
M. Felici, K. Kanoun, A. Pasquini (Eds.): SAFECOMP’99, LNCS 1698, pp. 396-409, 1999
© Springer-Verlag Berlin Heidelberg 1999

Formal Design of Distributed Control Systems
with Lustre �

Paul Caspi1, Christine Mazuet2, Rym Salem1 and Daniel Weber2

1 VERIMAGt, 2 rue de Vignate, F-38610 Gières
{caspi, salem}@imag.fr

2 Schneider Electric, Usine M3, F-38050 Grenoble Cedex 9
{christine_mazuet, daniel_weber}@mail.schneider.fr

Abstract. During the last decade, the synchronous approach has proved to meet
industrial needs concerning the development of Distributed Control Systems
(DCS): as an example, Schneider Electric has adopted the synchronous
language Lustre and the associated tool Scade for developing monitoring
systems for nuclear power plants. But so far, engineers make use of Lustre-
Scade for designing separately single components of a DCS. This paper focuses
on the use of Lustre-Scade for designing DCS as a whole. Two valuable
consequences of this approach are that (1) the same framework can be used for
both programming, simulating, testing and proving properties of a distributed
system, and (2) the proposed approach is fully consistent with the usual
engineering abstractions concerning smooth signals.

1 Introduction

Control systems are of growing importance as they are involved in many safety
critical industrial applications: civil aircraft, ground transportation, nuclear power
plant, etc. In this field, a lot of activity has been devoted to ensuring and improving
hardware and software reliability. Concerning software development, fault avoidance
has always been, beside fault tolerance, an important issue: constrained design
process, intensive simulation and testing and even formal methods (e.g. [1], [4]) have
proved to be good candidates to answer this problem.

Another feature of control systems is that they are often distributed for quite
obvious reasons of performance, fault-tolerance, and sensor/actuator location.
Distribution is not without consequences on both the development process and the
exploitation of the system: the global behavior of the system is more complex since
distribution introduces new operating modes —abnormal modes, when a computing
site is down for instance— and questions about the synchronization of the different
computing sites. Distributed Control Systems (DCS) are hard to design, debug, test
and formally verify. Those difficulties are closely related to a lack of global vision of
a system when designing it.

� This work has been partially supported by Esprit Project CRISYS (EP 25514).
t

VERIMAG is a joint laboratory of Université Joseph Fourier (Grenoble 1), CNRS, and INPG.

Formal Design of Distributed Control Systems with Lustre 397

However, the distributed systems which are found in the Control field are quite
different from those that are addressed in other fields of Computer Science, like
protocols, operating systems, data bases, etc. Most of them are organized as several
periodic processes, with nearly the same period, but without common clock, and
which communicate by means of shared memory through serial links or field busses
(e.g. [7]). This class of DCS is quite clearly an important one in the field and thus
deserves special attention. This is why we propose to give it a special name, for
instance "Communicating Periodic Synchronous Processes" or CPSP for short.

During the last decade, the synchronous approach [4] has been largely and
successfully applied to the development of such distributed control systems. Based on
clean mathematical principles, one of its salient benefit is its ability to support formal
design and formal verification methods. As regards the synchronous data flow
language Lustre [9] and the associated tool Scade [5], several real world systems have
been achieved among which monitoring systems for nuclear power plants designed by
Schneider Electric [6] [12], the "fly-by-wire" system of Airbus aircrafts [8] and the
interlocking system of the Honk Kong subway designed by CS Transport. So far,
engineers make use of Lustre-Scade for designing separately single components of a
DCS. As regards designing distributed systems as a whole, they have developed
pragmatic solutions based on engineering recipes.

In this paper, we intend to show that this Lustre-Scade approach is not restricted to
apply only on single components; it can be extended to globally handle this CPSP
class of DCS, thanks to the Lustre sampling, holding and assertions mechanisms. One
valuable consequence of this result is that the same framework can be used for both
programming, simulating, testing and proving properties of a distributed system, thus
limiting the risk of errors due to an unformalized design process.

The paper is organized as follows: section 2 briefly describes the Lustre language,
the Scade tool and related works on verification. Based on this background, section 3
shows how to represent the CPSP class of DCS within this framework. Section 4
focuses on a case study. Finally, section 5 concludes with future work.

2 Background

2.1 The Lustre language [9]

2.1.1 Basic concepts
A Lustre program has a cyclic behaviour, and that cycle defines a sequence of times.
Any variable or expression denotes a flow, i.e. a possibly infinite sequence of values
related to the cyclic behaviour of the program.

