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Automatic Distribution of Reactive Systems
for Asynchronous Networks of Processors

Paul Caspi, Alain Girault, and Daniel Pilaud

Abstract—This paper addresses the problem of automatically distributing reactive systems. We first show that the use of
synchronous languages allows a natural parallel description of such systems, regardless of any distribution problems. Then, a
desired distribution can be easily specified, and achieved with the algorithm presented here. This distribution technique provides
distributed programs with the same safety, test, and debug facilities as ordinary sequential programs. Finally, the implementation of
such distributed programs only requires a very simple communication protocol (“first in first out” queues), thereby reducing the need
for large distributed real-time executives.

Index Terms—Asynchronous communications, distributed processing, reactive systems, automatic distribution, synchronous
languages.
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1 INTRODUCTION

1.1 Reactive Systems
EACTIVE SYSTEMS are computer systems that react con-
tinuously to their environment, at a speed determined

by the latter [18]. This class of systems contrasts, on one
hand with transformational systems (classical programs
whose inputs are available at the beginning of their execu-
tion and which deliver their outputs when terminating: for
instance compilers), and on the other hand with interactive
systems (which react continuously to their environment but
at their own speed: for instance operating systems). Among
reactive systems are most of the industrial real-time sys-
tems (control, supervision, and signal-processing systems),
as well as man-machine interfaces. These systems have the
main following features:

�� Parallelism. At least, the design must take into ac-
count the parallelism between the system and its en-
vironment. Moreover, these systems are often im-
plemented on parallel architectures, whether for rea-
sons of performance increase, fault tolerance or
functionality (geographical distribution). Finally, it is
convenient and natural to design such systems as
sets of parallel components that cooperate to achieve
the intended behavior.

�� Determinism. These systems always react in the same
way to the same inputs. This property makes their de-
sign, analysis, and debugging easier. Thus, it should
be preserved by the implementation.

�� Temporal requirements. These requirements concern
both the input rate and the input/output response
time. They are induced by the environment and must
imperatively be matched. Hence, they must be ex-
pressed in the specifications, they must be taken into
account during the design, and their satisfaction must
be checked on the implementation.

�� Reliability. This is perhaps their most important
feature as these systems are often critical ones. For in-
stance, the consequences of a software error in an air-
craft automatic pilot or in a nuclear plant controller
are disastrous. Therefore, these systems require rigor-
ous design methods as well as formal verification of
their behavior.

A programming language well suited to the design of re-
active systems should, therefore, be parallel and determinis-
tic and allow formal behavioral and temporal verification.

1.2 The Synchronous Approach
Synchronous languages have been introduced in the ‘80s to
make the programming of reactive systems easier [4]. The
purpose of these languages is to give the designer ideal
time primitives, thus reducing the chance of programming
misconceptions. Instead of the interleaving paradigm, they
are based on the simultaneity principle: All parallel activi-
ties share the same discrete time scale. Concretely, this
means that a i b is viewed as the “package” ab where a and b
are simultaneous. Each activity can then be dated on the
discrete time scale; this has the following advantages:

�� Time reasoning is made easier.
�� Interleaving based nondeterminism disappears, which

makes program debugging, testing, and validating
easier.

Concerning the implementation, the idea is to project this
discrete time scale onto the physical time. As the scale is dis-
crete, nothing occurs between two consecutive instants: Eve-
rything must happen as if the processor running the program
were infinitely fast. This is the synchrony hypothesis.
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Of course, such an infinitely fast processor does not exist,
but it suffices that any input be treated before the next one. In
order to verify this condition, one only needs to know the
maximal input frequency, and an upper bound on the execu-
tion time of the object program. For this purpose, synchro-
nous languages have deliberately restricted themselves to
programs that can be compiled into a finite deterministic
interpreted automaton, a control structure whose transitions
are deterministic sequential programs operating on a finite
memory. Each transition, whose execution time is statically
computable, corresponds to the system reaction to an input.

There are numerous languages based upon the syn-
chrony hypothesis: ESTEREL [5], LUSTRE [15], SIGNAL [20],
STATECHARTS [17], SML [6], SYNCCHARTS [2], ARGOS [22],
and SR [13]. Research on synchronous languages compila-
tion has led to the Object Code (OC) encoding format for
automata. It is the output format of the ESTEREL, LUSTRE,
and ARGOS compilers [23].

For a better understanding of the synchrony hypothesis,
let us study some examples in ESTEREL. ESTEREL is an im-
perative synchronous programming language. Besides
variables, the language manipulates signals: A signal can be
valued or pure, and can be an input signal (its presence can be
tested), an output signal (it can be emitted), or a local signal
(it can be emitted and its presence can be tested). The com-
munication mechanism is the synchronous broadcast: any
signal emitted by someone at a given instant is received by
everybody at the same instant. Moreover, the temporal
primitives of ESTEREL are intuitive, which will make the
following examples easy to understand:

�� Since control is passed instantly from a finishing state-
ment to the next one, the statement await 5 Second;
await 5 Second  is equivalent to await 10 Second.1

�� For the same reason, in the statement
every 60 MINUTE do
  emit HOUR;
end every;

the signal HOUR is simultaneous with the 60th occur-
rence of the signal MINUTE.

