
Exploring Aspects in the Context of Reactive Systems

Karine Altisen
Verimag/INPG, Grenoble

Centre Equation – 2, avenue
de Vignate, F 38610 GIERES

Karine.Altisen@imag.fr

Florence Maraninchi
Verimag/INPG, Grenoble

Centre Equation – 2, avenue
de Vignate, F 38610 GIERES

Florence.Maraninchi@imag.fr

David Stauch
Verimag/INPG, Grenoble

Centre Equation – 2, avenue
de Vignate, F 38610 GIERES

David.Stauch@imag.fr

ABSTRACT
We explore the semantics of aspect oriented programming
languages in the context of embedded reactive systems. For
reactive systems, there are a lot of simple and expressive
formal models that can be used, based on traces and au-
tomata. Moreover, the main construct in the programming
languages of the domain is parallel composition, and the
notion of transverse modification is quite natural. We pro-
pose: 1) a semantical definition of an aspect, allowing one
to study its impact on the original program; 2) some opera-
tional constructs that can constitute the basis of a weaving
mechanism.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal Definitions and
Theory; D.3.3 [Programming Languages]: Language Con-
structs and Features

General Terms
Design, Languages, Theory, Verification

Keywords
reactive systems, aspect-oriented programming, formal se-
mantics, synchronous languages

1. INTRODUCTION
1.1 Generalities
Whatever be the structuring mechanisms offered by a pro-
gramming language, it is always possible to find a program
P and some functionality F that P should provide (or a
property P should ensure), in such a way that F cannot
be implemented only by some modifications of P that would
“respect” its existing structure. F is then called an aspect [6].
For instance, adding debugging facilities to a program is an
aspect because its implementation is likely to need small
modifications everywhere.

FOAL ’04 Lancaster, GB

Aspect programming studies how aspects can be specified,
and how the additional code needed to implement F can be
automatically woven into P, statically or dynamically. All
these definitions are quite informal and, for a given pro-
gramming language, it is not always clear whether a given
functionality is indeed an aspect. This shows that any for-
mal definition of aspects and weaving has to provide precise
definitions for, at least: 1) the structure of programs (this is
the simplest, but we have to choose between a concrete syn-
tax and a very abstract semantic structure); 2) the notion of
a functionality to be implemented in a given program; 3) an
aspect specification language; 4) a program transformation
(not necessarily static) for the weaving process.

There are very few attempts at defining the notion of aspect
formally, independently of any language. It is probably too
early, and we need to understand the notion of aspect better,
concentrating on specific application domains.

1.2 Objectives of the paper
We would like to question the notion of aspect a bit further,
in a formally defined context that allows one to give un-
ambiguous definitions for all the important notions related
to aspects. We choose reactive systems because they pro-
vide a very clear notion of the input/output interface of a
program, their design relies on a parallel composition and
a communication mechanism, and the definition of their se-
quential behavior is simple. Additionally, we will consider
static weaving mechanisms only, because reactive systems
are most of the time embedded: a monitoring system that
may stop the program when its behavior diverges from the
expected one is useless, because the system cannot be re-
paired on-line. See section 5 for more comments on the re-
lationship with so-called property-enforcing techniques that
can sometimes be considered as aspect-weaving.

Moreover, we choose a formalism made of synchronous com-
positions, because the synchronous broadcast and the com-
piled synchronous parallel composition are already very pow-
erful (for instance, rendez-vous can be implemented by the
so-called “instantaneous dialogue”). A a lot of things can be
implemented by adding components synchronized with an
existing program. Something that cannot be implemented
this way really deserves the name of aspect. There exist
several synchronous languages with very distinct constructs,
that all have a semantics in terms of communicating Mealy
machines. Considering aspects at the level of this model
guarantees that the definitions are not too particular to a

given language.

We try to formalize the following observations, questions
and requirements:

(α) What is the semantic impact of weaving? Can the be-
havior of the modified program be completely distinct from
the behavior of the original program? We would like the
new program to be somewhat comparable to the old one,
at least on a subset of its inputs, and/or on a subset of its
instants.

(β) An aspect specification language has to talk about P.
How detailed can it be? Can it talk about the interface
only, or about the internals of the program?

(γ) How can we be sure that F cannot be implemented in
P with simple modifications that do not require the aspect
point of view?