Usual operators operate pointwise over flows; for instance 1 + 2 is the flow [3, 3,
3, ...]. Similarly,

c t f t ...
x x0 x1 x2 ...
y y0 y1 y2 ...

if c then x else y x0 y1 x2 ...

398 P. Caspi et al.

A unit delay operator fby "followed by" (actually -> pre in Lustre) can be
represented by the diagram:

x x0 x1 x2 ...
y y0 y1 y2 ...

x fby y x0 y0 y1 ...

2.1.2 Advanced concepts
A program is structured into nodes. A node contains a set of equations and can be
elsewhere used in expressions; for instance:

node integr(x:int) returns (y:int)
let
y = (0 fby y) + x;
tel
…
z = integr (x fby z) + u;

It may be that slow and fast processes coexist in a given application. A sampling
(or filtering operator) when allows fast processes to communicate with slower ones:

c f t f t ...
x x0 x1 x2 x3 ...

x when c x1 x3 ...

Conversely, a holding mechanism, current allows slow processes to communicate
with faster ones:

c f t f t ...
x x0 x1 x2 x3 ...
y y0 y1 ...

current(c, x) y x0 y0 y0 y1 ...

As we can see in the diagrams above, when discards its input x when the input
condition c is false. Conversely, current fills the holes created by when with the input
value y it got the last time the condition c was true, if any, and otherwise with an
initialising sequence x.

Always "true" boolean expressions can be asserted for several purposes, for
instance for expressing non independent input properties; for instance

assert (c or (true fby c))

says that c will not stay "false" for more than one time unit. We shall see in the
sequel how this feature can be used to express properties of independent clocks
sharing the same period.

2.2 The Scade tool

Scade1 (formerly SAGA [5]) is a software development environment based on Lustre,
which provides a graphic editor. Some aspects are similar to SADT: the top-down

1 Scade is commercialised by the Verilog company.

Formal Design of Distributed Control Systems with Lustre 399

design method, the data-flow network interpretation, and the notion of activation
condition.

An example of Scade diagram is given on Fig. 1. CONTROL is a cyclic program
which reads sensors and controls actuators. Its inputs and outputs are sampled
according to the boolean condition clock: intuitively, if clock is true then CONTROL
computes its outputs, else the outputs are maintained to their previous values2. Default
values are required in case clock is false at the very first cycle.

CONTROL

clock

(sensors) (actuators)

(initial values)

Out

init

In

Fig. 1. Example of Scade diagram

The Scade environment includes an automatic C code generator and a simulator. It
is also connected to several tools, e.g. Lesar for formal verification of properties
(§2.3.1) and Lurette for automatic generation of test cases (§2.3.2).

2.3 Formal verification and automatic testing

As noted in the introduction, control systems often concern critical applications, and
thus program verification is a key issue.

2.3.1 Formal verification of properties
Formal verification of properties focuses on safety properties, which states that a
given situation should never appear, or that a given statement should always hold.
Such properties can be easily expressed with Lustre [3] [10] [11].

Then, the verification principle is based on model checking: the proof is made by
an exhaustive exploration of a finite abstraction of the system. However, at that point,
an important task is to provide a description of how the environment of the system
behaves. Actually, the environment obeys some rules which restrict its possible
behaviour. The verification tool would certainly not achieve checking the system
without being aware of such an information. Assumptions are therefore necessary: in
Lustre, this is done using the assertions mechanisms (§2.1.2).

Properties and assumptions are expressed by means of synchronous observers [11]:
synchronous observers are programs implementing acceptors of sequences. Then, the
program and the observers are gathered in a verification program [10], and the
verification tool Lesar decides whether the properties is satisfies; if not, it gives a
scenario which leads to violate the property. The main limitation of this approach is
the "size explosion" problem. An experimentation is presented in §4.3.

2 Formally, the equivalent Lustre expression is: if clock then current(CONTROL(In when clock)) else (init

fby Out)

400 P. Caspi et al.

2.3.2 Automatic generation of test sequences
Program testing is complementary to formal verification: it aims at finding bugs but
can not provide any absolute positive results. The automatic generation of test cases
follows a black box approach, since the program is not supposed to be fully known. It
focuses on two points [14]: (1) generating relevant inputs, with respect to some
knowledge about the environment in which the system is intended to run; (2) checking
the correctness of the test results, according to the expected behaviour of the system.

