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t. This paper presents a pro
ess 
al
ulus for re
on�gurable 
ommuni
ating systemswhi
h has broad
ast as basi
 
ommuni
ation primitive, and we provide an operational se-manti
s for this 
al
ulus. We illustrate the 
al
ulus through some examples, and we proposethree behavioral equivalen
es for reasoning about systems of broad
asting pro
esses, namely,barbed equivalen
e, step-equivalen
e and labelled bisimilarity. An important result, is thatall these relations 
oin
ide, providing di�erent ways to study the equivalen
e/non-equivalen
eof two systems. Then, we provide a dire
t 
hara
terization for the strong 
ongruen
e rela-tion indu
ed by these equivalen
es. Finally, we give a 
omplete axiomatisation for strong
ongruen
e.1 Introdu
tionCommuni
ation between pro
esses is the main aspe
t of 
on
urren
y when dealing withdistributed and/or parallel 
omputing. One 
an spe
ify basi
 
ommuni
ations from severalpoints of view; primitives intera
tions 
an be, for instan
e, syn
hronous or asyn
hronous,asso
iated to point-to-point or broad
ast (one-to-many) message ex
hange proto
ols. Thetheory behind point-to-point 
ommuni
ation is today well-established in pro
ess algebra(e.g. started with Milner's CCS and Hoare's CSP pioneering works). On the other handmore 
omplex and higher level 
ommuni
ation s
hemes, like broad
ast or multi
ast areen
ountered in many appli
ations and programming models, but they remain neverthelesspoorly represented in the algebrai
 theory of distributed systems. We emphasize herethat group intera
tions shall be 
onsidered as a more appropriate ex
hange s
heme formodelling and reasoning about many 
ommuni
ating systems and networking appli
ations(e.g. multimedia, data and knowledge mining, mobile 
omputing). Group 
ommuni
ationsare, in our opinion, a more abstra
t and higher level 
on
ept of intera
tion in distributed
omputing than the 
ommonly used point-to-point 
ommuni
ations, usually expressed byhandshaking message-passing primitives or by remote invo
ations. Broad
ast has beeneven 
hosen as a hardware ex
hange primitive for some lo
al networks, and in this 
asepoint-to-point message passing (when needed) is to be implemented on top of it. Primitivesfor broad
ast programming o�er several advantages: pro
esses may intera
t without havingexpli
it knowledge of ea
h other, re
eivers may be dynami
ally added or deleted withoutmodifying the emitter, and a
tivity of a pro
ess 
an be monitored without modifying thebehaviour of the observed pro
ess (this is 
learly not the 
ase with the 
lassi
al rendez-vous 
ommuni
ations). Moreover, from a theoreti
al point of view, it appears diÆ
ult [3℄to en
ode broad
ast in 
al
uli based on point-to-point 
ommuni
ations.



Thus, developing an algebrai
 theory for models based on broad
ast 
ommuni
ation hasits own interest. Hoare's CSP [9℄ is based on a multiway syn
hronisation me
hanism, butit does not make any di�eren
e between input and output. Or, in a broad
ast setting theanti-symmetrie between these two kinds of a
tions is parti
ularly important (in a broad
ast
ommuni
ation there is one sender, and an unbounded or possibly empty set of re
eivers;this is well represented in the I/O automata of Lyn
h and Tuttle ([10℄) where outputs arenon-blo
king and lo
ally 
ontrolled, whereas inputs are externally 
ontrolled and 
an notbe refused). In [15℄, Prasad introdu
es and develops [16℄ a 
al
ulus of broad
asting systems,namely CBS. His 
al
ulus, inspired by Milner's CCS ([11℄), has as main goal to providea formal model for pa
kets broad
ast in Ethernet-like 
ommuni
ation media. It is basedon broad
ast, but its main limitation is that it does not allow to model re
on�gurable�ner topologies of networks of pro
esses whi
h 
ommuni
ate by broad
ast (as dynami
group 
ommuni
ations). It is up to the re
eiver to use the re
eived value or to dis
ard it.In [8℄, Hennessy and Rathke present a pro
ess 
al
ulus based on broad
ast with a morerestri
tive input (x 2 S?p), but the 
ontinuation pro
ess p, do not 
hange dynami
allyhis restri
tions on further inputs; so it 
annot model re
on�gurable systems based onbroad
ast. To summarise, it seems that there is not a framework whi
h try to analyse(at least at theoreti
al level) what it happens if we 
ombine mobility and broad
ast (asit is the 
ase for pro
esses whi
h use group 
ommuni
ations �a la PVM [6℄, buses-basedre
on�gurable ar
hite
tures or Pa
ket Radio Networks).The aim of this paper is to introdu
e a new pro
ess 
al
ulus, whose unique and basi

ommuni
ation primitive is broad
ast, and whi
h permits to model re
on�gurable group
ommuni
ation systems.The rest of the paper is as follows. In se
tion 2 we present the b�-
al
ulus (alreadybrie
y introdu
ed in [3℄) as a variant of a broad
ast 
al
ulus (inspired from [16℄) togetherwith some examples. Se
tion 3 presents three equivalen
es between pro
esses, and a proofof their similar dis
riminative power. The se
tion 4 is devoted to the 
ongruen
e indu
edby the already de�ned equivalen
es. In se
tion 5 we provide for the 
ongruen
e a 
om-plete axiomatisation. Se
tion 6, dis
usses related works and presents future dire
tions ofresear
h. Due to the limited length of this paper, the proofs of presented results have beenomitted; they are in
luded in the full version of this paper [4℄.2 Preliminaries2.1 The b�-
al
ulusThe b�-
al
ulus is a pro
ess 
al
ulus in whi
h broad
ast is the fundamental 
ommuni
a-tion paradigm. It is derived from the broad
ast 
al
ulus proposed by Prasad [16℄, and the�-
al
ulus proposed by Milner, Parrow and Walker [12℄. It di�ers from the broad
ast 
al-
ulus, in that 
ommuni
ations are made on 
hannels or ports (and transmitted values are
hannels too), and from the �-
al
ulus in the manner the 
hannels are used: for broad
ast
ommuni
ations only. Let Chb be a 
ountable set of 
hannels. Pro
esses are de�ned by thegrammar of Table 1.where � belongs to the set of pre�xes � ::= x(~y) j �x~y j � , and ~x; ~y � Chb; x;2 Chb.Pre�xes denote the basi
 a
tions of pro
esses: � is a silent a
tion (whi
h 
orrespondsto an internal transition), x(~y) is the input of the names ~y on the 
hannel x, and �x~y is2



Pb 3 p ::= nil j �:p j �xp j hx = yip; q j p1 + p2 j p1 k p2 j Ah~xi j (re
 Ah~xi:p)h~yiTable 1. Pro
esses in b�-
al
ulusthe output of the names ~y on the 
hannel x. nil is a pro
ess whi
h does nothing. �:p isthe pro
ess whi
h realize the a
tion denoted by � and next behaves like p. p1+ p2 denotes
hoi
e, it behaves like p1 or p2. �xp is the 
reation of a new lo
al 
hannel x (whose initials
ope is the pro
ess p). hx = yip1; p2 is a pro
ess whi
h behaves like p1 or p2 dependingon the relation between x and y. p1 k p2 is the parallel 
omposition of p1 and p2. X is apro
ess identi�er whose arity is satis�ed by h~xi and (re
Xh~xi:p)h~yi is a re
ursive pro
ess(this allows to represent pro
esses with in�nite behaviour), with ~x 
ontaining all the freenames whi
h appear in p. In this arti
le, we assume that X o

urs guarded in any re
ursivede�nition (underneath a pre�x).The operators �x and y(~x), are x�binders, i.e. in �xp and y(~x):p, x and ~x are bound,and bn(p) denotes the set of bound names of p. The free names of p are those that donot o

ur in the s
ope of any binder, and are denoted by fn(p). The set of names of p isdenoted by n(p). Alpha-
onversion is de�ned as usual.De�nition 1. A
tions, ranged over �,� are de�ned by the following grammar:� ::= ah~xi j �~y�a~x j � j a :where a; x 2 Chb; ~x; ~y � Chb. An a
tion is either a re
eption, a (possibly bound) output, orthe silent a
tion � , denoting an internal transition. In ah~xi and �~y�a~x, a is the subje
t of the
ommuni
ation and ~x is its obje
t. By extension n(�) (fn(�), bn(�)) denotes the names(respe
tively free names, bound names) used in the a
tion � ((fn(�) = ;; fn(ah~xi) =fag [ ~x; fn(�~y�a~x) = fag [ ~x n ~y; fn(a :) = fag, bn(�) = ;; bn(ah~xi) = ;; bn(�~y�a~x) = ~y;bn(a :) = ;, n(�) = fn(�) [ bn(�)).We give an operational semanti
s for our 
al
ulus in terms of transitions over the setPb of pro
esses. Before, we de�ne, similarly to [15℄, a relation �!� Pb � Chb denotedp a:�! and whi
h 
an be read \p dis
ards all outputs made on the 
hannel a " (see Table2). (1)nil a:�! (2) �:p a:�! (3)�b~y:p a:�!(4) b6=ab(~x):p a:�! (5) p a:�! _ x=a�xp a:�! (6) p1 a:�!^p2 a:�!p1+p2 a:�!(7) p1 a:�!hx=xip1;p2 a:�! (8) x6=y^ p2 a:�!hx=yip1;p2 a:�!(9) p1 a:�! ^ p2 a:�!p1kp2 a:�! (10) p[(re
 Xh~xi:p)=X;~y=~x℄ a:�!(re
 Xh~xi:p)h~yi a:�!Table 2. The "dis
ard" relation3



Intuitively, a pro
ess ignores all the 
ommuni
ations made on the 
hannels it is notlistening. nil, �:p or �b~y:p dis
ard any 
ommuni
ation. A pro
ess waiting for a message on a
hannel b, dis
ards a
tions on the other 
hannels a with a 6= b. In rule (5) a the 
onditionx = a expres the possibility that a does not o

ur free in p. Rules (6) to (10) follow thestru
ture of the term.(1) p��p0 ^ p0 
�!qp 
�!q (2) �:p ��!p (3)a(~x):pah~zi�!p[~z=~x℄(4) �a~x:p �a~x�!p (5) p�~y�a~x�! p0 ^ z2~xn(fag[~y)�zp�z�~y�a~x�! p0 (6) p�~y�a~x�! p0�ap ��!�a�~yp0(7) p ��!p0 ^ x62n(�)�xp ��!�xp0 (8) p1 ��!p0 _ p2 ��!p0p1+p2 ��!p0 (9) p1 ��!p0hx=xip1;p2 ��!p0(10) x6=y ^ p2 ��!p0hx=yip1;p2 ��!p0 (11) p[(re
 Xh~xi:p)=X;~y=~x℄ ��!p0(re
 Xh~xi:p)h~yi ��!p0 (12) p1ah~xi�!p01 ^ p2ah~xi�!p02p1kp2ah~xi�!p01kp02(13) p1�~y�a~x�! p01 ^ p2ah~xi�!p02 ^ ~y\fn(p2)=;p1kp2�~y�a~x�! p01kp02 (14) p1 ��!p01 ^ bn(�)\fn(p2)=; ^ p2sub(�):�!p1kp2 ��!p01kp2Table 3. Operational semanti
s of b�-
al
ulusTo simplify the presentation, we extend sub and we denote sub(�) = obj(�) = � , andp � :�! for any pro
ess p.De�nition 2. Transition system The operational semanti
s of b�-
al
ulus is de�nedas a labelled transition system de�ned over the set Pb of pro
esses. The judgement p ��!p0 means that the pro
ess p is able to perform a
tion � and to evolve next to p0. Theoperational semanti
s is given in Table 3 (we omitted the symmetri
 versions of rules (11)and (12)).A 
ommuni
ation between pro
esses is performed through unbu�ered broad
ast. Com-pared to �-
al
ulus, outputs are non-blo
king, i.e. there is no need of a re
eiving pro
ess.One of the pro
esses broad
asts an output and the remaining pro
esses either re
eive orignore the sending, a

ording to whether they are \listening" or not on the 
hannel whi
hserves as support for the output. A pro
ess whi
h \listens\ to a 
hannel a, 
annot ignoreany value sent on this 
hannel.The operational semanti
s is an early one, i.e. the bound names of an input are in-stantiated as soon as possible, in the rule for input.Rule (1) allows to identify pro
ess whi
h are alpha - 
onvertible. Rules (2) to (4) arestraightforward and they have the same signi�
ation as in �-
al
ulus. Rule (5) states thatwhen a lo
al 
hannel name is emitted, the related output has to be bound. The extrusionis more 
omplex that in � -
al
ulus, as more pro
esses 
ould learn the existen
e of a freshname in a single 
omuni
ation. Rule (6) does not exist in � -
al
ulus; it establish the s
opeof the names exported on the 
hannel a. Rules (7) to (11) have the same meaning as in �-
al
ulus. Rules (12) and (13) are spe
i�
 to broad
ast; the same message 
an be re
eived4



