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Motivation

• Crosscutting concerns pose problems in reactive, synchronous programs.

• Aspect-oriented programming seems a good candidate to address these.

• Existing aspect languages cannot be used: they lack necessary semantic prop-
erties and the underlying languages are very different.

Context: Reactive Systems

Reactive systems are systems which continuously interact with their environment. They
are often safety critical (e.g. in aircrafts or power plants). Therefore, they are usually
programmed in dedicated languages which allow formal verification.

Synchronous Programming

• Reactive systems are more naturally modeled as parallel units, but mostly executed
on a single processor. Synchronous languages compile explicitly parallel programs into
sequential code, and thus keep full control over execution.

• Time is discrete, and communication between parallel components is instantaneous,
because entirely compiled.

• Synchronous languages include Esterel, Lustre, Signal, Safe State Machines, Argos.

Argos, a Simple Synchronous Language

• Argos is a StateChart-like hierarchical automata language, but with formally-defined
synchronous semantics.

• It is the simplest synchronous language with a parallel structure, and thus a good choice
as a base language for aspects.

An Example for Argos: 3-bit Counter
Inputs start, stop, and a, output end. start starts the counter, stop stops it, end
is emitted every eight a while the counter is counting.
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Goal

•Develop an aspect-oriented extension for a synchronous language that modularizes recurrent crosscut-
ting concerns of reactive systems.

• Aspects should integrate with the rest of the language, and have the usual semantic properties.

Larissa

Pointcut Language
•We want semantic aspects, that do not refer to the in-

ternals of the advised program.

• A pointcut is an automaton which observes the input
and outputs of the base program, and emits a signal JP
when the program is in a join point.

• A set of join point transitions is selected, by calculating
a parallel product of the pointcut and the program and
selecting those transitions that emit JP.
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Advice
Larissa has three kinds of advice: toInit, toCurrent, and recovery advice (not explained here). A piece of advice
replaces each join point transition by an advice transition, which has a different target states and different outputs.

ToInit Advice

• Idea: jump to a fixed position in the program.

• The target state of the advice transitions is chosen
by a finite input trace σ, executed from the initial
state. The outputs of the advice transitions Oadv
are globally defined by the advice.

...

y/p,JPx/o,JP

x/Oadv
y/Oadv

target state

initial state

join point transitions

are replaced by

advice transitions

Target state: all advice

transitions go there.

Input trace: executed on the base program

to determine the target state.

σ1
σn

σ = σ1 . . . σn

ToCurrent Advice

• Idea: jump forward from the join point.

• The target state is also chosen by a finite input
trace, but it is executed from the source state of
the join point transition.
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Advice Transition vs Advice Program

• Advice transition: join point transitions go directly to the
target state (shown above).

• Advice program: specify an automaton Ains with an initial
state and a final state. The weaving inserts Ains into the
program, and advice transitions point to the initial of Ains,
and transitions of Ains going to the final state are redirected
to the target state in the woven program. Ains must be
inserted once per target state.
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Aspect weaving preserves trace equivalence: when an aspect is woven into two trace-
equivalent programs, the woven programs are still trace-equivalent.

Case Study: Suunto Wristwatch

As an example, we model the interfaces of two complex wristwatches with several functionalities: watch, altimeter,
barometer, and compass. In the interface, each functionality is represented by a main mode, which has several
submodes. We model a product line with two models: Vector and Altimax (has no compass).
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Outputs are commands
to the underlying
component of the watch
(only some are shown).
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Building a Product Line: Altimax
and Vector

The Vector model contains a compass. We use an
aspect to add the compass mode to the base pro-
gram of the Altimax. The advice is implemented
with a toInit advice with target state Time main mode
(empty trace), and an advice program which contains
the main mode and the submodes for the compass.
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Pointcut for the compass aspect:
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Encapsulating Crosscutting Concerns: Shortcut
Aspects

Pressing minus in the main modes has different functions in the
different models:

• The Altimax shows information from the altimeter logbook and
returns then to the main mode in which it was. Implemented with
a toCurrent advice, an empty trace and an advice program.

• The Vector goes directly to the Compass mode. Implemented
with a toInit advice with trace mode.mode.mode.mode.

Inserted automaton for the Altimax: shows different
information from the logbook, and returns to the main
mode. One automaton per main mode is inserted.
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Evaluation of the Case Study

• Larissa encapsulates crosscutting concerns (shortcut aspects).

• Larissa offers the possibility to re-use code to build several models.