The Lustre synchronous observers describing assumptions on the environment
(§2.3.1) are used to produce realistic inputs; synchronous observers describing the
properties that the system should satisfy (§2.3.1) are used as an oracle, i.e. to check
the correctness of the test results. Then, the method consists in randomly generating
inputs satisfying the assumptions on the environment [14].

A prototype tool called Lurette has been developed. It takes as input both observers
—one describing the assumptions and one describing the properties— written in
Lustre-Scade, and two parameters: the number of test sequences and the maximum
length of the sequences. An experimentation is presented in §4.4.

3 Application to distributed systems

The above tools quite accurately match the design needs of cyclic programs. Let us
see now how we can use them so as to match the needs of our special CPSP case of
distributed systems. Let us recall roughly some of the main features of this CPSP
class: processes communicate by means of shared memory, they behave periodically
and they all have nearly the same period but no common clock. In this chapter, we
progressively formalise theses features by means of the Lustre-Scade language. First,
we model a shared memory, and based on this, we formalise distributed systems
without any hypothesis on clocks. Then, we focus on the relation between clocks: we
express the fact that two processes have nearly the same period in order to fit our
CPSP class of systems.

3.1 Shared memory

First, we can see that the Lustre sampling primitive, when, can be used to model the “
reading in a shared memory” operation. It suffices to look at the corresponding
diagram of section 2.1.2: let x be the sequence of values held in the memory, and the
true values of c, the instants at which a location reads this memory. Then, obviously,
“x when c” is the sequence of values read in this location.

Conversely, the “current” operation can be used to model the “writing in the shared
memory” operation: looking at the corresponding diagram (§2.1.2), we can use the c
sequence to represent the instants at which the memory is written, y will correspond to
the written values and a constant sequence x will be used to account for the initial
value of the memory. Then, “current(c,x)y” will be the current content of the memory.
However, this very simple approach is not fully satisfactory because it allows for
instantaneous dialogs which do not seem feasible, such as reading and writing at the

Formal Design of Distributed Control Systems with Lustre 401

same time and instantly getting the written value. This is why we insert a delay —by
means of the fby operator— in the write operation in order to forbid this event:

write(v,cw,u)=v fby(if cw then current u else write(v,cw,u))

where the delay accounts for short3 undetermined transmission delays. The
behaviour of the shared memory can be represented by the diagram:

cw t f t f ...
u u0 u1 ...

current u u0 u0 u1 u1 ...
write(v,cw,u) v u0 u0 u1 ...

3.2 Distributed programs

We are thus able to formalise distributed programs communicating by means of
shared memory. Fig. 2 gives the Lustre expression and the corresponding block
diagram view for a two location program. An alternative block diagram view is
shown at Fig. 3 using the Scade concept of activation condition.

This system corresponds to a possible implementation where each process
atomically reads all values issued by other processes. If this is not the case, individual
read and write clocks have to be introduced, leading to a more complex, but also
tractable program.

However, this formalisation is likely to be inefficient: it will probably not allow
properties to be checked, if clocks are considered as free independent boolean
sequences. It is here that periodicity is important and has to be taken into account.

Const v1:type1; v2:type2;
node S1 (u1:type1, x2:type2)
returns (x1:type1);
node S2 (u2:type2, x1:type1)
returns (x2:type2);
node Sd (u1:type1, u2:type2,
c1, c2:bool)
returns (x1:type1, x2:type2);
let
x1=S1((u1,

write(v2,c2,x2))when c1);
x2=S2((u2,

write(v1,c1,x1))when c2);
tel

S1

when

u1
x1

c1

v2

S2
u2 x2

c2

write

when

when

v1

write

when

Fig. 2. A distributed system program

3 Significantly shorter than the periods of read and write clocks. If longer transmission delays are needed,
modelling should be more complex.

402 P. Caspi et al.

S1
fby

u1

v1

x1
c1

v2

S2
fby

u2

v2

x2

c2

v1

Fig. 3. An alternative equivalent distributed system block diagram

3.3 Formalising periodic clocks

This could be done in some real-time framework, such as timed automata [2] but, for
the sake of simplicity, we prefer here to characterize the fact that two independent
clocks have approximately the same period by saying that:

Any of the two clocks cannot take the value "t" (true) more than twice between two
successive "t" values of the other one.

This can be formalised by saying that the boolean vector stream composed of the
two clocks should never contain the subsequence:









−

•







•








•








•








−

∗∗
t

f

f

f

t

f

ft
..

nor the one obtained by exchanging coordinates. (Here, — is a wild card
representing any of the two values {t,f}.

