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Abstract. The man-machine interface of a small electronic device like
a wristwatch is a crucial component, as more and more functions have to
be controlled using a small set of buttons. We propose to use Argos, an
automaton-based language for reactive systems, and Larissa, its aspect-
oriented extension, to show that several interfaces can be obtained from
the same set of basic components, assembled in various ways. This is
the basis of a quite general component-based development method for
man-machine interfaces.

1 Introduction

Man-Machine Interfaces of small electronic devices. In small devices such as
wristwatches, portable multimedia devices, or GPS devices, more and more func-
tions have to be controlled using a very small set of buttons. The design of such
systems usually follows an approach in which the interface is clearly separated:
this is a component that accepts the button events as inputs, and translates them
into complex functions, depending on its internal state, or mode. For instance,
the same button of a wristwatch means “toggle alarm” or “increment minutes”,
depending on the running mode. We will distinguish the interface from the in-
ternal components of the system, which take a much larger set of inputs (“toggle
alarm”, “increment minutes”, etc.). In this paper, we concentrate on the design
of the interface component of such small electronic devices. We propose to use
aspects in order to help modular design and reuse.

Programming Man-Machine Interfaces. Man-machine interfaces are typical in-
teractive, or reactive systems. Using reactive languages for programming or mod-
eling them is quite natural. Moreover, among the formalisms and languages that
are used to describe reactive systems, those that are based on explicit automata,
like Statecharts [8], are particularly well adapted. The user documentation of a
small electronic device is often given with partial graphical automata, because
it is the more natural way of thinking of it.

The family of synchronous languages [5] has been very successful in offering
semantically founded languages, adapted to the needs of the programmers. It is
comprised of several dataflow languages (Lustre, Signal), a textual imperative
language (Esterel), and several variants of graphical automaton-based languages
(Argos, Safe State Machines, some variants of Statecharts). Their main struc-
ture is the parallel composition; components synchronize and exchange data via



the so-called synchronous broadcast. All these languages may be compiled into
sequential cyclic code for a direct implementation on embedded processors, or
into synchronous circuits, for ASIC or FPGA implementations. Moreover, the
internal structure used in the compilation or synthesis process can be used as in-
put by various formal verification tools (model-checkers, abstract-interpretation
tools, theorem-proving tools).

In this paper, we use a simple version of Argos [14]. Argos was first designed
as a variant of Statecharts having a pure synchronous semantics. The hierarchy
of states inherited from Statecharts is very convenient for the description of a
watch interface that has several running modes.

Aspect Oriented Programming. Programming languages usually have mecha-
nisms to structure the code of programs. For any program P, whatever be its
modular structure, it is always possible to think of some functionality F that P
should provide, in such a way that F cannot be implemented only by some mod-
ular modifications of P by e.g. simply adding some new components to it. This
is the case when F is a crosscutting feature, that indeeds requires modifications
in several components of the original program. Aspect oriented programming
(AOP) has emerged recently as a response to this problem. It provides facilities
to design F as a new kind of component – F is then called an aspect – and to
compile F and P together – this process is called the weaving of the aspect F
into the program P. Some aspect languages like AspectJ [9] are becoming in-
creasingly popular. A number of case studies (see for instance [2, 3]) have shown
that they can considerably improve the code structure of large systems.

Aspects may be used to describe functionalities like tracing, debugging, pro-
filing. In this case, they do not aim at modifying the behavior of the original
program; they only add code that observes it. They should be given a complete
view of the entities of the program. On the other hand, aspects may sometimes
be used in order to modify the behavior of the original program. For this kind
of aspects, the way they modify the program has to be clearly defined. Aspect
weaving can also be required to have some good properties, like the preservation
of a behavior equivalence (if two programs P and Q behave the same, then the
result of weaving an aspect A into P should behave the same as the result of
weaving the same A into Q). In this paper, we use the formally defined language
Argos, and its aspect extension Larissa [1]. The aspects allowed have a clear
semantics and the weaving process preserves the usual behavior equivalence.

Contributions and structure of the Paper. We show the interest of using aspect
oriented programming in the particular context of developing man-machine in-
terfaces of small electronic devices: we illustrate it by studying several variants
of watches. We propose an approach in which these interface components may
be described by assembling smaller components, thus improving reuse.