�� There is no notion of physical time inside a synchro-
nous program, but rather an order relationship be-
tween events (simultaneity and precedence). The
physical time is thus an external signal, like any other
external signal. As a result, one can write either abort
TRAIN when 10 METER or abort TRAIN when 5 SECOND.

�� In the statement
  present A then
    % something
  end present;
||
  present B then
    % something else
  end present;

each component of the parallel construct can react
independently to its signal.2 As a consequence, the
program reacts either to A alone, B alone, or A and B
at the same time.

1. The await N S statement waits for the Nth occurrence of the signal S.
2. The statement present S then P else Q tests the presence of the

signal S and has the same semantics as the statement if E then P else Q.

These small examples show that the synchrony hypothe-
sis leads to very natural code. Providing the designer with
ideal temporal primitives greatly reduces the number of
programming errors. The drawback is that, once compiled,
the execution time of the program must match the temporal
specifications. But of course the same problem arises with
an asynchronous programming language like ADA.

Finally, it is important to note that the synchronous ap-
proach has been validated through several real-life projects.
Indeed, an industrial version of LUSTRE exists: It is the SCADE
CASE tool developed by VÉRILOG. It is used by SCHNEIDER
ELECTRIC for the control-command software of the nuclear
plants, by AÉROSPATIALE for the flight control systems of the
AIRBUS A340, as well as by 20 other companies in the trans-
port and control-command industry. An industrial version of
ESTEREL and SYNCCHARTS is also developed by SIMULOG: It is
used by DASSAULT AVIATION for control systems of the
RAFALE fighter.

1.3 Distribution Problems
Many reactive systems have to be distributed on several
computing locations, for various reasons: performance in-
crease, location of sensors and actuators, and fault toler-
ance. This is the case of the CO3N4 control system, devel-
oped at SCHNEIDER ELECTRIC for nuclear plants.

We consider here that distribution has to be specified by
the system designer. There exist a priori three ways to
achieve such a distribution:

1)�Compiling separately each piece of source program,
i.e., independently from its context, and making them
communicate. This could be the ideal solution because
it seems to be the easiest one. Unfortunately, Maffeïs
[21] has shown that, in general, compiling separately
pieces of programs into sequential deterministic pro-
grams is incorrect. However, Raymond [26] proposes
some criteria for determining whether or not a piece of
LUSTRE program is separately compilable. Also,
ESTEREL gives criteria for compiling modules sepa-
rately (cascade mode). On the other hand, separate
compiling into nonsequential programs is always fea-
sible: this is the SYNDEX solution presented in [19].

2)�Globally compiling a source program into one se-
quential program for each location, so that each pro-
gram may communicate with the others. This is the
“abstract graph method” used for SIGNAL programs
[21].

3)�Compiling the source program into a single object
program, and then distributing this centralized pro-
gram towards as many programs as locations, so that
each location only has to perform its own computa-
tions [8]. Based upon the common format OC, this
method can be applied to any synchronous language.

The last two methods are complementary: The distribu-
tion of source programs avoids the problem of code size ex-
plosion, while the distribution of object programs offers the
advantage of optimizing the centralized compiler and de-
bugging the centralized object program before distributing it.

1.4 Distribution Method
The algorithm we present in this paper is based on the ob-
ject code distribution method outlined in Fig. 1.



418 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,  VOL.  25,  NO.  3,  MAY/JUNE  1999

Clearly, this approach raises the following question: Why
not take advantage of the parallel aspects of the initial pro-
grams to directly synthesize communicating finite transi-
tion systems? We will not discuss this in full details and just
list some reasons that justify the proposed approach:

�� Parallelism in the synchronous languages aims at an
easier and modular description of the system, and may
not match the intended implementation parallelism.

�� Compiling the program into a single transition system
may be useful, in any case, for debugging and verifi-
cation purposes [24], [11].

�� Synchronous parallelism is not well-behaved for sepa-
rate compiling matters. Thus, if communicating deter-
ministic transition systems are desired, their direct
synthesis may not be easier than the proposed method.

Our algorithm (described in Section 3) first duplicates
the centralized OC program to make one copy for each lo-
cation. It then removes in each copy the instructions not
relevant to the current location, according to the distribu-
tion specifications provided by the user. At this point, the
program of each location makes references to variables that
are computed at a distant location. Our algorithm then
adds communication instructions to each program to solve
these data dependencies ([8], [3]). Finally, some problems
like program resynchronization and redundant message
elimination are addressed.

