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A (Very Brief) Introduction to Cryptography: Encryption
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Block-Cipher Cryptanalysis: the Object
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Block-Cipher Cryptanalysis: the Subject

an Attacker

» Goal:

> In Theory: distinguish from random permutation
> In Practice: recover the secret key

» Resources:

> Time: less than 2X encryptions
» Data: less than 2" plaintext/ciphertext pairs
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Block-Cipher Cryptanalysis: the Game
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What Can We Do When Block Ciphers Are Too Strong For Us?

» Solution #1:
» weaken it, then break it
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What Can We Do When Block Ciphers Are Too Strong For Us?

» Solution #1:

» weaken it, then break it

» reduce number of rounds Plair?text
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What to do when block ciphers are too strong for us?

» Solution # 2:
> we get stronger, then break it
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What to do when block ciphers are too strong for us?

» Solution # 2:

> we get stronger, then break it
» (adaptively) chosen ciphertexts , etc.
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What to do when block ciphers are too strong for us?

» Solution # 2:

> we get stronger, then break it
» (adaptively) chosen ciphertexts, related keys, etc.

ciphertext
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What to do when block ciphers are too strong for us?

» Solution # 3:
> change the rules, then break it
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What to do when block ciphers are too strong for us?

» Solution # 3:

> change the rules, then break it
» side channels, fault injection, different attack games...
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In this talk :

Low Data Complexity Attacks |

» Must be faster than exhaustive search

» Only very few plaintext/ciphertext pairs available

» Rather unexplored territory

» What is harder in practice?

» performing 2°° elementary operations?
> or acquiring 50 Plaintext/Ciphertext pairs?

» LDC attacks can sometimes be recycled, and used as
sub-components in other attacks

> eg. attack on GOST uses a 2-plaintext attack on 8 rounds
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Target Block Cipher: the Advanced Encryption Standard

» Designed by Rijmen and Daemen
» Winner of AES competition in 2001

» One of the most widely used
encryption primitive

AES basic structures

» Substitution-Permutation network
» Block size: 128 bits

> key lengths: 128, 192 or 256 bits
» 10 rounds for the 128-bit version
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Description of the AES
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Description of the AES
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Description of the AES: the Key-Schedule
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Techniques for Low Data Complexity Attacks

The problem with “Usual” attack techniques

> Statistical attacks (e.g., [impossible] differential, linear)
> “Golden-plaintext” attacks (e.g., reflexion, slide)

They require (VERY) LARGE QUANTITY of data

> Algebraic Attacks
» Meet-in-the-Middle attacks

» Guess-and-Determine attacks
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The AES Has a Clean Description over [F;sg¢

xo [jl = P[] + kolj]
yilil = S(xilil)

02 03 01 01 yil0]  yi[4]  yi[8] yil12]
xooq — [ 010203 011 yilS] i[9 yil13] yi(1] | L
M1 =101 01 02 03| |y[10] yi[14] yi2]  yil6] a
03 01 01 02 (15] i3] w7l yi[11]

» Equation = linear combination of Terms over [F,5¢
» Term = X; or S(X;)

The equations are:

> sparse: each equation relates, at most, five variables

» structured: each variable appears in, at most, four equations
> A Grobner basis of the equations is known (but useless)
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Working With the Equations

Is it a Problem?

» Concerns about the AES’s algebraic simplicity have been
expressed several times

Algebraic Cryptanalysis: the Direct Approach

Solver

(SAT, Groébner)

Equations Key ?

» 2002 : Claims that a Grébner-like solver breaks 2. 2 AES
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Working With the Equations

Is it a Problem?

» Concerns about the AES’s algebraic simplicity have been
expressed several times

Algebraic Cryptanalysis: the Direct Approach

Solver

(SAT, Groébner)

Equations

B

Time complexity?