We consider aspects as components in this assembling process. This is made
possible by two important points: first, our mechanism for aspect weaving be-
haves exactly as the operators of the base language, and has the same properties
regarding the respect of a behavior equivalence; this allows to combine pieces of



programs and aspects freely, in any order. Second, our specification of aspects is
independent of the internal structure and names of the base program, and only
refers to the elements of its interface; this means that a component on which an
aspect is applied may be safely replaced by another one, provided its interface
is the same and its behavior is equivalent to the old one.

The structure of the paper is as follows: Section 2 describes the base language
Argos; Section 3 describes our aspect extension of Argos, from the user point of
view; Section 4 is the case study; Section 5 comments the case study; Section 6
is a non-exhaustive list of related work and Section 7 concludes and lists the
main perspectives.

2 The Argos language

An Argos program describes the reactive kernel of a system. A reactive system is
a computer system that communicates with the environment it is embedded in:
it has input signals coming from the environment and output signal it emits to-
wards the environment. In Argos, input and output signals have Boolean values.
Whereas the environment evolves in a continuous manner, the fact that the re-
active system is a program implies that, from the program(mer)’s point of view,
the time is sampled into instant. At each instant, an Argos program reacts to
inputs by sending outputs and updating its internal memory. Such a reaction is
atomic: the system does not read inputs while computing outputs and updating
its memory. This property mainly characterizes synchronous languages of which
Argos is a member.

Argos is an automata based language. Its base components are automata
with transitions labelled by inputs and outputs; more complex components can
be obtained by connecting components with operators, i.e. the parallel product
between automata, the encapsulation (hiding variables), the inhibition (freezing
a program for a while) and the hierarchy (a state of an automaton may contain a
program). The communication between components is achieved by parallel prod-
uct and encapsulation. Two programs communicate by exchanging local signals
which are inputs of one program and outputs of the other. The communication is
the synchronous broadcast: it is non blocking (unlike the rendez-vous mechanism,
for instance).

Argos programs are (as programs should always be) deterministic and com-
plete, i.e. for any given sequence of inputs there exists a unique execution of
the program. The semantics of Argos is formally defined by using traces of the
execution. Those traces are only defined by the values of the inputs and outputs
at each instant (the states reached – value of the memory – are not part of the
information of a trace). A semantic equivalence between programs is also defined
as being the equality of traces.
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Fig. 1. Two Argos programs for the modulo-8 a-counter

2.1 Syntax of the main constructs

The complete language is described in [14]. In this paper, we partially describe
it using an example. Figure 1(a) is an Argos program using four automata to
describe a modulo-8 a-counter.

Single automata. Rounded-corner boxes are automaton states; arrows are
transitions. A set of states and transitions which are connected together consti-
tutes an automaton. The four basic components of the program have the follow-
ing sets of states: {Counting, Not counting}, {A0, A1}, {B0, B1}, {C0, C1}.
Transitions are labeled by a Boolean condition on input signals, and a set of
emitted signals. We use the concrete syntax: condition / emitted signals.
In the condition, negation is denoted by overlining and conjunction is denoted
by a dot (examples: c/end, stop.end). When the output set is empty, it can be
omitted. The initial state is designated by an arrow without source. States are
named, but names should be considered as comments: they cannot be referred
to in other components nor are used to define the semantics of the program.
An arrow can have several labels — and stand for several transitions, in which
case the labels are separated by a comma. By convention, every automaton is
complete: if a state has no transition for some input valuations, we suppose that
there is a self-loop transition with these valuations as triggering condition and
no outputs.

State refinement. The automaton whose states are Counting and Not count-
ing is said to be refined. The Counting state contains a sub-program built from
the three other automata.

Parallel product. Three automata whose states are respectively {A0, A1},
{B0, B1}, {C0, C1} are put in parallel: they are drawn separated by dashed
lines.
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Encapsulation. Rectangular boxes are used for unary operators. The external
box, whose cartridge contains end, is the graphical syntax for the declaration
of a local signal end. The box defines the scope in which end is known. This
signal is used as input by the refined automaton; it is used as output by one
of the three other ones: a communication will take place between the two. The
same operator is used in order to limit the scope of signals b, c to the program
constituted by the three unrefined automata.