by more pro
esses in a single 
omuni
ation. In rule (14), a pro
es whi
h does not listen ona 
hannel a, remains un
hanged during a 
ommun
ation made on this 
hannel. As usualwe shall use the following notations:{ �=)def= ( ��!)�, �=)def= �=) ��! �=), if � 6= � ,{ ��!def= � ��! ��� is an output or � = �	;{ �=)def= ( ��!)�:Sometimes, we shall use, as in [8℄, we use p �:�! p instead of p a:�!, if sub(�) = a and wedenote p a(b)?�! p0 to stand for either p a(b)�! p0 or p a(b):�! p0. Also, we shall omit the trail nil.We shall also use the notation �a(x) to stand for the bound output �x�ax:We shall use the following results in the next se
tions.Lemma 1.1. If p �~y�a~x�! p0, then fn(p0) � fn(p) [ f~yg et (~x n ~y) � fn(p).2. If p ah~zi�! p0, then fn(p0) � fn(p) [ f~zg.3. If p ��! p0, then fn(p0) � fn(p).ProofThe proof is by a simultaneous indu
tion on the inferren
e of the transition p ��! p0.� Lemma 1Corollary 1. If p �=) p0, then fn(p0) � fn(p).Proof The 
orollary is a 
onsequen
e by indu
tion on the number of transitions inp �=) p0.2.2 ExamplesIn this subse
tion we give some examples where broad
ast is the basi
 
ommuni
ationprimitive. The ability to send and re
eive "names on names" as in � -
al
ulus is veryuseful, and allows us in Example 2 (Dete
ting in
onsisten
ies for transa
tions systems) togive a des
ription whi
h does not depend on the number of 
opies present in the system.Example 1 A distributed algorithm for 
y
le-dete
tionWe present a distributed algorithm for 
y
le-dete
tion in a dire
ted graph.Dete
tor is apro
ess whi
h listens to new edges of the graph on a 
hannel i, and spawns for ea
h re
eivedpair of names (sour
e and destination of edge) a new \edge manager" Edge manager. Anedge manager, broad
asts a personal token v (using the me
hanism of name-generation).Next, for ea
h re
eived token w, if it re
eives the own token v, a 
y
le is dete
ted anda signal is sent on o, otherwise, it propagates the token further (along the paths of thegraph). This is done by using the 
hannels a and b, whi
h denote an edge (a; b) in thegraph. Hen
e, any token re
eived on a, and di�erent from v is transmitted on b.Dete
torhi; oi def=5



i(x):i(y):(Dete
torhi; oi k Edge managerho; x; yi))Edge managerho; a; bi def=�u((re
Y hb; ui:f�bu:Y hb; uig)hb; ui k(re
Xho; a; b; ui:fa(w):(hu = wi�o:nil; (�bw:nil k Xho; a; b; uig)ho; a; b; ui)))Example 2 Dete
ting in
onsisten
ies for transa
tions systemsWe extend the previous example to give an implementation in b�-
al
ulus of a fullydistributed algorithm for dete
ting in
onsisten
ies in partitioned distributed databases(our implementation is inspired from [1℄).In a repli
ated database, there exist several 
opies of ea
h data item, with 
opieslo
ated at distin
t sites in the system. We suppose that the database be
omes partitioned(partitions pj with j = 1; : : : ; n).We allow transa
tions to 
ontinue to exe
ute, but when the network is re
onne
ted(simulated in our implementation by a broad
ast on the 
hannel "unif") , we have to 
he
kfor in
onsisten
ies. The idea is to 
onstru
t a pre
eden
e graph that 
aptures the temporalpartial order between transa
tions. Then, the database is 
onsistent i� the pre
eden
egraph 
ontains no 
y
le. The verti
es of the graph are all the transa
tions. An edge <t; p >!< t1; p1 > indi
ates that transa
tion t o

urred before transa
tion t1, where p; p1indi
ate the partition in whi
h the transa
tions were exe
uted.Su
h an edge exists i� one of the following holds:1. t read a data item i that was later written by t1 and p = p12. t write a data item i that was later read or written by t1 and p = p13. t read a data item i that was written by t1 and p 6= p1The database 
an be simulated by:Database def=Yj=1;k[ Yl=1;n(j) Itemhj1; j2; pjl ; unif; V ali℄where j1 and j2 are 
hannels asso
iated with data j, ea
h data item j having n(j) 
opies,and pjl 2 fp1; : : : ; pn(j)g is the 
orresponding partition.An item manager waits for transa
tions; for ea
h new transa
tion, it forks a newtransa
tion manager, and serves the user whi
h was making the request. A transa
tionfor a data item i, is an output on the 
hannel i1, and 
ontains the transa
tion identi�ert1, the type (read or write), the partition a�e
ted, the return 
hannel, and a value (whi
hmake sense for a write transa
tion).Itemhi1; i2; p; unif; V al; wi def=unif(p1):Itemhi1; i2; p1; unif; V ali+i1(t1; type; p1; req; V ):hp1 = pifhtype = wi[Itemhi1; i2; p; unif; V; wi k Tr Manwhi1; i2; p; unif; t1i℄;6



[Itemhi1; i2; p; unif; V al; wi k Tr Manrhi1; i2; p; unif; t1i k reqV al+ req(V )℄g;Itemhi1; i2; p; unif; V al; wiA transa
tion manager generates a new edge manager for ea
h new ongoing transa
tionwhi
h a�e
ts the same data item on the same partition (
ases 1. or 2. ).Tr Manwhi1; i2; p; unif; ti def=i1(t1; type; p1; req; V ):fhp1 = pi[Tr Manwhi1; i2; p; unif; ti k unif(p):Edge managerherror; t; t1i℄;T r Manwhi1; i2; p; unif; tig+unif(p1):STr Manwhi2; p; t; wiTr Manrhi1; i2; p; unif; ti def=i1(t1; type; p1; req; V ):fhp1 = pi[Tr Manrhi1; i2; p; unif; ti k htype = wiunif(p):Edge managerherror; t; t1i; nil℄;T r Manrhi1; i2; p; unif; tig+unif(p1):STr Manrhi2; p; t; riOn
e the network re
onne
ted, transa
tion managers 
hange their behaviour, trying todete
t edges of the third kind. In addition, if there are two transa
tions whi
h have writtenthe same data item in two distin
t partitions, then an error is dete
ted (two 
ontrary edgesbetween two verti
es). STr Manwhi2; p; ti def=i2(t1; type; p1):fhp1 = piSTr Manwhi2; p; ti;htype = wierror; [STr Manwhi2; p; ti k Edge managerherror; t1; ti℄g+�i2[t; w; p℄:STr Manwhi2; p; tiSTr Manrhi2; p; ti def=i2(t1; type; p1):fhp1 = piSTr Manrhi2; p; ti;STr Manrhi2; p; ti k htype = rinil; Edge managerherror; t; t1i℄g+�i2[t; r; p℄:STr Manrhi2; p; tiWe note that this example uses the entire expressiveness power of our 
al
ulus. Thesame data item 
an be repli
ated (for reliability or eÆ
ien
y reasons) and a transa
tiont 
an a�e
t several data items; in this 
ase broad
ast is a quite natural 
ommuni
ationprimitive. In the same time, the ability to send and re
eive 
hannel names a
ross 
hannelsis used by item managers to fork new transa
tion managers 
orresponding to the re
eivedidenti�er.Example 3 Semanti
s of group 
ommuni
ation primitivesb�-
al
ulus provide a framework to spe
ify and analyse systems whi
h intera
t by abroad
ast (or multi
ast) me
hanism 
ombined with mobility of pro
esses ( names, ad-dresses). We take here, as an example programs whi
h use 
ommuni
ation primitives ofPVM-like libraries ([6℄). PVM is a software system that permits a network of heteroge-neous 
omputers to be used as a single parallel 
omputer (the virtual ma
hine). Thus large
omputational problems may be solved using the power of many 
omputers. PVM suppliesfun
tions to automati
ally start up tasks on the virtual ma
hine, and allows task to 
om-muni
ate (by point-to-point or group 
ommuni
ations) and syn
hronize with ea
h-other.7



The interesting part is the simple simulation of group 
ommuni
ation primitives, whi
hseems diÆ
ult to express in a pro
ess algebra based on point-to-point 
ommuni
ations([3℄). Moreover, even in CBS ([16℄) it is un
lear how one 
an implement the primitiveswhi
h permit to have dynami
 groups (pro
esses 
an freely join or leave a group, on
ethey have knowledge of the name of the group). We present just a few 
ommuni
ationprimitives spe
i�
 to 
on
urrent appli
ations (for the interpretation of imperative featuresin pro
ess algebra, see for example [17℄):I ::= send(a;m) j b
ast(g;m) j x = re
eive() j x = newgroup() j joingroup(g) jleavegroup(g) j x = spawn(Q)P ::= I j I;PA pro
ess (or a task) is a sequen
e of a
tions. An a
tion is either an output of amessage m (to another pro
ess a or to a group g of pro
esses), or an input (from theown bu�er) of a message (stored after in variable x), or a 
reation of a new group g, or ajoining to a group g, or a leaving of a group g or a spawning of a 
hild Q. On
e a pro
essbe
ome member of a group g, it re
eives any message sent to that group. Communi
ationsare asyn
hronous, in that outputs are non-blo
king (messages being stored in the bu�ersof re
eivers). For the sake of simpli
ity, we suppose that there is no guarantee in what
on
erns the order of messages' arrival.Then, a possible en
oding fPga of a pro
ess P of address (pid) a is given below:fPga def= �ra�ka(Poolha; ra; kai k [[P ℄℄ra;;)Poolha; r; ki def= k + a(x):(Poolha; r; ki k Cellhr; xi)Cellhr; xi def= r(
):(�
x+ 
(y):Cellhr; xi)[[x = re
eive();P ℄℄r;M def= �t(�rt k t(x):[[P ℄℄r;M )[[send(a;m);P ℄℄r;M def= �t(�am:�t k t:[[P ℄℄r;M )[[b
ast(g;m);P ℄℄r;M def= �t(�gm:�t k t:[[P ℄℄r;M )[[joingroup(g);P ℄℄r;M def= �t�kg(�tkg:P oolhg; r; kgi kkg):[[P ℄℄r;M[f(g;kg)g)[[g = newgroup();P ℄℄r;M def= �t�g�kg(�tg:�tkg:P oolhg; r; kgi kt(g):t(kg):[[P ℄℄r;M[f(g;kg)g)[[leavegroup(g);P ℄℄r;M[f(g;kg )g def= �t(kg:�t:nil k t:[[P ℄℄r;M )[[x = spawn(Q);P ℄℄r;M def= �a�t(fQga k �ta k t(x):[[P ℄℄r;M )[[STOP ℄℄r;f(g1;kg1);:::;(gn;kgn )g def= kg1 : : : : :kgn :�r:nil)The translations of \send" and \b
ast" primitives are similar, but a
tually, for a 
han-nel a whi
h appears as the argument of the \send" primitive, there is exa
tly one re
eiver,whereas for a 
hannel g whi
h appears as argument for the \b
ast" primitive, there 
anbe zero or many re
eivers (depending on the a
tual number of members in group g).8



3 BisimulationsWe de�ne now appropriate tools allowing to reason about pro
esses. Bisimulations havebeen su

essfully used in pro
esses algebra to 
ompare two systems a

ording to theiroperational ability to simulate ea
h other. For the rest of the paper, we shall use the termpro
ess to stand for a 
losed pro
ess (whi
h does not 
ontain free identi�ers), and we shallspe
ify expli
itly open pro
esses.3.1 Barbed Equivalen
esBarbed bisimulation was �rstly introdu
ed by Sangiorgi and Milner (in [13℄, [18℄) for the�-
al
ulus. It is a natural relation whi
h is easy de�nable in various 
al
uli (or rewritingsystems): it suÆ
es to de�ne a observability predi
ate and then to distinguish betweentwo pro
esses whenever they are not similarly observable, or their similar observabilityis not preserved by redu
tion (or rewriting). Barbed bisimulations were already used for
al
uli based on broad
ast [8℄, but in a 
al
ulus where 
ommuni
ations are made on aglobal ether rather than expli
it 
hannels.Barbed bisimulation des
ribes a relation between pro
esses whi
h 
an make the same\visible" a
tions, and whenever one 
an silently progress, so 
an the other, evolving to apro
ess preserving the relation. It remains to pre
ise some parts of this informal de�nition.In a broad
ast 
al
ulus, outputs are visible (if we are listening a pro
ess on a 
hannel, were
eive any value it sends on it), while inputs are not (as sending is not blo
king, we donot know if the observed pro
ess was re
eiving or dis
arding our value). We write p #a(p +a) if p ��! p0 (and respe
tively p �=) p0) for some output � of subje
t a.De�nition 3. Barbed BisimulationA symmetri
 relation S over the set Pb (of pro
esses) is a weak barbed bisimulationif whenever (p; q) 2 S, then{ if p ��! p0, then 9q0 su
h that q �=) q0 and (p0; q0) 2 S,{ 8a 2 Chb, if p #a then q +a.Two pro
esses p and q are weak barbed bisimilar, noted p �b q, if (p; q) 2 S forsome barbed bisimulation S. The strong barbed bisimilarity �b is de�ned similar byrepla
ing =) by �! and + by #.We prove some equivalen
es between pro
esses 
onsidered synta
ti
al 
ongruent insome 
lassi
al presentation of �-
al
ulus.Next lemma resumes a few properties of the relation �b.Lemma 2. �b satis�es the following properties:(a) p �� q implies p �b q(b) p k nil �b p(
) p k q �b q k p(d) (p k q) k r �b p k (q k r)(e) p+ nil �b p 9