The contribution of the paper is a simple formal framework
in which aspects of reactive systems can be specified and
studied. It is a first approach to this question, and this
work can be continued in various ways.

Section 2 defines a formal model for reactive systems; Sec-
tion 3 is a non exhaustive list of functionalities that con-
stitute good candidates for the notion of aspect in reactive
systems; Section 4 is our proposal: a notion of aspects and
how to specify them, formal basis for the weaving process;
Section 5 is a (probably) non exhaustive list of related work;
Section 6 is the conclusion, mainly a list of perspectives.

2. THE MODEL
The formal model for reactive systems is given here in two
levels: 1) a trace semantics that is common to a wide variety
of languages, and 2) a set of operators on reactive and deter-
ministic Mealy machines that can be considered as an ideal
view of a synchronous language. All questions and problems
that can be formulated in the first level are therefore general
to a lot of languages; the second level will be used whenever
we need a structure in the programming language.

2.1 Traces and trace semantics
Definition 1 (Traces) Let I, O be sets of Boolean input
and output variables representing signals from and to the
environment. A trace on I ∪ O, t, is a function: t : N −→
[(I ∪ O) −→ {true, false}]. At each instant n ∈ N, the
given trace t provides the valuations of every input and out-
put.

A set of traces st = {t | t is a trace on I ∪ O} is determin-
istic iff

∀t, t′ ∈ st.
(
∀n ∈ N.∀i ∈ I.t(n)[i] = t′(n)[i]

)
=⇒

(
∀o ∈ O.t(n)[o] = t′(n)[o]

)
.

We write {i1, i2, ..., i‖I‖} for the set of inputs I. A set of

traces st = {t | t is a trace on I ∪ O} is reactive iff

(i) ∀(v1, v2, ..., v‖I‖) ∈ {true, false}‖I‖.
∃t ∈ st.∀k.t(0)[ik] = vk

(ii) ∀t ∈ st.∀n ∈ N.∀(v1, v2, ..., v‖I‖) ∈ {true, false}‖I‖.
∃t′ ∈ st.(∀m ≤ n.∀i ∈ I.t(m)[i] = t′(m)[i])

∧ (∀k.t′(n+ 1)[ik] = vk)

A set of traces is a way to define the semantics of a program
P , given its inputs and outputs. From the above definitions,
a program P is deterministic if from the same sequence of
inputs it always computes the same sequence of outputs.
It is reactive whenever it allows every sequences of every
eligible valuations of inputs to be computed. Determinism is
related to the fact that the program is indeed written with a
programming language (which has deterministic execution);
reactivity is an intrinsic property of the program that has to
react forever, to every possible inputs without any blocking.

Definitions 2 and 3 below define transformations on traces
that will be used to characterize the impact of weaving on
the semantics of a program.

Definition 2 (Masking traces) Given a trace t on I ∪O
and a subset S ⊆ (I ∪O) the masking of t by (I ∪O) \ S is
a trace t|S on S such that:

∀e ∈ S.∀n ∈ N.t|S(n)[e] = t(n)[e].

Definition 3 (Clocking traces) Given a trace t on I ∪O
and a subset M ∈ N the clocking of t by M is a trace t‖M

on I ∪ O such that:

∀e ∈ (I ∪ O).∀n ∈ N \M.t‖M (n)[e] = t(n)[e].

Notice that given a trace t and a subset M of natural, this
defines a set of clocking including t itself.

Those definitions are naturally extended to sets of traces
and programs.

2.2 Elements of language definition
The core of a synchronous language is made of input/output
automata, the synchronous product, and the encapsulation
operation.

Definition 4 (Automaton) An automaton A is a tuple
A = (Q, sinit, I,O, T) where Q is the set of states, sinit ∈ Q
is the initial state, I and O are the sets of Boolean input and
output variables respectively, T ⊆ Q×Bool(I)×2O×Q is the
set of transitions. Bool(I) denotes the set of Boolean for-
mulas with variables in I. For t = (s, `, O, s′) ∈ T , s, s′ ∈ Q
are the source and target states, ` ∈ Bool(I) is the triggering
condition of the transition, and O ⊆ O is the set of outputs
emitted whenever the transition is triggered. Without loss
of generality, we consider that automata only have complete
monomials as input part of the transition labels.