Inhibition. The inhibition is another unary operator: the notation is another
cartridge containing a fresh variable between “<” and ”>”. The parallel product
of the three non refined automata are inhibited by the inhibition variable sc.

Interface of a program. All signals which appear in a left-hand (resp. right-
hand) side of a label plus inhibition variables, and are not declared to be local
to some part of the program are global inputs (resp. global outputs).

2.2 Intuitive semantics

We give here the intuitive semantics of the operators, by explaining the behavior
of the counter. This behavior is a single automaton, as shown by Figure 2.

First, observe the three automata embedded in a parallel structure, and the
operator which defines the scope of b and c. This constitutes a subprogram
whose only input is a, and whose only output is end. The global behavior of this
subprogram is defined by: the global initial state is C0,B0,A0; when it has reacted
to input a n times, the program is in state Ck,Bj,Ai, where i+2j+4k = n mod 8;
end is emitted every 8 a’s.

This behavior is achieved by connecting three one-bit counters. The first one
(A) reacts to external input a, and triggers the second one (B) with signal b,
every two a’s. The second one, reacting to b, triggers the third one (C) with
c, every two b’s. The third one emits end every two c’s. The communication
being synchronous, a reaction to which the three bits participate, is indeed one
transition in the global behavior (e.g., reaction to a from C0,B1,A1 to C1,B0,A0).
Finally, inhibition by sc (for “stop counting”) is applied: in each state, either
sc is true and the automaton stays in its current state, or it is false and the



automaton behaves as before applying inhibition. The result of those operators
is shown in Figure 1(b): the modulo-8 counter subprogram modularly described
in Figure 1(a) has been replaced by an equivalent 8-state automaton.

Refining the Counting state with the modulo-8 counter subprogram provides
a way to describe how the counter can be started and stopped. Provided that
start is true, the transition which enters the Counting state always goes to its
initial state C0,B0,A0. The counter reacts to the occurrences of a and sc; and
the refined automaton reacts to the occurrences of stop and end. The Counting
state is left if end and/or stop occurs. At the instant Counting is left, the
refining subprogram still reacts. Thus, the modulo-8 counter can terminate itself
by emitting end. The program goes to state Not counting when stop occurs at
any time in state Counting, and also when it is in state C1,B1,A1 and a and sc
occur, because end is emitted. end is also emitted when stop, a and sc occur
together in state C1,B1,A1.

As we did for the example, the semantics of each Argos operator is given by
a flattening operation that transforms any complex program (made of automata
composed together) into an equivalent single flat automaton. The semantics of
a flat automaton is then given by defining the set of all its execution traces,
(inputs and outputs at each instant).

3 Larissa: an Aspect Extension to Argos

Argos operators are already powerful. However, there are cases in which they
are not sufficient to modularize all concerns of a program: some small modifica-
tions of the global program’s behavior may require that we modify all parallel
components, in a way that is not expressible with the existing operators.

The goal of aspects being precisely to specify some cross-cutting modifi-
cations of a program, we proposed an aspect-oriented extension for Argos [1],
which allows the modularization of a number of recurrent problems in reactive
programs, like the reinitialization. This leads to the definition of a new kind of
operators (corresponding to the weaving of aspects) for which we took care of
ensuring some nice properties: they preserve determinism and completeness of
programs and also the semantic equivalence between programs.

All the aspect extensions of existing languages (like AspectJ [9]) seem to share
two notions: pointcuts and advice. The pointcut describes a general property of
program points where a modification is needed (all the methods of the class X,
all the methods whose name contains visit, etc.); the pointcut, applied to a
particular program, selects a set of concrete join points, where the aspect has to
be applied. The advice specifies what has to be done at each of these join points
(execute some piece of code before the normal code of the method, for instance).
For Larissa, we adopted this approach: an aspect is given by the specification of
its pointcut and its advice.
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3.1 Join Point Selection

In Larissa, we decided not to express pointcuts in terms of the internal structure
of the base program. For instance, we do not allow pointcuts to refer explicitly
to some state name (as AspectJ can refer to the name of a private method).
As a consequence, pointcuts may refer to the observable behavior of a program
only, i.e., its inputs and outputs. In the family of synchronous languages, where
the communication between parallel components is the synchronous broadcast,
observers [7] are a powerful and well-understood mechanism which may be used
to describe pointcuts. Indeed, an observer is a program that may observe the
inputs and the outputs of the base program, without modifying its behavior,
and compute some safety property (in the sense of safety/liveness properties as
defined in [10]).