(f) p+ q �b q + p(g) (p+ q) + r �b p+ (q + r)(h) �xp �b p if x 62 fn(p)(i) �y�xp �b �x�yp si x 6= y(j) (�xp) k q �b �x(p k q) if x 62 fn(q)(k) (�xp) + q �b �x(p+ q) if x 62 fn(q)(l) hy = zi(�xp); q �b �x(hy = zip; q) if x 62 fn(q) [ fy; zgProofConsequen
e of Lemma 6 et 10. � Lemma 2Next lemma proves an interesting property of barbed bisimilarity: barbed bisimilarityis preserved by parallelism.Lemma 3. �b and �b are preserved by parallelism:{ p �b q implies 8r; p k r �b q k r;{ p �b q implies 8r; p k r �b q k r;ProofWe prove (for example), just the weak 
ase. It suÆ
es to prove that the relation RwhereR def= �(p k r; q k r) �� p; q; r 2 Pb; p �b q	is a weak barbed bisimulation.{ Let p k r #a.Then we have either p #a, or r #a.If p #a, sin
e p �b q we obtain q +a and by su

essive appli
ations of rule (14), weobtain (q k r) +a. If r #a, then obviously (q k r) #a.{ Let p k r ��! s be a silently transition of p.Then, the last applied rule used to infer this transition is either the rule (14) or itssymmetri
al.If the last applied rule is the rule (14), then s � p0 k r and p ��! p0. Sin
e p �b q,we obtain q �=) q0 with p0 �b q0. By su

essive appli
ations of rule (14), we obtainq k r �=) q0 k r.If the last applied rule is the symmetri
al of the rule (14), then s � p k r0 and r ��! r0.By an appli
ation of the symmetri
al of the rule (14) (14) we obtain q k r ��! q k r0.� Lemma 3Remark 1. Contrary to �-
al
ulus, in the b�-
al
ulus it is no more true that p�b q (p�b q),implies �ap �b �aq (�ap �b �aq) for any 
hannel a. For example, it suÆ
es to take p0 def= �aband q0 def= �ab:�
d whi
h are strongly barbed bisimilar, whilst �ap0 et �aq0 are not evenbarbed bisimilar. 10



Lemma 3 and Remark 1 present interesting di�eren
ies between b�-
al
ulus and �-
al
ulus. In our model, barbed bisimilarity is preserved by parallelism, but it is not pre-served by restri
tion. In �-
al
ulus, barbed bisimilarity is preserved by restri
tion but itis not preserved by parallelism.Sin
e barbed bisimilarity it is not preserved by restri
tion and 
an not make anydistin
tion between �:p and �:q for any p; q; � 6= � , it is ne
essary to 
lose it over various
lasses of 
ontexts. A 
ontext (de�ned in Table 4) is a term 
ontaining a single \hole",su
h that pla
ing another term in the hole de�nes a valid term. A stati
 
ontext (de�nedin Table 5) is a 
ontext whi
h is build using just \the hole", 
onstants, parallelism andname 
reation.C ::= � j �:C j �xC j hx = yiC; p j hx = yip;C j C + p jp+ C j C k p j p k C j (re
 Ah~xi:C)h~yiwhere p 2 Pb et � ::= x(~y) j �x~y j � with x 2 Chb; ~y � Chb.Table 4. Family of 
ontexts Con
C ::= � j �xC j C k p j p k Cwhere p 2 Pb et � ::= x(~y) j �x~y j � with x 2 Chb; ~y �Chb. Table 5. Stati
 
ontexts ConsDe�nition 4. Barbed Equivalen
e{ Two pro
esses p and q are weak barbed equivalent, shortly p e�b q, if for everystati
 
ontext C 2 Cons, C[p℄ �b C[q℄.{ Strong barbed equivalen
e( e�b) is obtained similarly from strong barbed bisimilarityover pro
esses.By a 
lassi
al reasoning, we 
an prove that �b, �b, e�b et e�b are equivalen
e relations.Remark 1 implies that barbed equivalen
e does no more 
oin
ide with the 
losure ofbarbed bisimilarity with respe
t to arbitrary testers (as is the 
ase in �-
al
ulus).3.2 Step Equivalen
esIn our 
al
ulus �=) is the rewriting and not ��!. This is the reason whi
h push us to de�neanother 
hara
terization of barbed equivalen
e, still based on testers.We denote p +�a if p �=) ��! p0 for some output � of subje
t a.11



De�nition 5. Step-BisimulationA symmetri
 relation S over the set Pb (of pro
esses) is a weak step-bisimulationif whenever (p; q) 2 S, then{ if p ��! p0, then 9q0 su
h that q �=) q0 and (p0; q0) 2 S,{ 8a 2 Chb, if p #a then q +�a .Two pro
esses p and q are weak step-bisimilar, noted p �� q, if (p; q) 2 S for somestep-bisimulation S. The strong step-bisimilarity �� is de�ned similar, but repla
ing�=) by ��! and +� by #.Intuitively, step-bisimilarity identi�es pro
esses whi
h 
an broad
ast messages on thesame set of 
hannels (immediately or after some autonomous transitions), and wheneverone 
an progress without impli
ating the environment, so 
an the other, evolving to apro
ess preserving the relation. In fa
t, for our 
al
ulus, step-bisimilarity is more naturalthan barbed bisimilarity sin
e the real redu
tion is ��! ( �=)) and not ��! (or ��!) asin �-
al
ulus. Like barbed bisimilarity, step-bisimilarity is a very weak relation (it is notpreserved by parallel 
omposition), so it is ne
essary to 
lose it with respe
t to observers.From now on, we shall also use � - bisimilarity to stand for step-bisimilarity.As for barbed bisimilarity, we have the following step-bisimilarities.Lemma 4. �� satis�es the following properties:(a) p �� q implies p �� q(b) p k nil �� p(
) p k q �� q k p(d) (p k q) k r �� p k (q k r)(e) p+ nil �� p(f) p+ q �� q + p(g) (p+ q) + r �� p+ (q + r)(h) �xp �� p if x 62 fn(p)(i) �y�xp �� �x�yp if x 6= y(j) (�xp) k q �� �x(p k q) if x 62 fn(q)(k) (�xp) + q �� �x(p+ q) if x 62 fn(q)(l) hy = zi(�xp); q �� �x(hy = zip; q) if x 62 fn(q) [ fy; zgProofConsequen
e of Lemma 6 and 11. � Lemma 4As for barbed bisimilarity, step-bisimilarity is a very weak relation (it is not preservedby parallelism, nor by restri
tion).Remark 2.1. �� (��) is not preserved by k;2. �� (��) is not preserved by �;3. �b (�b) et �� (��) are in
omparable.Proof 12



1. Let p1 def= �b+ �:�
, q1 def= �b+�b:�
 and r1 def= b+ �a.Then p1 �� q1. On the 
ontrary (p1 k r1) 6�� (q1 k r1) be
ause q1 k r1 
an not simulatethe transition (p1 k r1) ��! (�
 k b+ �a).2. Let p2 def= �ba:�a, q2 def= �b
:�a.Then p2 �� q2. On the 
ontrary �ap2 6�� �aq2, be
ause �aq2 
an not simulate thetransition �ap2 �a�ba�! �a.3. Sin
e �ap2 �b �aq2 and �ap2 6�� �aq2, we obtain�b 6��� :We have p1 6�b q1 sin
e q1 
an not mat
h the transition p1 ��! �
. Sin
e p1 �� q1 weobtain �� 6��b :To obtain the assertion 3. it suÆ
es to use the inequalities �b��b and ����� :� Remark 2Remark 2 justi�es the de�nition of the 
losure of step-bisimilarity with respe
t to stati

ontexts.De�nition 6. Step-Equivalen
e{ Two pro
esses p and q are weak step-equivalent, shortly p e�� q, if for every stati

ontext C, C[p℄ �� C[q℄.{ Strong step-equivalen
e( e��) is obtained similarly from strong step-bisimilarity overpro
esses.Using some 
onvenient 
ontexts, we 
an prove that step-equivalen
e implies barbedequivalen
e.Lemma 5.1) p e�� q implies p�bq2) p e�� q implies p�bq:ProofWe proof only the weak 
ase.Let p e�� q and letM def= fa0 j a 2 fn(p; q)g a set of 
hannels su
h thatM\fn(p; q) = ;and 
 a new 
hannel su
h that 
 62M [ fn(p; q). Let T def= �a2fn(p;q)a(x):�a0 + �
.We shall prove that the relationRT def= �(p0; q0) �� fn(p0; q0) � fn(p; q); p0 k T �� q0 k T	is a weak barbed bisimilarity.Let (p0; q0) 2 RT . Then fn(p0; q0) � fn(p; q); p0 k T �� q0 k T .{ Let p0 #d.It follows that d 6= 
, and p0 ��! for an output � of subje
t d. We obtain p0 k T ��!(p00 k �d0). Sin
e p0 k T �� q0 k T , we obtain that q0 k T �=) r where (p00 k �d0) �� r.Then r = (q000 k �d0), where q0 �=) 
�! q00 �=) q000, for an output 
 of subje
t d.13



{ Let p0 ��! p00.Then p0 k T ��! p00 k T . Sin
e p0 k T �� q0 k T , it follows that q0 k T �=) r, wherep00 k T �� r. If � 6= �, it is easy to remark that T had to parti
ipate in the transition,and that r 6+�
 , whilst (p00 k T ) #
, 
ontradi
tion with p00 k T �� r. So r = q00 k T whereq0 �=) q00. From the 
orollary 1 we obtain also that fn(p00; q00) � fn(p0; q0).� Lemma 5Corollary 2.1) p e�� q implies p e�b q2) p e�� q implies p e�b q:ProofWe prove only the weak 
ase.Let p e�� q and let C1[�℄ an arbitrary stati
 
ontext. For any stati
 
ontext C[�℄, sin
eC[C1[�℄℄ is a stati
 
ontext, by the De�nition 6 we obtain that, C[C1[p℄℄��C[C1[q℄℄. Wealso obtain C1[p℄ e�� C1[q℄.By the Lemma 5, we obtain that C1[p℄�bC1[q℄. By the De�nition 4 we obtain thatp e�b q: � Corollary 23.3 Labelled BisimulationsIn order to prove that two pro
esses p and q are not (weak) step-equivalent (or weakbarbed equivalent), it is enough to �nd a suitable stati
 
ontext C, su
h that C[p℄ andC[q℄ are not (weak) step bisimilar (respe
tively (weak) barbed bisimilar). But the 
onverse(i.e. proving the step-equivalen
e or the barbed equivalen
e) is mu
h harder to prove ingeneral just using the given de�nitions; indeed, this requires a quanti�
ation over all the
ontexts. Thus, it is interesting to have another way to dire
tly prove that two systemsare equivalent.De�nition 7. Weak labelled bisimulations A symmetri
 relation S over the set Pb(of pro
esses) is a (weak) bisimulation if whenever (p; q) 2 S, then1) if p ��! p0, then 9q0 su
h that q �=) q0 and (p0; q0) 2 S,2) if p �~b�a~
�! p0 and ~b \ fn(p; q) = ;, then 9q0 su
h that q �~b�a~
=) q0 and (p0; q0) 2 S,3) if p ah~bi?�! p0 then 9q0 su
h that q �=) � ah~bi?�! � �=) q0 and (p0; q0) 2 S.Two pro
esses p and q are weak bisimilar, noted p � q, if (p; q) 2 S for some weakbisimulation S.The strong bisimilarity � is de�ned similar, by substituting�! to =) in 
onditions1) and 2), and repla
ing 
ondition 4) by \if p ah~bi?�! p0 then 9q0 su
h that q ah~bi?�! q0 and(p0; q0) 2 S". 14



De�nition 8. Strong labelled bisimulations A symmetri
 relation S over the set Pb(of pro
esses) is a strong bisimulation if whenever (p; q) 2 S, then1) if p ��! p0, then 9q0 su
h that q ��! q0 and (p0; q0) 2 S,2) if p �~b�a~
�! p0 and ~b \ fn(p; q) = ;, then 9q0 su
h that q �~b�a~
�! q0 and (p0; q0) 2 S,3) if p ah~bi?�! p0 then 9q0 su
h that q ah~bi?�! q0 and (p0; q0) 2 S.Two pro
esses p and q are strong bisimilar, noted p � q, if (p; q) 2 S for some strongbisimulation S.By 
lassi
al arguments [11℄, we 
an prove that � and � are equivalen
e relations.As for barbed bisimilarity and for � - bisimilarity, we have for the strong labelledbisimilarity the next lemma.Lemma 6. � satis�es the following properties:(a) p �� q implies p � q(b) p k nil � p(
) p k q � q k p(d) (p k q) k r � p k (q k r)(e) p+ nil � p(f) p+ q � q + p(g) (p+ q) + r � p+ (q + r)(h) �xp � p if x 62 fn(p)(i) �y�xp � �x�yp if x 6= y(j) (�xp) k q � �x(p k q) if x 62 fn(q)(k) (�xp) + q � �x(p+ q) if x 62 fn(q)(l) hy = zi(�xp); q � �x(hy = zip; q) if x 62 fn(q) [ fy; zg:Proofa) p �� q implies p � qThe relation S1 whereS1 def= �(p; q) �� p; q 2 Pb; p �� q	is a strong bisimulation. The result follows from the observation that p � q and p 
�! p0implies q 
�! p0 (by the appli
ation of the rule (1) from the Table 3).b) p k nil � pThe relationS2 def= �(p k nil; p) �� p;2 Pb	is a strong bisimulation.Let (p; q) 2 S2. Then p = q k nil.If p ��! p0, then the last used rule to infer this transition is the rule (14). So p0 = q0 k nilet q ��! q0. Then (q0 k nil; q0) 2 S2.If q ��! q0, by the appli
ation of the rule (14) we obtain p ��! q0 k nil with (q0 knil; q0) 2 S2. 15