The semantics of the automaton A = (Q, sinit, I,O, T) is
given in terms of a set of traces on I ∪ O. A trace t of A is
inductively built as follows:

• at time 0, the automaton is in state sinit;

• if at time n ∈ N, the automaton is in state s ∈ Q and
receives input valuations vi for i ∈ I, then at time
n+ 1 it reaches state s′, emitting O:(

∀i ∈ I.t(n)[i] = vi ∈ {true, false}∧
∀o ∈ O.t(n)[o] = wo ∈ {true, false}

)
=⇒(

∃(s, `, O, s′) ∈ T ∧O = {o ∈ O, wo = true}∧
` valuates to true w.r.t. the vi’s

)
.

We note Trace(A) the set of all traces built following this
scheme: Trace(A) defines the semantics of A. The automa-
ton A is said to be deterministic (resp. reactive) iff its set of
traces Trace(A) is deterministic (resp. reactive) (see def. 1).

Definition 5 (Synchronous Product) Let A1 = (Q1,
sinit1, I1,O1, T1) and A2 = (Q2, sinit2, I2,O2, T2) be automata.
The synchronous product of A1 and A2 is the automaton
A1||A2 = (Q1 ×Q2, (sinit1sinit2), I1 ∪ I2,O1 ∪O2, T) where
T is defined by:

(s1, `1, O1, s
′
1) ∈ T1 ∧ (s2, `2, O2, s

′
2) ∈ T2 ⇐⇒

(s1s2, `1 ∧ `2, O1 ∪O2, s
′
1s
′2) ∈ T .

The synchronous product of automata is both commutative
and associative, and it is easy to show that it preserves both
determinism and reactivity.

Definition 6 (Encapsulation) Let A = (Q, sinit, I,O, T)
be an automaton and Γ ⊆ I∪O be a set of inputs and outputs
of A. The encapsulation of A w.r.t. Γ is the automaton
A \ Γ = (Q, sinit, I \ Γ,O \ Γ, T ′) where T ′ is defined by:

(s, `, O, s′) ∈ T ∧ `+ ∩ Γ ⊆ O ∧ `− ∩ Γ ∩O = ∅ ⇐⇒
(s,∃Γ.`, O \ Γ, s′) ∈ T ′

`+ is the set of variables that appear as positive elements in
the monomial ` (i.e. `+ = {x ∈ I | (x ∧ `) = `}). `− is
the set of variables that appear as negative elements in the
monomial l (i.e. `− = {x ∈ I | (¬x ∧ `) = `}).

Intuitively, a transition (s, `, O, s′) ∈ T is still present in the
result of the encapsulation operation if its label satisfies a
local criterion made of two parts: `+ ∩ Γ ⊆ O means that
a local variable which needs to be true has to be emitted
by the same transition; `− ∩ Γ ∩ O = ∅ means that a local
variable that needs to be false should not be emitted in the
transition.

If the label of a transition satisfies this criterion, then the
names of the encapsulated variables are hidden, both in the
input part and in the output part. This is expressed by ∃Γ.`
for the input part, and by O \ Γ for the output part.

In general, the encapsulation operation does not preserve
determinism nor reactivity. This is related to the so-called
“causality” problem intrinsic to synchronous languages (see,
for instance [2]).

An example
Figure 1-(i) shows a 3-bits counter. Dashed lines denote
parallel compositions and the overall box denotes the en-
capsulation of the three parallel components, hiding signals
b and c. The idea is the following: the first component on
the right receives a from the environment, and sends b to the
second one, every two a’s. Similarly, the second one sends
c to the third one, every two b’s. b and c are the carry
signals. The global system has a as input and d as output;
it counts a’s modulo 8, and emits d every 8 a’s. Apply-
ing the semantics of the operator (first the product of the
three automata, then the encapsulation) yields the simple
flat automaton with 8 states (Figure 1-(ii)).

0

1

aa/b

0

1

bb/c

0

1

cc/d

b,c

a
aa

a

a

a a
a/d

(i) (ii)

Figure 1: A 3-bits counter. Notations: in each automa-
ton, the initial state is denoted with a little ar-
row; the label on transitions are expressed by
“triggering cond. / outputs emitted”, e.g.
the transition labelled by “a/b” is triggered when
a is true and emits b.

