Symbolic Methods for the Automatic Search
of Attacks Against Some Block Ciphers

Charles Bouillaguet
(joint work with Patrick Derbez and Pierre-Alain Fouque)

Université de Versailles St-Quentin en Yvelines

LSV Seminar
November 15, 2011

Introduction
©00000000

A (Very Brief) Introduction to Cryptography: Encryption

5c14ff5cc3225fb9e5ae8919671e23b6

Introduction
0@0000000

Block-Cipher Cryptanalysis: the Object

a Block Cipher

E:{0,1}*x{0,1}" = {0,1}"
—— — ——

key plaintext ciphertext

plaintext

ciphertext

Introduction

[o]
[o]
[o]
[o]
[o]
[¢]
[]
(o]
[e]

Block-Cipher Cryptanalysis: the Object

Plaintext

Ciphertext

Introduction
[e]e] lelelelele]e)

Block-Cipher Cryptanalysis: the Object

Plaintext

!

Ciphertext

Introduction
000@00000

Block-Cipher Cryptanalysis: the Subject

an Attacker

» Goal:

> In Theory: distinguish from random permutation
> In Practice: recover the secret key

» Resources:

> Time: less than 2X encryptions
» Data: less than 2" plaintext/ciphertext pairs

2=

Introduction

[o]
[o]
[o]
[¢]
[]
[o]
[o]
(o]
[e]

the Game

1S:

'
2
(1]
c
(1]
g
Q.
fa
@)
£
()
=
=
.
~
(%4
o
—
o

Introduction
0000@0000

Block-Cipher Cryptanalysis: the Game

plaintext

ciphertext
*

Introduction
0000@0000

Block-Cipher Cryptanalysis: the Game

plaintext
L

ciphertext
*

Introduction
[e]e]e]ele] lelele)

What Can We Do When Block Ciphers Are Too Strong For Us?

» Solution #1:
» weaken it, then break it

Plaintext

()

\
Ciphertext

Introduction
[e]e]e]ele] lelele)

What Can We Do When Block Ciphers Are Too Strong For Us?

» Solution #1:

» weaken it, then break it

» reduce number of rounds Plair?text

()

ko

", —
", —
", —

\
Ciphertext

Introduction
000000800

What to do when block ciphers are too strong for us?

» Solution # 2:
> we get stronger, then break it

plaintext
_

ciphertext
—

Introduction
000000@00

What to do when block ciphers are too strong for us?

» Solution # 2:

> we get stronger, then break it
» (adaptively) chosen ciphertexts , etc.

ciphertext

plaintext
—

Introduction
000000800

What to do when block ciphers are too strong for us?

» Solution # 2:

> we get stronger, then break it
» (adaptively) chosen ciphertexts, related keys, etc.

ciphertext

plaintext
—

Introduction
00000000

What to do when block ciphers are too strong for us?

» Solution # 3:
> change the rules, then break it

Introduction
00000000

What to do when block ciphers are too strong for us?

» Solution # 3:

> change the rules, then break it
» side channels

Introduction
00000000

What to do when block ciphers are too strong for us?

» Solution # 3:

> change the rules, then break it
» side channels, fault injection

Introduction
00000000

What to do when block ciphers are too strong for us?

» Solution # 3:

> change the rules, then break it
» side channels, fault injection, different attack games...

Introduction
00000000@

In this talk :

Low Data Complexity Attacks |

» Must be faster than exhaustive search

» Only very few plaintext/ciphertext pairs available

» Rather unexplored territory

» What is harder in practice?

» performing 2°° elementary operations?
> or acquiring 50 Plaintext/Ciphertext pairs?

» LDC attacks can sometimes be recycled, and used as
sub-components in other attacks

> eg. attack on GOST uses a 2-plaintext attack on 8 rounds

Introduction
®00

Target Block Cipher: the Advanced Encryption Standard

» Designed by Rijmen and Daemen
» Winner of AES competition in 2001

» One of the most widely used
encryption primitive

AES basic structures

» Substitution-Permutation network
» Block size: 128 bits

> key lengths: 128, 192 or 256 bits
» 10 rounds for the 128-bit version

Introduction
o] Yo}

Description of the AES

Xi

AES Round

Xit+1

Introduction
o] Yo}

Description of the AES

[]
.k
[]

