
Larissa: Semantic Aspects for Reactive Systems

David Stauch

VERIMAG, Grenoble, France

Motivation

• Crosscutting concerns pose problems in reactive, synchronous programs.

• Aspect-oriented programming seems a good candidate to address these.

• Existing aspect languages cannot be used: they lack necessary semantic prop-
erties and the underlying languages are very different.

Context: Reactive Systems

Reactive systems are systems which continuously interact with their environment. They
are often safety critical (e.g. in aircrafts or power plants). Therefore, they are usually
programmed in dedicated languages which allow formal verification.

Synchronous Programming

• Reactive systems are more naturally modeled as parallel units, but mostly executed
on a single processor. Synchronous languages compile explicitly parallel programs into
sequential code, and thus keep full control over execution.

• Time is discrete, and communication between parallel components is instantaneous,
because entirely compiled.

• Synchronous languages include Esterel, Lustre, Signal, Safe State Machines, Argos.

Argos, a Simple Synchronous Language

• Argos is a StateChart-like hierarchical automata language, but with formally-defined
synchronous semantics.

• It is the simplest synchronous language with a parallel structure, and thus a good choice
as a base language for aspects.

An Example for Argos: 3-bit Counter
Inputs start, stop, and a, output end. start starts the counter, stop stops it, end
is emitted every eight a while the counter is counting.

State Counting is refined:
it contains another automaton

Basic components:

Mealy machines

Parallel product

between automata

Encapsulation: b and c are
local signals for communication between parallel automata

b is emitted and received

in the same instant.

Counting

Not counting

stop

start

c

c/end

b

b/c

a

a/b

b,c

Bibliography
[1] sketched some ideas, [2] introduces and formally defines Larissa, [3] details the case study, and
[5] analyzes aspect interference. An prototype implementation for Larissa can be found at [4].
[1] K. Altisen, F. Maraninchi, and D. Stauch. Exploring aspects in the context of reactive systems. In Workshop on the Foundations of Aspect-Oriented Languages

(FOAL), March 2004.

[2] Karine Altisen, Florence Maraninchi, and David Stauch. Aspect-oriented programming for reactive systems: a proposal in the synchronous framework. Science
of Computer Programming, Special Issue on Foundations of Aspect-Oriented Programming, 2006. To appear.

[3] Karine Altisen, Florence Maraninchi, and David Stauch. Larissa: Modular design of man-machine interfaces with aspects. In 5th International Symposium on
Software Composition, Vienna, Austria, March 2006. To appear.

[4] Compiler for Larissa. http://www-verimag.imag.fr/∼stauch/ArgosCompiler/.

[5] D. Stauch, K. Altisen, and F. Maraninchi. Interference of Larissa aspects. In Foundations of Aspect-Oriented Languages (FOAL), March 2006.

Goal

•Develop an aspect-oriented extension for a synchronous language that modularizes recurrent crosscut-
ting concerns of reactive systems.

• Aspects should integrate with the rest of the language, and have the usual semantic properties.

Larissa

Pointcut Language
•We want semantic aspects, that do not refer to the in-

ternals of the advised program.

• A pointcut is an automaton which observes the input
and outputs of the base program, and emits a signal JP
when the program is in a join point.

• A set of join point transitions is selected, by calculating
a parallel product of the pointcut and the program and
selecting those transitions that emit JP.

b.a

a/JP c.b/a

b

b

c

Example pointcut:

Selects whenever an

a occurs between two b’s

This transition is selected

Example program

b

Advice
Larissa has three kinds of advice: toInit, toCurrent, and recovery advice (not explained here). A piece of advice
replaces each join point transition by an advice transition, which has a different target states and different outputs.

ToInit Advice

• Idea: jump to a fixed position in the program.

• The target state of the advice transitions is chosen
by a finite input trace σ, executed from the initial
state. The outputs of the advice transitions Oadv
are globally defined by the advice.

...

y/p,JPx/o,JP

x/Oadv
y/Oadv

target state

initial state

join point transitions

are replaced by

advice transitions

Target state: all advice

transitions go there.