1.5 Paper Overview
Section 2 describes the OC format, the distribution specifi-
cations, and discusses the chosen communication primi-
tives. Section 3 presents in full details the distribution algo-
rithm. A small example is used to illustrate each steps. Also,
for each step, the time and memory complexity are com-
puted. Section 4 outlines the correctness proof of the distri-
bution algorithm. Finally, Section 5 concludes and Section 6
shows some possible future research.

2 PRELIMINARIES

Before describing the distribution algorithm, we present the
OC format, the way for specifying a distribution, and the
communication primitives we use.

2.1 The OC Format
A compiling method towards finite state automata has first
been introduced for ESTEREL, and then adapted to LUSTRE

and ARGOS.

Basically, the idea is to take advantage of the language
determinism. It allows the building, at compile-time, of the
tree of the program behaviors. This tree is generally infinite,
but it can be folded into a finite automaton whose behavior
is equivalent to the behavior of the program. This control
automaton is associated with a finite memory for perform-
ing operations over infinite types.

The success of this method is guaranteed, first by the
language determinism, and second by the static verifica-
tions performed beforehand. Finally, the language synchro-
nism greatly reduces the explosion of the number of states.
The benefits are:

�� Usually, the automaton obtained is minimal.
�� The equivalent program is purely sequential.
�� The synchrony hypothesis can be easily checked.
�� Several tools can be applied to the resulting automa-

ton, for instance code generators, automaton mini-
mizers, formal verification tools, visualizing tools,
interface generators, and code distributors.

The automaton format used in compiling ESTEREL,
LUSTRE, and ARGOS is the OC format. An OC program is a
finite deterministic automaton with a finite memory for
performing operations over infinite types. Basically, a pro-
gram is a list of states, each containing some purely se-
quential code, represented by a Directed Acyclic Graph
(DAG [1]). DAG actions are of two kinds:

�� Control actions:

�� binary deterministic branchings: if (expression
testing) and present (signal presence testing),

�� state change: goto.

�� Sequential actions:

�� assignments to internal variables: x := exp,
�� signal emissions: output(s),
�� external procedure calls: foo(x, y).

Moreover, an OC program is a procedure which exe-
cutes, each time it is called, one transition of the automaton.
An interface is in charge of taking from the environment the
inputs for the program, and calling the OC automaton pro-
cedure. In this execution scheme, inputs are updated by the
program interface while outputs are emitted by the pro-
gram itself.

2.2 Specifying a Distribution
The distribution specifications must result in the localiza-
tion of each action on a location. Of course this localization
must be unique and unambiguous. However, the problem
of achieving the best localization will not be addressed in
this paper.

At the source program level, we may assign for instance
a location to each input and output signal of the program.
By propagation, a location can then be assigned to each
variable of the program.

At the OC level, we can directly assign a unique location
to each variable of the program.

2.3 Choosing Communication Primitives
Finally, some form of communication and synchronization
mechanism remains to be chosen. Shared variables do not

Fig. 1. Parallelization scheme.
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allow synchronization between parallel processes, unless
some complex mechanism is built on top of them. Moreover,
they make formal verification harder. The other solution is
message passing. Message passing in distributed systems can
be synchronous or asynchronous [12]:

�� Asynchronous message passing never blocks the
sender. This requires an unbounded buffer; in prac-
tice, a bounded buffer is used and the sender will
block when the buffer is full. Because the sender
never has to wait, a higher degree of parallelism can
be achieved. Moreover, sending statements can be
moved backward while receiving statements can be
moved forwarded, therefore minimizing the waiting
time induced by the communication network.

�� Synchronous message passing uses no buffer, so both
senders and receivers can block. In this sense it leads
to useless waiting times and reduces parallelism. The
rendezvous used by classical real-time languages
(ADA, OCCAM, and so on) are a form of synchronous
message passing.

We choose asynchronous message passing in the form of
two FIFO queues for each pair of locations, one in each di-
rection. This is quite cheap in terms of execution environ-
ment. We define the two following communication actions:

�� a sending action: put(destination, value) where
destination is the location towards which the
sending is done; puts are nonblocking;

�� and a receiving action: variable := get(source)
where source is the location from which the receiv-
ing action is done; gets are blocking when the queue
is empty.

We, furthermore, require that the network preserve the
ordering and the integrity of messages. This will ensure
that values are not mixed up, provided that sending actions
are inserted on one location in the same order as the corre-
sponding receiving actions in the other location. For in-
stance, assume that location 0 sends successively values 4
and 5 to location 1, and that location 1 must assign value 4
to variable x and value 5 to variable y. On location 0 we
have the action put(1, 4) followed later by put(1, 5).
Inserting the actions x := get(0) and y := get(0) in that
order on location 1 will ensure that the values are trans-
mitted correctly.

3 THE DISTRIBUTION ALGORITHM

In each state of the automaton, the code is purely sequen-
tial. For simplicity, our distribution algorithm will operate
at the state level. It consists of five steps, which we present
successively:

1)� replication and localization,
2)� insertion of sending statements (puts),
3)� insertion of receiving statements (gets),
4)� synchronization of distributed programs,
5)� elimination of redundant emissions.

