
A Broadast-based Calulus for Communiating SystemsCristian ENE1, Traian MUNTEAN1;21 University of MarseillesLaboratoire d'Informatique de Marseille; Par Sienti�que de Luminy - Case 925F-13288 Marseille, Franetel: 33 - 491 82 85 32, fax: 33 - 491 82 85 11ene�esil.univ-mrs.fr, muntean�lim.univ-mrs.fr2 CNRSThis paper is a revised version of [5℄Abstrat. This paper presents a proess alulus for reon�gurable ommuniating systemswhih has broadast as basi ommuniation primitive, and we provide an operational se-mantis for this alulus. We illustrate the alulus through some examples, and we proposethree behavioral equivalenes for reasoning about systems of broadasting proesses, namely,barbed equivalene, step-equivalene and labelled bisimilarity. An important result, is thatall these relations oinide, providing di�erent ways to study the equivalene/non-equivaleneof two systems. Then, we provide a diret haraterization for the strong ongruene rela-tion indued by these equivalenes. Finally, we give a omplete axiomatisation for strongongruene.1 IntrodutionCommuniation between proesses is the main aspet of onurreny when dealing withdistributed and/or parallel omputing. One an speify basi ommuniations from severalpoints of view; primitives interations an be, for instane, synhronous or asynhronous,assoiated to point-to-point or broadast (one-to-many) message exhange protools. Thetheory behind point-to-point ommuniation is today well-established in proess algebra(e.g. started with Milner's CCS and Hoare's CSP pioneering works). On the other handmore omplex and higher level ommuniation shemes, like broadast or multiast areenountered in many appliations and programming models, but they remain neverthelesspoorly represented in the algebrai theory of distributed systems. We emphasize herethat group interations shall be onsidered as a more appropriate exhange sheme formodelling and reasoning about many ommuniating systems and networking appliations(e.g. multimedia, data and knowledge mining, mobile omputing). Group ommuniationsare, in our opinion, a more abstrat and higher level onept of interation in distributedomputing than the ommonly used point-to-point ommuniations, usually expressed byhandshaking message-passing primitives or by remote invoations. Broadast has beeneven hosen as a hardware exhange primitive for some loal networks, and in this asepoint-to-point message passing (when needed) is to be implemented on top of it. Primitivesfor broadast programming o�er several advantages: proesses may interat without havingexpliit knowledge of eah other, reeivers may be dynamially added or deleted withoutmodifying the emitter, and ativity of a proess an be monitored without modifying thebehaviour of the observed proess (this is learly not the ase with the lassial rendez-vous ommuniations). Moreover, from a theoretial point of view, it appears diÆult [3℄to enode broadast in aluli based on point-to-point ommuniations.



Thus, developing an algebrai theory for models based on broadast ommuniation hasits own interest. Hoare's CSP [9℄ is based on a multiway synhronisation mehanism, butit does not make any di�erene between input and output. Or, in a broadast setting theanti-symmetrie between these two kinds of ations is partiularly important (in a broadastommuniation there is one sender, and an unbounded or possibly empty set of reeivers;this is well represented in the I/O automata of Lynh and Tuttle ([10℄) where outputs arenon-bloking and loally ontrolled, whereas inputs are externally ontrolled and an notbe refused). In [15℄, Prasad introdues and develops [16℄ a alulus of broadasting systems,namely CBS. His alulus, inspired by Milner's CCS ([11℄), has as main goal to providea formal model for pakets broadast in Ethernet-like ommuniation media. It is basedon broadast, but its main limitation is that it does not allow to model reon�gurable�ner topologies of networks of proesses whih ommuniate by broadast (as dynamigroup ommuniations). It is up to the reeiver to use the reeived value or to disard it.In [8℄, Hennessy and Rathke present a proess alulus based on broadast with a morerestritive input (x 2 S?p), but the ontinuation proess p, do not hange dynamiallyhis restritions on further inputs; so it annot model reon�gurable systems based onbroadast. To summarise, it seems that there is not a framework whih try to analyse(at least at theoretial level) what it happens if we ombine mobility and broadast (asit is the ase for proesses whih use group ommuniations �a la PVM [6℄, buses-basedreon�gurable arhitetures or Paket Radio Networks).The aim of this paper is to introdue a new proess alulus, whose unique and basiommuniation primitive is broadast, and whih permits to model reon�gurable groupommuniation systems.The rest of the paper is as follows. In setion 2 we present the b�-alulus (alreadybriey introdued in [3℄) as a variant of a broadast alulus (inspired from [16℄) togetherwith some examples. Setion 3 presents three equivalenes between proesses, and a proofof their similar disriminative power. The setion 4 is devoted to the ongruene induedby the already de�ned equivalenes. In setion 5 we provide for the ongruene a om-plete axiomatisation. Setion 6, disusses related works and presents future diretions ofresearh. Due to the limited length of this paper, the proofs of presented results have beenomitted; they are inluded in the full version of this paper [4℄.2 Preliminaries2.1 The b�-alulusThe b�-alulus is a proess alulus in whih broadast is the fundamental ommunia-tion paradigm. It is derived from the broadast alulus proposed by Prasad [16℄, and the�-alulus proposed by Milner, Parrow and Walker [12℄. It di�ers from the broadast al-ulus, in that ommuniations are made on hannels or ports (and transmitted values arehannels too), and from the �-alulus in the manner the hannels are used: for broadastommuniations only. Let Chb be a ountable set of hannels. Proesses are de�ned by thegrammar of Table 1.where � belongs to the set of pre�xes � ::= x(~y) j �x~y j � , and ~x; ~y � Chb; x;2 Chb.Pre�xes denote the basi ations of proesses: � is a silent ation (whih orrespondsto an internal transition), x(~y) is the input of the names ~y on the hannel x, and �x~y is2