Xi Z Xig

Introduction
o] Yo}

Description of the AES

Xi Z Xig

Introduction
o] Yo}

Description of the AES

Xi

1 &

Xit+1

Introduction
o] Yo}

Description of the AES

Xi

E

Xit+1

Introduction
o] Yo}

Description of the AES

Xi

~

41 & H

J

Xit+1

Introduction
o] Yo}

Description of the AES

Confusion Diffusion ki
[1

A28

Xi

Xit+1

Introduction
ooe

Description of the AES: the Key-Schedule

kit

Introduction
ooe

Description of the AES: the Key-Schedule
—

kit

Introduction
ooe

Description of the AES: the Key-Schedule

kit

Introduction
ooe

Description of the AES: the Key-Schedule

LL

kit

Introduction
ooe

Description of the AES: the Key-Schedule

|
+
. T

Introduction
ooe

Description of the AES: the Key-Schedule

k
Ny
2 l :

kit

Introduction
ooe

Description of the AES: the Key-Schedule

—99

kit

Introduction
ooe

Description of the AES: the Key-Schedule
>+

!

ki+1 I

—99

Introduction
ooe

Description of the AES: the Key-Schedule

—99

kit

Low-Data Complexity Cryptanalysis
]

Techniques for Low Data Complexity Attacks

The problem with “Usual” attack techniques

> Statistical attacks (e.g., [impossible] differential, linear)
> “Golden-plaintext” attacks (e.g., reflexion, slide)

They require (VERY) LARGE QUANTITY of data

> Algebraic Attacks
» Meet-in-the-Middle attacks

» Guess-and-Determine attacks

Low-Data Complexity Cryptanalysis
]

Techniques for Low Data Complexity Attacks

The problem with “Usual” attack techniques

> Statistical attacks (e.g., [impossible] differential, linear)
> “Golden-plaintext” attacks (e.g., reflexion, slide)

They require (VERY) LARGE QUANTITY of data

» Algebraic Attacks
» Meet-in-the-Middle attacks

» Guess-and-Determine attacks

Low-Data Complexity Cryptanalysis
©0000

The AES Has a Clean Description over [F;sg¢

xo [jl = P[] + kolj]
yilil = S(xilil)

02 03 01 01 yil0] yi[4] yi[8] yil12]
xooq — [010203 011 yilS] i[9 yil13] yi(1] | L
M1 =101 01 02 03| |y[10] yi[14] yi2] yil6] a
03 01 01 02 (15] i3] w7l yi[11]

» Equation = linear combination of Terms over [F,5¢
» Term = X; or S(X;)

The equations are:

> sparse: each equation relates, at most, five variables

» structured: each variable appears in, at most, four equations
> A Grobner basis of the equations is known (but useless)

Low-Data Complexity Cryptanalysis
0®000

Working With the Equations

Is it a Problem?

» Concerns about the AES’s algebraic simplicity have been
expressed several times

Algebraic Cryptanalysis: the Direct Approach

Solver

(SAT, Groébner)

Equations Key ?

» 2002 : Claims that a Grébner-like solver breaks 2. 2 AES

Low-Data Complexity Cryptanalysis
0®000

Working With the Equations

Is it a Problem?

» Concerns about the AES’s algebraic simplicity have been
expressed several times

Algebraic Cryptanalysis: the Direct Approach

Solver

(SAT, Groébner)

Equations

B

Time complexity?

» 2002 : Claims that a Grébner-like solver breaks 2. 2 AES
» 2005 : Previous claim debunked

> No practical results
» No interesting upper-bound on solving time

Low-Data Complexity Cryptanalysis
00800

The Problem With Algebraic Attacks

Why is it failing?

» Main obstacle = S-box

> has only “bad” representations

Pluging the description of the S-box
into the equations makes them hard.

— Could we not do that?

Find a way to solve the equations
independently of a particular
choice of §

Low-Data Complexity Cryptanalysis
00000

Paradigm Shift

Old Goal
Break Cryptographic Stuff

Hard Problem SHA_‘]

Lattices

U0 Related-key

lock Ciph
<

A B2

€m
{ash Function

Clpherte}t
128-bit

uadratic Siev

Vs

Low-Data Complexity Cryptanalysis
00000

Paradigm Shift

(efficiently) Solve linear equations over [F;s5¢ with an
uninterpreted permutation symbol

4 _:‘ <
= 3
>_< $ NPELambda Constraint Solving
’gg £l oof u
{aSymbolic. © 2.2
ECDN TheOEe)m prover 2 85_1
5 elson en 5ol
°c Saturat[opn 2 P
-+
)
c e IndeCIdable
¥ O Uninterpeted
Tableaux @) Canonizer
> J

Low-Data Complexity Cryptanalysis

[e]e]e] lo}

Paradigm Shift

(efficiently) Solve linear equations over [F;s5¢ with an
uninterpreted permutation symbol

A

Vs

DISCLAIMER: there is (probably)
a lot of existing litterature devoted
to this particular problem, or to
similar-looking ones, that | am not
aware of.