Now, such regular expressions yield finite state recognizability and can be
associated a finite-state recognizing dynamic system Same_Period 4. Fig. 4 gives an
example of clocks satisfying the Same_Period property: it may happen that two ticks
of clock1 (resp. clock2) are inserted between two ticks of clock2 (resp. clock1). As a
matter of fact, data exchanged between the corresponding processes can be lost of
duplicated. This protocol does not seem reliable since data can be lost: but we'll see in
§3.5 that as far as smooth signals are concerned, this protocol fits engineers practices.

clock1

clock2

Fig. 4. Periodic clocks

4 This can be automatically generated in Lustre, thanks to the Reglo tool [13].

Formal Design of Distributed Control Systems with Lustre 403

3.4 Some consequences of periodicity

Intuitively, if read and write clocks have the same period, the read value should not be
"too far’’ from the written one. This can be formalized as the following theorem:

Theorem on Same_Period
Same_Period(cw, cr)

implies (write (v,cr,u’) = write (v,cw,u)
or write (v,cr,u’) = write (v,cw,v fby u)
or write (v,cr,u’) = write (v,cw, v fby(v fby u)))

where u’ = write(v,cw,u) when cr.
This theorem means that any used internal value must have been produced within a

two period time interval. It is automatically proved by the Lustre prover Lesar [9].

3.5 The case of smooth signals

A possible use of this theorem is for smooth (sampled) signals. Given a physical
phenomenon and knowing an upper bound on the absolute value of its derivative
allows finding a period such that:

|u - v fby u| < ε
This allows us to state the "sampling’’ property:

| write (v,cr,u’)- write (v,cw,u) | < 2ε
This kind of sampling property may help in proving distributed sampled system

properties. An example of such property can be found in [3]. We believe this is a kind
of abstraction, engineers are used to and which explains why such a CPSP
architecture is popular among them.

4 Case study

The method described above is now illustrated on a case study. Through this
experimentation, our aim is to study the applicability of the tools based on Lustre —
namely Scade, Lesar, Lurette— when applied to distributed systems. First, we apply
the proposed formalization: we'll see that the activation condition and the assertion
mechanisms provide a natural way to design distributed systems. Then, we focus on
the verification on such a distributed system by applying formal verification and
automatic test generation.

4.1 Introduction

The proposed example is that of a single line on which trains can go in opposite
directions. The control program has to ensure that no accident happens. We consider
the global system composed of three main parts:

404 P. Caspi et al.

• the physical part (Fig. 5): the single line, four tracks, a sensor of train presence on
each in_track, switches, sensors for switch presence, actuators controlling switches
and traffic lights, and the trains.

• the control part: a Lustre-Scade distributed program which reads the sensors and
controls actuators (traffic lights and switches).

• the train drivers who control the train movements. They are supposed to obey
traffic lights and not to move the train backward.

left out_track

single line

left in_track

left traffic lights

right out_track

right in_track

right traffic lights

switch sensors:
in_left_switch_cap
out_right_switch_cap

switch sensors:
out_left_switch_cap
in_right_switch_cap

Fig. 5. The single line

4.2 The distributed control system

Given the presence sensors, the control decides the switches position and the state of
traffic lights. When trains are present on their in_tracks, a selection of the train to pass
must be done with respect to some priority strategy. Such a strategy must ensure that
there is no deadlock nor starvation. Of course, if only one train is present it will be
selected to pass.

The hardware architecture of the system is composed of three units respectively
located on the left in_track, on the right in_track and on the single line. They
communicate through networks by means of shared memory. Sensors located on the
left track (resp. right track) are connected to the left unit (resp. right unit). The sensor
located on the single line is connected to the third unit.

The software architecture follows the hardware one:
• management of the left direction (resp. right direction) is implemented in the left

(resp. right) unit,
• the function managing the priorities between the two direction is implemented in

the central unit.

The software is developed with Lustre-Scade. The top level diagram is shown at
Fig. 6.

Formal Design of Distributed Control Systems with Lustre 405

Fig. 6. The distributed control system designed with Scade

The three blocks have their own clock: cll, clc and clr. Data transferred from a
block to another one are delayed by means of the fby operator: as said in §3.1, the
delay accounts for undetermined transmission delay. Relations between clocks are
needed to take into account the periodicity of the three units: assert Same_Period(cll,
clr) states that both clocks cll and clr have almost the same period. Same_Period is a
Lustre node included in a library.

The proposed formalization provides a simple way to describe CPSP systems.
Then, each block can be designed as a single component using the usual engineering
practices.