Pb 3 p ::= nil j �:p j �xp j hx = yip; q j p1 + p2 j p1 k p2 j Ah~xi j (re Ah~xi:p)h~yiTable 1. Proesses in b�-alulusthe output of the names ~y on the hannel x. nil is a proess whih does nothing. �:p isthe proess whih realize the ation denoted by � and next behaves like p. p1+ p2 denoteshoie, it behaves like p1 or p2. �xp is the reation of a new loal hannel x (whose initialsope is the proess p). hx = yip1; p2 is a proess whih behaves like p1 or p2 dependingon the relation between x and y. p1 k p2 is the parallel omposition of p1 and p2. X is aproess identi�er whose arity is satis�ed by h~xi and (reXh~xi:p)h~yi is a reursive proess(this allows to represent proesses with in�nite behaviour), with ~x ontaining all the freenames whih appear in p. In this artile, we assume that X ours guarded in any reursivede�nition (underneath a pre�x).The operators �x and y(~x), are x�binders, i.e. in �xp and y(~x):p, x and ~x are bound,and bn(p) denotes the set of bound names of p. The free names of p are those that donot our in the sope of any binder, and are denoted by fn(p). The set of names of p isdenoted by n(p). Alpha-onversion is de�ned as usual.De�nition 1. Ations, ranged over �,� are de�ned by the following grammar:� ::= ah~xi j �~y�a~x j � j a :where a; x 2 Chb; ~x; ~y � Chb. An ation is either a reeption, a (possibly bound) output, orthe silent ation � , denoting an internal transition. In ah~xi and �~y�a~x, a is the subjet of theommuniation and ~x is its objet. By extension n(�) (fn(�), bn(�)) denotes the names(respetively free names, bound names) used in the ation � ((fn(�) = ;; fn(ah~xi) =fag [ ~x; fn(�~y�a~x) = fag [ ~x n ~y; fn(a :) = fag, bn(�) = ;; bn(ah~xi) = ;; bn(�~y�a~x) = ~y;bn(a :) = ;, n(�) = fn(�) [ bn(�)).We give an operational semantis for our alulus in terms of transitions over the setPb of proesses. Before, we de�ne, similarly to [15℄, a relation �!� Pb � Chb denotedp a:�! and whih an be read \p disards all outputs made on the hannel a " (see Table2). (1)nil a:�! (2) �:p a:�! (3)�b~y:p a:�!(4) b6=ab(~x):p a:�! (5) p a:�! _ x=a�xp a:�! (6) p1 a:�!^p2 a:�!p1+p2 a:�!(7) p1 a:�!hx=xip1;p2 a:�! (8) x6=y^ p2 a:�!hx=yip1;p2 a:�!(9) p1 a:�! ^ p2 a:�!p1kp2 a:�! (10) p[(re Xh~xi:p)=X;~y=~x℄ a:�!(re Xh~xi:p)h~yi a:�!Table 2. The "disard" relation3



