Self-Stabilizing Leader Election in Polynomial Steps\(^1\)

Karine Altisen Alain Cournier Stéphane Devismes
Anaïs Durand Franck Petit

September 29, 2014

\(^1\)This work has been partially supported by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01) and the AGIR project DIAMS.
Problem

- **Silent Self-stabilizing Leader Election**
- Model:
 - Locally shared memory model
 - Read/write atomicity
 - Distributed unfair daemon
- Network:
 - Any connected topology
 - Bidirectional
 - Identified
- No global knowledge on the network
State of the Art

<table>
<thead>
<tr>
<th>Model</th>
<th>Paper</th>
<th>Knowledge</th>
<th>Daemon</th>
<th>Complexity</th>
<th>Silent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>D N B</td>
<td></td>
<td>Memory</td>
<td>Rounds</td>
</tr>
<tr>
<td>Message Passing</td>
<td>Afek, Bremler, 1998</td>
<td>×</td>
<td>Θ(log n)</td>
<td>$O(n)$</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td>Awerbuch et al, 1993</td>
<td>×</td>
<td>Θ(log $D \log n$)</td>
<td>$O(D)$</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td>Burman, Kutten, 2007</td>
<td>×</td>
<td>Θ(log $D \log n$)</td>
<td>$O(D)$</td>
<td>?</td>
</tr>
<tr>
<td>Locally Shared</td>
<td>Dolev, Herman, 1997</td>
<td>×</td>
<td>Fair</td>
<td>Θ($N \log N$)</td>
<td>$O(D)$</td>
</tr>
<tr>
<td></td>
<td>Arora, Gouda, 1994</td>
<td>×</td>
<td>Weakly Fair</td>
<td>Θ($log N$)</td>
<td>$O(N)$</td>
</tr>
<tr>
<td>Shared Memory</td>
<td>Datta et al, 2010</td>
<td>×</td>
<td>Unfair</td>
<td>unbounded</td>
<td>$O(n)$</td>
</tr>
<tr>
<td></td>
<td>Kravchik, Kutten, 2013</td>
<td>×</td>
<td>Synchronous</td>
<td>Θ(log n)</td>
<td>$O(D)$</td>
</tr>
<tr>
<td></td>
<td>Datta et al, 2011</td>
<td>×</td>
<td>Unfair</td>
<td>Θ(log n)</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>

D: Diameter
$D \geq \mathcal{D}$: Upper bound on the diameter
n: Number of nodes
$N \geq n$: Upper bound on the number of nodes
B: Upper bound on the link-capacity
Our Contribution

Algorithm \mathcal{LE}

- **Memory requirement asymptotically optimal**: $\Theta(\log n)$ bits/process
- **Stabilization time (worst case):**
 - $3n + \mathcal{D}$ rounds
 - Lower Bound: $\frac{n^3}{6} + \frac{5}{2}n^2 - \frac{11}{3}n + 2$ steps,
 - Upper Bound: $\frac{n^3}{2} + 2n^2 + \frac{n}{2} + 1$ steps
Our Contribution

Algorithm \mathcal{LE}

- Memory requirement asymptotically optimal: $\Theta(\log n)$ bits/process
- Stabilization time (worst case):
 - $3n + D$ rounds
 - Lower Bound: $\frac{n^3}{6} + \frac{5}{2} n^2 - \frac{11}{3} n + 2$ steps,
 - Upper Bound: $\frac{n^3}{2} + 2n^2 + \frac{n}{2} + 1$ steps

Analytical Study of Datta et al, 20112

- Stabilization time not polynomial in steps:
 - $\forall \alpha \geq 3$, \exists networks and executions in $\Omega(n^{\alpha+1})$ steps.

2Datta, Larmore, and Vemula. Self-stabilizing Leader Election in Optimal Space under an Arbitrary Scheduler. 2011
Design of the Leader Election Algorithm
Simplified Algorithm (Non Self-stabilizing)

Join a Tree

3 variables per process p

- $p.idR \in \mathbb{N}$: ID of the root
- $p.par \in \mathcal{N}_p \cup \{p\}$: Parent pointer
- $p.level \in \mathbb{N}$: Level

Initial Configuration

$p.idR = p$
$p.par = p$
$p.level = 0$

Key: $\langle idR, level \rangle$
Simplified Algorithm (Non Self-stabilizing)

Join a Tree

3 variables per process p
- $p.idR \in \mathbb{N}$: ID of the root
- $p.par \in \mathcal{N}_p \cup \{p\}$: Parent pointer
- $p.level \in \mathbb{N}$: Level

Initial Configuration
- $p.idR = p$
- $p.par = p$
- $p.level = 0$

Key: $\langle idR, level \rangle$
Simplified Algorithm (Non Self-stabilizing)

Join a Tree

3 variables per process p
- $p.idR \in \mathbb{N}$: ID of the root
- $p.par \in \mathcal{N}_p \cup \{p\}$: Parent pointer
- $p.level \in \mathbb{N}$: Level

Initial Configuration
- $p.idR = p$
- $p.par = p$
- $p.level = 0$

Key: $\langle idR, level \rangle$
Simplified Algorithm (Non Self-stabilizing)