In Larissa, pointcuts are expressed as observers, which select a set of join
point transitions by emitting a single output JP, the join point signal. A transi-
tion T in a program P is selected as a join point transition when in the concurrent
execution of P and the pointcut, JP is emitted when T is taken. Technically, we
perform a parallel product between the program and the pointcut and select
those transitions in the product which emit JP. Figure 3 illustrates the pointcut
mechanism. The pointcut (b) specifies any transition which emits c: in base pro-
gram (a), the loop transition in state B of the base program is selected as a join
point transition. The pointcut (c) specifies every second time c is true: no tran-
sition of the base program (a) corresponds directly to this condition. However,
as the join points are selected on the parallel product of the base program and
the pointcut, the pointcut introduces new memory: the automaton memorizes if
c has been emitted an even or an odd number of times.

Pointcuts can be built by composing other pointcuts with Argos operators.
E.g., some pointcuts can be put in parallel with an automaton which takes their
join point signals as inputs and emits the join point signal of the composed
pointcut. Thus, expressions like “pointcut A and not pointcut B” or “pointcut
A until a and then pointcut B” can be written modularly.

3.2 Specifying the advice

The advice usually expresses the modification applied to the base program. In our
setting, we consider that the base program has been flattened first, as explained
in Section 2.2. In Larissa, we defined two types of advice: in the first type, an
advice replaces the join point transitions with advice transitions pointing to some
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existing target states; in the second type, an advice introduces a full program
between the source state of the join point transition and some existing target
state. In both cases, target states have to be specified without referring explicitly
to state names.

We consider three ways of specifying the target state T, among the existing
states of the base program P: 1) T is the state of P that would be reached
by executing some finite input trace from the initial state of P, called a toInit
advice; 2) T is the state of P that would be reached by executing some finite
input trace from the join point itself, called a toCurrent advice; 3) we first
define some recovery states, among the states of P; then T is the recovery state
that was passed last. The third type will not be used in the paper (see [1] for
further details). For the first two types, specifying the advice includes giving
a finite input trace to define the target state. Since the base program is both
deterministic and complete, executing an input trace from any of its states is an
effective way of defining exactly one state.

Advice Transition. The first type of advice consists in replacing each join point
transition with an advice transition. Once the target state is specified by a finite
input trace σ = σ1 . . . σn, the only missing information is the label of these new
transitions. We do not change the input part of the label, so as to keep the woven
automaton deterministic and complete, but we replace the output part by some
advice outputs Oad. These are the same for every advice transition, and are thus
specified in the aspect. Advice transitions are illustrated in Figure 4.

Advice Program. It is sometimes not sufficient to modify single transitions, i.e. to
jump to another location in the automaton in only one step. It may be necessary
to execute arbitrary code when an aspect is activated. In these cases, we can
insert an automaton between the join point and the target state.

Therefore, we use an inserted automaton Ains that terminates. Since Argos
has no built-in notion of termination, the programmer of the aspect has to
identify a final state F (denoted by filled black circles in the figures).

Inserting an automaton is quite similar to inserting a transition. We first
specify a target state T by a finite input trace, starting either from the initial
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state or from the source state of the join point transition. Then, for every T,
a copy of the automaton Ains is inserted, which means: 1) replace every join
point transition J with target state T by a transition to the initial state I
of this instance of Ains. As for advice transitions, the input part of the label is
unchanged and the output part is replaced by the advice outputs Oad; 2) connect
the transitions that went to the final state F in Ains to T. See Figure 5.

3.3 Fully Specifying an Aspect

As stated above, an aspect is given by the specification of its pointcut and its
advice: Asp = (PC-program,Advice). PC-program is an Argos program with a
single output JP used as the pointcut program. Advice is a tuple which contains
1) the advice outputs Oad; 2) the type of the target state specification (toInit or
toCurrent); 3) the finite trace σ over the inputs of the program; and optionally 4)
when adding an advice program, ADV-program, the advice program itself (when
adding advice transitions, this slot is left empty).

