
Distributed Self-Stabilizing Algorithms: Implementing the Silence

to Reduce Energy Consumption
Master Internship

Olivier Alphand Karine Altisen Stéphane Devismes Franck Rousseau

LIG — Verimag
Contacts: {Olivier.Alphand, Karine.Altisen, Stephane.Devismes, Franck.Rousseau}@imag.fr

Scientific Context. Modern distributed systems can be large-scale (e.g., Internet), dynamic (e.g., Peer-
to-Peer systems), and / or resource constrained (e.g., WSNs — Wireless Sensor Networks). Those character-
istics increase the number of faults which may hit the system. For instance, in WSNs, processes are subject
to crash failures because of their limited battery. Moreover, their communications use radio channels that
are subject to intermittent losses of messages. Now, due to their large-scale and the adversarial environment
where they may be deployed, intervention to repair them cannot be always envisioned. In this context,
fault-tolerance, i.e., the ability of a distributed algorithm to endure the faults by itself, is mandatory.

Self-stabilization [2] is a versatile lightweight technique to withstand transient faults in a distributed
system. After transient faults hit and place the system into some arbitrary global state, a self-stabilizing
algorithm returns, in finite time, to a correct behavior without external intervention.

We focus here on a particular class of self-stabilizing algorithms, called silent algorithms [3]. This class of
algorithms is of main interest, because self-stabilizing solutions for spanning structure [4] or leader election [1]
are usually silent. By definition, once a silent algorithm has recovered a correct state, no more computation
is needed. Now, this feature has been never exploited until now.

Implementation of self-stabilizing algorithms, in particular silent ones, requires the use of local heartbeat
mechanisms: each process should regularly broadcast control packets to its neighbors, even after the system
has stabilized. Indeed, heartbeat mechanisms are necessary to detect the occurrence of new transient faults.
Now, the use of heartbeats drastically impact the energy consumption of the algorithm.

We propose in this internship to exploit the inherent characteristics of silent algorithms to implement
more sophisticate and less consuming heartbeat mechanisms. We believe that to enhance these mechanisms,
the key idea is the fine-grained management of the timer used by the heartbeat.

Subject To answer this question, we propose to implement and experiment different silent algorithms with
several timer policies. The main difficulty will be to achieve a trade-off between the reactivity of the system
to handle transient faults (mainly captured by the notion of stabilization time) and the overhead in messages
exchanged after the stabilization. We may take inspiration from the trickle algorithm [5] which dynamically
adapts timers to inconsistencies 1 in the network. We may also rely on data traffic to avoid unnecessary
signaling.

Precisely, the subject requires:

• A bibliographical study: self-stabilizing algorithms (especially silent ones) and trickle timer.

• Implementation: The implementation will be first carried out on a simulator (Cooja) in a multihop
wireless sensors network and, depending on the state of advancement, an implementation on real

1the meaning of ”inconsistency” relies on how a protocol uses Trickle

1



platforms will be possible thanks to IoT-LAB (https://www.iot-lab.info/), an open testbed held
in INRIA Grenoble.

• Comparison: Solutions will have to be compared according to the stabilization time, the volume of
exchanged data during and after the stabilization phase, and the sleeping time of processes.

Required Skills. An important background about sequential algorithmic is mandatory. This subject also
requires background about distributed systems and networks protocols. Ability in the following required:
C/C++, networking (some knowledge about micro-controller programming would be a plus but not essential)

Working context. The students will be integrated in the Drakkar team2 in LIG lab with regular meetings
with the Verimag3 team.

Possible extensions into a PhD thesis.
2014-2015

References

[1] Karine Altisen, Alain Cournier, Stéphane Devismes, Anäıs Durand, and Franck Petit. Self-stabilizing
leader election in polynomial steps. In SSS’2014, 16th International Symposium on Stabilization, Safety,
and Security of Distributed Systems, pages 106–119, Paderborn, Germany, Sep 28 - Oct 1 2014. LNCS.

[2] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. Commun. ACM, 17(11):643–
644, 1974.

[3] Shlomi Dolev, Mohamed G. Gouda, and Marco Schneider. Memory requirements for silent stabilization.
Acta Inf., 36(6):447–462, 1999.

[4] Shing-Tsaan Huang and Nian-Shing Chen. A self-stabilizing algorithm for constructing breadth-first
trees. Inf. Process. Lett., 41(2):109–117, 1992.

[5] Philip Levis, T Clausen, Jonathan Hui, Omprakash Gnawali, and J Ko. Rfc6206: The trickle algorithm.
Internet Engineering Task Force (IETF) Request For Comments, http://ietf. org/rfc/rfc6206. txt, 2011.

2http://drakkar.imag.fr/
3http://www-verimag.imag.fr/

2