3. EXAMPLES OF ASPECTS FOR
REACTIVE SYSTEMS

Among the traditional programming examples in the do-
main of reactive systems, there are some typical cases in
which one could think of introducing aspect programming.
The candidate “aspects” for reactive systems sometimes de-
pend on the programming paradigm of the language used,
but not always. We give several examples below.

3.1 Conditional reinitialization
Being able to re-initialize a reactive system on the occur-
rence of a special signal is useful in several contexts. For
instance, if we program two different systems S1 and S2,
in isolation, and then want to design a more complex one
in which the two of them have to be used, it is likely that
one of the systems is active in a given period of time, then
the other one, then the first one again. When the first sys-
tem restarts, it should have the same behavior as if it were
started for the first time. Making a reactive program reini-
tialiazable means adding reactions to a special signal r, that
leads the system to its initial configuration, from any other
state it may have reached.

In some languages, there is a dedicated construct for this.
In Esterel [2], if S is the program of the original system,
and r the additional signal, an expression similar to “loop
S each r” is the reinitializable program. This is true for
a main program, and this is also true for a subprogram in
a complex context: S can be replaced by loop S each r

without changing the context.

In Lustre [1], which is not based upon the imperative paradigm,

reiniatializing a program needs modifications everywhere in
the code. Indeed, there is a special conditional structure
whose meaning is: if (this is the beginning of time) then ...
else When a program has to be made reinitializable by
a signal r, all occurrences of this special construct have to
be modified to give: if ((this is the beginning of time) OR
r is present) then ... else

In the language of parallel automata we presented in sec-
tion 2.2, making an automaton reinitializable means adding
transitions from any state to the initial one, with the con-
dition r, and no emitted signal; moreover, all the existing
transitions have their condition reinforced by not r. Notice
that, in a more sophisticated language based on explicit au-
tomata, one would introduce hierarchy of states à-la Stat-
echarts, and reinitialization would become trivial (see, for
instance [7]).

3.2 Conditional inhibition
Conditional inhibition means the following: when an addi-
tional signal ck is present, the new system behaves as the
old one. When this signal is not present, then the system
does not evolve, it keeps its current state, until ck is present
again.

In dataflow languages for reactive systems like Lustre or
Signal, this kind of behavior is a special case of a system with
multiple clocks. There are dedicated constructs that allow
to manipulate clocks. In Lustre, if S is the original program,
then something like “current (S when ck)” would do the
job.

In our language of automata, adding conditional inhibition
means (1) enforcing the triggering condition of each tran-
sition by ∧¬ck and (2) adding to each state s a self-loop
transition (s, ck, ∅, s) with triggering condition ck and emit-
ting nothing.

3.3 Adding a validity bit
This last example is very common in fault-tolerant systems.
Consider a reactive system with an input i and an output
o. i comes from an external physical device, that may “fail”
temporarily. Some physical properties make it possible to
produce the information: the value transmitted on input i,
in the current instant, is not valid.

The problem is to rewrite the program, adding a validity bit
v to the input i. The new program should behave as the
original one when its input is valid (i.e. when v is true).
When v is false, the value of i should not be “taken into
account”. This quite informal specification rises two ques-
tions.

First, forbidding the use of the input at a given instant in
time means that: a) we have to give a default value for the
outputs that depend on it; b) we also have to make sure
that the input does not serve for updating the memory.

Second, in all cases, one has to determine whether the value
computed for the outputs, or the way memory is updated,
really depends on the input i in the current instant. If it
is possible to write an additional parallel component that
observes i and each output o, and delivers a Boolean sig-

nal o depends on i, then the program can be modified quite
easily, with transformations similar to the ones we described
for reinitialization or inhibition (this is similar for memory
updates). But writing this additional component is difficult:
o depends on i means if we change i, then o changes, and
it cannot be computed by observing a single input/output
sequence, but the whole set of traces. So it cannot be im-
plemented by an additional parallel component.

All transformations that mention such a dependency notion
between inputs and outputs are good examples for point γ
in the introduction: we do not know how to program them
with the usual constructs of our languages, and it should
even be possible to prove that we cannot do so. See more
comments in section 6.

4. OUR PROPOSAL
Our proposal is made of two parts: first, we characterize the
notion of aspect in a very declarative setting. Second, we
propose a set of elementary transformations on automata
that may be the basis of a weaving mechanism.

4.1 Characterizing the semantical influence
of aspects

O

O~

O’
O’~

looks

like

ok’?