Join a Tree

3 variables per process p
- $p.iR \in \mathbb{N}$: ID of the root
- $p.par \in \mathcal{N}_p \cup \{p\}$: Parent pointer
- $p.level \in \mathbb{N}$: Level

Initial Configuration
- $p.iR = p$
- $p.par = p$
- $p.level = 0$

Key: $\langle idR, level \rangle$
3 variables per process p

- $p.idR \in \mathbb{N}$: ID of the root
- $p.par \in \mathcal{N}_p \cup \{p\}$: Parent pointer
- $p.level \in \mathbb{N}$: Level

Initial Configuration

- $p.idR = p$
- $p.par = p$
- $p.level = 0$
Simplified Algorithm (Non Self-Stabilizing)

Self-stabilization \implies Arbitrary initialization

Key: $\langle idR, level \rangle$
Simplified Algorithm (Non Self-Stabilizing)

Self-stabilization \implies Arbitrary initialization \implies Fake ids

Fake id
\[
\langle 1,1 \rangle \downarrow \langle 3,0 \rangle \downarrow \langle 4,0 \rangle \downarrow \langle 1,1 \rangle
\]

Fake id

Key: $\langle idR, level \rangle$
Simplified Algorithm (Non Self-Stabilizing)

Self-stabilization \implies Arbitrary initialization \implies Fake ids

Key: $\langle idR, level \rangle$

Diagram:

- Node 2 with key $\langle 1, 1 \rangle$
- Node 3 with key $\langle 1, 2 \rangle$
- Node 4 with key $\langle 1, 2 \rangle$
- Node 5 with key $\langle 1, 1 \rangle$

Nodes are connected in a line from 2 to 5.
Simplified Algorithm: Removal of Fake Ids

Reset

Inconsistency

\[\langle 1, 1 \rangle \leftrightarrow \langle 1, 2 \rangle \leftrightarrow \langle 1, 2 \rangle \leftrightarrow \langle 1, 1 \rangle \]

Key: \(\langle idR, level \rangle \)
Reset

- \(p.idR = p \)
- \(p.par = p \)
- \(p.level = 0 \)

Inconsistency

\[
\langle 1, 1 \rangle \quad \langle 1, 2 \rangle \quad \langle 1, 2 \rangle \\
2 \quad 3 \quad 4 \quad 5
\]

Key: \(\langle idR, level \rangle \)
Simplified Algorithm: Removal of Fake Ids

Reset

- $p.idR = p$
- $p.par = p$
- $p.level = 0$

Key: $\langle idR, level \rangle$

![Diagram of nodes and edges with keys $\langle 2, 0 \rangle$, $\langle 1, 2 \rangle$, $\langle 1, 2 \rangle$, $\langle 5, 0 \rangle$]
Simplified Algorithm: Removal of Fake Ids

Reset

- $p.idR = p$
- $p.par = p$
- $p.level = 0$

Inconsistency

```
⟨2, 0⟩  ⟨1, 2⟩  ⟨1, 2⟩  ⟨5, 0⟩
2        3        4        5
```

Key: $\langle idR, level \rangle$
Simplified Algorithm: Removal of Fake Ids

Reset

- \(p.idR = p \)
- \(p.par = p \)
- \(p.level = 0 \)

Key: \(\langle idR, level \rangle \)
Simplified Algorithm: Removal of Fake Ids

Reset

Key: \(\langle idR, level \rangle \)
Simplified Algorithm: Removal of Fake Ids

Reset

Key: \(\langle idR, level \rangle \)
Simplified Algorithm: Removal of Fake Ids

Reset

Key: \langle idR, level \rangle
Simplified Algorithm: Removal of Fake Ids

Reset

Key: \(\langle idR, level \rangle\)
Simplified Algorithm: Removal of Fake Ids

Reset

Key: $\langle idR, level \rangle$
Simplified Algorithm: Removal of Fake Ids

Reset

Key: \(\langle idR, level \rangle \)
Simplified Algorithm: Removal of Fake Ids

Reset

Key: \langle idR, level \rangle
Abnormal Trees

Key: \(\langle idR, level \rangle\)
Abnormal Trees

Key: \(\langle idR, level \rangle \)
Abnormal Trees

Key: \(\langle idR, level \rangle \)
Abnormal Trees

Key: \(\langle idR, level \rangle \)

Abnormal root

Anaïs Durand (VERIMAG)
Self-Stabilizing Leader Election
September 29, 2014
Abnormal Trees

Key: \langle idR, level \rangle

Abnormal root
Abnormal Trees

\[(3, 0), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1) \]

\[T_1, T_2, T_3 \]

\[\langle 3, 1 \rangle, \langle 3, 2 \rangle, \langle 1, 2 \rangle, \langle 1, 0 \rangle \]

Key: \(\langle idR, level \rangle \)
Abnormal Trees

Key: \(\langle \text{idR}, \text{level} \rangle \)
Cleaning
Cleaning

EB-action

Key: $\langle idR, level \rangle$

Clean $EBroadcast$ $EFeedback$

$\langle 1, 0 \rangle$

$\langle 1, 1 \rangle$

$\langle 1, 1 \rangle$
Cleaning

EB-action

Key: $\langle idR, level \rangle$

$Clean$ $EBroadcast$ $EFeeback$

Self-Stabilizing Leader Election

September 29, 2014

11 / 23
Cleaning

Key: $\langle idR, \text{level} \rangle$ Clean EBroadcast EFeedback
Cleaning

EF-action

EB

Key: \((idR, \text{level}) \)