As a summary, when adding an advice transition, Advice = < Oad,type, σ >,
when adding an advice program, Advice = < Oad,type,σ, ADV-program>, with
type ∈ {toCurrent, toInit}.

3.4 Formal Setting and Implementation

In [1], we define the aspect language formally, and prove the main properties:
aspect weaving preserves the usual behavior equivalence, and also preserves the
determinism and completeness of the base program. Let us note P / Asp the
result of weaving an aspect Asp into a program P .

The preservation of the equivalence, noted ∼, means that, if P ∼ Q then,
for any Asp, (P / Asp) ∼ (Q / Asp). With these properties, aspect weaving can
indeed be considered as a new operator. This new operator can be used freely
in expressions of the form: ((P ||(Q / A1))||R) / A2, for instance (|| denotes the
parallel composition). Then, any of the components appearing in this expression
may be replaced by an equivalent one without changing the behavior of the
global program.

A compiler [11] for Larissa was developed, as an extension of an existing Argos
compiler: it performs the weaving of an aspect Asp into an Argos program P
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as shown above. This tool is connected to simulation, test, debug and formal
verification tools like the model-checker Lesar [6].

The formal definition of aspects also allows to study interference problems
in a clean setting. This question is treated in [16].

4 Case Study: a Suunto1 Watch

4.1 Global Scheme

In this section, we model the interfaces of small electronic devices with Argos and
Larissa. These devices – e.g. wristwatches, alarm clocks or car radios – usually
have a small number of buttons which control a large number of functionalities.
These buttons have different meanings depending on the state in which the
device is currently.

Therefore, controllers of such devices usually have a structure like the one
shown in Figure 6: it contains an interface component, which interprets the mean-
ing of the buttons the user presses, and then calls the corresponding function
in the underlying functional component. The functional component obtains the
necessary information of the environment of the device (e.g. a quartz crystal to
measure time), reads and writes persistent memory, and updates the display.

Hierarchic automata languages like Argos are very well suited to model in-
terface components. However, some additional functions are difficult to express
in a modular way.

Our case study shows two of these functions: shortcuts, and additional modes.
A shortcut is the possibility, in some given modes, to use a single button to
activate a function that would otherwise need a long sequence of buttons. Adding
shortcuts modifies the interface, but not the internal components.

Furthermore, interfaces for similar devices often use the same components for
large parts of their functionalities. We show that aspects can be used to compose
and configure components so that the same components can be used for different
devices.

4.2 Suunto1 Watches

As a case study, we implement the interface components of two complex wrist-
watches, the Altimax1 and the Vector1 models by Suunto1. Both share the same
1 Suunto, Altimax and Vector are trademarks of Suunto Oy.



casing, display, and a large set of their functionalities: time, altimeter and barom-
eter functions are nearly equal in both models, but the Vector also has an inte-
grated compass. Carefully following the documentation, we propose Argos com-
ponents and aspects to describe the interfaces of the two watches.

The Base Program. In both watches, each main functionality is represented by
a main mode, which in turn has several submodes, that offer numerous func-
tionalities. The interfaces of both watches contain four buttons, the Mode, the
Select, the Plus, and the Minus button. The Mode button circles between the
main modes, or, in a submode, returns to the main mode. The Select button
selects a submode, and the Plus and Minus buttons modify current values. All
main modes and many submodes have an associated configuration mode, where
settings for the mode can be modified. A configuration mode can be reached by
holding the select button pressed for two seconds in the corresponding mode.

Figure 7 shows the implementation of the interface component for the modes
both wristwatches have in common. The input s2s occurs when the Select
button is pressed for two seconds. This part of the interface is called the base
program. Figure 7 is not complete: most of the states are further refined, and
only some of the outputs (i.e. the commands to the functional component) are
shown, namely Time-Mode, Bari-Mode, Alti-Mode and mainMode. The signal
toMainMode is encapsulated: the submodes can emit it to force a return to their
main mode. To save space, the encapsulation is not included in Figure 7.