I’’

I’

I

A

ok?
An aspect

O’’
I’

P’ = (P mod.
O’~

I

O~

I’’

 by A)

P

I

I’

O

O’

Figure 2: The semantic scheme is a data flow block dia-
gram using the same notations as in the text; the
inputs of a box enter the box at its left and the
outputs goes out at its right; the box for the as-
pect Asp and the one for the predicate looks like
are given in terms of observers, i.e. they only have
an output ok (resp. ok′) that is expected to be al-
ways true. Õ (resp. O′̃) denotes a syntactic copy
of the set of outputs O (resp. O′): P emits O∪O′

while P’emits Õ∪O′̃ which may not have the same
values.

Figure 2 summarizes the semantic framework in which we
define aspects: P is a program (a set of traces on its inputs
and outputs). Asp is an aspect, allowed to deal with some
inputs I ′ ⊆ I and some outputs O′ ⊆ O of P ; it is also
allowed to add some inputs I ′′ and outputs O′′ to P . Asp is
given as a set of traces on I ′ ∪ I ′′ ∪ O′ ∪ O′′. Weaving Asp
into P yields a modified program P ′ = P �Asp such that:

• P ′ has I ∪ I ′′ as inputs and O ∪O′′ as outputs;

• P ′ is consistent with Asp, i.e.,

P ′
|I′∪I′′∪O′∪O′′ ⊆ Asp;

the set I ′ ∪ I ′′ ∪ O′ ∪ O′′ on which P ′ and Asp are
compared is exactly the set of inputs/outputs of Asp;
this means that P ′ on this set must be some of the
traces defined by Asp.

The two items above define P ′ w.r.t. Asp but they do not at
all constrain P ′ to be related to P , in any sense: for example,
take for P ′ every traces in Asp, and extend them by adding
the inputs I and outputs O with arbitrary values (e.g. false
everywhere); it yields P ′ such that P ′

|I′∪I′′∪O′∪O′′ ⊆ Asp.
This is caricatural, but it illustrates a major semantic prob-
lem of aspects from our point of view: we implicitly want
P ′ to be related to P . This is the motivation for our third
point.

Third, we require that P and P ′ be comparable.
looks like (P, P ′) is a predicate that compares the traces of
P and P ′ for the inputs and outputs they have in common:
it compares P|I∪O with P ′

|I∪O. Different classes of programs
and aspects may require different definitions for looks like .
Here are some examples:

• We may require that P and P ′ have the same traces
on the inputs/outputs that are not involved in the def-

inition of the aspect: looks like
def
= P|I∪O = P ′

|I∪O;

• one might enforce this condition by imposing that P
and P ′ have the same behavior on I ′∪O′ at the instants
when Asp does not modify them. Suppose, for exam-
ple that Asp modifies the value of an output o ∈ O′ if
a new input i ∈ I ′′ is false, as in the validity bit ex-
ample. The definition of looks like may then impose
that o keeps its value whenever i is true; this condition
is expressed by comparing the clocking of the traces of
P ′ on the set of instants when i is true with the same
clocking applied to P ;

• another admissible comparison criterion is that the
traces (masked or clocked) of P ′ are shifted by n ∈ N
instants compared with those of P . This might be
useful in case the aspect itself introduces this kind of
shifting.

This list of comparison criteria is not exhaustive and a mix
of the three solutions mentioned above as well as different
ways of comparing traces of P and P ′ may be admissible.

4.2 Operational definition of aspects
This part describes an elementary transformation on au-
tomata proposed as a basic construct for a weaving process.
It was motivated by some of the aspects one may imagine
for reactive systems.

4.2.1 A Stateless Transformation
Consider an automaton A = (Q, sinit, I,O, T). The idea is
to modify the transitions sourced in a given set of states, by
reinforcing their condition and adding some emitted events.

Whenever a transition condition is reinforced, it means that
the disjunction of conditions, for all transitions sourced in
the same state, may no longer be “true” (the automaton is
no longer reactive). To ensure that the result of the trans-
formation is indeed reactive, we also add a transition with
the missing condition. It could be a loop on the state, but
it seems more general to allow any existing state to be its
target state. The result is not always deterministic.

The parameters of the transformation are: a specification ψ
of a set of traces on I ∪ O; a condition C on I; a condition
m′ on additional inputs; a set o′ of additional outputs; a set
o′′ of additional outputs; a specification ψ′ of a set of traces
on I ∪ O.