) p k q � q k p The relationS3 def= �(p k q; q k p) �� p; q 2 Pb	is a strong bisimulation.If p k q ��! r, then the last used rule to infer this transition is one of the rules (12), (13)or (14) and r = p0 k q0. By the appli
ation of the rule (12), or one of the symmetri
alof the rules (13) or (14), we obtain q k p ��! q0 k p0.d) (p k q) k r � p k (q k r)The relationS4 def= �(p k q) k r; p k (q k r) �� p; q; r 2 Pb	is a strong bisimulation. The proof is similar to the previous 
ase.e) p+ nil � pThe relationS5 def= �(p+ nil; p) �� p 2 Pb	S�(p; p) �� p 2 Pb	is a strong bisimulation.Let (p; q) 2 S2. Then p = q + nil ou p = q.The 
ase p = q is obvious.Let p = q + nil.If q + nil ��! r, then the last used rule to infer this transition is the rule (8), andr = q0, where q ��! q0. Obviously (q0; q0) 2 S2.If q ��! r, by the appli
ation of the rule (8), we obtain q + nil ��! r and (r; r) 2 S2.f) p+ q � q + pg) (p+ q) + r � p+ (q + r):For 
ases f) and g), the proof that S6 et S7 are strong bisimulations is similar to 
asee).S6 def= �(p+ q; q + p) �� p; q 2 Pb	S�(p; p) �� p 2 Pb	S7 def= �((p+ q) + r; p+ (q + r)) �� p; q; r 2 Pb	S�(p; p) �� p 2 Pb	(h) �xp � p si x 62 fn(p)The relationS8 def= �(�xp; p) �� p 2 Pb; x 62 fn(p)	is a strong bisimulation.Let (p; q) 2 S8. Then p = �xq with x 62 fn(q).If �xq ��! r, then the last used rule to infer this transition is the rule (7), and r = �xq0,where q ��! q0 and x 62 fn(q0). Obviously (�xq0; q0) 2 S8.If q ��! r, then by the appli
ation of the rule (7), we obtain that �xq ��! �xr and(�xr; r) 2 S8 (sin
e x 62 fn(r)).(i) �y�xp � �x�yp if x 6= yThe relationS9 def= �(�x1 : : : �xnp; �x�(1) : : : �x�(n)p) �� n 2 N; � permutation of f1; : : : ; ng; for alli; j; xi 6= xj ; p 2 Pbg	is a strong bisimulation.Let (�x1 : : : �xnp; �x�(1) : : : �x�(n)p) 2 S9 and let �x1 : : : �xnp ��! q0 be a transition.By indu
tion on n, we 
an prove that this transition is derived from a transition of p,p ��! p0. We shall make an analysis by 
ases, depending on �.� � = � .Then by n appli
ations of the rule (7), we obtain �x1 : : : �xnp ��! �x1 : : : �xnp0and �x�(1) : : : �x�(n)p ��! �x�(1) : : : �x�(n)p0.16



� � = ah~bi.Then a 62 fx1; : : : ; xng, and by n appli
ations of the rule (7), we obtain �x1 : : : �xnp ah~bi�!�x1 : : : �xnp0 and �x�(1) : : : �x�(n)p ah~bi�! �x�(1) : : : �x�(n)p0.� � = �~b�a~
, and ~
 n ~b \ fx1; : : : ; xng = fxi1 ; : : : ; ximg We have two 
ases again.� a 62 fx1; : : : ; xngThen by n �m appli
ations of the rule (7) and by m appli
ations of the rule(5), we obtain �x1 : : : �xnp �xi1 :::�xim�~b�a~
�! �y1 : : : �yn�mp0 and�x�(1) : : : �x�(n)p �xi1 :::�xim�~b�a~
�! �y�(1) : : : �y�(n�m)p0 for some permutation � off1; : : : ; n�mg and fy1 : : : yn�mg = fy�(1) : : : y�(n�m)g = fx1; : : : ; xngnfxi1 ; : : : ; ximg:� a 2 fx1; : : : ; xngThen by several appli
ations of the rules (5) and (7) and by an appli
ation ofthe rule (6), we obtain �x1 : : : �xnp ��! �y1 : : : �yn+kp0 and�x�(1) : : : �x�(n)p ��! �y�(1) : : : �y�(n+k)p0 for some permutation � of f1; : : : ; n+kg, j~bj = k and fy1 : : : yn+kg = fy�(1) : : : y�(n+k)g = fx1; : : : ; xng [ ~b:(j) (�xp) k q � �x(p k q) if x 62 fn(q)The relationS10 def= �((�xp) k q; �x(p k q)) �� p 2 Pb; x 62 fn(q)	S�(p; p) �� p 2 Pb	 *is a strong bisimulation.Let ((�xp) k q; �x(p k q)) 2 S10, with x 62 fn(q).If (�xp) k q ��! r, then the last used rule to infer this transition is one of the rules(12), (13), (14) or the symmetri
al of one of the rules (13), or (14).If � = �~b�a~
 et x 2 ~b, then for some p0 and q0 we have (�xp) k q �~b�a~
�! p0 k q0 and�x(p k q) �~b�a~
�! p0 k q0 by the appli
ation of the rule (5).For all other 
ases, we obtain (�xp) k q ��! (�yp0) k q0 and �x(p k q) ��! �y(p0 k q0)for some y, p0 and q0.(k) (�xp) + q � �x(p+ q) if x 62 fn(q)(l) hy = zi(�xp); q �b �x(hy = zip; q) if x 62 fn(q) [ fy; zgFor the 
ases k) and l), the proof that S11 et S12 are strong bisimulations is similar to
ase e).S11 def= �((�xp) + q; �x(p+ q)) �� p 2 Pb; x 62 fn(q)	S�(p; p) �� p 2 Pb	S12 def= �(hy = zi(�xp); q; �x(hy = zip; q)) �� p; q 2 Pb; x 62 fn(q)[fy; zg	S�(p; p) �� p 2Pb	 � Lemma 6Lemma 2, 4 and 6 allow us to omit the parenthesis in p k q k r or p + q + r in some
ontexts, and to omit \nil" in some terms.Like in [11℄, we use "bisimulations up-to" to redu
e the size of relations in the proofs.We shall use just the "bisimulations up-to" �.De�nition 9. A symmetri
 relation S is a weak bisimulation up-to � if (p; q) 2 S,implies1) if p ��! p0, then 9q0 su
h that q �=) q0 and (p0; q0) 2 �S�,17



2) if p �~b�a~
�! p0 and ~b \ fn(p; q) = ;, then 9q0 su
h that q �~b�a~
=) q0 and (p0; q0) 2 �S�,3) if p ah~bi?�! p0 then 9q0 s
uh that q �=) � ah~bi?�! � �=) q0 et (p0; q0) 2 �S�.The de�nition of strong bisimulation up-to � follows as in the De�nition 8.By 
lassi
al arguments, we 
an prove the next Lemma.Lemma 7. If S is a weak bisimulation up-to � (strong bisimulation up-to �) then S � �(S � �).ProofWe give the proof only for the weak 
ase.If S is a weak bisimulation up-to �, we prove thatSu def= [n<1Snis a weak bisimulation, where S0 def= �(p; q) �� p � S � q 	Sn+1 def= �(p[~z=~x℄; q[~z=~x℄) j (p; q) 2 Sn; ~z \ fn(p; q) = ;; [~z=~x℄ inje
tive 	The proof is by indu
tion on n.{ Let (p; q) 2 S0. Then 9p1; q1 su
h that p � p1 S q1 � q.1. For any p ��! p0 su
h that bn(�) \ fn(p; q; p1; q1) = ;, we 
an prove that we 
an�ll the next diagram: p � p1 S q1 � q??y� ??y� ww��̂ ww��̂p0 � p01 � S � q01 � q0We prove the assertion only for the 
ase � = �~b�a~
. The other 
ases are simpler.Let p �~b�a~
�! p0, with ~b \ fn(p; q; p1; q1) = ;.Then p � p1 implies p1 �~b�a~
�! p01.Sin
e p1 S q1, by the de�nition 9 we obtain q1 �~b�a~
=) q01 with p01 � S � q01.By indu
tion on the length of �~b�a~
=) and using that q1 � q, we obtain q �~b�a~
=) q0 withq0 � q01.We use after � Æ ��� to obtain (p1; q1) 2 S0.2. If p �~b�a~
�! p0 su
h that ~b \ fn(p; q) = ; and ~b \ fn(p1; q1) 6= ;, then let ~d su
h that~d\fn(p; q; p1; q1) 6= ;. Repeating the reasoning of 
ase 1., we obtain that p � ~d�a~
�! p",and q � ~d�a~
=) q" with p" � S � q".We 
an prove after that p0 = p"[~b= ~d℄ and q �~b�a~
=) q0 with q0 = q"[~b= ~d℄, and hen
e(p0; q0) 2 S1. 18



{ Let (p; q) 2 Sn+1. Then 9(p1; q1) 2 Sn su
h that p = p1[~z=~x℄, q = q1[~z=~x℄, fn(p1; q1) \~z = ; et [~z=~x℄ is an inje
tive substitution.let p ��! r0. We 
an prove that exists �0 inje
tive, su
h that p = p1[~z=~x℄ = p1�0,q = q1[~z=~x℄ = q1�0, r0 = r�0, � = �0(�) and pr
od(�0) \ fn(p1; q1; �) = ;. It followsp1 ��! r, and sin
e (p1; q1) 2 Sn, by indu
tion hypothesis, we obtain q1 �=) s with(r; s) 2 Sm for some m 2 N.Hen
e q = q1�0 �=) s�0 and pr
od(�0) \ fn(r; s) = ;, so (r�0; s�0) 2 Sm+1:The proof for the strong bisimulation up-to � is similar. � Lemma 7Labelled bisimulation is a 
ongruen
e with respe
t to restri
tion and parallelism.Lemma 8. If p � q (p � q) then �ap � �aq (�ap � �aq).ProofWe shall prove that the relation S def= 1[n=0SnwhereS0 def= �(p; q) �� p � q	Sn+1 def= �(p; q) �� 9a 2 Chb;9(p0; q0) 2 Sn; p = �ap0; q = �aq0	is a weak bisimulation.We 
an prove that z 62 fn(p; q) and p � q imply p[z=x℄ � q[z=x℄, and after, we 
anprove by indu
tion on n, that z 62 fn(p; q) and (p; q) 2 Sn imply (p[z=x℄; q[z=x℄) 2 Smwith m � n.Using this, we 
an also prove by indu
tion on n, that if (p; q) 2 Sn and p �� p1, thenit exists q1 and m � n su
h that q �� q1 et (p1; q1) 2 Sm. (1)Now, we prove by indu
tion on n, that if (p; q) 2 Sn and p ��! p0 where � satis�es the
onditions in the De�nition 7, then it exists m 2 N and q �̂=) q0, su
h that (p0; q0) 2 Sm.The 
ase n = 0 follows dire
tly from the De�nition 7.Let (p; q) 2 Sn+1. Hen
e p = �ap1 et q = �aq1 with (p1; q1) 2 Sn.Let p ��! p0.If the last rule used is (1), with p �� p1 and p1 ��! p0, we use 1 to obtain a 
orre-sponding q1 and we repeat the reasoning for p1 et q1 (in this manner we redu
e stri
tlythe number of appli
ations of the rule (1)). So we 
an suppose that the last rule used isnot (1).We have several 
ase, depending on the a
tion �.{ � = � . Then the last applied rule is (6) or (7).If the last applied rule is (6), then p1 �~b�a~
�! p01 and p0 = �a�~bp01. By indu
tion, 9m su
hthat q1 �~b�a~
=) q01 and (p01; q01) 2 Sm. We obtain by an appli
ation of the rule (6) and byseveral appli
ations of the rule (7), that q �=) �a�~bq01 with (�a�~bp01; �a�~bq01) 2 Sm+1+j~bj.19