- Clean
- EBroadcast
- EFeedback
Cleaning

Key: $\langle \text{idR}, \text{level} \rangle$

- Clean
- EBroadcast
- EFeedback
Cleaning

Key: \((idR, level)\)
- Green: Clean
- Blue: EBroadcast
- Red: EFeedback

Diagram:
- R-action
- EF
- Nodes: 6, 2, 8
- Edges:
 - 6 to 2: \((1, 0)\) \((1, 1)\)
 - 6 to 8: \((1, 0)\) \((1, 1)\)
Cleaning

Key: \(\langle idR, level \rangle\)

- Green: Clean
- Blue: EBroadcast
- Red: EFedback

Diagram with nodes and arrows indicating R-actions, EF, and key notation.
Stabilization Time in Rounds

- No alive abnormal tree created
- Height of an abnormal tree: at most n
Stabilization Time in Rounds

- No alive abnormal tree created
- Height of an abnormal tree: at most n
- **Cleaning:**
 - EB-wave: n
 - EF-wave: n
 - R-wave: n
Stabilization Time in Rounds

- No alive abnormal tree created
- Height of an abnormal tree: at most n
- **Cleaning:**
 - EB-wave: n
 - EF-wave: n
 - R-wave: n
- **Building of the Spanning Tree:** D
Stabilization Time in Rounds

- No alive abnormal tree created
- Height of an abnormal tree: at most n
- **Cleaning:**
 - EB-wave: n
 - EF-wave: n
 - R-wave: n
- **Building of the Spanning Tree:** D

$$O(3n + D) \text{ rounds}$$
Lower Bound on the Worst Case Stabilization Time in Rounds

- k links
- $j = k + 3$
- $D = n - k$

Key:

- $\langle idR, level \rangle$
- Clean
- EBroadcast
- EFeedback

Diagram:

- Nodes labeled with $\langle 0, n-1 \rangle$, $\langle 0, n-2 \rangle$, $\langle 0, 0 \rangle$, $\langle 0, j-2 \rangle$, $\langle 0, j-3 \rangle$, $\langle 0, 3 \rangle$, $\langle 0, 2 \rangle$, $\langle 0, 1 \rangle$
- Arrows indicating communication or state transitions
Lower Bound on the Worst Case Stabilization Time in Rounds

- k links
- $j = k + 3$
- $D = n - k$

Key: $\langle idR, level \rangle$

- $Clean$
- $EBroadcast$
- $EFeedback$
Lower Bound on the Worst Case Stabilization Time in Rounds

- k links
- $j = k + 3$
- $\mathcal{D} = n - k$

![Diagram](image)

Key: $\langle idR, level \rangle$

- Green: Clean
- Blue: EBroadcast
- Red: EFeeback

n
Lower Bound on the Worst Case Stabilization Time in Rounds

- k links
- $j = k + 3$
- $D = n - k$

Key:

- $\langle idR, level \rangle$
- Clean
- EBroadcast
- EF eedback

n
Lower Bound on the Worst Case Stabilization Time in Rounds

- k links
- $j = k + 3$
- $D = n - k$

$n + n$
Lower Bound on the Worst Case Stabilization Time in Rounds

- k links
- $j = k + 3$
- $D = n - k$

Key:

$\langle idR, level \rangle$
- Clean
- EBroadcast
- EFeedback

$n + n$
Lower Bound on the Worst Case Stabilization Time in Rounds

- k links
- $j = k + 3$
- $D = n - k$

$n + n + n$
Lower Bound on the Worst Case Stabilization Time in Rounds

- k links
- $j = k + 3$
- $D = n - k$

$$j = k + 3$$

$D = n - k$

$\langle 2, n-k \rangle$

$\langle 2, 0 \rangle$

$\langle 2, 1 \rangle$

$\langle 2, 1 \rangle$

$\langle 2, 1 \rangle$

$\langle 2, 1 \rangle$

$\langle 1, 0 \rangle$

Building

Key: $\langle idR, level \rangle$

$n + n + n$
Lower Bound on the Worst Case Stabilization Time in Rounds

- k links
- $j = k + 3$
- $D = n - k$

$n + n + n + (n - k)$
Lower Bound on the Worst Case Stabilization Time in Rounds

- k links
- $j = k + 3$
- $\mathcal{D} = n - k$

$n + n + n + (n - k) = \text{exactly } 3n + \mathcal{D} \text{ rounds}$
Stabilization Time in Steps

- A segment
- Another segment

Death of an abnormal tree

At most n alive abnormal trees + No alive abnormal tree created

\rightarrow At most $n + 1$ segments

In a segment idR:

- J-action
- J-action
- J-action
- EB-action
- EF-action
- R-action

$\Rightarrow O(n)$ actions per process

$O(n^3)$ steps

Lower Bound: $n^3 + 5n^2 + 2n - 11$ steps

Upper Bound: $n^3 + 2n^2 + n + 1$ steps
Stabilization Time in Steps

At most n alive abnormal trees + No alive abnormal tree created
Stabilization Time in Steps