For any state q reachable from the initial state by a trace

in ψ, for any of its outgoing transitions q
m/o−→ q′ whose

condition m satisfies C, we transform it into q
m∧m′/o∪o′
−→ q′,

and we add q
m∧¬m′/o′′
−→ q′′ for all q′′ reachable from the

initial state by a trace in ψ′.

4.2.2 Implementing the Examples
Reinitialization of a single automaton by r is obtained by ap-
plying this mechanism with the following parameters: ψ =
true (any sequence of inputs and outputs is accepted by
ψ, meaning: all the reachable states); C = true (for all
transitions); m′ = ¬r and o′ = ∅ (reinforcing the existing
transitions); m′′ = r and o′′ = ∅ (adding the “reset” transi-
tions); ψ′ = ε (specifies the initial state).

It is easy to show that any program made of automata, par-
allel compositions and encapsulations, can be made reinitial-
izable by r. It is sufficient to apply the above transformation
on each of the automata. r should be a fresh variable name,
not used in the original program.

The conditional inhibition can be implemented with a sim-
ilar transformation. Adding a validity bit is more complex,
because it involves the notion of “the transition really de-
pends on the input at the current instant” and this cannot be
expressed by reinforcing conditions on existing transitions.

4.3 The Global Picture
Putting together the informal examples of section 3, the
declarative point of view of section 4.1, and the operational
view of section 4.2, we obtain the following:

(A) A set of aspect candidates: i.e. program transformations
taken from classical examples of reactive programming. On
this set of aspects, we may wonder whether we really need
something new to implement them: do they deserve the
name of aspect, or were there already implementable with
traditional program constructs?

(B) A declarative characterization of the relationships be-
tween a program P, an aspect A, a new program P’ result-
ing from the weaving of P and A, and a comparison criterion
used to “control” how much P’ can differ from P. This se-
mantic scheme may be used to define a set of P ′ from P , A
and the comparison criterion, but not in an operational way;
moreover the set of P ′ that fit in the picture may be empty.

Finally the comparison criterion should not be completely
ad-hoc for an aspect A. There could be several generic com-
parison criteria, depending on the type of applications. For
instance, some applications in reactive programming may
allow a modified program to be slightly shifted from the
original one (giving the same outputs, but later), while oth-
ers may not.

(C) A set of elementary program transformations (given on
explicit automata) that could constitute the basis of a weav-
ing mechanism.

This setting has some internal consistency requirements. For
instance, each elementary transformation proposed in (C)
should be such that the transformed program and the orig-
inal one are comparable in the sense defined by the “looks-
like” box in (B).

Once these internal consistency requirements have been ex-
pressed and verified on the general setting, the following
questions make sense:

– From an informal notion of aspect taken from (A), how to
derive the necessary transformations in (C)? We did this for
the examples, in a very informal way.

– How to use the framework of (B) to specify one of the
candidate aspects of (A)?

– From a formal specification of an aspect in the style of
(B), how to produce a sequence of (C) transformations to
be applied to P, in order to produce a program P’ that fits
in the (B) picture?

Finally, some of the general questions people ask about as-
pects can be expressed in the same semantical framework:

– If we take two trace-equivalent programs P1 and P2 and
an aspect A, is it true that P1 � A and P2 � A are still
trace-equivalent?

– How to compare P � A1 � A2 and P � A2 � A1? This is
related to the more general notion of aspect interference.

5. RELATED WORK
Related work can be found in several directions. First, pa-
pers from the AOP community, with emphasis on seman-
tics; the setting of [9] is very close to ours, since it considers
sets of parallel input/output automata; however, synchro-
nization is made by shared variables, and the author con-
siders transitions made of sequences of elementary actions,
on which the aspectJ-like “insert-before” or “insert-after”
transformations make sense. In the above paper, the no-
tions of “property inheritance” and “property superimpo-
sition” are defined. They seem to be particular cases of
the declarative scheme of section 4.1, relating properties of
P � A with properties of P (inheritance”), or A (super-
imposition”). Superimposition itself was introduced earlier
(see [4]), ranging from spectative techniques (mere observers)
to invasive techniques. Our work could also be called: static
invasive superimposition.

