hash table
- Each match suggests a complete solution
- Problem reduces to solving two sub-problems recursively

Same problem

Smaller instan

00000000000	00000000	00000000000000	000000	000		
Introduction	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results	Conclusion		

Higher-Order Point of View

$$F(X,Y) = 0 \iff \begin{cases} G_1(X) &= H_1(Y) \\ G_2(X) &= 0 \\ 0 &= H_2(Y) \end{cases}$$

In fact we have described a **Combination** operation:

- Algorithm A_1 solves $G_2(X) = 0$
- Algorithm A_2 solves $H_2(Y) = 0$

 \implies "meet-in-the-middle" algorithm $\mathcal{A}_1 \bowtie \mathcal{A}_2$ for F(X, Y) = 0

$$\mathcal{A}_1: \texttt{solver}(X), \qquad \mathcal{A}_2: \texttt{solver}(Y),$$

 $\bowtie:\texttt{solver}(\pmb{X}) \rightarrow \texttt{solver}(\pmb{Y}) \rightarrow \texttt{solver}(\pmb{X} \cup \pmb{Y})$

• "Properties" (complexity) of $A_1 \bowtie A_2$ easy to determine

$$T(\mathcal{A}_1 \bowtie \mathcal{A}_2) = T(\mathcal{A}_1) + T(\mathcal{A}_2) + \#Sols(F)$$
$$M(\mathcal{A}_1 \bowtie \mathcal{A}_2) = \max\left\{M(\mathcal{A}_1), M(\mathcal{A}_2), \min\left[\#Sols(G_2), \#Sols(H_2)\right]\right\}$$

Towards So	ving the Whole Problem			
Introduction 000000000000	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results 000000	Conclusion 000

The actual difficulty...

... is to find a nice partition $X \cup Y$.

- **Bottom-up** approach
- Start from trivial algorithms that enumerate a single variable
 - Usually no equation in a single variable
 - \implies Solutions = \mathbb{F}_{256}
- Combine them until saturation, throw bad/redundant ones

Just like

- Buchberger's algorithm for Gröbner Bases
- Knuth-Bendix completion for equational theories
- Resolution/paramodulation/whatever for 1st-order logic

Introduction 000000000000	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results 000000	Conclusion 000
The Satura	ation Procedure			
	· · · · ·			
Simpl	ified Version			
1: fu	nction BestSolvers(\mathbb{E})			
2:	$G \leftarrow \{ BaseSolver(x) : x \in$	∃X}		
3:	$\mathcal{P} \leftarrow \hat{\{}(G_i, G_j) : 1 \leq i < j$	$\leq G $		
4:	while $\mathcal{P} \neq \emptyset$ do			
5:	Pick $(\mathcal{A}_1,\mathcal{A}_2)\in\mathcal{P}$ and	d remove it from	\mathcal{P}	
6:	$\mathcal{C} \gets \mathcal{A}_1 \bowtie \mathcal{A}_2$			
7:	if C not subsumed by	anything in G th	en	

$$: \qquad \mathcal{P} \leftarrow \mathcal{P} \cup \{(\mathcal{A}, \mathcal{C}) : \mathcal{A} \in G\}$$
$$: \qquad \mathcal{G} \leftarrow \mathcal{G} \cup \{\mathcal{C}\}$$

9:
$$G \leftarrow G \cup \{C\}$$

- end while 10:
- 11: return G

8

12: end function

- Patrick Derbez : Implementation, Improvements, Tricks, ...
- 10'000 lines of C

Results (Re	duced AES)			
Introduction 000000000000	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results ●○○○○○	Conclusion 000

Attacks on round reduced version of the AES-128

		Tool-found	Human-found
#Rounds	Data	Time	Time
1	1 KP	2 ³²	2 ⁴⁸
2	1 KP	2 ⁶⁴	2 ⁸⁰
2	2 KP	2 ³²	2 ⁴⁸
2	2 CP	2 ⁸	2 ²⁸
3	1 KP	2 ⁹⁶	
3	2 CP	2 ¹⁶	2 ³²
4	1 KP	2 ¹²⁰	
4	2 CP	2 ⁸⁰	2 ¹⁰⁴
4	4 CP	2 ³²	
4	5 CP		2 ⁶⁴
4.5	1 KP	2 ¹²⁰	