3.1 Notations
In the sequel, we consider the following predicates:

�� An action belongs to a location if this location must
compute this action.

�� A variable belongs to a location if this location locally
computes this variable. Equivalently, we say that the
location owns the variable.

�� A location needs a variable if this location must com-
pute an action that uses this variable (as a right-hand
value of an assignment or in a branching).

3.2 Example
We illustrate the algorithm steps with the following OC
program, for which we only give the code of state 0:

state 0

if (x) then
      y := x;
      output(y);
else
      x := true;
      y := x;
      output(y);
endif
goto state 1;

This program will be distributed onto two locations, ac-
cording to the following specifications:

Location 0 Location 1

y x

3.3 Replication and Localization
The problem is to assign a location to each action of the pro-
gram. Based upon the distribution specifications, a unique
location can be assigned to each variable of the program. The
localization algorithm consists then, for each action, in
building the list of locations that have to compute it:

�� a control action (if, present, or goto): each location,
�� a variable assignment: the location that owns the as-

signed variable,
�� a signal emission: the location specified by the distri-

bution.

As a consequence, the control is replicated on each loca-
tion, i.e., each piece of program resulting from the distribu-
tion will have the same control structure. For our example,
we have the following replication:

Location state 0

(0, 1) if (x) then
(0)       y := x;
(0)       output(y);
(0, 1) else
(1)       x := true;
(0)       y := x;
(0)       output(y);
(0, 1) endif
(0, 1) goto state 1;

For each action, we have indicated the list of locations that
must perform it, i.e., the list of locations that own this action.



420 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,  VOL.  25,  NO.  3,  MAY/JUNE  1999

3.4 Insertion of Sending Statements (puts)
We perform the put insertion separately on each state of
the automaton. In each state, we have a DAG whose nodes
are the actions, and whose leaves are the gotos. The algo-
rithm consists in associating with each location s, a set
Needs of all the variables that location s will certainly need,
provided that their value has not previously been sent by
their owning location. The computation of the Needs sets
allows the insertion of puts so that any location that needs
a variable for a given action will receive it before the con-
cerned action.

We propose the two following strategies:

�� The when needed strategy where each variable is sent
at the very moment when the destination location
needs it. This will minimize the number of messages
exchanged between two locations.

�� The as soon as possible strategy where each variable is
sent just after its computation on its owning location.
This will increase the delay between the time when a
value is sent and the time when it is needed by the
destination location, and therefore shorten the wait-
ing time on the destination location (remember that
the get is blocking when the queue is empty).

A more precise comparison of the two strategies will be
given in Section 3.6.

3.4.1 The When Needed Strategy
For each location s, the algorithm consists in placing an
empty set Needs at each leaf of the DAG, and then propa-
gating these sets backward to the root of the DAG in the
following way:

�� When reaching an action belonging to location s, if
for this action, location s needs a variable x that be-
longs to another location, then add x to Needs (note
that branchings also need variables).

�� When reaching an assignment x := exp, for each lo-
cation s such that x ³ Needs, insert the statement
put(s, x) just after this assignment. Then remove x
from each concerned set Needs.

�� When reaching a branching closure, duplicate the sets
Needs , and proceed in each branch then and else.

�� When reaching a branching if or present, for each
location s:

�� build the intersection of sets Needs
then  and

Needs
else  from branches then and else;

�� in each branch, insert an action put(s, x) for each
variable x of the set Needs – (Needs

then  >

Needs
else ); thus, a variable is sent when the target

location needs it instead of when it is computed;
�� proceed with the intersection Needs

then  > Needs
else .

�� When reaching the root of the DAG, for each location
s, insert at the beginning of the DAG a statement
put(s, x) for each variable x of the set Needs.

For our example, we obtain the following put placement:

The algorithm has inserted three puts:

�� the put(0, x) number O1  because x ³ Need0 and x is
modified by location 1;

�� the put(0, x) number O2  because x ³ Need0
then  –

( )Need Need0
then

0
else> ;

�� the put(0, x) number O3  because x ³ Need0  and the
root of the DAG has been reached.

3.4.2 The as Soon as Possible Strategy
The goal here is to insert each put just after the last com-
putation of the variable to be tansmitted. The algorithm is
the same as before, except when reaching a branching if or
present: We must then proceed with the union of sets
Needs

then  and Needs
else  instead of the intersection. Besides,

there is no put to be inserted after a branching action any
more.

For our example, we obtain the following put place-
ment:

The algorithm has inserted two puts:

�� the put(0, x) number O1  because x ³ Need0 and x is
modified by location 1;

�� the put(0, x) number O2  because x ³ Need0 and the
root of the DAG has been reached.

3.4.3 Complexity
For the time and memory requirements, we adopt the fol-
lowing notations:

�� For any procedure p, 7 (p), and 0 (p) denote, respec-
tively, its time and memory requirements.
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�� nbloc, nbvar, and nbact are, respectively, the number of
locations, of variables, and of actions of the distrib-
uted program.