Intuitively, a proess ignores all the ommuniations made on the hannels it is notlistening. nil, �:p or �b~y:p disard any ommuniation. A proess waiting for a message on ahannel b, disards ations on the other hannels a with a 6= b. In rule (5) a the onditionx = a expres the possibility that a does not our free in p. Rules (6) to (10) follow thestruture of the term.(1) p��p0 ^ p0 �!qp �!q (2) �:p ��!p (3)a(~x):pah~zi�!p[~z=~x℄(4) �a~x:p �a~x�!p (5) p�~y�a~x�! p0 ^ z2~xn(fag[~y)�zp�z�~y�a~x�! p0 (6) p�~y�a~x�! p0�ap ��!�a�~yp0(7) p ��!p0 ^ x62n(�)�xp ��!�xp0 (8) p1 ��!p0 _ p2 ��!p0p1+p2 ��!p0 (9) p1 ��!p0hx=xip1;p2 ��!p0(10) x6=y ^ p2 ��!p0hx=yip1;p2 ��!p0 (11) p[(re Xh~xi:p)=X;~y=~x℄ ��!p0(re Xh~xi:p)h~yi ��!p0 (12) p1ah~xi�!p01 ^ p2ah~xi�!p02p1kp2ah~xi�!p01kp02(13) p1�~y�a~x�! p01 ^ p2ah~xi�!p02 ^ ~y\fn(p2)=;p1kp2�~y�a~x�! p01kp02 (14) p1 ��!p01 ^ bn(�)\fn(p2)=; ^ p2sub(�):�!p1kp2 ��!p01kp2Table 3. Operational semantis of b�-alulusTo simplify the presentation, we extend sub and we denote sub(�) = obj(�) = � , andp � :�! for any proess p.De�nition 2. Transition system The operational semantis of b�-alulus is de�nedas a labelled transition system de�ned over the set Pb of proesses. The judgement p ��!p0 means that the proess p is able to perform ation � and to evolve next to p0. Theoperational semantis is given in Table 3 (we omitted the symmetri versions of rules (11)and (12)).A ommuniation between proesses is performed through unbu�ered broadast. Com-pared to �-alulus, outputs are non-bloking, i.e. there is no need of a reeiving proess.One of the proesses broadasts an output and the remaining proesses either reeive orignore the sending, aording to whether they are \listening" or not on the hannel whihserves as support for the output. A proess whih \listens\ to a hannel a, annot ignoreany value sent on this hannel.The operational semantis is an early one, i.e. the bound names of an input are in-stantiated as soon as possible, in the rule for input.Rule (1) allows to identify proess whih are alpha - onvertible. Rules (2) to (4) arestraightforward and they have the same signi�ation as in �-alulus. Rule (5) states thatwhen a loal hannel name is emitted, the related output has to be bound. The extrusionis more omplex that in � -alulus, as more proesses ould learn the existene of a freshname in a single omuniation. Rule (6) does not exist in � -alulus; it establish the sopeof the names exported on the hannel a. Rules (7) to (11) have the same meaning as in �-alulus. Rules (12) and (13) are spei� to broadast; the same message an be reeived4



by more proesses in a single omuniation. In rule (14), a proes whih does not listen ona hannel a, remains unhanged during a ommunation made on this hannel. As usualwe shall use the following notations:{ �=)def= ( ��!)�, �=)def= �=) ��! �=), if � 6= � ,{ ��!def= � ��! ��� is an output or � = �	;{ �=)def= ( ��!)�:Sometimes, we shall use, as in [8℄, we use p �:�! p instead of p a:�!, if sub(�) = a and wedenote p a(b)?�! p0 to stand for either p a(b)�! p0 or p a(b):�! p0. Also, we shall omit the trail nil.We shall also use the notation �a(x) to stand for the bound output �x�ax:We shall use the following results in the next setions.Lemma 1.1. If p �~y�a~x�! p0, then fn(p0) � fn(p) [ f~yg et (~x n ~y) � fn(p).2. If p ah~zi�! p0, then fn(p0) � fn(p) [ f~zg.3. If p ��! p0, then fn(p0) � fn(p).ProofThe proof is by a simultaneous indution on the inferrene of the transition p ��! p0.� Lemma 1Corollary 1. If p �=) p0, then fn(p0) � fn(p).Proof The orollary is a onsequene by indution on the number of transitions inp �=) p0.2.2 ExamplesIn this subsetion we give some examples where broadast is the basi ommuniationprimitive. The ability to send and reeive "names on names" as in � -alulus is veryuseful, and allows us in Example 2 (Deteting inonsistenies for transations systems) togive a desription whih does not depend on the number of opies present in the system.Example 1 A distributed algorithm for yle-detetionWe present a distributed algorithm for yle-detetion in a direted graph.Detetor is aproess whih listens to new edges of the graph on a hannel i, and spawns for eah reeivedpair of names (soure and destination of edge) a new \edge manager" Edge manager. Anedge manager, broadasts a personal token v (using the mehanism of name-generation).Next, for eah reeived token w, if it reeives the own token v, a yle is deteted anda signal is sent on o, otherwise, it propagates the token further (along the paths of thegraph). This is done by using the hannels a and b, whih denote an edge (a; b) in thegraph. Hene, any token reeived on a, and di�erent from v is transmitted on b.Detetorhi; oi def=5