At most n alive abnormal trees + No alive abnormal tree created

\rightarrow At most $n + 1$ segments
Stabilization Time in Steps

At most n alive abnormal trees $+$ No alive abnormal tree created \rightarrow At most $n + 1$ segments

In a segment

$\text{idR} : 7 \xrightarrow{\text{J-action}} 5 \xrightarrow{\text{J-action}} 3 \xrightarrow{\text{J-action}} 2 \xrightarrow{\text{EB-action} \rightarrow \text{EF-action} \rightarrow \text{R-action}} 7 \xrightarrow{\text{J-action}} 3$

Death of an abnormal tree $=$ End of the segment

Death of an abnormal tree
Stabilization Time in Steps

A segment Another segment

Death of an abnormal tree

At most n alive abnormal trees $+$ No alive abnormal tree created
\longrightarrow At most $n + 1$ segments

In a segment

$idR : 7 \xrightarrow{\text{J-action}} 5 \xrightarrow{\text{J-action}} 3 \xrightarrow{\text{J-action}} 2 \xrightarrow{\text{EB-action \hspace{1cm} EF-action \hspace{1cm} R-action}} 7 \xrightarrow{\text{J-action}} 3$

Death of an abnormal tree $=$ End of the segment

- $n - 1$ J-actions
- 1 EB-action
- 1 EF-action
- 1 R-action
Stabilization Time in Steps

At most n alive abnormal trees + No alive abnormal tree created \rightarrow At most $n + 1$ segments

In a segment

$\text{idR} : 7 \xrightarrow{J\text{-action}} 5 \xrightarrow{J\text{-action}} 3 \xrightarrow{J\text{-action}} 2 \xrightarrow{EB\text{-action}} \xrightarrow{EF\text{-action}} \xrightarrow{R\text{-action}} 7 \xrightarrow{J\text{-action}} 3$

Death of an abnormal tree $= \text{End of the segment}$

- $n - 1$ J-actions
- 1 EB-action
- 1 EF-action
- 1 R-action

$\Rightarrow O(n)$ actions per process
Stabilization Time in Steps

Death of an abnormal tree

At most n alive abnormal trees + No alive abnormal tree created

\rightarrow At most $n + 1$ segments

In a segment

$idR: 7 \xrightarrow{J\text{-action}} 5 \xrightarrow{J\text{-action}} 3 \xrightarrow{J\text{-action}} 2 \xrightarrow{EB\text{-action} \rightarrow EF\text{-action} \rightarrow R\text{-action}} 7 \xrightarrow{J\text{-action}} 3$

Death of an abnormal tree = End of the segment

\bullet $n - 1$ J-actions

\bullet 1 EB-action

\bullet 1 EF-action

\bullet 1 R-action

$\Rightarrow O(n)$ actions per process

$O(n^3)$ steps

Lower Bound: $\frac{n^3}{6} + \frac{5}{2}n^2 - \frac{11}{3}n + 2$ steps

Upper Bound: $\frac{n^3}{2} + 2n^2 + \frac{n}{2} + 1$ steps
Lower Bound on the Worst Case Stabilization Time in Steps

Key: \(\langle idR, level \rangle\)
- \(\text{Clean}\)
- \(\text{EBroadcast}\)
- \(\text{EFeedback}\)

\[
\begin{align*}
\langle n-4, 0 \rangle & \rightarrow \langle n-3, 0 \rangle \\
\langle n-3, 0 \rangle & \rightarrow \langle n-2, 0 \rangle \\
\langle n-2, 0 \rangle & \rightarrow \langle n-1, 0 \rangle \\
\langle n-1, 0 \rangle & \rightarrow \langle n, 0 \rangle \\
\langle n, 0 \rangle & \rightarrow \langle 2n, 0 \rangle \\
\langle 2n, 0 \rangle & \rightarrow \langle 2n-1, 0 \rangle \\
\langle 2n-1, 0 \rangle & \rightarrow \langle 2n-2, 0 \rangle \\
\langle 2n-2, 0 \rangle & \rightarrow \langle n+1, 1 \rangle
\end{align*}
\]
Lower Bound on the Worst Case Stabilization Time in Steps

Key: $\langle idR, level \rangle$
- Clean
- EBroadcast
- EFeedback

Case of the reset of $2n-4$ processes:

$$\sum_{j=1}^{n-1} j - 1 \sum_{i=1}^{2n} i \Rightarrow \Theta(n^3)$$

steps

Reset

Build

$\langle n-1, 0 \rangle$

$\langle n-2, 0 \rangle$

$\langle n-3, 0 \rangle$

$\langle 2n-2, 0 \rangle$

$\langle 2n-3, 0 \rangle$

$\langle 2n-4, 0 \rangle$

$\langle 2n, 0 \rangle$

$\langle n+1, 1 \rangle$

$\langle 1, 0 \rangle$
Lower Bound on the Worst Case Stabilization Time in Steps

Key: \(\langle idR, level \rangle \)
- Clean
- EBroadcast
- EFeedback

Case of the reset of \(2n - 4 \) processes:

\[
2n - 1 \quad 2n - 2 \quad 2n \quad 2n - 3 \quad 2n - 4 \quad \ldots
\]