If the last applied rule is (7), then p1 ��! p01 and p0 = �ap01. By indu
tion 9m su
hthat q1 �=) q01 and (p01; q01) 2 Sm. We obtain by several appli
ations of the rule (7),that q �=) �aq01, and (�ap01; �aq01) 2 Sm+1.{ � = �~b �d~
. So d 6= a and that last rule used is (5) or (7).If the last applied rule is (5), then p1 �~b �d~
�! p0 and a 2 ~
 n (~b [ fdg). By indu
tion 9msu
h that q1 �~b �d~
=) q0 and (p0; q0) 2 Sm. We obtain by an appli
ation of the rule (5) andby several appli
ations of the rule (7), that q �a~b �d~
=) q0.If the last applied rule is (7), then p1 �~b �d~
�! p01, p0 = �ap01 and a 62 (~
 n ~b) [ fdg. Byindu
tion 9m su
h that q1 �=) q01 et (p01; q01) 2 Sm. We obtain by several appli
ationsof the rule (7), that q �~b �d~
=) �aq01, and (�ap01; �aq01) 2 Sm+1.{ � = dh~bi?. So d 6= a and the last rule used is (7). Then p1 dh~bi?�! p01, and p0 = �ap01. Byindu
tion 9m su
h that q1 �=) � dh~bi?�! � �=) q01 and (p01; q01) 2 Sm. We obtain by severalappli
ations of the rule (7), that q �=) � dh~bi?�! � �=) �aq01, and (�ap01; �aq01) 2 Sm+1.The 
ase \strong bisimulation" is similar. � Lemma 8Lemma 9.1. If p � q then p k r � q k r.2. If p � q then p k r � q k r.ProofFor the 
ase "weak bisimulation", we prove that the relationT def= �(p k r; q k r) �� p � q 	is a weak bisimulation.Let p k r ��! s.If the last applied rule is (1), with p k r �� p1 k r1, we have q k r �� q k r1 and p1 � q(in this manner we stri
tly redu
e the number of appli
ations of the rue (1)). So we 
ansuppose that the last rule used is not (1).{ p k r ��! s. There are two 
ases:� s = p0 k r et p ��! p0.Sin
e p � q then 9q0 su
h that q �=) q0 and p0 � q0. Hen
e q k r �=) q0 k r, with(p0 k r; q0 k r) 2 T .� s = p k r0 et r ��! r0.Then q k r ��! q k r0, with (p k r0; q k r0) 2 T .{ p k r �~b�a~
�! s with ~b \ fn(p; q; r) = ;. There are two 
ases:� s = p0 k r0, p �~b�a~
�! p0 and r ah~
i?�! r0.Sin
e p � q then q �~b�a~
=) q0 and p0 � q0, and so q k r �~b�a~
=) q0 k r0, with (p0 k r0; q0 kr0) 2 T . 20



� s = p0 k r0, p ah~
i?�! p0 and r �~b�a~
�! r0.Sin
e p � q then q �=) q00 ah~
i?�! q000 �=) q0 for some q00; q000 and p0 � q0, and soq k r �~b�a~
=) q0 k r0, with (p0 k r0; q0 k r0) 2 T .{ p k r ah~bi?�! s.s = p0 k r0, p ah~bi?�! p0 and r ah~bi?�! r0.Sin
e p � q then q �=) q00 ah~bi?�! q000 �=) q0 for some q00; q000 et p0 � q0, and hen
eq k r �=) q00 k r ah~bi?�! q000 k r0 �=) q0 k r0, with (p0 k r0; q0 k r0) 2 T .The 
ase "strong bisimulation" is similar. � Lemma 9The following lemmas prove that labelled bisimulation is a pretty strong relation.Lemma 10.1) p � q implies p �b q.2) p � q implies p �b q:ProofWe prove only the weak 
ase. We prove that � is a weak barbed bisimulation.Let (p; q) 2�.{ Let p #
. Then p ��! for an output � of subje
t 
. Sin
e p � q, we obtain that q �=)and so q +
.{ Let p ��! p0. Sin
e p � q, then q �=) q0 with (p0; q0) 2�. � Lemma 10Corollary 3.1) p � q implies p e�b q.2) p � q implies p e�b q:ProofWe give the proof for the weak 
ase.Let p � q.Let C be an arbitrary stati
 
ontext.By indu
tion on the stru
ture of C, and using the Lemmas 8, and 9, we obtain thatC[p℄ � C[q℄.By the Lemma 10, we obtain that C[p℄ �b C[q℄. So p e�b q. � Corollary 3In the same manner, we 
an prove the next results.Lemma 11.1) p � q implies p �� q.2) p � q implies p �� q:Corollary 4. 21



1) p � q implies p e�� q.2) p � q implies p e�� q:We use similar arguments as in [18℄, to prove that labelled bisimulation, � - equivalen
eand barbed equivalen
e 
oin
ide for an important 
lass of pro
esses, namely image �nitepro
esses.A labelled transitional system (P; A
t; 7!) is image �nite if for any pro
esses p anda
tion �, the set fq j p �7! qg est �nite (in our 
ase �7! 
an stand either for the strong orfor the weak redu
tion).A pro
esses p is image �nite if for any a
tion �, the set fq j p �7! qg is �nite, and forany pro
esses q and a
tion � su
h that p �7! q, q is image �nite.Remark that in what 
on
erns the strong redu
tion, any pro
esses is image �nite (up-toalpha-
onversion).In order to keep the notations simple, we shall give the proof just for the monadi
version of b� -
al
ulus (but our results 
an be easily extended to the polyadi
 version).Lemma 12. For all image �nite pro
esses p and q,1) p e�b q implies p � q,2) p e�b q implies p � q:ProofWe shall give the proof only for the weak 
ase.Let F a monotoni
 fun
tion de�ned on the set of relations between pro
esses P(Pb�Pb)asso
iated to the de�nition of labelled bisimulations.If S is a relation on Pb, then (p; q) 2 F(S), only if the following 
onditions are satis�ed:1) if p ��! p0, then 9q0 su
h that q �=) q0 and (p0; q0) 2 S,2) if p �~b�a~
�! p0 and ~b \ fn(p; q) = ;, then 9q0 su
h that q �~b�a~
=) q0 and (p0; q0) 2 S,3) if p ah~bi?�! p0 then 9q0 su
h that q �=) � ah~bi?�! � �=) q0 and (p0; q0) 2 S.Let �0 = Pb�Pb, �n+1 = F(�n), and �! = Tk<!�k . We 
all�m a weakm-bisimulation.It is well known [7℄, that for an image �nite labelled transitional system �! = �:It suÆ
es to prove that 8m, p e�b q =) p �m q:For a set N of pairs of names, we shall denote Ni the proje
tion on the i-Th element,n(N) = N1 [N2, and we shall require N1 \N2 = ;. We use H+ (Y �) as an abbreviationfor H [f(y1; y01)g (Y n f(y1; y01)g). H1 plays the role of names whi
h 
an be known by p orq, and Y plays the role of names whi
h 
an be learned by p or q. To prove the impli
ation,we build a 
ontexts family CnM;H;Y [�℄ su
h that the relationrm = n(p; q) j 9n;M;H; Y; ~x su
h that n(H) \ n(Y ) = ;; jY j = m; fn(p k q) � H1 �M;(H1 [ Y1) � f~xg; (H2 [ Y2) \ f~xg = ;; �~xCnM;H;Y [p℄ �b �~xCnM;H;Y [q℄ois a weak m-bisimulation.Let in, out, new and fbnjn � 0g be some "fresh" names, su
h that (f~xg [ n(H) [n(Y )) \ (fbnjn � 0g [ fin; out; newg) = ;. 22



Let CnM;H;Y [�℄ def= [�℄ k ASensorr;nhMi k GSensors;mhH;Y iwhere jM j = r; jHj = s; jY j = m,The role of GSensor is to provide to p et q all the possible 
ommuni
ations. The
onditions fn(p k q) � H1, fn(p k q)\Y1 = ; and jY1j = m assure that GSensors;mhH;Y i
an \satisfy" all the possible 
ommuni
ations of p or q during m transitions.GSensors;m def= (H;Y )X((a;a0);(b;b0))2H�H+ �ab:(�:GSensors+1;m�1hH+; Y �i+ �:W ha0; b0; ini)+ Xa2H1 a(y):
asehy;H1; (Rz)z2H1 ; R0yi; with jHj = s; jY j = mW def= (a; b; r)(�a + �:(�b+ �r));Rz def= �:GSensors;m�1hH;Y �i+ �:W ha0; z0; outiR0y def= �:GSensors+1;m�1hH [ f(y; y01)g; Y �i+ �:W ha0; new; outi
asehy;H; (Ry)y2H ; Ri def= (R si H = ;;hy = ziRz; 
asehy;H 0; (Ry)y2H0 ; Ri if H = H 0 [ fzg: (2)ASensor 
ounts the number of visible made by p, q or GSensors;m (hen
e the 
onditionfn(p k q) � H1 �M).ASensorr;n def= (M)(bn + Xa2M a(x):ASensorr+1;n+1hM [ fxgi); with jM j = rWe prove that rm is a weak m-bisimulation.Let (p; q) 2 rm: Then 9n;M;H; Y; ~x su
h that n(H)\n(Y ) = ;; jY j = m; fn(p k q) �H1 �M; (H1 [ Y1) � f~xg; (H2 [ Y2) \ f~xg = ;; �~xCnM;H;Y [p℄ �b �~xCnM;H;Y [q℄:[1℄ Let suppose p ��! p0:Then �~xCnM;H;Y [p℄ ��! �~xCnM;H;Y [p0℄: Then we must have a transition�~xCnM;H;Y [q℄ �=) t �b �~xCnM;H;Y [p0℄Sin
e �~xCnM;H;Y [p0℄ #bn , we 
an infer that ASensor remains un
hanged, and sin
eH1 �M , we obtain that t � �~xCnM;H;Y [q0℄ where q �=) q0:[2℄ Let suppose p �ab�! p0.Then�~xCnM;H;Y [p℄ ��! �~x(p0 k ASensorr+1;n+1hM [ fbgi k 
asehb;H1; (Rz)z2H1 ; R0bi)= t1 ��! �~x(p0 k ASensorr+1;n+1hM [ fbgi k GSensors;m�1hH;Y �i)= t2 = �~xCn+1M[fbg;H;Y � [p0℄23



Then it should exist the pro
esses u1, u2 derived from �~xCnM;H;Y [q℄ su
h that�~xCnM;H;Y [q℄ �=) u1 �b t1u1 �=) u2 �b t2First step: �~xCnM;H;Y [p℄ ��! t1: The 
on�guration �~xCnM;H;Y [q℄ must do at least one step,sin
e �~xCnM;H;Y [q℄ #bn whilst t1 6+bn . Be
ause t1 #bn+1 , p and GSensor 
an not make morethan one visible step. We obtain that u1 must have the following form:� ~x0(q00 k ASensorr+1;n+1hM [ fb1gi k v00)for some b1; q00; v00; � ~x0, q �0=) q00, GSensors;mhH;Y i �00�! v00, where �00 and �0 are 
om-plementary a
tions. The fa
t t1 =)+fa0;b0;out;bn+1g implies that �0 is an output, and �00must be the 
orresponding input; moreover, �0 
an not be a bound output. Hen
e weobtain that �0 = a1b1, where fa; bg = fa1; b1g. If we suppose a1 = b; b1 = a, we shouldobtain t1 =)+fb0;out;bn+1g, transition that u1 
an not mat
h. For the se
ond step, we eas-ily obtain that u2 must have the following form �~xCn+1M[fbg;H;Y � [q0℄ where q00 �=) q0 etv00 ��! GSensors;m�1hH;Y �i[3℄ Let suppose p �b�ab�! p0.Then�~xCnM;H;Y [p℄ ��! �b�~x(p0 k ASensorr+1;n+1hM [ fbgi k 
asehb;H1; (Rz)z2H1 ; R0bi)= t1 ��! �b�~x(p0 k ASensorr+1;n+1hM [ fbgi k GSensors+1;m�1hH [ f(b; y01)g; Y �i)= t2 = �b�~xCn+1M[fbg;H[f(b;y01)g;Y � [p0℄Then it should exist the pro
esses u1, u2 derived from �~xCnM;H;Y [q℄ su
h that�~xCnM;H;Y [q℄ �=) u1 �b t1u1 �=) u2 �b t2The �rst step: �~xCnM;H;Y [p℄ ��! t1: The 
on�guration �~xCnM;H;Y [q℄ must do at least a step,sin
e �~xCnM;H;Y [q℄ #bn or t1 6+bn . Sin
e t1 #bn+1 , p and GSensor 
an not make more thana single visible step. Hen
e we obtain that u1 must have the following form:� ~x0(q00 k ASensorr+1;n+1hM [ fb1gi k v00)for some b1; q00; v00; ~x0, q �0=) q00, GSensors;mhH;Y i �00�! v00, where �00 and �0 are 
om-plementary a
tions. Sin
e t1 =)+fa0;new;out;bn+1g we dedu
e that �0 is an output, and �00must be the 
orresponding input; moreover, �0 must be a bound output. Then �0 = �ba1b,where ne
essarily a = a1. For the se
ond step, we easily prove that u2 must have theform �b�~xCn+1M[fbg;H[f(b;y01)g;Y � [q0℄ where q00 �=) q0 and v00 ��! GSensors+1;m�1hH [f(b; y01)g; Y �i[4℄ Let suppose p ah~bi?�! p0. 24