i(x):i(y):(Detetorhi; oi k Edge managerho; x; yi))Edge managerho; a; bi def=�u((reY hb; ui:f�bu:Y hb; uig)hb; ui k(reXho; a; b; ui:fa(w):(hu = wi�o:nil; (�bw:nil k Xho; a; b; uig)ho; a; b; ui)))Example 2 Deteting inonsistenies for transations systemsWe extend the previous example to give an implementation in b�-alulus of a fullydistributed algorithm for deteting inonsistenies in partitioned distributed databases(our implementation is inspired from [1℄).In a repliated database, there exist several opies of eah data item, with opiesloated at distint sites in the system. We suppose that the database beomes partitioned(partitions pj with j = 1; : : : ; n).We allow transations to ontinue to exeute, but when the network is reonneted(simulated in our implementation by a broadast on the hannel "unif") , we have to hekfor inonsistenies. The idea is to onstrut a preedene graph that aptures the temporalpartial order between transations. Then, the database is onsistent i� the preedenegraph ontains no yle. The verties of the graph are all the transations. An edge <t; p >!< t1; p1 > indiates that transation t ourred before transation t1, where p; p1indiate the partition in whih the transations were exeuted.Suh an edge exists i� one of the following holds:1. t read a data item i that was later written by t1 and p = p12. t write a data item i that was later read or written by t1 and p = p13. t read a data item i that was written by t1 and p 6= p1The database an be simulated by:Database def=Yj=1;k[ Yl=1;n(j) Itemhj1; j2; pjl ; unif; V ali℄where j1 and j2 are hannels assoiated with data j, eah data item j having n(j) opies,and pjl 2 fp1; : : : ; pn(j)g is the orresponding partition.An item manager waits for transations; for eah new transation, it forks a newtransation manager, and serves the user whih was making the request. A transationfor a data item i, is an output on the hannel i1, and ontains the transation identi�ert1, the type (read or write), the partition a�eted, the return hannel, and a value (whihmake sense for a write transation).Itemhi1; i2; p; unif; V al; wi def=unif(p1):Itemhi1; i2; p1; unif; V ali+i1(t1; type; p1; req; V ):hp1 = pifhtype = wi[Itemhi1; i2; p; unif; V; wi k Tr Manwhi1; i2; p; unif; t1i℄;6



[Itemhi1; i2; p; unif; V al; wi k Tr Manrhi1; i2; p; unif; t1i k reqV al+ req(V )℄g;Itemhi1; i2; p; unif; V al; wiA transation manager generates a new edge manager for eah new ongoing transationwhih a�ets the same data item on the same partition (ases 1. or 2. ).Tr Manwhi1; i2; p; unif; ti def=i1(t1; type; p1; req; V ):fhp1 = pi[Tr Manwhi1; i2; p; unif; ti k unif(p):Edge managerherror; t; t1i℄;T r Manwhi1; i2; p; unif; tig+unif(p1):STr Manwhi2; p; t; wiTr Manrhi1; i2; p; unif; ti def=i1(t1; type; p1; req; V ):fhp1 = pi[Tr Manrhi1; i2; p; unif; ti k htype = wiunif(p):Edge managerherror; t; t1i; nil℄;T r Manrhi1; i2; p; unif; tig+unif(p1):STr Manrhi2; p; t; riOne the network reonneted, transation managers hange their behaviour, trying todetet edges of the third kind. In addition, if there are two transations whih have writtenthe same data item in two distint partitions, then an error is deteted (two ontrary edgesbetween two verties). STr Manwhi2; p; ti def=i2(t1; type; p1):fhp1 = piSTr Manwhi2; p; ti;htype = wierror; [STr Manwhi2; p; ti k Edge managerherror; t1; ti℄g+�i2[t; w; p℄:STr Manwhi2; p; tiSTr Manrhi2; p; ti def=i2(t1; type; p1):fhp1 = piSTr Manrhi2; p; ti;STr Manrhi2; p; ti k htype = rinil; Edge managerherror; t; t1i℄g+�i2[t; r; p℄:STr Manrhi2; p; tiWe note that this example uses the entire expressiveness power of our alulus. Thesame data item an be repliated (for reliability or eÆieny reasons) and a transationt an a�et several data items; in this ase broadast is a quite natural ommuniationprimitive. In the same time, the ability to send and reeive hannel names aross hannelsis used by item managers to fork new transation managers orresponding to the reeivedidenti�er.Example 3 Semantis of group ommuniation primitivesb�-alulus provide a framework to speify and analyse systems whih interat by abroadast (or multiast) mehanism ombined with mobility of proesses ( names, ad-dresses). We take here, as an example programs whih use ommuniation primitives ofPVM-like libraries ([6℄). PVM is a software system that permits a network of heteroge-neous omputers to be used as a single parallel omputer (the virtual mahine). Thus largeomputational problems may be solved using the power of many omputers. PVM suppliesfuntions to automatially start up tasks on the virtual mahine, and allows task to om-muniate (by point-to-point or group ommuniations) and synhronize with eah-other.7