» 2002 : Claims that a Grébner-like solver breaks 2. 2 AES
» 2005 : Previous claim debunked

> No practical results
» No interesting upper-bound on solving time
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The Problem With Algebraic Attacks

Why is it failing?

» Main obstacle = S-box

> has only “bad” representations

Pluging the description of the S-box
into the equations makes them hard.

— Could we not do that?

Find a way to solve the equations
independently of a particular
choice of §
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Paradigm Shift

Old Goal
Break Cryptographic Stuff

Hard Problem SHA_‘]
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Paradigm Shift

(efficiently) Solve linear equations over [F;s5¢ with an
uninterpreted permutation symbol
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Paradigm Shift

(efficiently) Solve linear equations over [F;s5¢ with an
uninterpreted permutation symbol

A

Vs

DISCLAIMER: there is (probably)
a lot of existing litterature devoted
to this particular problem, or to
similar-looking ones, that | am not
aware of.

In this talk, | present our own an-
swers, which are based on crypto-
graphic techniques.

They crucially rely on the fact that
variables live in a finite domain.
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Techniques for Low Data Complexity Attacks

> Algebraic Attacks

» Meet-in-the-Middle attacks

» Guess-and-Determine attacks
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Meet-in-the-Middle Attacks

A Well-Known Example: Double-DES
ks

ZDE_';k1 Kk = DESk2 (¢] DESk1




Low-Data Complexity Cryptanalysis
.

Meet-in-the-Middle Attacks

A Well-Known Example: Double-DES
ks

ZDE_';k1 Kk = DESk2 (¢] DESk1

» Initialize a Hash Table



Low-Data Complexity Cryptanalysis
.

Meet-in-the-Middle Attacks

A Well-Known Example: Double-DES
ks

ZDE_';k1 Kk = DESk2 (¢] DESk1

» Initialize a Hash Table
» Forall k1, store M = DESy, (P) — kq



Low-Data Complexity Cryptanalysis
.

Meet-in-the-Middle Attacks

A Well-Known Example: Double-DES

ks ky

ZDESk1 Kk = DESk2 (¢] DESk1

» Initialize a Hash Table
» Forall k1, store M = DESy, (P) — kq
» Forall ky, look-up M — DES/:Z1 (C)



Low-Data Complexity Cryptanalysis
.

Meet-in-the-Middle Attacks

A Well-Known Example: Double-DES

ks ky

ZDE_';k1 Kk = DESk2 (¢] DESk1

» Initialize a Hash Table
» Forall k1, store M = DESy, (P) — kq
» Forall ky, look-up M — DES,:; (C)

Time complexity &~ 2% encryptions, with 2k-bit keys!
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Guess-and-Determine Attacks on the AES

The Big Picture:

Guess the value of some variables
@ Complexity is exponential in # guessed variables

Determine the values of the others w/ quick computation
Check all the equations

A single AES round, a single Plaintext/Ciphertext pair

ko k1

plaintext ciphertext
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Guess-and-Determine Attacks on the AES

The Big Picture:

Guess the value of some variables
@ Complexity is exponential in # guessed variables

Determine the values of the others w/ quick computation
Check all the equations

A single AES round, a single Plaintext/Ciphertext pair
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Simple in Theory...

» After a few Hours of doing this by hand
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Simple in Theory...

> After a few Days of doing this by hand
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Simple in Theory...

> less guessed variables — it gets harder
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Simple in Theory...

> less guessed variables — it gets harder

> larger systems (more rounds) — it gets even harder




Symbolic Tools
.

A Two-Phase Approach
Expected complexity of Solver
> |

C++
/ \

Tools look at the constrained linear equations \
Searches (efficient) GnD/MitM “solver”
C++ code of the solver is generated
Solver is run, finds actual solution(s)

Equations

In Cryptographic Terms...