The attacks that are practical have been actually run and verified

_ · · · ·				
Introduction	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results	Conclusion
00000000000		000000000000	○●0000	000

- MAC based on the AES
- Also by Rijmen & Daemen
- "Provably" secure up to 2⁶⁴
- Best known attack in 2^{85.5}
- Initial state randomized with K
- 16-byte message block XORed
- 4 keyless AES rounds
- Finalization: full AES
- Knowing the state \rightarrow forgeries

- 1 Pick random M_1
- 2 Try 2^{64} random M_2 and 2^{64} random M'_2
- Look for MAC₁ = MAC₂

- Pick random M₁
- 2 Try 2^{64} random M_2 and 2^{64} random M'_2
- Look for MAC₁ = MAC₂

Results: Pel	ican-MAC			
Introduction	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results	Conclusion
000000000000		000000000000	○○○●○○	000

Query the MAC, find Internal Collision. Time = 2⁶⁴

Solve

$$\mathsf{AES}_4(x \oplus \underline{\Delta}_i) = \mathsf{AES}_4(x) \oplus \underline{\Delta}_o$$

and recover x (the internal state). Time = 2^{32}

- 4 Hash Tables to build: 4 × 2³² opérations
- Isolate $pprox 2^{32}$ possible internal states

Results: Pelican-MAC			
Introduction Low-Data Complexity Cryptanalysis	Symbolic Tools	Results ○○○●○○	Conclusion 000

Query the MAC, find Internal Collision. Time = 2⁶⁴

Solve

$$\mathsf{AES}_4(x \oplus \underline{\Delta}_i) = \mathsf{AES}_4(x) \oplus \underline{\Delta}_o$$

and recover x (the internal state). Time = 2^{32}

• 4 Hash Tables to build: 4×2^{32} opérations

Results: Pelican-MAC			
Introduction Low-Data Complexity Cryptanalysis	Symbolic Tools	Results ○○○●○○	Conclusion 000

Query the MAC, find Internal Collision. Time = 2⁶⁴

Solve

$$\mathsf{AES}_4(x \oplus \underline{\Delta}_i) = \mathsf{AES}_4(x) \oplus \underline{\Delta}_o$$

and recover x (the internal state). Time = 2^{32}

• 4 Hash Tables to build: 4×2^{32} opérations

Results: Pelican-MAC			
Introduction Low-Data Complexity Cryptanalysis	Symbolic Tools	Results ○○○●○○	Conclusion 000

Query the MAC, find Internal Collision. Time = 2⁶⁴

Solve

$$\mathsf{AES}_4(x \oplus \underline{\Delta}_i) = \mathsf{AES}_4(x) \oplus \underline{\Delta}_o$$

and recover x (the internal state). Time = 2^{32}

• 4 Hash Tables to build: 4×2^{32} opérations

Results: Pelican-MAC			
Introduction Low-Data Complexity Cryptanalysis	Symbolic Tools	Results ○○○●○○	Conclusion 000

Query the MAC, find Internal Collision. Time = 2⁶⁴

Solve

$$\mathsf{AES}_4(x \oplus \underline{\Delta}_i) = \mathsf{AES}_4(x) \oplus \underline{\Delta}_o$$

and recover x (the internal state). Time = 2^{32}

• 4 Hash Tables to build: 4×2^{32} opérations

Results: Pelican-MAC			
Introduction Low-Data Complexity Cryptanalysis	Symbolic Tools	Results ○○○●○○	Conclusion 000

Query the MAC, find Internal Collision. Time = 2⁶⁴

Solve

$$\mathsf{AES}_4(x \oplus \underline{\Delta}_i) = \mathsf{AES}_4(x) \oplus \underline{\Delta}_o$$

and recover x (the internal state). Time = 2^{32}

• 4 Hash Tables to build: 4×2^{32} opérations

Results: Pelican-MAC			
Introduction Low-Data Complexity Cryptanalysis	Symbolic Tools	Results ○○○●○○	Conclusion 000

Query the MAC, find Internal Collision. Time = 2⁶⁴

Solve

$$\mathsf{AES}_4(x \oplus \underline{\Delta}_i) = \mathsf{AES}_4(x) \oplus \underline{\Delta}_o$$

and recover x (the internal state). Time = 2^{32}

4 Hash Tables to build: 4 × 2³² opérations

🚹 Build 16 hash tables : differences in lacksquare \mapsto (lacksquare, lacksquare,