The interesting part is the simple simulation of group ommuniation primitives, whihseems diÆult to express in a proess algebra based on point-to-point ommuniations([3℄). Moreover, even in CBS ([16℄) it is unlear how one an implement the primitiveswhih permit to have dynami groups (proesses an freely join or leave a group, onethey have knowledge of the name of the group). We present just a few ommuniationprimitives spei� to onurrent appliations (for the interpretation of imperative featuresin proess algebra, see for example [17℄):I ::= send(a;m) j bast(g;m) j x = reeive() j x = newgroup() j joingroup(g) jleavegroup(g) j x = spawn(Q)P ::= I j I;PA proess (or a task) is a sequene of ations. An ation is either an output of amessage m (to another proess a or to a group g of proesses), or an input (from theown bu�er) of a message (stored after in variable x), or a reation of a new group g, or ajoining to a group g, or a leaving of a group g or a spawning of a hild Q. One a proessbeome member of a group g, it reeives any message sent to that group. Communiationsare asynhronous, in that outputs are non-bloking (messages being stored in the bu�ersof reeivers). For the sake of simpliity, we suppose that there is no guarantee in whatonerns the order of messages' arrival.Then, a possible enoding fPga of a proess P of address (pid) a is given below:fPga def= �ra�ka(Poolha; ra; kai k [[P ℄℄ra;;)Poolha; r; ki def= k + a(x):(Poolha; r; ki k Cellhr; xi)Cellhr; xi def= r():(�x+ (y):Cellhr; xi)[[x = reeive();P ℄℄r;M def= �t(�rt k t(x):[[P ℄℄r;M )[[send(a;m);P ℄℄r;M def= �t(�am:�t k t:[[P ℄℄r;M )[[bast(g;m);P ℄℄r;M def= �t(�gm:�t k t:[[P ℄℄r;M )[[joingroup(g);P ℄℄r;M def= �t�kg(�tkg:P oolhg; r; kgi kkg):[[P ℄℄r;M[f(g;kg)g)[[g = newgroup();P ℄℄r;M def= �t�g�kg(�tg:�tkg:P oolhg; r; kgi kt(g):t(kg):[[P ℄℄r;M[f(g;kg)g)[[leavegroup(g);P ℄℄r;M[f(g;kg )g def= �t(kg:�t:nil k t:[[P ℄℄r;M )[[x = spawn(Q);P ℄℄r;M def= �a�t(fQga k �ta k t(x):[[P ℄℄r;M )[[STOP ℄℄r;f(g1;kg1);:::;(gn;kgn )g def= kg1 : : : : :kgn :�r:nil)The translations of \send" and \bast" primitives are similar, but atually, for a han-nel a whih appears as the argument of the \send" primitive, there is exatly one reeiver,whereas for a hannel g whih appears as argument for the \bast" primitive, there anbe zero or many reeivers (depending on the atual number of members in group g).8



3 BisimulationsWe de�ne now appropriate tools allowing to reason about proesses. Bisimulations havebeen suessfully used in proesses algebra to ompare two systems aording to theiroperational ability to simulate eah other. For the rest of the paper, we shall use the termproess to stand for a losed proess (whih does not ontain free identi�ers), and we shallspeify expliitly open proesses.3.1 Barbed EquivalenesBarbed bisimulation was �rstly introdued by Sangiorgi and Milner (in [13℄, [18℄) for the�-alulus. It is a natural relation whih is easy de�nable in various aluli (or rewritingsystems): it suÆes to de�ne a observability prediate and then to distinguish betweentwo proesses whenever they are not similarly observable, or their similar observabilityis not preserved by redution (or rewriting). Barbed bisimulations were already used foraluli based on broadast [8℄, but in a alulus where ommuniations are made on aglobal ether rather than expliit hannels.Barbed bisimulation desribes a relation between proesses whih an make the same\visible" ations, and whenever one an silently progress, so an the other, evolving to aproess preserving the relation. It remains to preise some parts of this informal de�nition.In a broadast alulus, outputs are visible (if we are listening a proess on a hannel, wereeive any value it sends on it), while inputs are not (as sending is not bloking, we donot know if the observed proess was reeiving or disarding our value). We write p #a(p +a) if p ��! p0 (and respetively p �=) p0) for some output � of subjet a.De�nition 3. Barbed BisimulationA symmetri relation S over the set Pb (of proesses) is a weak barbed bisimulationif whenever (p; q) 2 S, then{ if p ��! p0, then 9q0 suh that q �=) q0 and (p0; q0) 2 S,{ 8a 2 Chb, if p #a then q +a.Two proesses p and q are weak barbed bisimilar, noted p �b q, if (p; q) 2 S forsome barbed bisimulation S. The strong barbed bisimilarity �b is de�ned similar byreplaing =) by �! and + by #.We prove some equivalenes between proesses onsidered syntatial ongruent insome lassial presentation of �-alulus.Next lemma resumes a few properties of the relation �b.Lemma 2. �b satis�es the following properties:(a) p �� q implies p �b q(b) p k nil �b p() p k q �b q k p(d) (p k q) k r �b p k (q k r)(e) p+ nil �b p 9