» The Equations describe a cryptographic Primitive
» The Solver is an Attack against the primitive
» The Tools is a fully-automatic Attack-Finder
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Finding Guess-and-Determine Attacks Automatically

The equations are sparse

All terms known except one — knowledge propagation

eg. Xi+5(z)+03-z,=0

The equations are (essentially) linear

Gaussian elimination allows more knowledge propagation:

xi+5(z) +03-z +7f-uy = 0
eg. 3d-x; +56 -z, +5S(vr) +9a-uy = 0
c2-ys +84 -z, +cf-S(v,) =0

All terms known except one in a linear combination
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A DPLL-Like Search Procedure

The DPLL procedure for SAT-solvers (big success story!)

» Propagate constraints as much as possible
> SAT — Return model

v

When stuck, choose a variable and guess it
UNSAT — Backtrack

v

v

Tricks to prune the search-space (backjumping, learning)




Symbolic Tools
0@000

A DPLL-Like Search Procedure

The DPLL procedure for SAT-solvers (big success story!)

» Propagate constraints as much as possible
> SAT — Return model

v

When stuck, choose a variable and guess it
» UNSAT — Backtrack

» Tricks to prune the search-space (backjumping, learning)

The DPLL procedure for... Us?

» Propagate knowledge as much as possible

v

Everything known — store solution and Backtrack

v

When stuck, choose a variable and guess it
Worse than best known solution — Backtrack

v

v

Pruning tricks (subsumption tests, linear variables)
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Attacking 1 round: Trace (> 20 variables)
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Implementation Details

Actual Implementation

» 5000 lines of OCaml

Efforts put into efficiency

Non-trivial sparse linear algebra
> Triangular solver, re-echelonization

Distributed: Home-made MapReduce on top of OcamIMPI
> Run on =~ 500 MIPS-like cores for a month without problem

v

v

v

v

Generates C code of the solver
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The Tool Put to Work

Results on round-reduced version of the AES-128

Tool-found | Human-found
#Rounds  Data Time Time
1 1 pair DES 248
2 1 pair 2% 2%
3 1 pair P2y not found

» The T1-round attack generated by the tool does work in 18h
» These attacks are guaranteed to be the best in this category
—> (< 3 round)-AES: Exhaustively explored the search space
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Finding Meet-in-the-Middle Solvers

Idea: Partition the Set of Variables in Two

F(x,y,z,t,u,v) =0 <= G(x,y,z) = H(t,u,v)

XY,z

Meet-in-the-Middle Solver
» forall x, y, z, store G(x,y,z) — (x,y,z) in a hash table
» forallu, v, t, look-up H(u, v, t) in the hash table

» On average one value of (x, y,z) per value of (u, v, t).
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Finding Meet-in-the-Middle Solvers

Idea: Partition the Set of Variables in Two

F(x,y,z,t,u,v) =0 <= G(x,y,z) = H(t,u,v)

G/EH

M —  ———— tLuv

Meet-in-the-Middle Solver

» forall x, y, z, store G(x,y,z) — (x,y,z) in a hash table
» forallu, v, t, look-up H(u, v, t) in the hash table
» On average one value of (x, y,z) per value of (u, v, t).
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Variable Elimination

Suppose we have a partition X U Y of the variables.

Question: are there equations in only X (resp. Y)?

v

Intuition: yes, because equations are very sparse
How to find them?

» Generic Problem known as Elimination
» Want to get rid of some variable(s)

v

v

Just selecting a subset of the initial system seems bad

v

Polynomial systems: computation of Elimination Ideals
» Grobner Basis computation with ad hoc term order

A Compromise Solution

» easy to find the linear combinations with variables in X
> Vector-space Intersection, Polynomial time complexity
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Recursive Top-Down Approach

Objective: Find Balanced partition such that

Gi(x,y,z) = Hi(t,u,v)
Fx,y,z,t,u,v) =0 <= < Gy(x,y,z) = 0
0 = Hy(tuv)