Second, papers on controller synthesis techniques [10] and

their application to interfaces [3] in component-based de-
signs, because the definition of P ′ from P , the aspect speci-
fication and the “looks-like” predicate (shown in section 4.1)
can be viewed as a controller-synthesis problem.

Third, there have been a number of papers on “property-
enforcing techniques” that can be expressed in a aspect-
oriented style. The idea is to express safety properties (e.g.
with explicit automata like in [8]) and to “run” them in
parallel with a program. When the safety property becomes
false, the program is stopped. Running them in parallel
means performing a product between the program and the
property, and can be viewed as dynamic weaving. In our
setting, performing the product between the program and
a safety property does not need the notion of aspect: the
safety property can be expressed as a subprogram in par-
allel with the original program P , and the whole can be
compiled. This yields a new program Q with an output ok
meaning: the property is true from the beginning of time.
However, for embedded systems, waiting execution-time to
know about a safety property is not a solution. Static veri-
fication techniques are used instead.

6. CONCLUSION
The semantic setting we presented is adequate for the ques-
tions α and β of the introduction, and their answers. We are
currently investigating the various notions presented here
on some simple examples similar to the reinitialization. The
idea is not to obtain an automatic method from the semantic
picture of figure 2: it is an instance of controller-synthesis,
known to be quite costly. Moreover, we presented Boolean
programs only, but the general interesting case uses integer
variables in reactive programs. The problem then becomes
undecidable. The semantic scheme is there only to give a
clear meaning to the operational mechanisms we may in-
vent in order to obtain automatic transformation techniques.
The examples will probably lead to other basic transforma-
tions on automata. A natural extension of the one we pre-
sented would allow the creation of new states.

Question γ of the introduction has already been discussed
about the validity bit example. We need to define precisely
the notion of dependency between inputs and outputs in a re-
active program, and to prove that it cannot be programmed
with the usual constructs, thus deserving the name of aspect.
Similar dependency notions (like the one of [5], developed for
studying security policies) seem worth investigating.

7. REFERENCES
[1] J.-L. Bergerand, P. Caspi, N. Halbwachs, D. Pilaud,

and E. Pilaud. Outline of a real time data-flow
language. In Real Time Systems Symposium, San
Diego, Sept. 1985.

[2] G. Berry and G. Gonthier. The Esterel synchronous
programming language: Design, semantics,
implementation. Science Of Computer Programming,
19(2):87–152, 1992.

[3] L. de Alfaro and T. A. Henzinger. Interface automata.
In V. Gruhn, editor, Proceedings of the Joint 8th
European Software Engeneering Conference and 9th
ACM SIGSOFT Symposium on the Foundation of

Software Engeneering (ESEC/FSE-01), volume 26, 5
of SOFTWARE ENGINEERING NOTES, pages
109–120, New York, Sept. 10–14 2001. ACM Press.

[4] N. Francez and I. R. Forman. Superimposition for
interacting processes. In J. C. M. Baeten and J. W.
Klop, editors, CONCUR ’90: Theories of
Concurrency: Unification and Extension, volume 458
of Lecture Notes in Computer Science, pages 230–245,
Amsterdam, The Netherlands, 27–30Aug. 1990.
Springer-Verlag.

[5] J. A. Goguen and J. Meseguer. Security policies and
security models. In Proceedings of the IEEE
Symposium on Research in Security and Privacy,
pages 11–20, Oakland, CA, Apr. 1982. IEEE
Computer Society Press.

[6] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In M. Akşit and
S. Matsuoka, editors, Proceedings European
Conference on Object-Oriented Programming, volume
1241, pages 220–242. Springer-Verlag, Berlin,
Heidelberg, and New York, 1997.

[7] F. Maraninchi and Y. Rémond. Argos: an
automaton-based synchronous language. Computer
Languages, (27):61–92, 2001.

[8] F. B. Schneider. Enforceable security policies. ACM
Transactions on Information and System Security,
3(1):30–50, Feb. 2000.

[9] H. B. Sipma. A formal model for cross-cutting
modular transition systems. In Proceedings of the
workshop on Foundations of Aspect-Oriented
Languages, Northeastern University, Boston, Mar.
2003.

[10] W. M. Wonham and P. J. Ramadge. On the supremal
controllable sublanguage of a given language. SIAM
Journal on Control and Optimization, 25(3):637–659,
May 1987.