�� avvar is the average number of variables belonging to a
given location.

We assume that the implementation allows any set op-
eration to be performed in O(avvar), for instance with bit-
streams. Hence, the time requirement for put insertion is
O(avvar) times the cost of the action graph traversal. Thus:

7 (put insertion) = O(nbact � avvar)

The memory requirement is the cost of the Need sets. Thus:

0�(put insertion) = O(nbvar � nbloc)

3.5 Insertion of Receiving Statements (gets)
As for the sendings, we perform the get placement succes-
sively on each state. Receivings remain to be inserted, so
that the actions x := get(s) appear in the program of lo-
cation t in the same order as the actions put(t, x) in the
program of location s. The hypothesis on the network (Sec-
tion 2.3) ensures that the values exchanged between two
locations by means of a put/get will always correspond to
the same variable on each side.

The algorithm consists in simulating at any time the
content of the waiting queues. We define for each pair of
locations (t, s) a queue Fifot s>  containing the variables
belonging to location t that have been sent to location s
and not yet received by it. Those variables will be placed in
the queue in their sending order.

For each pair of locations (t, s), the algorithm consists in
placing an empty queue Fifot s>  at the root of the DAG,
and then propagating those queues forward to the leaves of
the DAG in the following way:

�� When reaching an action put(s, x) on location t,
add x at the tail of the queue Fifot s> .

�� When reaching an action that belongs to location s, if
for this action location s needs a variable x that be-
longs to another location t, then necessarily x ³
Fifot s> . So, extract the head h of the queue Fifot s>

and insert the statement h := get(t) on location s.
Repeat until x is extracted. This ensures that variables
are extracted from the queue exactly in the same or-
der they were inserted in.

�� When reaching a branching if or present, duplicate
queues Fifot s>  and proceed in each branch then
and else.

�� When reaching a branching closure, for each pair of
locations (t, s):
�� build the largest common suffix Sufft s>  of queues

Fifo
t s

then

>
 and Fifo

t s

else

>
 from branches then and

else; this common suffix contains the variables,
sent by location t to location s, that are located at
the tail of both queues, and thus that have been
sent the most recently: remember that the aim is to
insert the get as late as possible, in order to mini-
mize the waiting time induced by the network;

�� build the queue Rem Fifo Suff
t s t s

then then
t s> > >= - , re-

spectively, else;

�� in the then branch, empty Rem
t s

then

>
, and for each

variable h extracted at the head of the queue, insert
the statement h := get(t) on location s; respec-
tively, else;

�� proceed with Sufft s> .

�� When reaching a leaf, for each pair of locations (t, s),
empty the queue Fifot s> , and for each variable h
extracted at the head of the queue, insert the state-
ment h := get(t) on location s.

3.5.1 The When Needed Strategy
With our example where puts have been inserted with the
when needed strategy, we obtain the following get place-
ment:

The algorithm has inserted three gets:

�� the x := get(1) number O1  because x ³ Fifo1 0>  and
location 0 needs x to compute the branching if (x);

�� the x := get(1) number O2  because x ³ Fifo1 0>  and
location 0 needs x to compute the assignment y := x;

�� the x := get(1) number O3  because x ³ Fifo1 0>  and
location 0 needs x to compute the assignment y := x.

The final distributed program is shown in Fig. 2.

Fig. 2. OC program distributed on two locations.
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3.5.2 The As Soon As Possible Strategy
With our example where puts have been inserted with the
as soon as possible strategy, we obtain the following get
placement:

The algorithm has inserted two gets:

�� the x := get(1) number O1  because x ³ Fifo1 > 0 and
location 0 needs x to compute the branching if (x);

�� the x := get(1) number O2  because x ³ Fifo1 > 0 and
location 0 needs x to compute the assignment y := x.

The final distributed program is shown in Fig. 3

3.5.3 Complexity
We assume that the implementation allows the suffix com-
putation to be performed in O(avvar), for instance with
linked lists. Hence, the time requirement for get insertion
is O(avvar) times the cost of the action graph traversal. Thus:

7 (get insertion) = O(nbact × avvar)

The memory requirement is the cost of the Fifo queues.
Thus:

0 (get insertion) = O(nbvar × nbloc)

3.6 Comparison of the When Needed and as Soon as
Possible Strategies

The as soon as possible strategy minimizes the waiting time
on the receiving location. Indeed, for a given variable, the
put is inserted just after the variable is computed, i.e., as
soon as possible, while the get is inserted before the vari-
able is used, i.e., as late as possible. However, when a vari-
able is needed only in one branch of a test, then there will
be a useless communication in the other branch. On the
contrary, the when needed strategy minimizes the number of
messages but leads to longer waiting times, since the get
statement is blocking when the queue is empty.