In this talk, | present our own an-
swers, which are based on crypto-
graphic techniques.

They crucially rely on the fact that
variables live in a finite domain.

Low-Data Complexity Cryptanalysis
[elelele]

Techniques for Low Data Complexity Attacks

> Algebraic Attacks

» Meet-in-the-Middle attacks

» Guess-and-Determine attacks

Low-Data Complexity Cryptanalysis
.

Meet-in-the-Middle Attacks

A Well-Known Example: Double-DES
ks

ZDE_';k1 Kk = DESk2 (¢] DESk1

Low-Data Complexity Cryptanalysis
.

Meet-in-the-Middle Attacks

A Well-Known Example: Double-DES
ks

ZDE_';k1 Kk = DESk2 (¢] DESk1

» Initialize a Hash Table

Low-Data Complexity Cryptanalysis
.

Meet-in-the-Middle Attacks

A Well-Known Example: Double-DES
ks

ZDE_';k1 Kk = DESk2 (¢] DESk1

» Initialize a Hash Table
» Forall k1, store M = DESy, (P) — kq

Low-Data Complexity Cryptanalysis
.

Meet-in-the-Middle Attacks

A Well-Known Example: Double-DES

ks ky

ZDESk1 Kk = DESk2 (¢] DESk1

» Initialize a Hash Table
» Forall k1, store M = DESy, (P) — kq
» Forall ky, look-up M — DES/:Z1 (C)

Low-Data Complexity Cryptanalysis
.

Meet-in-the-Middle Attacks

A Well-Known Example: Double-DES

ks ky

ZDE_';k1 Kk = DESk2 (¢] DESk1

» Initialize a Hash Table
» Forall k1, store M = DESy, (P) — kq
» Forall ky, look-up M — DES,:; (C)

Time complexity &~ 2% encryptions, with 2k-bit keys!

Low-Data Complexity Cryptanalysis
®0

Guess-and-Determine Attacks on the AES

The Big Picture:

Guess the value of some variables
@ Complexity is exponential in # guessed variables

Determine the values of the others w/ quick computation
Check all the equations

A single AES round, a single Plaintext/Ciphertext pair

ko k1

plaintext ciphertext

Low-Data Complexity Cryptanalysis
®0

Guess-and-Determine Attacks on the AES

The Big Picture:

Guess the value of some variables
@ Complexity is exponential in # guessed variables

Determine the values of the others w/ quick computation
Check all the equations

A single AES round, a single Plaintext/Ciphertext pair

plaintext ciphertext

Low-Data Complexity Cryptanalysis
®0

Guess-and-Determine Attacks on the AES

The Big Picture:

Guess the value of some variables
@ Complexity is exponential in # guessed variables

Determine the values of the others w/ quick computation
Check all the equations

A single AES round, a single Plaintext/Ciphertext pair

plaintext ciphertext

Low-Data Complexity Cryptanalysis
®0

Guess-and-Determine Attacks on the AES

The Big Picture:

Guess the value of some variables
@ Complexity is exponential in # guessed variables

Determine the values of the others w/ quick computation
Check all the equations

A single AES round, a single Plaintext/Ciphertext pair

plaintext ciphertext

Low-Data Complexity Cryptanalysis
®0

Guess-and-Determine Attacks on the AES

The Big Picture:

Guess the value of some variables
@ Complexity is exponential in # guessed variables

Determine the values of the others w/ quick computation
Check all the equations

A single AES round, a single Plaintext/Ciphertext pair

plaintext ciphertext

Low-Data Complexity Cryptanalysis
®0

Guess-and-Determine Attacks on the AES

The Big Picture:

Guess the value of some variables
@ Complexity is exponential in # guessed variables

Determine the values of the others w/ quick computation
Check all the equations

A single AES round, a single Plaintext/Ciphertext pair

plaintext ciphertext

Low-Data Complexity Cryptanalysis
®0

Guess-and-Determine Attacks on the AES

The Big Picture:

Guess the value of some variables
@ Complexity is exponential in # guessed variables

Determine the values of the others w/ quick computation
Check all the equations

A single AES round, a single Plaintext/Ciphertext pair

plaintext ciphertext

Low-Data Complexity Cryptanalysis
®0

Guess-and-Determine Attacks on the AES

The Big Picture:

Guess the value of some variables

@ Complexity is exponential in # guessed variables

Determine the values of the others w/ quick computation
Check all the equations

A single AES round, a single Plaintext/Ciphertext pair

plaintext ciphertext

Low-Data Complexity Cryptanalysis
®0

Guess-and-Determine Attacks on the AES

The Big Picture:

Guess the value of some variables
@ Complexity is exponential in # guessed variables

Determine the values of the others w/ quick computation
Check all the equations

A single AES round, a single Plaintext/Ciphertext pair

plaintext ciphertext

Low-Data Complexity Cryptanalysis
®0

Guess-and-Determine Attacks on the AES

The Big Picture:

Guess the value of some variables
@ Complexity is exponential in # guessed variables

Determine the values of the others w/ quick computation
Check all the equations

A single AES round, a single Plaintext/Ciphertext pair

plaintext ciphertext

Low-Data Complexity Cryptanalysis
®0

Guess-and-Determine Attacks on the AES

The Big Picture:

Guess the value of some variables
@ Complexity is exponential in # guessed variables

Determine the values of the others w/ quick computation
Check all the equations

A single AES round, a single Plaintext/Ciphertext pair

R

plaintext ciphertext

Low-Data Complexity Cryptanalysis
®0

Guess-and-Determine Attacks on the AES

The Big Picture:

Guess the value of some variables
@ Complexity is exponential in # guessed variables

Determine the values of the others w/ quick computation
Check all the equations

A single AES round, a single Plaintext/Ciphertext pair

ko k1

oS-

plaintext ciphertext

Low-Data Complexity Cryptanalysis
®0

Guess-and-Determine Attacks on the AES

The Big Picture:

Guess the value of some variables

@ Complexity is exponential in # guessed variables

Determine the values of the others w/ quick computation
Check all the equations

A single AES round, a single Plaintext/Ciphertext pair

lﬁzﬁ@ﬁiﬁﬁ h

plaintext ciphertext

Low-Data Complexity Cryptanalysis
®0

Guess-and-Determine Attacks on the AES

The Big Picture:

Guess the value of some variables
@ Complexity is exponential in # guessed variables

Determine the values of the others w/ quick computation
Check all the equations

A single AES round, a single Plaintext/Ciphertext pair

.ﬁgﬂ@ﬁ:ﬁﬁ h

plaintext ciphertext

Low-Data Complexity Cryptanalysis
®0

Guess-and-Determine Attacks on the AES

The Big Picture:

Guess the value of some variables
@ Complexity is exponential in # guessed variables

Determine the values of the others w/ quick computation
Check all the equations

A single AES round, a single Plaintext/Ciphertext pair

lﬁ;&@ﬁgm@@ h

plaintext ciphertext

Low-Data Complexity Cryptanalysis
®0

Guess-and-Determine Attacks on the AES

The Big Picture:

Guess the value of some variables
@ Complexity is exponential in # guessed variables

Determine the values of the others w/ quick computation
Check all the equations

A single AES round, a single Plaintext/Ciphertext pair

lﬁ;&@ﬁgm@@ h

plaintext ciphertext

Low-Data Complexity Cryptanalysis
oe

Simple in Theory...

» After a few Hours of doing this by hand

Intr

Low-Data Complexity Cryptanalysis
000000000

Simple in Theory...

> After a few Days of doing this by hand

Low-Data Complexity Cryptanalysis
oe

Simple in Theory...

> less guessed variables — it gets harder

Low-Data Complexity Cryptanalysis
oe

Simple in Theory...

> less guessed variables — it gets harder

> larger systems (more rounds) — it gets even harder

Symbolic Tools
.

A Two-Phase Approach
Expected complexity of Solver
> |

C++
/ \

Tools look at the constrained linear equations \
Searches (efficient) GnD/MitM “solver”
C++ code of the solver is generated
Solver is run, finds actual solution(s)

Equations

In Cryptographic Terms...