(f) p+ q �b q + p(g) (p+ q) + r �b p+ (q + r)(h) �xp �b p if x 62 fn(p)(i) �y�xp �b �x�yp si x 6= y(j) (�xp) k q �b �x(p k q) if x 62 fn(q)(k) (�xp) + q �b �x(p+ q) if x 62 fn(q)(l) hy = zi(�xp); q �b �x(hy = zip; q) if x 62 fn(q) [ fy; zgProofConsequene of Lemma 6 et 10. � Lemma 2Next lemma proves an interesting property of barbed bisimilarity: barbed bisimilarityis preserved by parallelism.Lemma 3. �b and �b are preserved by parallelism:{ p �b q implies 8r; p k r �b q k r;{ p �b q implies 8r; p k r �b q k r;ProofWe prove (for example), just the weak ase. It suÆes to prove that the relation RwhereR def= �(p k r; q k r) �� p; q; r 2 Pb; p �b q	is a weak barbed bisimulation.{ Let p k r #a.Then we have either p #a, or r #a.If p #a, sine p �b q we obtain q +a and by suessive appliations of rule (14), weobtain (q k r) +a. If r #a, then obviously (q k r) #a.{ Let p k r ��! s be a silently transition of p.Then, the last applied rule used to infer this transition is either the rule (14) or itssymmetrial.If the last applied rule is the rule (14), then s � p0 k r and p ��! p0. Sine p �b q,we obtain q �=) q0 with p0 �b q0. By suessive appliations of rule (14), we obtainq k r �=) q0 k r.If the last applied rule is the symmetrial of the rule (14), then s � p k r0 and r ��! r0.By an appliation of the symmetrial of the rule (14) (14) we obtain q k r ��! q k r0.� Lemma 3Remark 1. Contrary to �-alulus, in the b�-alulus it is no more true that p�b q (p�b q),implies �ap �b �aq (�ap �b �aq) for any hannel a. For example, it suÆes to take p0 def= �aband q0 def= �ab:�d whih are strongly barbed bisimilar, whilst �ap0 et �aq0 are not evenbarbed bisimilar. 10



Lemma 3 and Remark 1 present interesting di�erenies between b�-alulus and �-alulus. In our model, barbed bisimilarity is preserved by parallelism, but it is not pre-served by restrition. In �-alulus, barbed bisimilarity is preserved by restrition but itis not preserved by parallelism.Sine barbed bisimilarity it is not preserved by restrition and an not make anydistintion between �:p and �:q for any p; q; � 6= � , it is neessary to lose it over variouslasses of ontexts. A ontext (de�ned in Table 4) is a term ontaining a single \hole",suh that plaing another term in the hole de�nes a valid term. A stati ontext (de�nedin Table 5) is a ontext whih is build using just \the hole", onstants, parallelism andname reation.C ::= � j �:C j �xC j hx = yiC; p j hx = yip;C j C + p jp+ C j C k p j p k C j (re Ah~xi:C)h~yiwhere p 2 Pb et � ::= x(~y) j �x~y j � with x 2 Chb; ~y � Chb.Table 4. Family of ontexts Con
C ::= � j �xC j C k p j p k Cwhere p 2 Pb et � ::= x(~y) j �x~y j � with x 2 Chb; ~y �Chb. Table 5. Stati ontexts ConsDe�nition 4. Barbed Equivalene{ Two proesses p and q are weak barbed equivalent, shortly p e�b q, if for everystati ontext C 2 Cons, C[p℄ �b C[q℄.{ Strong barbed equivalene( e�b) is obtained similarly from strong barbed bisimilarityover proesses.By a lassial reasoning, we an prove that �b, �b, e�b et e�b are equivalene relations.Remark 1 implies that barbed equivalene does no more oinide with the losure ofbarbed bisimilarity with respet to arbitrary testers (as is the ase in �-alulus).3.2 Step EquivalenesIn our alulus �=) is the rewriting and not ��!. This is the reason whih push us to de�neanother haraterization of barbed equivalene, still based on testers.We denote p +�a if p �=) ��! p0 for some output � of subjet a.11