Then �~xCnM;H;Y [p℄ ��!�~x(p0 k ASensorr+1;n+1hM [ fbgi k (�:GSensors+1;m�1hH+; Y �i+ �:W ha0; b0; ini))= t1 ��! �~x(p0 k ASensorr+1;n+1hM [ fbgi k GSensors+1;m�1hH+; Y �i)= t2 = �~xCn+1M[fbg;H+;Y � [p0℄Then it should exist the pro
esses u1, u2 derived from �~xCnM;H;Y [q℄ su
h that�~xCnM;H;Y [q℄ �=) u1 �b t1u1 �=) u2 �b t2The �rst step: �~xCnM;H;Y [p℄ ��! t1: The 
on�guration �~xCnM;H;Y [q℄ must do at least a step,sin
e �~xCnM;H;Y [q℄ #bn and t1 6+bn . Sin
e t1 #bn+1 , p or GSensor 
an not make more thanone single visible step. Hen
e we obtain that u1 must have the following form:� ~x0(q00 k ASensorr+1;n+1hM [ fb1gi k v00)for some b1; q00; v00; � ~x0, q �0=) q00, GSensors;mhH;Y i �00�! v00, where �00 et �0 are 
om-plementary a
tions. Sin
e t1 =)+fa0;b0;in;bn+1g then �0 must be either an input, either adis
ard, whilst �00 is the 
orresponding output. Hen
e �0 = a1h ~b1i?, �00 = a1b1, where ne
-essarily fa; bg = fa1; b1g. If we suppose a1 = b; b1 = a, we should obtain t1 =)+fb0;in;bn+1g,transition that u1 
an not mat
h. For the se
ond step, we easily obtain that u2 must havethe form �~xCn+1M[fbg;H+;Y � [q0℄ with q00 �=) q0 and v00 ��! GSensors+1;m�1hH+; Y �i� Lemma 12Theorem 1. For all image �nite pro
esses p and q,1) p e�b q i� p e�� q i� p � q2) p e�b q i� p e�� q i� p � q:ProofThe assertion of the theorem is an immediate 
onsequen
e of Corollaries 2 and 4 andof Lemma 12. � Theorem 14 Congruen
esIn this se
tion we fo
us on the 
ongruen
e indu
ed by barbed bisimilarity. Our goal willbe to de�ne a relation R over the set Pb of pro
esses su
h that if p R q then p andq are observable on the same set of 
hannels, observability is preserved by redu
tion,and moreover, when pla
ed in an arbitrary 
ontext C, p and q 
annot be distinguished(C[p℄ R C[q℄). In this paper we shall 
on
entrate on the strong 
ongruen
e, for the weak
ase (whi
h abstra
ts for internal steps), we shall defer to future work.25



De�nition 10. Barbed Congruen
eTwo pro
esses p and q are barbed 
ongruent, shortly p 
�b q, if for any 
ontext C,C[p℄ �b C[q℄:Obviously, 
�b is by de�nition a 
ongruen
e. But as for barbed equivalen
e, this def-inition is more appropriate to prove the non-
ongruen
e rather than the 
ongruen
e oftwo pro
esses. So we are interested in �nding a dire
t 
hara
terization of this 
ongruen
ebased on labelled transitions.Unfortunately, � is not the target 
hara
terization, as it follows from the above remark.Remark 3.{ � is not preserved by 
hoi
e. We have that a � b, but a+ �
 6� b+ �
:{ � is not preserved by substitution. Let p def= �x:y:�
 + y:(�x k �
) and q def= �x k y:�
. Thenp � q, but p[x=y℄ 6� q[x=y℄:{ � is not preserved by pre�xing. It is a dire
t 
onsequen
e of the previous item.Unlike strong bisimilarity from the �-
al
ulus, � is not preserved by 
hoi
e. We borrowideas from [8℄ and [14℄ to obtain a 
ongruen
e relation whi
h do not require 
losure withrespe
t to 
ontexts.De�nition 11. Let �+ be given by1) if p ��! p0, then 9q0 su
h that q ��! q0 and p0 � q0,2) if p �~b�a~
�! p0 and ~b \ fn(p; q) = ;, then 9q0 su
h that q �~b�a~
�! q0 and p0 � q0,3) if p ah~bi�! p0, then 9q0 su
h that q ah~bi�! q0 and p0 � q0,Let �
 be given by p �
 q if p� �+ q� for all substitutions �.Remark 4.{ �
��+��.{ the in
lusions are stri
t.{ �+ is preserved by +, � and k.ProofThe in
lusions follow dire
tly from the de�nitions.To prove that the �rst in
lusion is stri
t, it suÆ
es to take p def= �x:y:�
 + y:(�x k �
) andq def= �x k y:�
. Then p �+ q, but p 6�
 q:To prove that the se
ond in
lusion is stri
t, it suÆ
es to take p def= a et q def= b. Thenp � q, but p 6�+ q:The fa
t that �+ is preserved by � and k 
an be proved by an analysis by 
ases, inthe same manner as for � in Lemmas 8 and 9.The fa
t that �+ est preserved by + is proved by an analysis by 
ases.Let p �+ q. We prove that (p+ r) �+ (q + r).If p+r ��! s, then this transition is inferred using the rule (8), from p ��! s or r ��! s.If p ��! s, sin
e p �+ q, using the De�nition 11, we obtain q ��! t with s � t. Usingthe rule (8), we obtain q + r ��! t.If r ��! s, using the rule (8), we obtain q + r ��! s, and obviously s � s.The 
ase q + r ��! s is similar. � Remark 426



Lemma 13. �
 is preserved by pre�x, restri
tion, summation, mat
hing and parallelism.Proof{ p �
 q =) �:p �
 �:q: for any pre�x �.� � = �:Let � be a substitution. Then p �
 q =) p� �+ q� =) p� � q� =) �:(p�) �+�:(q�) =) (�:p)� �+ (�:q)�:Hen
e �:p �
 �:q:� � = �ab:Let � be a substitution. Then p �
 q =) p� �+ q� =) p� � q� =)(�a~b)�:(p�) �+ (�a~b)�:(q�) =) (�a~b:p)� �+ (�a~b:q)�:We obtain �a~b:p �
 �a~b:q:� � = a(~b):Let � be a substitution. Then p �
 q =) p� �+ q� =) p� � q� =)(a(~b):p)� �+ (a(~b):q)�:Hen
e a(~b):p �
 a(~b):q:{ p �
 q =) �ap �
 �aq for any 
hannel a 2 Chb.Let � be a substitution. We 
an suppose a 62 (prdom(�)[ pr
od(�)). Then p �
 q =)p� �+ q� =) (from the Remark 4) (�ap)� �+ (�aq)�:Hen
e �ap �
 �aq:{ p �
 q =) p+ r �
 q + r:Let � be a substitution. Then p �
 q =) p� �+ q� =) (from the Remark 4)p� + r� �+ q� + r� =) (p+ r)� �+ (q + r)�:We obtain p+ r �
 q + r:{ p �
 q =) hx = yip; r �
 hx = yiq; r ^ hx = yir; p �
 hx = yir; q:Let � be a substitution. We 
an prove the impli
ations by an analysis by 
ases (de-pending on the relation between �(x) and �(y)), using the fa
t that �+ is re
exive.{ p �
 q =) p k r �
 q k r for any pro
esses p 2 Pb.Let � be a substitution. Then p �
 q =) p� �+ q� =) (from the Remark 4)p� k r� �+ q� k r� =) (p k r)� �+ (q k r)�We obtain p k r �
 q k r: � Lemma 13For a pro
ess E whi
h 
ontains a free identi�er X, and a pro
ess p, we denote E(p)for the pro
ess obtained from E by repla
ing Xh~yi by ph~y=~xi where ~x denotes the freenames of p. For example, if p def= (x1; x2)( �x1:x2 k �x2) and E def= �ab:Xha; bi + �
�a
:Xh
; bi,then E(p) = �ab:(�a:b k �b) + �
�a
:(�
:b k �b).De�nition 12. Let E and F be two pro
esses whi
h 
ontain a free identi�er X. ThenE � F (respe
tively E �+ F , E �
 F ) if E(p) � F (p) (respe
tively E(p) �+ F (p),E(p) �
 F (p)) for any pro
ess p:We shall use the bisimulations up-to �+.De�nition 13. A symmetri
 relation S is a bisimulation up-to �+ sif for any (p; q) 2S, we have 27



1) if p ��! p0, then 9q0 su
h that q ��! q0 and (p0; q0) 2 �S�,2) if p �~b�a~
�! p0 and ~b \ fn(p; q) = ;, then 9q0 su
h that q �~b�a~
�! q0 and (p0; q0) 2 �S�,3) if p ah~bi�! p0 then 9q0 su
h that q ah~bi�! q0 and (p0; q0) 2 �S�.Remark that in the De�nition 13, we require (p0; q0) 2 �S� and not (p0; q0) 2 �+S�+.Next lemma allow to redu
e the size of relations used to prove for two pro
esses p andq that p�+q.Lemma 14. If S is a bisimulation up-to �+ then S � �+.ProofLet S be a bisimulation up-to �+. Then S satis�es the 
onditions of the De�nition 9,and hen
e S ��.Now let suppose that (p; q) 2 S and let p ��! p0, where � satis�es the 
onditions ofthe De�nition 11. Then by the De�nition 13, we obtain that q ��! q0 and (p0; q0) 2 �S�:Sin
e S �� et � is transitive, we obtain (p0; q0) 2 �: � Lemma 14Lemma 15. Let E and F be open pro
esses whi
h 
ontain X as free identi�er. If E �
 F ,then (re
 Xh~xi:E)h~xi �
 (re
 Xh~xi:F )h~xi.ProofLet p def= (re
 Xh~xi:E)h~xi, q def= (re
 Xh~xi:F )h~xi:We prove that the relationC def= �(G(p); G(q)) �� G 
ontains only the identi�er X 	is a bisimulation up-to �+. Using the Lemma 14 we obtain C � �+. Choosing G � Xh~zi,we obtain that ph~zi�+qh~zi for any ~z, and hen
e p�
q, whi
h prove the assertion of lemma.Let G(p) ��! p0 (�).We shall prove the existen
e of a 
orresponding transition G(q) ��! q0 whi
h satis�esthe 
onditions of the De�nition 13 by stru
tural indu
tion on the inferen
e of the transition(�). We present only a few 
ases.{ G(p) ��! p0 using the rule (11).Then G = Xh~yi, and by a shorter dedu
tion, E(p)[~y=~x℄ � E[~y=~x℄(p) ��! p0. Byindu
tion E[~y=~x℄(q) ��! q00 with p0�C�q00. Sin
e E �
 F , we obtainE[~y=~x℄(q)�+F [~y=~x℄(q); so F [~y=~x℄(q) ��! q0 � q00. Using the rule (11) G(q) = qh~yi ��!q0. The transitivity of � implies p0�C�q0.{ G(p) ��! p0 using one of the rules whi
h 
on
erns the parallelism (12), (13), (14) orone of theirs symmetri
.If G = G1 k G2, and by a shorter dedu
tion, Gi(p) �i�! p0i for some appropriate �i. Byindu
tion Gi(q) �i�! q0i where p0i� C �q0i. Hen
e p0i�Hi(p) C Hi(q)�q0i, and using theLemma 9 we obtain that(p01 k p02)�(H1(p) k H2(p)) C (H1(q) k H2(q))�(q01 k q02). � Lemma 1528



Corollary 5. �
 is preserved by re
ursion.ProofLet p �
 q and let D[�℄ def= (re
Xh~xi:C[�℄)h~yi be a 
ontext su
h that D[p℄ and D[q℄are well formed (fn(p k q) � ~x).Using the Lemma 13 we obtain C[p℄�
C[q℄ (using the De�nition 12) , and using theLemma 15 we obtain (re
Xh~xi:C[p℄)h~yi �
 (re
Xh~xi:C[q℄)h~yi: � Corollary 5Using Lemma 13 and Corollary 5, we obtain that indeed �
 is a 
ongruen
e.Theorem 2. �
 is a 
ongruen
e.Using some 
onvenient 
ontexts, we 
an prove that �
 and 
�b 
oin
ide.Theorem 3. �
 = 
�bProof{ �
 � 
�bLet C be an arbitrary 
ontext and let p�
q. By de�nition C[p℄�
C[q℄. Hen
e C[p℄�C[q℄and by the lemma 10 C[p℄�bC[q℄.We obtain p 
�b q.{ 
�b� �
Firstly, we remark that with respe
t to ��! any pro
esses is image �nite. So the �rstpoint 1) of the Theorem 1 
an be read"for all pro
esses p et q:p e�b q i� p e�� q i� p e� q:" (3)Let p 
�b q and let C1[�℄ def= u(x1):u(x2) : : : u(xn):([�℄ +Pni=1 xi(x):�v), where fn(p kq) = fx1; x2; : : : ; xng, and fn(p k q) \ fu; vg = ;. We prove thatC1[p℄�C1[q℄ =) p�
q: (4)Let � def= [yi=xi℄ be a substitution (in the De�nition 11 it suÆ
es to restri
t us only tosubstitutions equal to identity anywhere but fn(p k q)).Let us 
onsider the derivationC1[p℄ u(y1)�! R1 u(y2)�! R2 : : : u(yn)�! Rn = p[yi=xi℄ + nXi=1 yi(x):�vSin
e C1[p℄�C1[q℄, it must exist a derivationC1[p℄ u(y1)�! S1 u(y2)�! S2 : : : u(yn)�! Sn = q[yi=xi℄ + nXi=1 yi(x):�v;su
h that 29