2 Guess

3 Obtain differences before MixColumn on 4 bytes

4 Look-up 4 corresponding hash tables, check for matching

∆ Ciphertext

- **5** $\approx 2^8$ possible column \bigcirc pass the test
- **6** Try the $\approx 2^{32}$ possible combinations the 4 columns
- 7 deduce K₄, check

1

 \blacksquare Build 16 hash tables : differences in lacksquare \mapsto (lacksquare, lacksquare, lacksquare,

- 2 Guess
- 3 Obtain differences before MixColumn on 4 bytes
- 4 Look-up 4 corresponding hash tables, check for matching
- **5** $\approx 2^8$ possible column \bigcirc pass the test
- **6** Try the $\approx 2^{32}$ possible combinations the 4 columns
- 7 deduce K₄, check

Introduction 00000000000	Lo 00 00	w-Data Compl	exity Cryptanaly		Symbolic Tools	o ooo	ts D●O	Conclusion 000
Results:	4 AES	Rounds	s, 4 Chos	en Mes	sages (1 ao	ctive byte	e)	
+K ₀ SE	3+SR	MC+ <i>K</i> 1	SB+SR	MC+K ₂	SB+SR	MC+K ₃	SB+SR	MC+K4

1 Build 16 hash tables : differences in lacksquare (lacksquare, lacksquare,

2 Guess

3 Obtain differences before MixColumn on 4 bytes

4 Look-up 4 corresponding hash tables, check for matching

∆ Ciphertext

- **5** $\approx 2^8$ possible column \bigcirc pass the test
- **6** Try the $\approx 2^{32}$ possible combinations the 4 columns
- 7 deduce K₄, check

Introduction 00000000000	Lo 00 00	w-Data Compl	exity Cryptanaly		Symbolic Tools	o ooo	ts D●O	Conclusion 000
Results:	4 AES	Rounds	s, 4 Chos	en Mes	sages (1 ac	ctive byte	e)	
+K ₀ SE	3+SR	MC+ <i>K</i> 1	SB+SR	MC+K ₂	SB+SR	MC+K ₃	SB+SR	MC+K4

1 Build 16 hash tables : differences in lacksquare (lacksquare, lacksquare,

2 Guess

3 Obtain differences before MixColumn on 4 bytes

4 Look-up 4 corresponding hash tables, check for matching

∆ Ciphertext

- **5** $\approx 2^8$ possible column \bigcirc pass the test
- **6** Try the $\approx 2^{32}$ possible combinations the 4 columns
- 7 deduce K₄, check

Introduction 0000000000	Lov	w-Data Complex	ity Cryptanalys		Symbolic Tools	Results	0	Conclusion 000
Results:	4 AES	Rounds,	4 Chose	en Mess	ages (1 a	ctive byte))	
+K ₀ 9	SB+SR	MC+K1	SB+SR	MC+K ₂	SB+SR	MC+K3	SB+SR	MC+K₄

 \blacksquare Build 16 hash tables : differences in lacksquare (lacksquare, lacksquare,

- 2 Guess
- 3 Obtain differences before MixColumn on 4 bytes
- 4 Look-up 4 corresponding hash tables, check for matching
- **5** $\approx 2^8$ possible column \bigcirc pass the test
- **6** Try the $\approx 2^{32}$ possible combinations the 4 columns
- 7 deduce K₄, check

Introduction 000000000	ا ۵ 000	Low-Data Comp	lexity Cryptanaly		Symbolic Tools	 Result 0000 	5 (Conclusion
Results	: 4 AE	S Rounds	s, 4 Chose	en Mess	ages (1 ao	ctive byte)	
+K0	SB+SR	MC+K1	SB+SR	MC+K ₂	SB+SR	MC+K3	SB+SR	MC+K4

- 2 Guess
- 3 Obtain differences before MixColumn on 4 bytes
- 4 Look-up 4 corresponding hash tables, check for matching
- **6** Try the $\approx 2^{32}$ possible combinations the 4 columns
- 7 deduce K₄, check