Let us consider the following OC program:

state 0

y := 10;
if (c) then
      x := y;
else
      y := y - 1;
endif
goto state 1;

We decide to distribute it on two locations, with the fol-
lowing specifications: y belongs to location 0, while x and c
belong to location 1. After the localization, replication, and
insertion of put and get, we have:

when needed

location state 0

(1) put(0, c);
(0) y := 10;
(0) c := get(1)
(0, 1) if (c) then
(0)      put(1, y)
(1)      y:= get(0)
(1      x:= y
(0, 1) else
(0)      y := y – 1;
(0, 1) endif
(0, 1) goto state 1;

as soon as possible
location state 0

(1) put(0, c);
(0) y := 10;
(0) put(1, y)
(0) c: = get(1);
(0, 1) if (c) then
(1)      y := get(0);
(1)      x := y:
(0, 1) else
(0)      y := y – 1
(1)      y := get(0);
(0, 1) endif
(0, 1) goto state 1;

The value of c is exchanged in the same way whatever
be the chosen strategy. The put is made as soon as possible,
i.e., just after the updating of c, which is performed implic-
itly at the beginning of the state because it is an input. The
get is performed as late as possible, i.e., just before c is
used, in the branching if (c).

Concerning the value of y, it depends on the chosen
strategy:

�� The when needed strategy: The value of y is only ex-
changed in the then branch.

Fig. 3. OC program distributed on two locations.
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�� The as soon as possible strategy: The value of y is ex-
changed in both branches, even though it is not
needed in the else branch. The put statement is per-
formed as soon as possible, i.e., just after the compu-
tation of y. The gets are performed as late as possible,
i.e., just before y is used in the then branch, and just
before the branching closure in the else branch.
Moreover, this useless message cannot be suppressed
because the put is performed before the branching,
and, as a consequence, a get must be performed in
each branch.

Finally, when a variable value is sent before a branching,
and then modified by its owner in one of the branches
while its value is needed in both branches, then the when
needed strategy inserts a useless communication in the
branch where the variable is not computed. So it seems
that, with this strategy, the number of messages is not
minimal either. Yet the difference with the as soon as possible
is that the useless messages are redundant (i.e., the value
exchanged is already known by the receiving location) and
can be removed using classical static analysis techniques.
This will be shown in Section 3.8.

3.7 Synchronization of Distributed Programs
Now it results from our distribution algorithm that some
locations can behave as value producers while others be-
have as value consumers. In our program example (Fig. 2
and Fig. 3), location 0 is purely a consumer while location 1
is purely a producer. Thus, the program of location 1 may
run faster than the program of location 0. This may lead to
the loss of the centralized program temporal semantics and,
since the put is never blocking, to unbounded queues at
execution. We propose several solutions to achieve the re-
synchronization of distributed programs:

1)�Use only bounded queues: a put will be blocking
when the considered queue is full.

2)�Add dummy communications so that there are no
pure producers anymore.

The first method is easy, yet expensive, as it needs to
check the status of the queue at each emission. Therefore,
we choose the second method.

To achieve it, we introduce two dummy communication
primitives, i.e., communications carrying no value:
put_void(destination) and get_void(source). This
method must be applied on DAGs where only emissions
have been inserted. It consists in adding dummy emissions.
Then, gets and get_voids will be inserted at the same
time directly on synchronized DAGs.

We have two options:

�� Strong synchronization: Allow no cycle overlap be-
tween any two locations (Fig. 4a). Thus, no process
may start its n + 1st reaction before all the others have
terminated their nth reaction. To ensure this, we can
add (n - 1) synchronization messages (each message
is one put and one get) at the end of each location
program, for a total of n � (n - 1) synchronization
messages. Another possibility consists in making a
token circulate twice (the first time to make sure that
everybody has completed its cycle, and the second
time to permit each process to start its new cycle),
which requires to add 2 � n synchronization mes-
sages. The circulating token involves fewer messages
but more execution overhead.

�� Weak synchronization: Do not allow more than one
cycle of overlap between any two locations (Fig. 4b).
Thus, no process may start its n + 2nd reaction before
all the others have terminated their nth reaction. This
is much less expensive because the normal communi-
cations participate in the synchronization. To ensure
weak synchronization, there must be, in each state, at
least one communication in each direction between
any pair of locations.

Adding messages for the strong synchronization is
straightforward. On the other hand, the weak synchroniza-
tion requires some flow analysis on the DAG of each state.
To achieve that, we compute in each state and for each lo-
cation s, the sets Louts of locations towards which s has
made no emission. For each location s, the algorithm con-
sists in placing a full set Louts at each leaf of the DAG, and
then propagating these sets backward to the root of the
DAG in the following way:

�� When reaching the root of the DAG, insert a statement
put_void(t) for each location t belonging to Louts.

Fig. 4. Strong and weak synchronization.



424 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,  VOL.  25,  NO.  3,  MAY/JUNE  1999

�� When reaching a branching closure, duplicate sets
Louts , and proceed in each branch then and else.