p[yi=xi℄ + nXi=1 yi(x):�v � q[yi=xi℄ + nXi=1 yi(x):�v (5)By an analysis on 
ases, it is easy to prove that the equivalen
e 5 implies p[yi=xi℄�+q[yi=xi℄(any input of p[yi=xi) must be mat
hed by an input of q[yi=xi) and 
onversely).Sin
e � is an arbitrary substitution, we obtain the impli
ation 4.Using the assertions 3 and 4, we have the following impli
ations:(p 
�b q) =) (C1[p℄ 
�b C1[q℄) =) (C1[p℄ e�b C1[q℄)=) (C1[p℄ � C1[q℄) =) (p �
 q) � Theorem 3If we denote by 
�� the 
ongruen
e indu
ed by ��, then it is easy to prove that�
 = 
�b= 
��.As for the strong 
ongruen
es, we obtain similar results for the weak 
ongruen
es.De�nition 14. Weak barbed 
ongruen
eTwo pro
esses p and q are weakly barbed 
ongruent, denoted p 
�b q, if for any
ontext C, C[p℄ �b C[q℄:De�nition 15. Let �+ be a symmetri
 relation whi
h satis�es the following 
onditions:1) if p ��! p0, then 9q0 su
h that q �=) q0 and p0 � q0,2) if p �~b�a~
�! p0 and ~b \ fn(p; q) = ;, then 9q0 su
h that q �~b�a~
=) q0 and p0 � q0,3) if p ah~bi�! p0 then 9q0 su
h that q ah~bi�! q0 where q �=)ah~bi:�! q0 and p0 � q0,4) if p a:�!, then q a:=).Let �
 de�ned by: p �
 q if p� �+ q� for all substitutions �.Theorem 4. �
 is a 
ongruen
e.Theorem 5. For all image �nite pro
esses p and qp�
q i� p 
�b q:5 Axiomatisation of strong 
ongruen
eIn this se
tion we give a 
omplete axiomatisation of strong 
ongruen
e for �nite pro
esses(without re
ursion). Our axiomatisation is derived from those given for the �-
al
ulus byParrow and Sangiorgi in [14℄. But we need to take 
are of the fa
t that strong 
ongruen
e�
 is not dire
tly obtained form strong bisimilarity � by 
losure with respe
t to all substi-tutions (as for the �-
al
ulus), but from a stri
tly stronger relation �+. The gap between� and �+ is �lled by the new axiom (H) (whi
h does not hold for strong 
ongruen
e in�-
al
ulus), whi
h 
orresponds to the axiom P �Noisy given for CBS in [8℄. To keep thesyntax simple, we use the monadi
 version of our 
al
ulus.30



5.1 Chara
terizing strong 
ongruen
e over simple pro
essesIn this subse
tion we restri
t our attention to pro
esses given byp ::= nil j �:p j p1 + p2 j �p1; p2where � belongs to the set of pre�xes � ::=� j x(y) j �xy, x; y 2 Chb.where � belongs to the set of pre�xes � ::= � j x(y) j �xy, x; y 2 Chb.Following [14℄ we use the more general form �p1; p2 with� ::= hx = yi j :� j �1^�2with x; y 2 Chb, and we use the short
ut �p to stand for � p; nil and hx 6= yip; q for:hx = yip; q . We denote by In(p) the set of all input ports of p (the set of names a su
hthat p a(x)�! p0 for some p0).The axiom system A for strong 
ongruen
e �
 is given in Table 6.(A) if p and q are alpha-equivalent, then p = q(IP ) if p = q then �:p = �:q(IC) if p = q then �p = �q(IS) if p = q then p+ r = q + r(H) if x 62 fn(p) and 8b 2 In(p)�) ha 6= bi then �:p = �:(p+ �a(x):p)(S1) p+ nil = p(S2) p+ p = p(S3) p+ q = q + p(S4) (p+ q) + r = p+ (q + r)(C3) if � ()  then �p =  p(C4) False p = False q(C5) �p; p = p(C6) �p; q = :�q; p(CC1) �( p) = [� ^  ℄p(SC1) �(p1 + p2); (q1 + q2) = �p1; q1 + �p2; q2(CP1) if bn(�) \ n(�) = ; then �(�:p) = �(�:�p)(CP2) hx = yi�:p = hx = yi(�fx=yg):p(SP ) a(x):p+ a(x):q = a(x):p+ a(x):q + a(x):(hx = yip; q)Table 6. Axiom system A for strong 
ongruen
e.We write A ` p = q whenever p = q 
an be proved using the rules of the Table 6. Thefollowing theorem is easy to prove:Theorem 6. (soundness of A for �
) If A ` p = q then p �
 q:ProofIt suÆ
es to prove the 
orre
tion of rules given in the Table 6. The assertion followsthen by indu
tion on the length of the inferen
e of A ` p = q.We justify only the 
orre
tion of the axioms (H) and (SP ). The other 
ases are simpler.31



{ (H) if x 62 fn(p) and 8b 2 In(p)��) ha 6= bi� then �:p = �:(p+ �a(x):p)Let � be a substitution. We 
an suppose that x 62 (prdom(�) [ pr
od(�).We must prove that (�:p)��+(�:(p + �a(x):p))�. Using the De�nition 11, it suÆ
esto prove p��(p+ �a(x):p)�, i.e. p��p� + (��)�(a)(x):p�.If � does not agree with � (De�nition 18), then �� () False, and hen
e (p� +(��)�(a)(x):p�) ��! q if and only if p� ��! q.Let suppose that � agree with �. If p� ��! q, obviously (p� + (��)�(a)(x):p�) ��! q.Let suppose (p� + (��)�(a)(x):p�) ��! q.Then the last rule used is the rule (8) and either p� ��! q, either (��)�(a)(x):p� ��! q.The �rst 
ase est trivial. Let suppose (��)�(a)(x):p� ��! q.Then, for some 
 2 Chb, � = �(a)h
i and sin
e x 62 fn(p), we obtain q = p�[
=x℄ = p�.Let b 2 In(p). Then � ) ha 6= bi. Sin
e � agree with �, using the De�nition 18, weobtain �(b) 6= �(a). Using that In(p�) = f�(b)jb 2 In(p)g, we obtain �(a) 62 In(p�),and hen
e p� �(a):�! p�.{ (SP ) a(x):p+ a(x):q = a(x):p+ a(x):q + a(x):(hx = yip; q)Let � be a substitution. We 
an suppose that x 62 (prdom(�) [ pr
od(�).We must prove that (a(x):p+ a(x):q)��+(a(x):p + a(x):q + a(x):(hx = yip; q))�.If (a(x):p+ a(x):q)� ��! q, obviously (a(x):p+ a(x):q + a(x):(hx = yip; q))� ��! q.Let suppose (a(x):p+ a(x):q + a(x):(hx = yip; q))� ��! q.Then the last used rule is the rule (8) and either (a(x):p + a(x):q)� ��! q, either(a(x):(hx = yip; q))� ��! q. The �rst 
ase est trivial. Let suppose (a(x):(hx = yip; q))� ��!q. The only interesting 
ase is � = �(a)h
i for some 
 2 Chb. Hen
e q = h
 =�(y)i(p�)[
=x℄; (q�)[
=x℄.If �(y) = 
, then using the rules (3) and (8), we obtain (a(x):p + a(x):q)� �(a)h
i�!(p�)[
=x℄, and it is easy to prove that h
 = �(y)i(p�)[
=x℄; (q�)[
=x℄ � (p�)[
=x℄.If �(y) 6= 
, then using the rules (3) and (8), we obtain (a(x):p + a(x):q)� �(a)h
i�!(q�)[
=x℄, and it is easy to prove that h
 = �(y)i(p�)[
=x℄; (q�)[
=x℄ � (q�)[
=x℄.� Theorem 6As in [14℄, it 
an be proved that for every pro
ess, there exists one equivalent pro
ess(in the system of axioms A) whi
h is in \normal form", and that 
ongruent pro
esses innormal form 
an be proved equal in our system of axioms.De�nition 16. [14℄ Let V be a set of names; a 
ondition � is 
omplete on V if for someequivalen
e relation R on V , it holds that � ) hx = yi i� xRy, and � ) hx 6= yi i�:(xRy).De�nition 17. (head normal form) Let V be a set of names. p is in head normal formon V , if it is of the form �i2I�i�i:�ipi, where for all i,1 bn(�i) 62 V ;2 �i is 
omplete on V:Lemma 16. For ea
h pro
ess p, and for ea
h �nite set of names V with fn(p) � V , thereis a pro
ess h of no greater depth than p and in hnf on V , su
h that A ` p = h:See [14℄ for the proof of Lemma 4.8. 32



De�nition 18. A substitution � agrees with a 
ondition �, and � agrees with �, if forany x, y whi
h o

ur in �, we have �(x) = �(y) i� �) [x = y℄.Lemma 17. [14℄ Let V be a set of names and let � be 
omplete on V .1. If � and �0 are substitution V whi
h agree with �, then � = �0� for some inje
tivesubstitution �:2. If  is another 
ondition on V , either � ^  is not satis�able, either � ^  () �:3. If  is another 
ondition 
omplete on V su
h that � and  agrees with the samesubstitution � then � ()  :By an analysis by 
ases we 
an easily prove the next lemma.Lemma 18. Let suppose that p �+ q and that � is inje
tive on fn(p; q). Then p� �+ q�.Lemma 19. Let p � �p0 and q � �q0, with � 
omplete on a set of names V1. Let V2 =fn(p; q)� V1 and �1 a substitution su
h that:1 prdom(�1) � V1 and �1 agrees with �;2 pr
od(�1) \ V2 = ;;3 for any �2 with prdom(�2) � V2; we have p�1�2�+q�1�2Then p �
 q.Proof Similar to the proof of Lemma 4.5 in [14℄. � Lemma 19Using a similar reasoning as in [14℄ for the proof of the Theorems 4.9 and 4.11, andusing the axiom (H) when needed, we 
an prove the following result:Theorem 7. (
ompleteness of A for �
) If p �
 q then A ` p = q:ProofThe proof of Theorem 7 inherits from the proofs of Theorems 4.9 and 4.11 from [14℄,but we have to take a

ount of the fa
t the strong 
ongruen
e �
 it is not obtained dire
tlyfrom the strong bisimulation � by a 
losure with respe
t to substitutions (as in the �-
al
ulus), but from a stronger relation �+. The gap between � and �+ is �lled by thenew axiom (H).Using the Lemma 16, it suÆ
es to prove the assertion when p and q are in head normalform on fn(p; q). The proof is by indu
tion on the sum of the depths of p and q.Let pout be the "output part" of p (the sum of all output pre�x summands plus thesum of all � pre�x summands in p), and p�;a the sum of summands �i�i:pi of p su
h that�i is equivalent to � and su
h that the pre�x �i is the same as a(x) (by taking into a

ountthe alpha-
onversion and the identi�
ation of names implied by �i).Using several times (S3) et (S4) we 
an rewrite p intoA ` p = pout + Xa2In(p);� 
omplete on V p�;a[1.℄ Firstly we prove that for any summand of pout, it exists a summand of q whi
h isequal in the axioms system A. 33



Let ��:p0 be a summand of pout, and let � be a substitution whi
h agrees with �; we
an suppose that � 
oin
ide with identity anywhere but fn(p; q).We have p� ���! p0�. Sin
e p �
 q, we obtain that p� �+ q�. Let  �:q0 be the summandof q used to mat
h the transition of p�. By alpha-
onversion we 
an suppose that all thenames bound (if any) in � and � are the same. By the de�nition of �+ we have{ � agrees with  { �� = ��{ p0� � q0�.Sin
e � and  are 
omplete on fn(p; q) and that they agree with �, by the Lemma 17,we obtain � ()  and by (C3) A `  �:q0 = ��:q0. If � and � di�er on the names aand b (�fa=bg = �fa=bg), sin
e �� = ��, we obtain �(a) = �(b). Sin
e � agrees with �,we obtain  ) ha = bi and hen
e��:q0 = �(ha = bi�:q0) = �(ha = bi(�fa=bg):q0) � �(ha = bi(�fa=bg):q0) = ��:q0We 
an try to prove dire
tly that p0 �+ q0, be
ause some inputs of one of the pro
esses
an be mat
hed by a "dis
ard" from the other pro
esses. But we shall saturate p0 and q0su
h that neither of them 
an no more dis
ard the inputs of the other.Let p0 � �p00, q0 � �q00 and lets0 � (�p00 +Xf�a(x):�p00 j a 2 In(q00);8b 2 In(p00) �) ha 6= big)with x 62 fn(p00), andt0 � (�q00 +Xf�a(x):�q00 j a 2 In(p00);8b 2 In(q00) �) ha 6= big)with x 62 fn(q00).Using repeatedly the axiom (H) and �nally the axiom (IC), we 
an prove A ` ��:p0 =��:s0 and A ` ��:t0 = ��:q0. We 
an not prove dire
tly by indu
tion A ` ��:s0 = ��:t0using s0 �
 t0 sin
e the sum of the depths of s0 and t0 is the same as for p and q, so weshall use the intermediary pro
ess p0 + q0.We prove that s0 �
 (p0 + q0) et (p0 + q0) �
 t0.We 
an prove that s0� �+ (p0 + q0)� by using the fa
t that (�p00)� � (�q00)� and thatany input of (�p00)�, whi
h was mat
hed by a "dis
ard", is now mat
hed by a summand(�a(x):�q00)�. In the same manner we prove that (p0 + q0)� �+ t0�. Then, we obtain thats0 �
 (p0+q0) and (p0+q0) �
 t0 using the Lemma 19 (by taking V1 = fn(p; q) and �1 = �).Using the indu
tion hypothesis, we get A ` s0 = p0 + q0 and A ` p0 + q0 = t0.Consequently, A ` s0 = t0 and using (IP ) and (IC) we obtain A ` ��:s0 = ��:t0, andhen
e A ` ��:p0 =  �:q0:[2.℄ Let p�;a �Pni=1 �a(x):pi and q�;a �Pmj=1 �a(x):qiFor any i 2 [1; n℄ we shall build the pro
esses ui and ri su
h thatA ` �a(x):pi = �a(x):ui, A ` q�;a = q�;a + �a(x):ri, and A ` ui = ri.Let V = fy1, ..., ykg be the set of free names of p�;a and q�;a and let x be a name su
hthat x 62 fn(p�;a; q�;a). Let � be a substitution whi
h agrees with � (we 
an suppose that8z 62 fy1; : : : ; ykg �(z) = z). 34