Input trace: executed on the base program

to determine the target state.

σ1
σn

σ = σ1 . . . σn

ToCurrent Advice

• Idea: jump forward from the join point.

• The target state is also chosen by a finite input
trace, but it is executed from the source state of
the join point transition.

target state

.../Oadv

target state

Advice transitions

point to different

states, depending

on the source state

of the JP transitions

.../Oadv

σn

σ1 σ1

σn

Advice Transition vs Advice Program

• Advice transition: join point transitions go directly to the
target state (shown above).

• Advice program: specify an automaton Ains with an initial
state and a final state. The weaving inserts Ains into the
program, and advice transitions point to the initial of Ains,
and transitions of Ains going to the final state are redirected
to the target state in the woven program. Ains must be
inserted once per target state.

...
...

...

target state

x/Oad

I

b

aa

b

I

the woven program

final state

inserted automaton Ains

Aspect weaving preserves trace equivalence: when an aspect is woven into two trace-
equivalent programs, the woven programs are still trace-equivalent.

Case Study: Suunto Wristwatch

As an example, we model the interfaces of two complex wristwatches with several functionalities: watch, altimeter,
barometer, and compass. In the interface, each functionality is represented by a main mode, which has several
submodes. We model a product line with two models: Vector and Altimax (has no compass).

Inputs are the buttons

Outputs are commands
to the underlying
component of the watch
(only some are shown).

of the watch: mode,
select, plus, minus.

the inhibtion operator

prevents the submode

from executing when

mode is pressed.

toMainMode is an
encapsulated signal,

with which the submode

can return to the main mode

the submodes

are further refined
(not shown)

The base program
for the Altimax

Time-Mode

mode/Alti-Mode

mode/

Altimeter
mode/Bari-Mode

Barometer

selectselectselect
mode/mainMode

toMainMode∨ toMainMode∨

mode/mainMode

toMainMode∨

mode/mainMode

Difference

Measurement

Difference

Measurement
Daily

Alarms

select select select

4 days

memory

select

24 hour

Memory
Stop

watch

select

Countdown

Timer

toMainMode

Logbook

select

Sea Level

Pressure

toMainMode

<mode><mode><mode>

main modes

submodes

Time

toMainModeselect/ select/select/

Building a Product Line: Altimax
and Vector

The Vector model contains a compass. We use an
aspect to add the compass mode to the base pro-
gram of the Altimax. The advice is implemented
with a toInit advice with target state Time main mode
(empty trace), and an advice program which contains
the main mode and the submodes for the compass.

Inserted automaton:

inserts compass

main- and submode.

select∨

selects Barometer main mode.

Pointcut for the compass aspect:

mode/JP

s2smain-Mode

Baro-Mode Compass

mode/

Time-mode

select

mode∨

toMainMode

Declination

Adjustment

select

Compass

Calibration

select/

toMainMode

<mode>

Barometer

Encapsulating Crosscutting Concerns: Shortcut
Aspects

Pressing minus in the main modes has different functions in the
different models:

• The Altimax shows information from the altimeter logbook and
returns then to the main mode in which it was. Implemented with
a toCurrent advice, an empty trace and an advice program.

• The Vector goes directly to the Compass mode. Implemented
with a toInit advice with trace mode.mode.mode.mode.

Inserted automaton for the Altimax: shows different
information from the logbook, and returns to the main
mode. One automaton per main mode is inserted.

in a main mode.
minus is pressed
aspects: selects when
Pointcut for both shortcut mainMode

select∨s2sminus/JP

minus/showDesc minus/mainMode

minus/showNbRuns

select

Barometer
mode/Comp-Mode

Compass

select

mode/Bari-Mode

Time-Modemode/

select

Altimeter

select

Time
mode/Alti-Mode

compass aspect

Woven Program of the Vector

shortcut aspectminus/Comp-Mode

...

Evaluation of the Case Study

• Larissa encapsulates crosscutting concerns (shortcut aspects).

• Larissa offers the possibility to re-use code to build several models.