�� When reaching a branching if or present:

�� insert in branch then (respectively, else) a state-
ment put_void(t) for each location t belonging
to Lout Louts

then
s
else-  (respectively, Louts

else –

Louts
then );

�� remove each location t for which we have inserted
a put_void(t) statement in branch then (respec-
tively, else) from set Louts

then  (respectively,

Louts
else);

�� at this point, Louts
then  and Louts

else are identical,

so we proceed with Louts
then  or equivalently with

Louts
else.

�� When reaching the root of the DAG, insert a statement
put_void(t) for each location t belonging to Louts .

The time and memory requirement are similar to those of
the put insertion:

7 (weak synchronization) = O(nbact � nbloc)

0 (weak synchronization) ( )= O nbloc
2

For our program example, we obtain:

The algorithm has inserted one put_void:

�� the put_void(1) number O1  on location 0 because
1 ³ Lout0.

After inserting the gets (Section 3.5) we obtain the final
program of Fig. 5.

3.8 Elimination of Redundant Emissions
Now the put placement procedure sometimes causes re-
dundant value emission (see Section 3.6). This occurs
when a variable value is sent before a branching, and then
is modified by its owner in one of the branches while its
value is needed in both branches: then the when needed
strategy inserts a redundant communication in the branch
where the variable was not computed. In our example
program, it is the case of the put/get in the then branch,
as shown in Fig. 6.

However, since such communications are redundant,
they can be eliminated using classical static analysis tech-
niques. We show briefly how this can be achieved (the
complete algorithm can be found in [14]).

We compute, for each location s and in each state of the
automaton, the set Knowns of variables known at the begin-
ning of the state, i.e., whose values have been previously
sent to s and which have not been modified by their own-
ing location since then. Then, for each location and in each
state, we propagate forward these sets:

�� When reaching an emission put(s, x), if x ³ Knowns,
then withdraw this put(s, x), else add x to Knowns.

�� When reaching an assignment x := exp, remove x
from sets Knowns for each location s that does not
own x.

�� When reaching a branching if or present, dupli-
cate sets Knowns, and proceed in each branch then
and else.

�� When reaching a branching closure, for each location
s, proceed with Known Knowns

then
s
else> .

The time and memory requirement are similar to those of
the put insertion:

7�(put elimination) = O(nbact � avvar)

0�(put elimination) = O(nbvar � nbloc)

Fig. 5. OC program distributed on two locations and well synchronized.

Fig. 6. OC program distributed on two locations with a redundant
message.
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We apply this algorithm on DAGs where only emissions
have been inserted. Thus, gets will be inserted directly on
minimized DAGs. For our program example, we obtain:

The algorithm has removed one put:

�� the put(0, x) number O1  because x ³ Known0.

After inserting the gets (Section 3.5) we obtain the final
program of Fig. 7.

3.9 Algorithm Steps
Finally, the algorithm steps take place as follow:

1)� replication and localization
2)� insertion of sending statements (puts),
3)� synchronization of distributed programs (put_voids),
4)� elimination of redundant emissions,
5)� insertion of receiving statements (gets and get_voids).

Therefore, receiving statements are inserted only once, on
an already synchronized and optimized distributed program.

Now since these steps are sequential, the global time and
memory requirements are:

7�(distribution algorithm) = O(nbact � avvar)

0�(distribution algorithm) = O(nbvar � nbloc)

4 CORRECTNESS PROOF

We have established in [7] the correctness proof of our dis-
tribution algorithm. We only outline the proof here. In or-
der to prove that our distribution algorithm is sound, we
have to prove that the behavior of the initial centralized
program is equivalent to the behavior of the final parallel
program.

We first model the initial centralized program by a finite
deterministic automaton labeled with actions. Its behavior
is the language of this automaton, i.e., the set of finite and
infinite traces of actions it generates (trace semantics). The
distribution specifications are given as a partition of the set
of actions into n subsets, n being the number of intended
computing locations.

We then define a commutation relation between actions ac-
cording to the data dependencies. This commutation relation
induces a rewriting relation over traces of actions. The set of
all possible rewritings is the set of all admissible behaviors of

the centralized program, with respect to the commutation
relation. The problem is that this set cannot, in general, be
recognized by a finite deterministic automaton. The intuition
behind our proof is that this set is identical to the set of linear
extensions of some partial order. For this reason we introduce
a new model based on partial orders.

�� First, we build a centralized order automaton by turn-
ing each action labeling the initial automaton into a
partial order capturing the data dependencies be-
tween this action and the remaining ones. The lan-
guage of our order automaton is the set of finite and
infinite traces of partial orders it generates (trace se-
mantics). By defining a concatenation relation be-
tween partial orders, each trace is then itself a partial
order. Thus, the language of our order automaton is a
set of finite and infinite partial orders. Our key result
is that the set of linear extensions of all these partial
orders is identical to the set of all admissible behav-
iors of the centralized program, with respect to the
commutation relation.