p� �+ q� implies p�;a� �+ q�;a�. From p�;a� ahxi��! pi�, using the de�nition of �+, forany y 2 fn(p�;a; q�;a) [ fxg, it exists J(i; y) su
h that q�;a� ahxi��! qJ(i;y)� et pi�fy=xg �qJ(i;y)�fy=xg.If M is a set of names, we use the notation [x 62 M ℄ to stand for [^z2Mhx 6= zi℄. Letpi � �p0i, qj � �q0j and letui � (�p0i + Xz2fy1;:::;ykg Xd2Az[x = z℄ ^ �d(y):�p0i+ Xd2Ax[x 62 fy1; : : : ; ykg℄ ^ �d(y):�p0i)with y 62 fn(p0i), Az = fb j b 2 In(q0J(i;z));8a 2 In(p0i); [x = z℄ ^ � =) a 6= bg,Ax = fb j b 2 In(q0J(i;x));8a 2 In(p0i); [x 62 fy1; : : : ; ykg℄ ^ � =) a 6= bg, and lettj � (�q0j + Xz2fy1;:::;ykg Xd2Bz[x = z℄ ^ �d(y):�q0j+ Xd2Bx[x 62 fy1; : : : ; ykg℄ ^ �d(y):�q0j)with y 62 fn(q0j), Bz = fb j b 2 In(p0i);8a 2 In(q0j); [x = z℄ ^ � =) a 6= bg;and Bx = fb j b 2 In(p0i);8a 2 In(q0j); [x 62 fy1; : : : ; ykg℄ ^ � =) a 6= bg:Let si;0 � tJ(i;x), si;l � hx = ylitJ(i;yl); si;l�1, and ri � si;k.Using repeatedly the axiom (H) and after the axiom (IC) , we 
an prove thatA ` �a(x):pi = �a(x):ui (6)and A ` �a(x):qj = �a(x):tj .We prove now that A ` q�;a = q�;a + �a(x):si;l by indu
tion on l.From A ` �a(x):qj = �a(x):tj and A ` q�;a = q�;a + �a(x):qj (sin
e �a(x):qj is asummand of q�;a), we obtain that A ` q�;a = q�;a + �a(x):tj If l = 0, then A ` q�;a =q�;a+�a(x):tJ(i;x) follows immediately from the equalities proved previously. By indu
tionlet suppose that A ` q�;a = q�;a + �a(x):si;l�1Sin
e A ` q�;a = q�;a + �a(x):tJ(i;yl) we obtain that A ` q�;a = q�;a + �a(x):si;l�1 +�a(x):tJ(i;yl), and by using (SP ) we get that A ` q�;a = q�;a+�a(x):si;l�1+�a(x):tJ(i;yl)+a(x):hx = ylitJ(i;yl); si;l�1 and after A ` q�;a = q�;a + �a(x):hx = ylitJ(i;yl); si;l�1. Makingl = k we obtain A ` q�;a = q�;a + �a(x):ri: (7)Now we prove that A ` ui = ri.We 
an not apply dire
tly the hypothesis of indu
tion on ui and tj sin
e the sum ofthe depths of ui and tj is the same as for p and q. So we shall pass by the intermediarypro
esses pi + qj with j 2 f1; : : : ;mg. From pi�fy=xg � qJ(i;y)�fy=xg, by an analysis by
ases, we obtain ui�fy=xg �+ (pi + qJ(i;y))�fy=xg �+ tJ(i;y)�fy=xg (8)35



(the inputs previously mat
hed by dis
ards, are now mat
hed by "ino�ensive" inputs�b(y):�p0i or �b(y):�q0J(i;y)).The 
ondition � does not mention x, and it is possible that it is not 
omplete onfn(pi; qJ(i;y)) = fn(p�;a; q�;a) [ fxg; so we 
an not use dire
tly the Lemma 19; but as in[14℄ we 
an 
omplete it by adding a 
onditional whi
h agrees with fy=xg. From the equation8 we obtain hx = yiui�fy=xg �+ hx = yi(pi + qJ(i;y))�fy=xg �+ hx = yitJ(i;y)�fy=xg fory 2 V and hx 6= yiui�fy=xg �+ hx 6= yi(pi + qJ(i;y))�fy=xg �+ hx 6= yitJ(i;y)�fy=xg fory 62 V .Now we apply the Lemma 19 , where V1 = V [ fxg, �1 = �fy=xg and V2 = ; in theLemma, and we gethx = yiui�fy=xg �
 hx = yi(pi + qJ(i;y))�fy=xg �
 hx = yitJ(i;y)�fy=xg for y 2 V (9)andhx 6= yiui�fy=xg �
 hx 6= yi(pi + qJ(i;y))�fy=xg �
 hx 6= yitJ(i;y)�fy=xg for y 62 V (10)and by using the hypothesis of indu
tion, we obtainA ` hx = yiui = hx = yi(pi + qJ(i;y)) = hx = yitJ(i;y) for y 2 fy1; : : : ; ykgand A ` [x 62 V ℄ui = [x 62 V ℄(pi + qJ(i;y)) = [x 62 V ℄tJ(i;y) for y 62 fy1; : : : ; ykg:As in the proof of the Theorem 4.11 in [14℄, using 9 10 we 
an prove A ` ui = ri andthen A ` �a(x):ui = �a(x):ri: (11)From 6, 7 et 11 we obtain that for any i 2 [1; n℄ A ` q�;a = q�;a + �a(x):pi, and thenA ` q�;a = q�;a + p�;a. By a symmetri
al argument, we obtain A ` p�;a = p�;a + q�;a andhen
e A ` q�;a = p�;a � Theorem 7Moreover, our axioms are independent (this follows from the fa
t that in [14℄ it isproved that all axioms, but (H), are independent, and that (H) 
annot be proved fromthe others).5.2 Adding restri
tion operatorTo the grammar given in the previous se
tion, we add the restri
tion operator:p ::= : : : j �xpThe axioms to deal with restri
tion are given in Table 7.The only axiom whi
h is new (and whi
h does not hold in the �-
al
ulus) is (RP2).The soundness of all axioms is easy to prove. For the 
ompleteness, the axioms from Table7 . are used to push a restri
tion inside a term until either it disappears or it gives riseto a bound output. The de�nition for the normal form 
hanges slightly: �i2I�i�i:�0ipi,where for all i, 36



1 bn(�i) 62 V;2 �i is 
omplete on V;3 �i = �0i if � is � , an input or a free output,4 �0i = �i ^ (^z2V hx 6= zi).The proof of the 
ompleteness is then similar as for Theorem 7.(IR) if p = q then �xp = �xq(R) �x nil = nil(RR) �x�yp = �y�xp(RS) �x(p+ q) = �xp+ �xq(RP1) if x 62 n(�) then �x�:p = �:�xp(RP2) �x �xy:p = �:�xp(RP3) �x x(y):p = nil(RC1) if x 6= y then �xhx = yip = nil(RC2) if x 6= y; z then �xhz = yip = hz = yi�xpTable 7. The axioms for restri
tion.
5.3 Adding parallelismTo the grammar given in the previous se
tion, we add the parallel operator:p ::= : : : j p1 k p2The axioms needed to deal with parallelism are the expansion axiom given in Table 8.plus the axiom (P1) p k nil = p.In the Table 8., the �rst summand 
orresponds to the situation where both pro
essesmakes an input. The se
ond and the third summands to the situation where one pro
essmakes an output, and the other an input. The fourth and the �fth summands to thesituation where one pro
ess makes an output and the other a dis
ard. The sixth and theseventh to the situation where one pro
ess makes an input and the other a dis
ard. And�nally, the eighth and the ninth to the situation where one pro
ess makes a silent step� . To prove the 
ompleteness it suÆ
es to eliminate the operator k using the expansionaxiom and the axiom (P1).6 Related work and 
on
lusionsClosest related work to this paper 
on
erns the work on CBS by Prasad [15℄, [16℄, andthe work by Hennessy and Rathke [8℄. In [8℄, the authors present a pro
ess 
al
ulus basedon broad
ast, together with an operational semanti
s. They also provide simpler 
har-a
terizations of the 
ongruen
e indu
ed by barbed bisimilarity, together with 
ompleteaxiomatisation for 
ongruen
es (for �nite pro
esses). Our bisimilarities are following ideas37



Assume p � Xi12M1 �i1xi1 [v℄:pi1 + Xi22M2 �i2xi2(v):pi2 + Xi32M3 �i3�:pi3and q � Xj12N1 �j1xj1 [v℄:qj1 + Xj22N2 �j2xj2(v):qj2 + Xj32N3 �j3�:qj3where [v℄ stand for v (free output) or (v) (bound output). Let S = fxi j i 2M2g and T = fxi j i 2N2g. Then:p k q = P(i2;j2)[�i2 ^ �j2 ^ hxi2 = xj2i℄xi2(v):(pi2 k qj2 )+Pi2 [�i2 ^ [xi2 62 T ℄℄xi2(v):(pi2 k q)+Pj2 [�j2 ^ [xj2 62 S℄℄xj2 (v):(p k qj2 )P(i1;j2)[�i1 ^ �j2 ^ hxi1 = xj2i℄xi1 [v℄:(pi1 k qj2) +P(i2;j1)[�i2 ^ �j1 ^ hxi2 = xj1i℄xi2 [v℄:(pi2 k qj1) +Pi1 [�i1 ^ [xi1 62 T ℄℄xi1 [v℄:(pi1 k q) +Pj1 [�j1 ^ [xj1 62 S℄℄xj1 [v℄:(p k qj1) +Pi3 �i3�:(pi3 k q) +Pj3 �j3�:(p k qj3)Table 8. The expansion axiom.borrowed from their work. However, our 
al
ulus fo
us mainly on the in
uen
e of re
eivedvalues (names) by a pro
ess on his further possible 
ommuni
ations by using a syntax
loser to the �-
al
ulus. Our axiomatisation is thus 
loser to the one given by Parrowand Sangiorgi [14℄. The main di�eren
e with existing broad
ast 
al
ulus is the presen
eof dynami
 s
oping (versus stati
 s
oping of CBS). It is 
ommon in 
on
urrent program-ming to have several groups of pro
esses parti
ipating in the same proto
ol 
on
urrently(using di�erent \
hannels"). It is then essential that 
ommuni
ations be kept separate sothat there is no risk of interferen
e between the multiple instan
es of a proto
ol exe
utedsimultaneously. This is a
hieved by lexi
al s
oping. Dynami
 s
oping is then obtained bythe 
ombination of lo
al s
oping and the ability to send 
hannels along 
hannels.Con
erning the expressiveness of our 
al
ulus, it is easy ([4℄) to give an implementation(very similar to those given in [2℄ for a pro
ess algebrai
 approa
h of Linda) of a RandomA

ess Ma
hine. Also, it is interesting to 
ompare the b�-
al
ulus with the �-
al
ulus. In[3℄, we have already proved that \there is no uniform en
oding of the b�-
al
ulus into the�-
al
ulus". The existen
e of a \good" (
ompositional) en
oding of the b�-
al
ulus intothe �-
al
ulus remains an open question. Conversely, we 
an give an \uniform" en
odingadequate with respe
t to barbed equivalen
e of the �-
al
ulus into the b�-
al
ulus.Also, even if bisimulations provide a ni
e method to prove the relation whi
h holdsbetween two equivalents systems (just looking at their states, without building the wholetra
es set), we 
an ask if they are not too restri
tive? For example, �a:(�b+ �
) and �a:�b+ �a:�
are not barbed equivalents. This seems surprising, as in our 
al
ulus an observer 
an notin
uen
e the behavior of the two pro
esses, nor it 
an distinguish them; indeed, this isthe 
ase in pro
esses algebra based on point-to-point 
ommuni
ations (CCS, �-
al
ulus),38



where an observer provide to tested pro
ess the ne
essary \
o-a
tions". In a forth
omingpaper we analyse the preorders indu
ed by \may testing" in 
al
uli based on broad
ast.A
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