The Fast Cumulative Shortcut. The altimeter in the watches can record vertical
movements in so called logbooks, so that the user can evaluate his performance
after a hike. A logbook records the distances the user vertically ascends and
descends from the moment it is started until it is stopped, and the number
of runs accomplished in this period, i.e. the vertical movements of at least 50
meters. However, a logbook can only be read after recording stopped, and it is
quite complicated to display the logbook (one has to go to the third submode of
the altimeter main mode). Therefore, the Altimax model has the fast cumulative
shortcut: in any main mode, when the Minus button is pressed, some information
from the current logbook is displayed. First the total vertical ascend rate is shown
until the Minus button is pressed, then the total vertical descend rate and then
the number of runs, before the watch returns to the main mode in which it was.

The fast cumulative mode is a typical shortcut and is implemented with an
aspect. The pointcut main-modes-PC in Figure 8 (a) chooses transitions which
have a main mode of the base program as source state and minus as input part of
the label. Visiting the current logbook is done in several steps: it first displays the
ascend rate (output showAsc), then the descend rate (showDesc), and then the
number of runs (showNbRuns). Therefore, the aspect outputs first showAsc and
then inserts the automaton visit-logbook, shown in Figure 8(b). As target
state, we choose an empty trace from the current state, so that the program
continues in the main mode in which it was when the aspect was activated. The
aspect for the fast cumulative shortcut is fully specified by Fast-Cumulative =
(main-modes-PC, {showAsc}, toCurrent, ε, visit-logbook).
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The Altimax Model. The controller of the Altimax watch is the base program
(Figure 7) with the fast cumulative aspect woven to it: Altimax = base-program/
Fast-Cumulative.

The Compass Mode. We program a controller for the Vector wristwatch by apply-
ing three aspects to the base program, which are explained in the sequel. The Vec-
tor has a fourth main mode, the compass mode. We add it to the base program
with an aspect. The transition going from the Barometer main mode to the Time
main mode is the sole join point transition (chosen by the pointcut baro-mode-PC
in Figure 9 (a)). The only advice output is Comp-Mode which displays the com-
pass. The aspect inserts the automaton Compass (see Figure 9 (b)), which con-
tains the interface for the compass. After leaving the compass mode, the interface
goes back to the Time main mode, thus the target state is set to the initial state:
this is a toInit advice with σ being the empty trace ε. The resulting aspect is
thus Compass-Mode = (baro-mode-PC, {Comp-Mode}, toCurrent, ε, Compass).
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Fig. 9. Pointcut (a) and inserted automaton (b) for the Compass-mode aspect

The Compass Shortcut. When the Minus button is pressed in a main mode, the
Vector does not show information from the current logbook, but goes directly to
the compass mode. This is useful when the user is hiking cross-country and wants
to check regularly the bearing of the compass. Thus, the Vector does not con-
tain the fast-cumulative aspect, but an aspect that adds advice transitions from
the main modes to the compass main mode: Fast-Compass = (main-modes-PC,
{Comp-Mode}, toInit, mode.mode.mode.mode). Note that this aspect must be ap-
plied after the Compass-Mode aspect, because it uses the compass mode. Indeed,
after the compass mode has been added, it can be reached by pressing four times
the Mode button from the initial state. The trace mode.mode.mode.mode ends in
state Compass; it is the target state of the advice transitions.

No Dual Time Submode. As a last difference with the Altimax, the Vector lacks
the Dual Time submode (the fourth submode of the Time main mode of the base
program in Figure 7), which allows the user to simultaneously view the time in
two different time zones. We cut it out of the base program with an aspect.
We choose as join points all transitions which emit DT-Mode, the signal that
tells the underlying component to display the information related to the Dual
Time mode. The corresponding pointcut, Countdown-PC, consists of a single
state with a loop transition with label DT-Mode/JP. Instead of going to the Dual
Time mode, the Vector goes to the Time main mode, thus the target state is
defined by the empty trace. The aspect is thus defined by No-Dual-Time =
(Countdown-PC, {Time-Mode}, toInit, ε).



The Vector Model. The controller for the Vector can thus be built by weaving the
three aspects into the base program: Vector = base-program / Compass-Mode /
Fast-Compass / No-Dual-Time.

5 Modular Design with Aspects

Advantages of aspect-oriented programming. We use Argos and Larissa to model
the interfaces of two watches. With Larissa, they are modularized in such a way
that the common part of the watches (the base-program) can be reused, and
the behavior that is specific to a single watch can be added with aspects. The
interfaces can also be programmed without aspects, but this solution has three
principal drawbacks:

1) Programming the shortcuts by hand means to copy/paste the transitions
or automata that constitute the shortcut to every main mode.