Improved Solving Algorithm

» for all solutions of Gy (x,y,z) =0
» Store G1(x,y,z) — (x,y,z) in a hash table

Same problem
Smaller instan

» for all solutions of Hy(u,v,t) =0
» Look-up Hq(u,v,t) in the hash table

» Each match suggests a complete solution

» Problem reduces to solving two sub-problems recursively
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Higher-Order Point of View

{61(X) = Hi(Y)
FX,Y)=0<={ Gy(X) = 0
0 = Hy(Y)

» Algorithm A; solves G, (X) =0
» Algorithm A; solves H,(Y) =0
— “meet-in-the-middle” algorithm A; X A, for F(X,Y) =0
Aj : solver(X), A, :solver(Y),
X : solver(X) — solver(Y) — solver(XUY)

» “Properties” (complexity) of Ay X A, easy to determine

T(A1 X Ap) = T(Aq) + T(Az) + #Sols(F)
M( A X Ay) = max {M(fh), M(Ay), min [#5Sols(G;), #Sols(Hz)}}
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Towards Solving the Whole Problem

The actual difficulty...
... is to find a nice partition XU Y.

» Bottom-up approach
» Start from trivial algorithms that enumerate a single variable

> Usually no equation in a single variable
—> Solutions = Fjs5¢

Combine them until saturation, throw bad/redundant ones

v

v

Buchberger's algorithm for Grobner Bases
Knuth-Bendix completion for equational theories
Resolution/paramodulation/whatever for 1%t-order logic

v

v
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The Saturation Procedure

Simplified Version

1: function BESTSOLVERS(IE)

2 G < {BaseSolver(x) : x € X}

3 Pe{(G,-,Gj):1§i<j§]G\}

4 while P # @ do

5 Pick (A1, A;) € P and remove it from P
6: C+ A1 XA,

7 if C not subsumed by anything in G then
8 P%PU{(A,C):AEG}

9: G+ GU{C}

10: end while

11: return G

12: end function

» Patrick Derbez : Implementation, Improvements, Tricks, ...
» 10’000 lines of C
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Results (Reduced AES)

Attacks on round reduced version of the AES-128

Tool-found | Human-found
#Rounds Data Time Time
1 1KP =2 248
2 1KP 264 280
2 2 KP 232 248
2 2CP 28 228
3 1KP 296
3 2CP ilE 232
4 1KP 2
4 2 CP 280 2108
4 4 CP 232
4 5CP 264
4.5 1KP 2120

The attacks that are practical have been actually run and verified
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Description of Pelican-MAC
0

» MAC based on the AES
» Also by Rijmen & Daemen

“Provably” secure up to 264

» Best known attack in 28°°

Initial state randomized with K
16-byte message block XORed
4 keyless AES rounds
Finalization: full AES

vV vV v VY

>' >'>'
m+ m+m+
N S S
~
v

» Knowing the state — forgeries

MAC
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Pelican-MAC: Finding an Internal State Collision

0 0
-
Uk

rjr>1'>'
PR
~
PN

4

oy

E ! .
MAC,

Pick random M,

Try 24 random M, and 2%% random M,
Look for MAC; =MACGC;
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Pelican-MAC: Finding an Internal State Collision

.

4

ols
m!

MAGC, MAC,;

Pick random M,
Try 24 random M, and 2%% random M,
Look for MAC; =MACGC;
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Results: Pelican-MAC

» Query the MAC, find Internal Collision. Time = 264

» Solve

AES4(x D A}) = AES4(x) ® A,

and recover x (the internal state). Time = 232

4 keyless AES rounds
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Results: Pelican-MAC

» Query the MAC, find Internal Collision. Time = 264

» Solve

AES4(x D A}) = AES4(x) ® A,

and recover x (the internal state). Time = 232

SB+SR MC SB+SR MC SB+SR MC l SB+SR

SYSY YNNI
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SYSNINN

SYSSYSSTSS
IS O
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Results: Pelican-MAC