\[\langle n - 1, 0 \rangle \quad \langle n - 2, 0 \rangle \quad \langle n - 3, 0 \rangle \quad \langle n - 4, 0 \rangle \]

\[\langle 1, 0 \rangle \quad \langle 2, 0 \rangle \quad \langle 2n, 0 \rangle \]

\[\sum_{j=1}^{n-1} j - \sum_{i=1}^{2n-4} i \Rightarrow \Theta(n^3) \text{ steps} \]
Lower Bound on the Worst Case Stabilization Time in Steps

\[
\begin{align*}
2n - 4 & \quad \langle n - 4, 3 \rangle \\
2n - 2 & \quad \langle n - 4, 2 \rangle \\
2n & \quad \langle n - 4, 1 \rangle \\
2n - 4 & \quad \langle n - 4, 0 \rangle \\
n + 1 & \quad \langle 1, 0 \rangle
\end{align*}
\]

Key: \(\langle idR, level \rangle \)
- Clean
- EBroadcast
- EFeedback

\[\Omega(n) \text{ reset} \Rightarrow n \sum_{j=1}^{n-j} j - 1 \sum_{i=1}^{n-j} i \Rightarrow \Omega(n^3) \text{ steps}\]
Lower Bound on the Worst Case Stabilization Time in Steps

Key: \(\langle idR, level \rangle \)
- Clean
- EBroadcast
- EFeedback

\[\langle n-4, 3 \rangle \]
\[2n-1 \]
\[\langle n-4, 2 \rangle \]
\[2n-2 \]
\[\langle n-4, 1 \rangle \]
\[2n-3 \]
\[\langle n-4, 0 \rangle \]
\[2n-4 \]
\[n+1 \]
\[\langle 2n, 0 \rangle \]
\[\langle 2n, 0 \rangle \]
\[\cdots \]

\[\Theta(n^2) \] reset \(\Rightarrow \)
\[n \sum_{j=1}^{n} j - 1 \]
\[\sum_{i=1}^{n} i \]
\[\Rightarrow \]
\[\Theta(n^3) \] steps
Lower Bound on the Worst Case Stabilization Time in Steps

\[\sum_{j=1}^{n} j - 1 \leq \sum_{i=1}^{n} i \Rightarrow \Theta(n^3) \text{ steps}\]

Key: \(\langle idR, level\rangle\)
- Clean
- EBroadcast
- EFeedback
Lower Bound on the Worst Case Stabilization Time in Steps

\[\Theta(n^3) \text{ steps} \]
Lower Bound on the Worst Case Stabilization Time in Steps

$$2^n, 0$$

$$n + 1, 0$$

$$2n, 0$$

$$\langle n-4, 3 \rangle$$

$$\langle 2n-2, 0 \rangle$$

$$\langle 2n-3, 0 \rangle$$

$$\langle 2n-4, 0 \rangle$$

Key: $$\langle idR, level \rangle$$

Green: Clean

Blue: EBroadcast

Red: EFeedback

$$\Theta(n)$$ reset $$\Rightarrow n \sum_{j=1}^{j-1} \sum_{i=1}^{2^n-4} \Rightarrow \Theta(n^3)$$ steps
Lower Bound on the Worst Case Stabilization Time in Steps

Case of the reset of $2n - 4$

processes: $2n - 1$ $2n - 2$ $2n - 3$ $2n - 4$...
Lower Bound on the Worst Case Stabilization Time in Steps

\[
\begin{align*}
2n-1 & \Rightarrow \langle 2n-2, 1 \rangle \\
2n-2 & \Rightarrow \langle 2n-2, 0 \rangle \\
n+1 & \Rightarrow \langle 2n, 0 \rangle \\
n & \Rightarrow \langle 2n, 0 \rangle \\
2n-3 & \Rightarrow \langle 2n-3, 0 \rangle \\
2n-4 & \Rightarrow \langle 2n-4, 0 \rangle \\
\vdots & \\
\end{align*}
\]

Key: \(\langle idR, level \rangle\)

\(\langle idR, level \rangle\)
- \(Clean\)
- \(EBroadcast\)
- \(EFeedback\)

Case of the reset of \(2n - 4\)

Processes:
- \(2n - 1\)
- \(2n - 2\)
- \(2n - 3\)
- \(2n - 4\)
- \(\ldots\)

\(\text{idR} = 2n - 2\)
Lower Bound on the Worst Case Stabilization Time in Steps

Case of the reset of $2n - 4$

processes: $2n - 1$ $2n - 2$ $2n - 3$ $2n - 4$...

idR = $2n-2$ idR = $2n-3$

...
Lower Bound on the Worst Case Stabilization Time in Steps

Case of the reset of $2n - 4$

Processes: $2n - 1$, $2n - 2$, $2n - 3$, $2n - 4$, \ldots

Key: $\langle \text{idR}, \text{level} \rangle$

- **Clean**
- **EBroadcast**
- **EFeeback**
Lower Bound on the Worst Case Stabilization Time in Steps

Key: \langle idR, level \rangle

Clean EBroadcast EFeedback

Case of the reset of $2n - 4$

processes: $2n - 1$ $2n - 2$ $2n - 3$ $2n - 4$ \ldots
Lower Bound on the Worst Case Stabilization Time in Steps