» The Equations describe a cryptographic Primitive
» The Solver is an Attack against the primitive
» The Tools is a fully-automatic Attack-Finder

Symbolic Tools
©0000

Finding Guess-and-Determine Attacks Automatically

The equations are sparse

All terms known except one — knowledge propagation

eg. Xi+5(z)+03-z,=0

The equations are (essentially) linear

Gaussian elimination allows more knowledge propagation:

xi+5(z) +03-z +7f-uy = 0
eg. 3d-x; +56 -z, +5S(vr) +9a-uy = 0
c2-ys +84 -z, +cf-S(v,) =0

All terms known except one in a linear combination

Symbolic Tools
0@000

A DPLL-Like Search Procedure

The DPLL procedure for SAT-solvers (big success story!)

» Propagate constraints as much as possible
> SAT — Return model

v

When stuck, choose a variable and guess it
UNSAT — Backtrack

v

v

Tricks to prune the search-space (backjumping, learning)

Symbolic Tools
0@000

A DPLL-Like Search Procedure

The DPLL procedure for SAT-solvers (big success story!)

» Propagate constraints as much as possible
> SAT — Return model

v

When stuck, choose a variable and guess it
» UNSAT — Backtrack

» Tricks to prune the search-space (backjumping, learning)

The DPLL procedure for... Us?

» Propagate knowledge as much as possible

v

Everything known — store solution and Backtrack

v

When stuck, choose a variable and guess it
Worse than best known solution — Backtrack

v

v

Pruning tricks (subsumption tests, linear variables)

Symbolic Tools
0000

Attacking 1 round: Trace (> 20 variables)

Symbolic Tools
000®0

Implementation Details

Actual Implementation

» 5000 lines of OCaml

Efforts put into efficiency

Non-trivial sparse linear algebra
> Triangular solver, re-echelonization

Distributed: Home-made MapReduce on top of OcamIMPI
> Run on =~ 500 MIPS-like cores for a month without problem

v

v

v

v

Generates C code of the solver

Symbolic Tools
o0oooe

The Tool Put to Work

Results on round-reduced version of the AES-128

Tool-found | Human-found
#Rounds Data Time Time
1 1 pair DES 248
2 1 pair 2% 2%
3 1 pair P2y not found

» The T1-round attack generated by the tool does work in 18h
» These attacks are guaranteed to be the best in this category
—> (< 3 round)-AES: Exhaustively explored the search space

Symbolic Tools
©00000

Finding Meet-in-the-Middle Solvers

Idea: Partition the Set of Variables in Two

F(x,y,z,t,u,v) =0 <= G(x,y,z) = H(t,u,v)

XY,z

Meet-in-the-Middle Solver
» forall x, y, z, store G(x,y,z) — (x,y,z) in a hash table
» forallu, v, t, look-up H(u, v, t) in the hash table

» On average one value of (x, y,z) per value of (u, v, t).

Symbolic Tools
©00000

Finding Meet-in-the-Middle Solvers

Idea: Partition the Set of Variables in Two

F(x,y,z,t,u,v) =0 <= G(x,y,z) = H(t,u,v)

G/EH

M — ———— tLuv

Meet-in-the-Middle Solver

» forall x, y, z, store G(x,y,z) — (x,y,z) in a hash table
» forallu, v, t, look-up H(u, v, t) in the hash table
» On average one value of (x, y,z) per value of (u, v, t).

Symbolic Tools
0®0000

Variable Elimination

Suppose we have a partition X U Y of the variables.

Question: are there equations in only X (resp. Y)?

v

Intuition: yes, because equations are very sparse
How to find them?

» Generic Problem known as Elimination
» Want to get rid of some variable(s)

v

v

Just selecting a subset of the initial system seems bad

v

Polynomial systems: computation of Elimination Ideals
» Grobner Basis computation with ad hoc term order

A Compromise Solution

» easy to find the linear combinations with variables in X
> Vector-space Intersection, Polynomial time complexity

Symbolic Tools
00@000

Recursive Top-Down Approach

Objective: Find Balanced partition such that

Gi(x,y,z) = Hi(t,u,v)
Fx,y,z,t,u,v) =0 <= < Gy(x,y,z) = 0
0 = Hy(tuv)