De�nition 5. Step-BisimulationA symmetri relation S over the set Pb (of proesses) is a weak step-bisimulationif whenever (p; q) 2 S, then{ if p ��! p0, then 9q0 suh that q �=) q0 and (p0; q0) 2 S,{ 8a 2 Chb, if p #a then q +�a .Two proesses p and q are weak step-bisimilar, noted p �� q, if (p; q) 2 S for somestep-bisimulation S. The strong step-bisimilarity �� is de�ned similar, but replaing�=) by ��! and +� by #.Intuitively, step-bisimilarity identi�es proesses whih an broadast messages on thesame set of hannels (immediately or after some autonomous transitions), and wheneverone an progress without impliating the environment, so an the other, evolving to aproess preserving the relation. In fat, for our alulus, step-bisimilarity is more naturalthan barbed bisimilarity sine the real redution is ��! ( �=)) and not ��! (or ��!) asin �-alulus. Like barbed bisimilarity, step-bisimilarity is a very weak relation (it is notpreserved by parallel omposition), so it is neessary to lose it with respet to observers.From now on, we shall also use � - bisimilarity to stand for step-bisimilarity.As for barbed bisimilarity, we have the following step-bisimilarities.Lemma 4. �� satis�es the following properties:(a) p �� q implies p �� q(b) p k nil �� p() p k q �� q k p(d) (p k q) k r �� p k (q k r)(e) p+ nil �� p(f) p+ q �� q + p(g) (p+ q) + r �� p+ (q + r)(h) �xp �� p if x 62 fn(p)(i) �y�xp �� �x�yp if x 6= y(j) (�xp) k q �� �x(p k q) if x 62 fn(q)(k) (�xp) + q �� �x(p+ q) if x 62 fn(q)(l) hy = zi(�xp); q �� �x(hy = zip; q) if x 62 fn(q) [ fy; zgProofConsequene of Lemma 6 and 11. � Lemma 4As for barbed bisimilarity, step-bisimilarity is a very weak relation (it is not preservedby parallelism, nor by restrition).Remark 2.1. �� (��) is not preserved by k;2. �� (��) is not preserved by �;3. �b (�b) et �� (��) are inomparable.Proof 12



1. Let p1 def= �b+ �:�, q1 def= �b+�b:� and r1 def= b+ �a.Then p1 �� q1. On the ontrary (p1 k r1) 6�� (q1 k r1) beause q1 k r1 an not simulatethe transition (p1 k r1) ��! (� k b+ �a).2. Let p2 def= �ba:�a, q2 def= �b:�a.Then p2 �� q2. On the ontrary �ap2 6�� �aq2, beause �aq2 an not simulate thetransition �ap2 �a�ba�! �a.3. Sine �ap2 �b �aq2 and �ap2 6�� �aq2, we obtain�b 6��� :We have p1 6�b q1 sine q1 an not math the transition p1 ��! �. Sine p1 �� q1 weobtain �� 6��b :To obtain the assertion 3. it suÆes to use the inequalities �b��b and ����� :� Remark 2Remark 2 justi�es the de�nition of the losure of step-bisimilarity with respet to stationtexts.De�nition 6. Step-Equivalene{ Two proesses p and q are weak step-equivalent, shortly p e�� q, if for every stationtext C, C[p℄ �� C[q℄.{ Strong step-equivalene( e��) is obtained similarly from strong step-bisimilarity overproesses.Using some onvenient ontexts, we an prove that step-equivalene implies barbedequivalene.Lemma 5.1) p e�� q implies p�bq2) p e�� q implies p�bq:ProofWe proof only the weak ase.Let p e�� q and letM def= fa0 j a 2 fn(p; q)g a set of hannels suh thatM\fn(p; q) = ;and  a new hannel suh that  62M [ fn(p; q). Let T def= �a2fn(p;q)a(x):�a0 + �.We shall prove that the relationRT def= �(p0; q0) �� fn(p0; q0) � fn(p; q); p0 k T �� q0 k T	is a weak barbed bisimilarity.Let (p0; q0) 2 RT . Then fn(p0; q0) � fn(p; q); p0 k T �� q0 k T .{ Let p0 #d.It follows that d 6= , and p0 ��! for an output � of subjet d. We obtain p0 k T ��!(p00 k �d0). Sine p0 k T �� q0 k T , we obtain that q0 k T �=) r where (p00 k �d0) �� r.Then r = (q000 k �d0), where q0 �=) �! q00 �=) q000, for an output  of subjet d.13



{ Let p0 ��! p00.Then p0 k T ��! p00 k T . Sine p0 k T �� q0 k T , it follows that q0 k T �=) r, wherep00 k T �� r. If � 6= �, it is easy to remark that T had to partiipate in the transition,and that r 6+� , whilst (p00 k T ) #, ontradition with p00 k T �� r. So r = q00 k T whereq0 �=) q00. From the orollary 1 we obtain also that fn(p00; q00) � fn(p0; q0).� Lemma 5Corollary 2.1) p e�� q implies p e�b q2) p e�� q implies p e�b q:ProofWe prove only the weak ase.Let p e�� q and let C1[�℄ an arbitrary stati ontext. For any stati ontext C[�℄, sineC[C1[�℄℄ is a stati ontext, by the De�nition 6 we obtain that, C[C1[p℄℄��C[C1[q℄℄. Wealso obtain C1[p℄ e�� C1[q℄.By the Lemma 5, we obtain that C1[p℄�bC1[q℄. By the De�nition 4 we obtain thatp e�b q: � Corollary 23.3 Labelled BisimulationsIn order to prove that two proesses p and q are not (weak) step-equivalent (or weakbarbed equivalent), it is enough to �nd a suitable stati ontext C, suh that C[p℄ andC[q℄ are not (weak) step bisimilar (respetively (weak) barbed bisimilar). But the onverse(i.e. proving the step-equivalene or the barbed equivalene) is muh harder to prove ingeneral just using the given de�nitions; indeed, this requires a quanti�ation over all theontexts. Thus, it is interesting to have another way to diretly prove that two systemsare equivalent.De�nition 7. Weak labelled bisimulations A symmetri relation S over the set Pb(of proesses) is a (weak) bisimulation if whenever (p; q) 2 S, then1) if p ��! p0, then 9q0 suh that q �=) q0 and (p0; q0) 2 S,2) if p �~b�a~�! p0 and ~b \ fn(p; q) = ;, then 9q0 suh that q �~b�a~=) q0 and (p0; q0) 2 S,3) if p ah~bi?�! p0 then 9q0 suh that q �=) � ah~bi?�! � �=) q0 and (p0; q0) 2 S.Two proesses p and q are weak bisimilar, noted p � q, if (p; q) 2 S for some weakbisimulation S.The strong bisimilarity � is de�ned similar, by substituting�! to =) in onditions1) and 2), and replaing ondition 4) by \if p ah~bi?�! p0 then 9q0 suh that q ah~bi?�! q0 and(p0; q0) 2 S". 14