Case of the reset of $2n - 4$

Processes: $2n - 1$ $2n - 2$ $2n - 3$ $2n - 4$ \ldots

$\langle idR = 2n-2, \ldots \rangle$

$\langle idR = 2n-3, \ldots \rangle$

$\langle idR = 2n-4, \ldots \rangle$

Key: $\langle idR, level \rangle$

- Clean
- EBroadcast
- EFeedback
Lower Bound on the Worst Case Stabilization Time in Steps

Case of the reset of $2n - 4$

processes: $2n - 1$ $2n - 2$ $2n - 3$ $2n - 4$...
Lower Bound on the Worst Case Stabilization Time in Steps

Case of the reset of $2n - 4$

$\sum_{i=1}^{j-1} i = \frac{j(j-1)}{2}$

$\Theta(n)$ reset $\Rightarrow \sum_{j=1}^{n} \sum_{i=1}^{j-1} i \Rightarrow \Theta(n^3)$ steps
Analytical Study of Datta et al, 2011

3 Datta, Larmore, and Vemula. Self-stabilizing Leader Election in Optimal Space under an Arbitrary Scheduler. 2011
Principles

Join a tree

Key: $\langle idR, level \rangle$

- Can be joined
- Cannot be joined
Principles

Join a tree

Key: \(\langle idR, level \rangle \)

- Can be joined
- Cannot be joined
Principles

Change of color

Key: \langle idR, level \rangle

- Can be joined
- Cannot be joined
Principles
Change of color

Key: \(\langle idR, level \rangle\)

- Can be joined
- Cannot be joined
Principles

Change of color

Key: \(\langle idR, level \rangle\)
- Can be joined
- Cannot be joined
Principles

Color Waves Absorption

Normal tree

Abnormal tree

Key: $\langle idR, level \rangle$
- Can be joined
- Cannot be joined
Principles

Color Waves Absorption

Key: \(\langle idR, level \rangle\)
- Can be joined
- Cannot be joined

Normal tree

Abnormal tree
Principles
Color Waves Absorption

Key: \(\langle idR, level \rangle \)
- Can be joined
- Cannot be joined

Normal tree

Abnormal tree
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:

- $(i, j).ID = (i - 1)\beta + j$
- $(i, j).idR = 0$
- \star Can be joined
- \bigstar Cannot be joined
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:

$(i, j).ID = (i - 1)\beta + j$

$\star (i, j).idR = 0$

- Can be joined
- Cannot be joined
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:

$(i,j).ID = (i-1)\beta + j$

$(i,j).idR = 0$

- Can be joined
- Cannot be joined
Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:
$(i, j).ID = (i - 1)\beta + j$
$(i, j).idR = 0$
- Can be joined
- Cannot be joined
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:

$(i, j).ID = (i - 1)\beta + j$

$(i, j).idR = 0$

- Can be joined
- Cannot be joined
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:

$(i, j).ID = (i - 1)\beta + j$

$\star (i, j).idR = 0$

- Can be joined
- Cannot be joined
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:

-

$(i,j).ID = (i-1)\beta + j$
-

$(i,j).idR = 0$
-

- Blue circle: Can be joined
- Red circle: Cannot be joined

\begin{itemize}
 \item $1,1$
 \item $2,1$
 \item $3,1$
 \item $4,1$
 \item $5,1$
 \item $6,1$
 \item $7,1$
 \item $8,1$
 \item $1,2$
 \item $2,2$
 \item $3,2$
 \item $4,2$
 \item $5,2$
 \item $6,2$
 \item $7,2$
 \item $8,2$
 \item $1,3$
 \item $2,3$
 \item $3,3$
 \item $4,3$
 \item $5,3$
 \item $6,3$
 \item $7,3$
 \item $8,3$
\end{itemize}
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:

- $(i, j).ID = (i - 1)\beta + j$
- $(i, j).idR = 0$
- Can be joined
- Cannot be joined
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:

$(i, j).ID = (i-1)\beta + j$

- $\star (i, j).idR = 0$
- Blue can be joined
- Red cannot be joined
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:

$(i, j).ID = (i - 1)\beta + j$

$(i, j).idR = 0$

- Can be joined
- Cannot be joined

\(\beta\)
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

\[\beta \]

Key:

$$(i, j).ID = (i - 1)\beta + j$$

$$(i, j).idR = 0$$

- Can be joined
- Cannot be joined
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:

$(i,j).ID = (i - 1)\beta + j$

$(i,j).idR = 0$

- Can be joined
- Cannot be joined

Anaïs Durand (VERIMAG)
Self-Stabilizing Leader Election
September 29, 2014 20 / 23
Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:

$(i, j).ID = (i - 1)\beta + j$

$(i, j).idR = 0$

- Can be joined
- Cannot be joined
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:

- $(i,j).ID = (i - 1)\beta + j$
- $(i,j).idR = 0$
- Can be joined
- Cannot be joined
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:

$(i, j).ID = (i - 1)\beta + j$

$\star (i, j).idR = 0$

- Can be joined
- Cannot be joined
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:

- $(i, j).ID = (i - 1)\beta + j$
- $(i, j).idR = 0$
- Can be joined
- Cannot be joined
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:

- $(i, j).ID = (i - 1)\beta + j$
- $(i, j).idR = 0$
- Can be joined
- Cannot be joined

β^2
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:

$(i, j).ID = (i - 1)\beta + j$

$\star (i, j).idR = 0$

- Can be joined
- Cannot be joined
Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:

$(i, j).ID = (i - 1)\beta + j$

$(i, j).idR = 0$

- Can be joined
- Cannot be joined

β^2
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:

$(i, j).ID = (i - 1)\beta + j$

$(i, j).idR = 0$

- Can be joined
- Cannot be joined
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:

$(i,j).ID = (i - 1)\beta + j$

$(i,j).idR = 0$

- Blue: Can be joined
- Red: Cannot be joined
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

β^2

Key:

(i, j).ID = $(i - 1)\beta + j$

(i, j).idR = 0

Can be joined

Cannot be joined
Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:

$(i,j).ID = (i-1)\beta + j$

$(i,j).idR = 0$

- Can be joined
- Cannot be joined

\[
\beta^2
\]
Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:
(i, j).ID = (i − 1)$\beta + j$

$\star (i, j).idR = 0$

- Can be joined
- Cannot be joined

\[\beta^2 \]
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

β^2

Key:

$(i, j).ID = (i - 1)\beta + j$

$(i, j).idR = 0$

- Can be joined
- Cannot be joined
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

![Diagram showing self-stabilizing leader election algorithm]

Key:

- $(i,j).ID = (i-1)\beta + j$
- $(i,j).idR = 0$
- Blue nodes: Can be joined
- Red nodes: Cannot be joined
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

β^2
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:

$(i, j).ID = (i - 1)\beta + j$

$\star (i, j).idR = 0$

- Can be joined
- Cannot be joined

β^2
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:

$(i, j).ID = (i - 1)\beta + j$

$\star (i, j).idR = 0$

- Can be joined
- Cannot be joined
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n^8}{8}$

β^2

Key:

- $(i, j).ID = (i - 1)\beta + j$
- $(i, j).idR = 0$

- Can be joined
- Cannot be joined
Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:

(i, j).ID = (i - 1)$\beta + j

$\star (i, j).idR = 0$

Can be joined

Cannot be joined

β^2
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:

$(i, j).ID = (i - 1)\beta + j$

$(i, j).idR = 0$

- Can be joined
- Cannot be joined

β^2
Datta et al, 2011
Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:
(i, j).ID = (i − 1)$\beta + j
\((i, j).idR = 0

- Can be joined
- Cannot be joined

β^2
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:

$(i,j).ID = (i - 1)\beta + j$

$\star (i,j).idR = 0$

- Can be joined
- Cannot be joined
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:
- $(i, j).ID = (i - 1)\beta + j$
- $(i, j).idR = 0$
- Blue circle: Can be joined
- Red circle: Cannot be joined

β^2
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:

$(i, j).ID = (i - 1)\beta + j$

$\star (i, j).idR = 0$

- Can be joined
- Cannot be joined
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

β^2

Key:

$(i, j).ID = (i - 1)\beta + j$

$(i, j).idR = 0$

- Can be joined
- Cannot be joined
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

\[\beta^2 \]

Key:
(i, j).ID = (i - 1)\beta + j
(i, j).idR = 0

Can be joined
Cannot be joined
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

β^2

Key:

$(i, j).ID = (i - 1)\beta + j$

$(i, j).idR = 0$

- Can be joined
- Cannot be joined
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:

(i, j).ID = (i - 1)$\beta + j$

(i, j).idR = 0

* Can be joined

Cannot be joined
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

β^2

Key:

$(i,j).ID = (i-1)\beta + j$

$(i,j).idR = 0$

- Can be joined
- Cannot be joined

Anaïs Durand (VERIMAG)
Self-Stabilizing Leader Election
September 29, 2014 20 / 23
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:

$(i, j).ID = (i - 1)\beta + j$

$\star (i, j).idR = 0$

Can be joined

Cannot be joined
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:

- $(i, j).ID = (i - 1)\beta + j$
- $(i, j).idR = 0$

- Can be joined
- Cannot be joined
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

β^2

Key:

$(i, j).ID = (i - 1)\beta + j$

$(i, j).idR = 0$

- Can be joined
- Cannot be joined

Can be joined

Cannot be joined
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:
- $(i, j).ID = (i - 1)\beta + j$
- $(i, j).idR = 0$
- Can be joined
- Cannot be joined
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:

$(i, j).ID = (i - 1)\beta + j$

$\star (i, j).idR = 0$

- Can be joined
- Cannot be joined

β^2
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:

$(i,j).ID = (i - 1)\beta + j$

$(i,j).idR = 0$

- Can be joined
- Cannot be joined
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:

$(i, j).ID = (i - 1)\beta + j$

$(i, j).idR = 0$

Can be joined

Cannot be joined
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:
$(i, j).ID = (i - 1)\beta + j$

$$(i, j).idR = 0$$

- Can be joined
- Cannot be joined
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:

$(i, j).ID = (i - 1)\beta + j$

$*(i, j).idR = 0$

- Can be joined
- Cannot be joined

β^2
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

\[\beta^2 \]

Key:

- $(i, j).ID = (i - 1)\beta + j$
- $\star (i, j).idR = 0$

Circle: Can be joined

Circle with star: Cannot be joined
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:

$(i, j).ID = (i - 1)\beta + j$

$(i, j).idR = 0$

- Can be joined
- Cannot be joined

β^2
Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:

$(i, j).ID = (i - 1)\beta + j$

$(i, j).idR = 0$

- Can be joined
- Cannot be joined

β^2
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:

$$(i, j).ID = (i - 1)\beta + j$$

$$(i, j).idR = 0$$

- Can be joined
- Cannot be joined
Datta et al, 2011
Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:
$$(i, j).ID = (i - 1)\beta + j$$
$$\star (i, j).idR = 0$$
- Can be joined
- Cannot be joined
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

β^3

Key:
- $(i, j).id = (i - 1)\beta + j$
- $(i, j).idR = 0$

- Can be joined
- Cannot be joined

[(Diagram showing the self-stabilizing leader election process)]
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n^4}{8}$

Key:
$(i,j).ID = (i-1)\beta + j$
$(i,j).idR = 0$
- Can be joined
- Cannot be joined
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

β^3

Key:

$(i, j).ID = (i - 1)\beta + j$

$(i, j).idR = 0$

Can be joined

Cannot be joined
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:

$(i, j).ID = (i - 1)\beta + j$

$\bigstar (i, j).idR = 0$

- Can be joined
- Cannot be joined
Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:

$$(i, j).ID = (i - 1)\beta + j$$

$(i, j).idR = 0$

- Can be joined
- Cannot be joined
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:

$(i,j).ID = (i - 1)\beta + j$

$\star (i,j).idR = 0$

- Gray: Can be joined
- Red: Cannot be joined
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:

$(i, j).ID = (i - 1)\beta + j$

$\star (i, j).idR = 0$

- Can be joined
- Cannot be joined
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:

- $(i, j).ID = (i - 1)\beta + j$
- $(i, j).idR = 0$
- Can be joined
- Cannot be joined

β^3
Datta et al, 2011
Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:
- $(i, j).ID = (i - 1)\beta + j$
- $(i, j).idR = 0$
- Can be joined
- Cannot be joined

β^3
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

β^3

Key:

$(i, j).ID = (i - 1)\beta + j$

$\star (i, j).\text{idR} = 0$

- Can be joined
- Cannot be joined

Anaïs Durand (VERIMAG)
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:

$(i, j).ID = (i - 1)\beta + j$

$\blackstar (i, j).idR = 0$

- Can be joined
- Cannot be joined

\[\beta^3 \]
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:

$$(i, j).IID = (i - 1)\beta + j$$

$$(i, j).idR = 0$$

- Can be joined
- Cannot be joined

β^3
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:

$(i, j).ID = (i - 1) \beta + j$

$\star (i, j).idR = 0$

- Can be joined
- Cannot be joined
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:
$(i, j).ID = (i - 1)\beta + j$

(i, j).idR = 0

- Can be joined
- Cannot be joined

β^3
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:

$(i, j).ID = (i - 1)\beta + j$

$(i, j).idR = 0$

- Blue: Can be joined
- Red: Cannot be joined

β^3
Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:
- $(i,j).ID = (i - 1)\beta + j$
- $(i,j).idR = 0$

- Can be joined
- Cannot be joined

β^3
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

Key:

$(i, j).ID = (i - 1)\beta + j$

$(i, j).idR = 0$

- [Blue] Can be joined
- [Red] Cannot be joined
Datta et al, 2011

Execution in $\Omega(n^4)$ steps: $\beta = \frac{n}{8}$

$\beta = \Omega(n) \Rightarrow \Omega(n^4)$

Key:

- $(i, j).ID = (i - 1)\beta + j$
- $(i, j).idR = 0$
- Can be joined
- Cannot be joined

Diagram showing nodes with labels (i, j) and connections indicating whether they can or cannot be joined.

Anaïs Durand (VERIMAG)
\(\forall \alpha \geq 3, \exists\) networks and executions in \(\Omega(n^{\alpha+1})\) steps.
Goal

Design a self-stabilizing leader election algorithm that stabilizes in $O(D)$ rounds.
Goal
Design a self-stabilizing leader election algorithm that stabilizes in $O(D)$ rounds.

Hypotheses
- Unfair daemon
- Memory requirement of $\Theta(\log n)$ bits/process
Perspectives

Goal
Design a self-stabilizing leader election algorithm that stabilizes in $O(D)$ rounds.

Hypotheses
- Unfair daemon
- Memory requirement of $\Theta(\log n)$ bits/process

- With the knowledge of $D \geq D$, ($D = O(D)$) : \checkmark
Perspectives

Goal
Design a self-stabilizing leader election algorithm that stabilizes in $O(D)$ rounds.

Hypotheses
- Unfair daemon
- Memory requirement of $\Theta(\log n)$ bits/process

- With the knowledge of $D \geq D$, ($D = O(D)$) : √
- Without any global knowledge : ??
Thank you for your attention.

Do you have any questions?
Rounds

1st round

2nd round

Processes

Key:

Enabled ⭐️

Activated ⭐

Neutralized ⭐️

Time

Anaïs Durand (VERIMAG)
Self-Stabilizing Leader Election
September 29, 2014
Experimental Results

Average stabilization time in rounds in UDGs ($n = 1000$)
Experimental Results

Average stabilization time in steps in UDGs ($D = 15$)