Improved Solving Algorithm

» for all solutions of Gy (x,y,z) =0
» Store G1(x,y,z) — (x,y,z) in a hash table

Same problem
Smaller instan

» for all solutions of Hy(u,v,t) =0
» Look-up Hq(u,v,t) in the hash table

» Each match suggests a complete solution

» Problem reduces to solving two sub-problems recursively

Symbolic Tools
000800

Higher-Order Point of View

{61(X) = Hi(Y)
FX,Y)=0<={ Gy(X) = 0
0 = Hy(Y)

» Algorithm A; solves G, (X) =0
» Algorithm A; solves H,(Y) =0
— “meet-in-the-middle” algorithm A; X A, for F(X,Y) =0
Aj : solver(X), A, :solver(Y),
X : solver(X) — solver(Y) — solver(XUY)

» “Properties” (complexity) of Ay X A, easy to determine

T(A1 X Ap) = T(Aq) + T(Az) + #Sols(F)
M(A X Ay) = max {M(fh), M(Ay), min [#5Sols(G;), #Sols(Hz)}}

Symbolic Tools
000080

Towards Solving the Whole Problem

The actual difficulty...
... is to find a nice partition XU Y.

» Bottom-up approach
» Start from trivial algorithms that enumerate a single variable

> Usually no equation in a single variable
—> Solutions = Fjs5¢

Combine them until saturation, throw bad/redundant ones

v

v

Buchberger's algorithm for Grobner Bases
Knuth-Bendix completion for equational theories
Resolution/paramodulation/whatever for 1%t-order logic

v

v

Symbolic Tools
00000®

The Saturation Procedure

Simplified Version

1: function BESTSOLVERS(IE)

2 G < {BaseSolver(x) : x € X}

3 Pe{(G,-,Gj):1§i<j§]G\}

4 while P # @ do

5 Pick (A1, A;) € P and remove it from P
6: C+ A1 XA,

7 if C not subsumed by anything in G then
8 P%PU{(A,C):AEG}

9: G+ GU{C}

10: end while

11: return G

12: end function

» Patrick Derbez : Implementation, Improvements, Tricks, ...
» 10’000 lines of C

Results
]

Results (Reduced AES)

Attacks on round reduced version of the AES-128

Tool-found | Human-found
#Rounds Data Time Time
1 1KP =2 248
2 1KP 264 280
2 2 KP 232 248
2 2CP 28 228
3 1KP 296
3 2CP ilE 232
4 1KP 2
4 2 CP 280 2108
4 4 CP 232
4 5CP 264
4.5 1KP 2120

The attacks that are practical have been actually run and verified

Results
©0000

Description of Pelican-MAC
0

» MAC based on the AES
» Also by Rijmen & Daemen

“Provably” secure up to 264

» Best known attack in 28°°

Initial state randomized with K
16-byte message block XORed
4 keyless AES rounds
Finalization: full AES

vV vV v VY

>' >'>'
m+ m+m+
N S S
~
v

» Knowing the state — forgeries

MAC

Results
0@000

Pelican-MAC: Finding an Internal State Collision

0 0
-
Uk

rjr>1'>'
PR
~
PN

4

oy

E ! .
MAC,

Pick random M,

Try 24 random M, and 2%% random M,
Look for MAC; =MACGC;

Results
0@000

Pelican-MAC: Finding an Internal State Collision

.

4

ols
m!

MAGC, MAC,;

Pick random M,
Try 24 random M, and 2%% random M,
Look for MAC; =MACGC;

Results
[eJe] Yolo)

Results: Pelican-MAC

» Query the MAC, find Internal Collision. Time = 264

» Solve

AES4(x D A}) = AES4(x) ® A,

and recover x (the internal state). Time = 232

4 keyless AES rounds

Results
[eJe] Yolo)

Results: Pelican-MAC

» Query the MAC, find Internal Collision. Time = 264

» Solve

AES4(x D A}) = AES4(x) ® A,

and recover x (the internal state). Time = 232

SB+SR MC SB+SR MC SB+SR MC SB+SR

2z
V7477

NS

2477
7477

SN NI
A
N

Results
[eJe] Yolo)

Results: Pelican-MAC

» Query the MAC, find Internal Collision. Time = 264

» Solve

AES4(x D A}) = AES4(x) ® A,

and recover x (the internal state). Time = 232

SB+SR MC SB+SR MC SB+SR MC SB+SR

2z
V7477

NS

2477
7477

SN NI
A
N

Results
[eJe] Yolo)