4.3 Formal verification of properties

As said in §2.3.1, formal verification of properties involves defining the properties
that the system should satisfy, and the assumptions on the environment behavior.

4.3.1 Properties
The program must verify the following properties:
• Safety: there must be no collision and no derailment. Collision occurs when two

trains meet (if going in opposite directions) or reach (if going in the same

406 P. Caspi et al.

direction) one another on the single line or on the same in_track, whereas
derailment takes place if the physical path corresponding to the selected direction
is not established while a train is moving.

• Fairness: there must be no starvation, i.e it should not be the case that two
successive trains go in one direction while another train is waiting in the opposite
direction.

4.3.2 Hypothesis
We consider the following hypothesis on the environment:
• The single line is initially not busy. It becomes busy only if a train leaves its in_track.
• Trains removed from their in_tracks will certainly pass on the single line.
• An edge of a switch is set only if it is controlled by the program.
• A switch can’t be found in different positions at the same time by two sensors.
• The environment evolves much slower than the control program so that the control

program can see all the changes of the inputs. In other words, clocks are fast
enough to take samples of each level of each input.

4.3.3 Results
Formal verification with Lesar partly fails because of the state space explosion. The
proof ran for 3 days: 1849225 states have been explored without showing the
violation of the property but 4515433 states were expecting to be explored. We
stopped the proof at this point since this scale of duration is not acceptable in an
industrial context.

4.4 Automatic testing

As formal verification is not fully successful, it is interesting to test the distributed
control program by means of the automatic testing method (§2.3.2). First, we look at
the functional behaviour of the system assuming simplified clocks. Then, we focus on
verification of properties.

4.4.1 Simulation of the system behavior
The automatic testing method can be used to simulate a specific behaviour of the
system by defining assumptions corresponding to a particular context; thus, the
designer can check that the system reacts as expected.

The first step of our experimentation aims at simulating the system behaviour in a
restricted context: clocks of the three units are the same deterministic periodic signal
as illustrated below:

cll t f f f f t f f f ...
clc f f f t f f f f t …
clr f f t f f f f t f ...

Hypothesis on the environment are preserved. The results are given on the
chronogram of Fig. 7.

Formal Design of Distributed Control Systems with Lustre 407

Fig. 7. Results from automatic testing

Let us detail steps from 10 to 20. Values of cll, clc, ..., in_right_switch_cap, are
automatically generated by Lurette. Values of right_traffic_light, ..., in_right_switch,
are responses provided by the control program.
1. Step 10: trains are detected on the left in_track and on the right in_track (the

corresponding inputs —left_train_here and right_train_here— are true). The
single line is empty (line_busy is false). The control program orders the switch to
link the right in_track and the right out_track with the single line (the
corresponding outputs —out_right_switch and in_right_switch—become true).

2. Then, the switches slowly move: at step 11, one links the right in_track with the
single line (the input in_right_switch_cap becomes true), and at step 13, the other
one links the right out_track with the single line (out_right_switch_cap becomes true).

3. Since the physical path is now ready, the right unit can allow the train to pass by
controlling the right traffic light. This is done at step 15 when the right unit is
activated (clr becomes true): access to the single line is granted (right_traffic_light
becomes true). Then, the train leaves the right in_track (right_train_here becomes
false) and enters the single line (line_busy becomes true).

4. When the right unit is activated again at step 20, it sets right_traffic_lights to false
thus forbidding access to the single line, since it is busy.

This example shows that the designed system reacts as expected in a given
situation. Of course, the properties that the system should satisfied are also examined:
they are not violated by the generated test inputs. The next paragraph focuses on
intensively testing the distributed program to check whether the properties are
satisfied.

408 P. Caspi et al.

4.4.2 Observation of the properties

This experimentation involves the properties defined for formal verification purpose
(§4.3.1). Ten test sequences which length is 100 have been generated: this length
occurred to be a relevant length to observe trains moving on the single line.

The properties are never violated by the generated test inputs. Of course, this
results does not mean that properties are proved. But since formal verification is not
tractable, automatic testing is an alternative means to gain a sound confidence in the
system safety.