» Query the MAC, find Internal Collision. Time = 264

» Solve

AES4(x D A}) = AES4(x) ® A,

and recover x (the internal state). Time = 232
SB+SR MC SB+SR MC SB+SR MC lSB+SR

1 1

e 1 7z 1 1 Vs Arzqrr k77
! ! ! BRR
\ 7 BRI
1 2 v s ArrArrkrs
1
1
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Results: Pelican-MAC

» Query the MAC, find Internal Collision. Time = 264

» Solve
AES4(x ® A;) = AES4(x) ® A,

and recover x (the internal state). Time = 232
SB+SR MC SB+SR MC SB+SR MC SB+SR

: :

75 1 1
1 1

| |

1 1

in 1 1

» 4 Hash Tables to build: 4 x 232 opérations

» Isolate ~ 232 possible internal states
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Results: 4 AES Rounds, 4 Chosen Messages (1 active byte)
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Results: 4 AES Rounds, 4 Chosen Messages (1 active byte)
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Results: 4 AES Rounds, 4 Chosen Messages (1 active byte)
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Results: 4 AES Rounds, 4 Chosen Messages (1 active byte)
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Results: 4 AES Rounds, 4 Chosen Messages (1 active byte)
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Results: 4 AES Rounds, 4 Chosen Messages (1 active byte)
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Results: 4 AES Rounds, 4 Chosen Messages (1 active byte)
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Results: 4 AES Rounds, 4 Chosen Messages (1 active byte)

+Ko SB+SR MC+Kq SB+SR MC+Ky SB+SR MC+K3 SB+SR MC+Ky
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Build 16 hash tables : differences in @ — (@, ®, @)
Guess
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Results: 4 AES Rounds, 4 Chosen Messages (1 active byte)

+Ko SB+SR MC+Kq SB+SR MC+K; SB+SR MC+K3 SB+SR MC+Ky
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Build 16 hash tables : differences in ® — (@, ®, @)

Guess

Obtain differences before MixColumn on 4 bytes
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Results: 4 AES Rounds, 4 Chosen Messages (1 active byte)

+Ko SB+SR MC+Kq SB+SR MC+K; SB+SR MC+K3 SB+SR MC+Ky

1 1 1 1 1
| 7] B ? E = [
. % . 1 g Bk
! g 22 + N7 Zzaan
1 1 |22 1 1|22 AR AN
! % ! 7 R
1 1 1 1 1
! APlaintext ! ! ! A Ciphertext !

Build 16 hash tables : differences in ® — (@, ®, @)

Guess

Obtain differences before MixColumn on 4 bytes

Look-up 4 corresponding hash tables, check for matching @
~ 2% possible column @ pass the test

@A Try the ~ 232 possible combinations the 4 columns

deduce Ky, check
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Other Results

The method is somewhat generic, and applies to AES, SQUARE,
PHOTON, SkipJack, LEX, Alpha-MAC, Pelican-MAC, etc.

LEX

» Stream Cipher by Biryukov, eStream Final Round candidate

» Based on the AES, faster than CTR mode
» Attacks by Dunkelman and Keller of complexity 2'°°

» With the tool(s), new attacks found
» Higher-order differential, complexity 25°
> Uses 80 tera-bytes of key-stream
» success probability 27>
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Summary

» Cryptanalysis-inspired methods to solve linear equations
with an uninterpreted permutation

» Automatically find the best known (low data complexity)
attacks on round-reduced AES, Pelican-MAC, LEX

» Can generate C++ code of the attacks

» Tools publicly available at:
http://www.di.ens.fr/"bouillaguet/


http://www.di.ens.fr/~bouillaguet/
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Future Work

» We are currently limited by the performance of our tools
> exponential in every possible parameters

» We need to think on improving the search algorithms

» have notions of critical/useless pairs
> better subsumption tests
> better pair selection heuristics

» We should exploit more thoroughly the input structure

> similarity between the rounds
> between concurrent encryption of several messages



And

Thank You
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