Results: Pelican-MAC

» Query the MAC, find Internal Collision. Time = 264

» Solve

AES4(x D A}) = AES4(x) ® A,

and recover x (the internal state). Time = 232

SB+SR MC SB+SR MC SB+SR MC SB+SR

2z
V7477

NS

2477
7477

SN NI
A
N

Results
[eJe] Yolo)

Results: Pelican-MAC

» Query the MAC, find Internal Collision. Time = 264

» Solve

AES4(x D A}) = AES4(x) ® A,

and recover x (the internal state). Time = 232

SB+SR MC SB+SR MC SB+SR MC l SB+SR

SYSY YNNI
SYSSYNN NN

SYSNINN

SYSSYSSTSS
IS O
NSNS
A NN
SN NI

Results
[eJe] Yolo)

Results: Pelican-MAC

» Query the MAC, find Internal Collision. Time = 264

» Solve

AES4(x D A}) = AES4(x) ® A,

and recover x (the internal state). Time = 232
SB+SR MC SB+SR MC SB+SR MC lSB+SR

1 1

e 1 7z 1 1 Vs Arzqrr k77
! ! ! BRR
\ 7 BRI
1 2 v s ArrArrkrs
1
1

Results
[eJe] Yolo)

Results: Pelican-MAC

» Query the MAC, find Internal Collision. Time = 264

» Solve
AES4(x ® A;) = AES4(x) ® A,

and recover x (the internal state). Time = 232
SB+SR MC SB+SR MC SB+SR MC SB+SR

: :

75 1 1
1 1

| |

1 1

in 1 1

» 4 Hash Tables to build: 4 x 232 opérations

» Isolate ~ 232 possible internal states

Results
0000

Results: 4 AES Rounds, 4 Chosen Messages (1 active byte)

+Ko SB+SR MC+Kq SB+SR MC+Ky SB+SR MC+K3 SB+SR MC+Ky

7 2o

22
vz

22 A
72%77

2 A
7 77%77

7
%

22
2

SNPSSPSSRY
SNENSRNSRY

A Plaintext A Ciphertext

Results
0000

Results: 4 AES Rounds, 4 Chosen Messages (1 active byte)

+Ko SB+SR MC+Kq SB+SR MC+Ky SB+SR MC+K3 SB+SR MC+Ky

7 2o

22
vz

22 A
72%77

2 A
7 77%77

7
%

22
2

SNPSSPSSRY
SNENSRNSRY

A Plaintext A Ciphertext

Results
0000

Results: 4 AES Rounds, 4 Chosen Messages (1 active byte)

+Ko SB+SR MC+Kq SB+SR MC+Ky SB+SR MC+K3 SB+SR MC+Ky

. A

7 7 2o

77
7

22
vz

22 A
72%77

/7 2 A
/7 7 77%77

2
4

7
%

22
2

SNPSSPSSRY
SNENSRNSRY

A Plaintext A Ciphertext

Results
0000

Results: 4 AES Rounds, 4 Chosen Messages (1 active byte)

+Ko SB+SR MC+Kq SB+SR MC+Ky SB+SR MC+K3 SB+SR MC+Ky

. A

-7 % 2o

A
7

22
vz

22 A
72%77

/7 2 A
/7 7 77%77

2
4

7
%

22
2

SNPSSPSSRY
SNENSRNSRY

A Plaintext A Ciphertext

Results
0000

Results: 4 AES Rounds, 4 Chosen Messages (1 active byte)

+Ko SB+SR MC+Kq SB+SR MC+K; SB+SR MC+K3 SB+SR MC+Ky

. A

77 7 % 2o

A
7

22
vz

22 A
72%77

/7 2 A
/7 7 77%77

2
4

7
%

22
2

SNPSSPSSRY
SNENSRNSRY

A Plaintext A Ciphertext

Results
0000

Results: 4 AES Rounds, 4 Chosen Messages (1 active byte)

+Ko SB+SR MC+Kq SB+SR MC+K; SB+SR MC+K;3 SB+SR MC+Ky

. 27 .