5 Conclusion and future work

In this paper, we show that the considered distributed systems —Communicating
Periodic Synchronous Processes— can be thoroughly formalized within the
programming language Lustre-Scade thanks to the available sampling and holding
mechanisms, and thanks to the assertion mechanism. This result yields valuable
consequences:
• the same framework can be used for both programming, simulating, testing and

proving properties of a distributed system.
• the Lustre-SCADE available analysis tools, e.g. the Lesar prover and the Lurette

test generator, can be directly applied to distributed systems.
• this formalization is fully consistent with the usual engineering abstractions

(period, delay) concerning smooth signals.
The next steps of our work are:
• apply the method to a real case study from Schneider Electric;
• try to improve the proof method so as to efficiently cope with these kind of

Distributed Control Systems; alternative proof methods are also considered [15].
• go on with further research work on discontinuous signals: the proposed clock

formalization works only for smooth signals. When it comes to discontinuous
signal (boolean, integers,…) properties, it may be in many cases much better to
solve the inverse problem, i.e. instead of distributing a program and then trying to
check properties on the distributed program, take a synchronous program with
already checked properties and try to safely distribute it while keeping these properties.

Acknowledgement

We wish to thank Christine Bodennec for her constructive comments during the
preparation of this paper.

References

1. J. R. Abrial. The B-Book. Cambridge University Press, 1995.
2. R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,

126:183-235, 1994.

Formal Design of Distributed Control Systems with Lustre 409

3. S. Bensalem, P. Caspi, C. Parent-Vigouroux and C. Dumas. A methodology for proving
control systems with Lustre and PVS. Proceedings of the 7th Working Conference on
Dependable Computing for Critical Applications (DCCA7), San Jose, January 1999.

4. A. Benveniste and G. Berry. The synchronous approach to reactive and real-time systems.
Proceedings of the IEEE, 79(9):1270-1282, September 1991.

5. J.L. Bergerand and E. Pilaud. SAGA: a software development environment for
dependability in automatic control. In Safecomp’88. Pergamon Press, 1988.

6. A. Billet and C. Esmenjaud. Software qualification: the experience of french
manufacturers. International Conference on Control and Instrumentation in Nuclear
Installations, INEC Cambridge, Great Britain, April 1995.

7. A. Boué and G. Clerc. Nervia: a local network for safety. In IAEA Specialist Meeting on
Communication and data transfer in Nuclear Power Plants (CEA/EDF/FRAMATOME
editors), Lyon, France, April 1990.

8. D. Brière, D. Ribot, D. Pilaud, and J.L. Camus. Methods and specification tools for Airbus
on-board systems. In Avionics Conference and Exhibition, London, December, 1994. ERA
Technology.

9. N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow
programming language Lustre. Proceedings of the IEEE, 79(9):1305-1320, September 1991.

10. N. Halbwachs, F. Lagnier, and C. Ratel. Programming and verifying real-time systems by
means of the synchronous dataflow language Lustre. IEEE Trans. on Software
Engineering, 18(9):785-793, September 1992.

11. N. Halbwachs, F. Lagnier, and P. Raymond. Synchronous observers and the verification of
reactive systems. In M. Nivat, C. Rattray, T. Rus and G. Scollo, editors, Third Int. Conf. on
Algebraic Methodology and Software Technology, AMAST’93, Twente, June 1993.

12. J.-M. Palaric and A. Boué. Advanced safety I&C system for nuclear power plants. In
ENC’98 World Nuclear Congress, Nice, France, October 1997.

13. P. Raymond. Recognizing regular expressions by means of data flows networks. In 23rd
International Colloquium on Automata, Languages, and Programming (ICALP’96),
Paderborn, Germany. LNCS 1099, Springer Verlag, July 1996.

14. P. Raymond, X. Nicollin, N. Halbwachs and D. Weber. Automatic testing of reactive
systems. In 19th IEEE Real-Time Systems Symposium, Madrid, Spain, December 1998.

15. M. Säflund and G. Stalmarck. Modelling and verifying systems and software in
propositional logic. In Proceedings of 17th IFAC Safecomp, pp. 31-36, 1990.

	1	Introduction
	2	Background
	2.1	The Lustre language [9]
	2.1.1	Basic concepts
	2.1.2	Advanced concepts

	2.2	The Scade tool
	2.3	Formal verification and automatic testing
	2.3.1	Formal verification of properties
	2.3.2	Automatic generation of test sequences

	3	Application to distributed systems
	3.2	Distributed programs
	3.3	Formalising periodic clocks
	3.4	Some consequences of periodicity
	3.5	The case of smooth signals

	4	Case study
	4.1	Introduction
	4.2	The distributed control system
	4.3	Formal verification of properties
	4.3.1	Properties
	4.3.2	Hypothesis
	4.3.3	Results

	4.4	Automatic testing
	4.4.1	Simulation of the system behavior

	5	Conclusion and future work
	Acknowledgement
	References