2) To program the Vector controller based on the Altimax controller, one
must, besides adding the Compass Mode and removing the Dual Time Mode,
remove the logbook shortcut transitions and states, and add the compass short-
cut transitions. This is easy with Larissa (one must just replace the aspect),
because the shortcuts are modularized.

3) When programming the Vector without aspects, the automata that contain
the main modes and the Time Submode must be copied from the Altimax and
modified, leading to code duplication. Thus, if one wants to correct a bug or
change something in one of these, the same modification must be applied twice.

Note that the design of aspects itself is modular: the Fast-Cumulative as-
pect has the pointcut program main-modes-PC (see Figure 8(a)) which has been
reused for the pointcut of the Fast-Compass aspect.

Aspects as components. In our setting, we want to consider aspects as normal
components. We claim that to be able to do so, the two following properties
should hold: 1) aspect weaving should behave as an ordinary composition opera-
tor, so as to be freely mixable with ordinary components; 2) the aspect definition
should allow component substitutability. Larissa obeys these properties:

1) The aspect weaving operator / is an ordinary operator of the language.
Indeed, weaving an Argos program and an aspect results in another Argos pro-
gram. This allows the construction of arbitrary expressions made of Argos op-
erators, aspects and programs. For instance, the Vector model is obtained by
weaving several aspects. This means that the Compass-Mode aspect is woven into
the base-program, producing an Argos program into which the Fast-Compass
aspect is woven, etc.

2) The aspect definition only refers to the interface of the program it has
to be woven into. Thus, we can replace a component by another one with the
same interface, and the aspect can still be applied. Moreover, the semantics
of the weaving does not depend on the way the program is implemented (e.g.
local variables or internal names like state names), but only on its semantics.
Thus, when we replace a component with an semantically equal one, we obtain a



semantically equivalent program. For instance, if the base-program is replaced
by a semantically equivalent, but more efficient one, the Altimax and the Vector
are obtained by replacing the base program by the new one, with the guarantee
that they execute as before.

6 Related Work

Concerning automata-based language, the closest work is an extension of Stat-
echarts [12]. Aspects are modeled as normal Statecharts, and a transition in an
aspect is taken before or after a certain transition in the base program. This
approach does not have the semantical properties we are looking for, but has
the advantage of being closer to AspectJ.

As for the integration of aspects and components, interesting approaches
have been proposed, e.g. in the ACP4IS workshop. Most approaches, e.g. [4, 18],
use aspects as a tool in component-based frameworks, for instance for adapting
components to a given context of use. Others, e.g. [15], consider aspects as
components which are woven into the components they are assembled with.
This is close to our setting, in which aspects are ordinary pieces of programs.

The third direction to which our work relates is the use of AOP to build man-
machine interfaces, but we found very few papers there. [17] uses aspect-oriented
programming to reduce the constraints imposed by the model-view-controller
paradigm, which is central in many man-machine interfaces.

7 Conclusion

With a case-study on the design of small electronic device interfaces, we illus-
trated the use of the aspect-oriented extension of an automaton-based language
for reactive systems. This case-study mainly serves for exploring the idea that
aspects should be freely mixed with other kinds of components, and that weav-
ing is a particular assembling mechanism. The first step in this direction is to
have a clean and formal semantics of aspects. Aspects that do not refer explicitly
to the internals of programs are more likely to be the basis for the definition of
aspect components.

We think that our automaton-based language can easily be used as the core
of a component-based approach for reactive systems, since its programs have
well-defined interfaces, and it contains clean notions of encapsulation (informa-
tion hiding), composition between programs, and substitutability of component
behaviors. Furthermore, a number of approaches have been proposed to specify
components with contracts. A contract is a kind of assume-guarantee predicate
that characterizes the behavior of a component. The main point we will study
in the near future relates to the specification of contracts, in the idea of [13], for
aspect components. This rises many questions, such as: how do we define the
behavior of an aspect, independently of the program it is woven with? Can we
define a semantic equivalence between aspects, in such a way that aspects are
substitutable, as usual components are? We need to clarify those notions before



being able to introduce contracts for aspects and to fully consider aspects as
components in our framework.
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