2 ¥ ¥ 2
/7 7

77 7 % 2o

A
7

22
vz

22 A
72%77

A
77%77

2
4

7
%

22
2

SNPSSPSSRY
SNENSRNSRY

A Plaintext

Build 16 hash tables : differences in @ — (@, ®, @)

A Ciphertext

Results
0000

Results: 4 AES Rounds, 4 Chosen Messages (1 active byte)

+Ko SB+SR MC+Kq SB+SR MC+K; SB+SR MC+K;3 SB+SR MC+Ky

2 ¥ ¥ 2
/7 7

77 7 % 7%

A
7

22
vz

22 A
72%77

A
77%77

2
4

7
%

22
2

SNPSSPSSRY
SNENSRNSRY

A Plaintext

Build 16 hash tables : differences in @ — (@, ®, @)
Guess

A Ciphertext

Results
0000

Results: 4 AES Rounds, 4 Chosen Messages (1 active byte)

+Ko SB+SR MC+Kq SB+SR MC+K; SB+SR MC+K;3 SB+SR MC+Ky

2 ¥ ¥ 2
/7 7

77 7 7 7Y

A
7

2
vz

2R A
77%727

A
22y

2
4

7
%

22
2

SNPNSRASRY
SSENSRNSNY

A Plaintext

Build 16 hash tables : differences in @ — (@, ®, @)
Guess

A Ciphertext

Results
0000

Results: 4 AES Rounds, 4 Chosen Messages (1 active byte)

+Ko SB+SR MC+Kq SB+SR MC+Ky SB+SR MC+K3 SB+SR MC+Ky

I I I I

1 1 1 1

| B2 7 | [7277777320

E 1T [E §z 1] E
A 4 0290090047

! N 022 T N (Vs Az7A22% 77 !

, A \ | 122 0092020870

! 1 [! 77 izl
27 s/ (Vs ALLAsr 7477

! ! ! !

! APlaintext ! ! ! A Ciphertext !

Build 16 hash tables : differences in @ — (@, ®, @)
Guess

Results
0000

Results: 4 AES Rounds, 4 Chosen Messages (1 active byte)

+Ko SB+SR MC+Kq SB+SR MC+K; SB+SR MC+K3 SB+SR MC+Ky

1 1 1 1 1
| 7] B ? E = [
. % . 1 g Bk
! g 22 + N7 Zzaan
1 1 |22 1 1|22 AR AN
! % ! 7 R
1 1 1 1 1
! APlaintext ! ! ! A Ciphertext !

Build 16 hash tables : differences in ® — (@, ®, @)

Guess

Obtain differences before MixColumn on 4 bytes

Results
0000

Results: 4 AES Rounds, 4 Chosen Messages (1 active byte)

+Ko SB+SR MC+Kq SB+SR MC+K; SB+SR MC+K3 SB+SR MC+Ky

1 1 1 1 1
| 7] B ? E = [
. % . 1 g Bk
! g 22 + N7 Zzaan
1 1 |22 1 1|22 AR AN
! % ! 7 R
1 1 1 1 1
! APlaintext ! ! ! A Ciphertext !

Build 16 hash tables : differences in ® — (@, ®, @)

Guess

Obtain differences before MixColumn on 4 bytes

Look-up 4 corresponding hash tables, check for matching @
~ 2% possible column @ pass the test

@A Try the ~ 232 possible combinations the 4 columns

deduce Ky, check

Results
0000e

Other Results

The method is somewhat generic, and applies to AES, SQUARE,
PHOTON, SkipJack, LEX, Alpha-MAC, Pelican-MAC, etc.

LEX

» Stream Cipher by Biryukov, eStream Final Round candidate

» Based on the AES, faster than CTR mode
» Attacks by Dunkelman and Keller of complexity 2'°°

» With the tool(s), new attacks found
» Higher-order differential, complexity 25°
> Uses 80 tera-bytes of key-stream
» success probability 27>

Conclusion
000

Summary

» Cryptanalysis-inspired methods to solve linear equations
with an uninterpreted permutation

» Automatically find the best known (low data complexity)
attacks on round-reduced AES, Pelican-MAC, LEX

» Can generate C++ code of the attacks

» Tools publicly available at:
http://www.di.ens.fr/"bouillaguet/

http://www.di.ens.fr/~bouillaguet/

Conclusion
oeo

Future Work

» We are currently limited by the performance of our tools
> exponential in every possible parameters

» We need to think on improving the search algorithms

» have notions of critical/useless pairs
> better subsumption tests
> better pair selection heuristics

» We should exploit more thoroughly the input structure

> similarity between the rounds
> between concurrent encryption of several messages

And

Thank You

	Introduction
	Low-Data Complexity Cryptanalysis
	Symbolic Tools
	Results