Introduction 000000000	000	Low-Data Compl 000000000	exity Cryptanaly	sis	Symbolic Tools	Results	•0	Conclusion 000
Results	: 4 AE	S Rounds	s, 4 Chos	en Mess	ages (1 a	ctive byte)	
$+\kappa_0$	SB+SR	MC+ <i>K</i> ₁	SB+SR	MC+K ₂	SB+SR	MC+K ₃	SB+SR	MC+K4
1		1		- E		1		1

- 💈 Guess 🗕
- 3 Obtain differences before MixColumn on 4 bytes
- 4 Look-up 4 corresponding hash tables, check for matching

 Δ Ciphertext

- **5** $\approx 2^8$ possible column \bigcirc pass the test
- **6** Try the $\approx 2^{32}$ possible combinations the 4 columns
- 7 deduce K₄, check

Introduct	tion 0000000	Low-Data Complexity Cryptanalysis			Symbolic Tools Res		s ●O	Conclusion 000
Resu	lts: 4 A	ES Rounds	s, 4 Chose	en Mess	ages (1 a	ctive byte)	
+ <i>K</i> ₀	SB+SR	MC+ <i>K</i> ₁	SB+SR	MC+K ₂	SB+SR	MC+K ₃	SB+SR	$MC+K_4$
1		1		1		1		1

- 💈 Guess 🗕
- 3 Obtain differences before MixColumn on 4 bytes
- 4 Look-up 4 corresponding hash tables, check for matching

 Δ Ciphertext

- **5** $\approx 2^8$ possible column \bigcirc pass the test
- **6** Try the $\approx 2^{32}$ possible combinations the 4 columns
- 7 deduce K₄, check

1

- 💈 Guess 🗕
- 3 Obtain differences before MixColumn on 4 bytes
- 4 Look-up 4 corresponding hash tables, check for matching
- **5** $\approx 2^8$ possible column \bigcirc pass the test
- **6** Try the $\approx 2^{32}$ possible combinations the 4 columns
- 7 deduce K₄, check

- **1** Build 16 hash tables : differences in $\bigcirc \mapsto (\bigcirc, \bigcirc, \bigcirc)$
- 💈 Guess 🗕
- 3 Obtain differences before MixColumn on 4 bytes
- 4 Look-up 4 corresponding hash tables, check for matching

∆ Ciphertext

- **5** $\approx 2^8$ possible column \bigcirc pass the test
- **6** Try the $\approx 2^{32}$ possible combinations the 4 columns
- 7 deduce K₄, check

1

- 1 Build 16 hash tables : differences in $\bigcirc \mapsto (\bigcirc, \bigcirc, \bigcirc)$
- 💈 Guess 🗕
- 3 Obtain differences before MixColumn on 4 bytes
- ▲ Look-up 4 corresponding hash tables, check for matching ●

∆ Ciphertext

- **5** $\approx 2^8$ possible column \bigcirc pass the test
- **6** Try the $\approx 2^{32}$ possible combinations the 4 columns
- 7 deduce K₄, check

Other Resul	ts			
Introduction	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results	Conclusion
00000000000		000000000000	○○○○○●	000

The method is somewhat generic, and applies to AES, SQUARE, PHOTON, SkipJack, LEX, Alpha-MAC, Pelican-MAC, etc.

Summary				
000000000000	00000000	000000000000	000000	000
Introduction	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results	Conclusion

- Cryptanalysis-inspired methods to solve linear equations with an uninterpreted permutation
- Automatically find the best known (low data complexity) attacks on round-reduced AES, Pelican-MAC, LEX
- Can generate C++ code of the attacks
- Tools publicly available at:

http://www.di.ens.fr/~bouillaguet/

Future Work							
000000000000	00000000	000000000000	000000	000			
Introduction	Low-Data Complexity Cryptanalysis	Symbolic Tools	Results	Conclusion			

- We are currently limited by the performance of our tools
 - exponential in every possible parameters
- We need to think on improving the search algorithms
 - have notions of critical/useless pairs
 - better subsumption tests
 - better pair selection heuristics
- We should exploit more thoroughly the input structure
 - similarity between the rounds
 - between concurrent encryption of several messages

Introduction 000000000000 Low-Data Complexity Cryptanalysis

Symbolic Tools

Results 000000 Conclusion

And...

Thank You