�� Second, we show that our order automaton can be
transformed into a set of parallel automata, by turn-
ing the data dependencies between actions belonging
to distinct locations into communication actions, and
by projecting the resulting automaton onto each com-
puting location. We prove that these transformations
preserve the behavior of our order automaton.

This formally establishes that the behavior of the initial
centralized program is equivalent to the behavior of the final
parallel program. There remains to prove that safety proper-
ties satisfied by the centralized program are also satisfied by
the parallel program. Such properties express the fact that
something will never happen, or that a given statement will
always hold: They are expressed as temporal formulæ link-
ing input and output signals of the program. In the case of a
synchronous program, the temporal evolution of a signal is
represented by its values at different cycles [25], [16]. Indeed,
according to the synchrony hypothesis, any two signals that
are emitted at the same cycle are simultaneous. Therefore, to
ensure that safety properties are preserved, it is necessary to
strongly synchronize the parallel program, as shown in Sec-
tion 3.7. Indeed, strong synchronization will preserve the
global cycle of the program: Output signals that are emitted

Fig. 7. OC program distributed on two locations with no redundant
emissions.
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at the same cycle by the centralized program will still be
emitted at the same global cycle by the parallel program,
even though they belong to distinct locations and are not
linked by data dependencies. This key property cannot be
achieved by weak synchronization.

5 CONCLUSION

Synchronous languages allow reactive systems to be pro-
grammed while preserving their natural parallelism. The
algorithm we have presented automatically produces a
distributed sequential code from a centralized synchronous
program. As the program is first compiled, debugged and
tested on a centralized processor, this method allows the
production of a distributed code with the same safety as a
centralized code. Finally, the distributed programs we ob-
tain only need a very simple protocol in order to communi-
cate (FIFO queues).

This algorithm has been implemented in the Ocrep tool.
It provides the user with various options for the put inser-
tion, the synchronization and the put elimination steps.
The set manipulations are implemented by bit-set opera-
tions for efficiency purposes. The Ocrep tool is available
online at http://www.inrialpes.fr/bip/people/girault/Ocrep. It has
been tested on various synchronous programs obtained
from reactive as well as robotic systems. The overhead due
to synchronization and message passing between the dif-
ferent locations of the distributed program is low. For in-
stance, a tennis game has been automatically distributed
onto two locations: the average load goes from 80 percent
on a single SPARC station for the centralized version to 50
percent on two SPARC stations for the distributed one.

We have stated that an OC program needs an interface to
react to its environment. Distributing the program implies
that its interface must also be distributed. An interface dis-
tribution method can be found in [10].

Finally, the formal proof of the distribution algorithm
has been established. It rests on the modeling of the initial
centralized program by a finite deterministic automaton
labeled with actions, and on the abstraction of its admissi-
ble behaviors by a commutation relation (see Section 4
and [7]).

6 FUTURE RESEARCH

Until now, all the processes obtained share the same control
structure, which is the same as in the initial program. A more
complex algorithm based on observational equivalence and
“on-the-fly” bisimulation can be found in [9], which allows
local minimization of each distributed process by sup-
pressing branchings (if and present) whose branches
have the same observable behavior. This technique, which
remains to be studied and proven, allows a controlled form
of desynchronization of synchronous programs:

�� a long duration task scheduled on a slow clock can be
inserted inside a synchronous program;

�� to distribute this program, the distribution specifica-
tions have to partition the set of inputs/outputs in
two subsets: one containing only the slow variables,
and one containing all the remaining variables (hence,

this is a clock driven distribution);
�� then the minimization algorithm produces, for the

slow location, a desynchronized program that actu-
ally runs at the slow clock speed; provided that the
pace of the slow clock is compatible with the duration
of the long duration task, this leaves it enough time to
complete;

�� at last, the synchronization algorithm described in
Section 3.7 can be applied to ensure that the distrib-
uted program remains loosely synchronized.

Secondly, distributed real-time executives are expected
to provide important fault-tolerance facilities, such as re-
covery data storage, error detection and masking, back-
ward and forward recovery, and dynamic system recon-
figuration. In most cases, these functions are carefully iso-
lated from application programs, and a lot of research is
still to be done in order to apply the techniques presented
in this paper to this kind of problem.

Thirdly, when only physical data are involved (i.e., there
are no discrete events), it is possible to conceive a parallel
application by just programming separate tasks that run at
their own speed and communicate through a dedicated
network. When conceiving one task, the outputs of the
other tasks are viewed as inputs to the current one. The
network implements shared memories which are updated
separately by each task. This form of communication does
not allow synchronization between tasks because values
can be lost without noticing. However, if only physical data
are exchanged, such loss of data seems to be acceptable.
Actually, a loss means that a fresher data has been updated
by the emitting task and read by the receiving task. How-
ever, when discrete events are involved, this approach still
needs to be formally studied. In particular, it is unclear at
what speed the tasks and the network need to be run. In-
deed, from these speeds depends the correct communica-
tion of data between the tasks.
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