De�nition 8. Strong labelled bisimulations A symmetri relation S over the set Pb(of proesses) is a strong bisimulation if whenever (p; q) 2 S, then1) if p ��! p0, then 9q0 suh that q ��! q0 and (p0; q0) 2 S,2) if p �~b�a~�! p0 and ~b \ fn(p; q) = ;, then 9q0 suh that q �~b�a~�! q0 and (p0; q0) 2 S,3) if p ah~bi?�! p0 then 9q0 suh that q ah~bi?�! q0 and (p0; q0) 2 S.Two proesses p and q are strong bisimilar, noted p � q, if (p; q) 2 S for some strongbisimulation S.By lassial arguments [11℄, we an prove that � and � are equivalene relations.As for barbed bisimilarity and for � - bisimilarity, we have for the strong labelledbisimilarity the next lemma.Lemma 6. � satis�es the following properties:(a) p �� q implies p � q(b) p k nil � p() p k q � q k p(d) (p k q) k r � p k (q k r)(e) p+ nil � p(f) p+ q � q + p(g) (p+ q) + r � p+ (q + r)(h) �xp � p if x 62 fn(p)(i) �y�xp � �x�yp if x 6= y(j) (�xp) k q � �x(p k q) if x 62 fn(q)(k) (�xp) + q � �x(p+ q) if x 62 fn(q)(l) hy = zi(�xp); q � �x(hy = zip; q) if x 62 fn(q) [ fy; zg:Proofa) p �� q implies p � qThe relation S1 whereS1 def= �(p; q) �� p; q 2 Pb; p �� q	is a strong bisimulation. The result follows from the observation that p � q and p �! p0implies q �! p0 (by the appliation of the rule (1) from the Table 3).b) p k nil � pThe relationS2 def= �(p k nil; p) �� p;2 Pb	is a strong bisimulation.Let (p; q) 2 S2. Then p = q k nil.If p ��! p0, then the last used rule to infer this transition is the rule (14). So p0 = q0 k nilet q ��! q0. Then (q0 k nil; q0) 2 S2.If q ��! q0, by the appliation of the rule (14) we obtain p ��! q0 k nil with (q0 knil; q0) 2 S2. 15



) p k q � q k p The relationS3 def= �(p k q; q k p) �� p; q 2 Pb	is a strong bisimulation.If p k q ��! r, then the last used rule to infer this transition is one of the rules (12), (13)or (14) and r = p0 k q0. By the appliation of the rule (12), or one of the symmetrialof the rules (13) or (14), we obtain q k p ��! q0 k p0.d) (p k q) k r � p k (q k r)The relationS4 def= �(p k q) k r; p k (q k r) �� p; q; r 2 Pb	is a strong bisimulation. The proof is similar to the previous ase.e) p+ nil � pThe relationS5 def= �(p+ nil; p) �� p 2 Pb	S�(p; p) �� p 2 Pb	is a strong bisimulation.Let (p; q) 2 S2. Then p = q + nil ou p = q.The ase p = q is obvious.Let p = q + nil.If q + nil ��! r, then the last used rule to infer this transition is the rule (8), andr = q0, where q ��! q0. Obviously (q0; q0) 2 S2.If q ��! r, by the appliation of the rule (8), we obtain q + nil ��! r and (r; r) 2 S2.f) p+ q � q + pg) (p+ q) + r � p+ (q + r):For ases f) and g), the proof that S6 et S7 are strong bisimulations is similar to asee).S6 def= �(p+ q; q + p) �� p; q 2 Pb	S�(p; p) �� p 2 Pb	S7 def= �((p+ q) + r; p+ (q + r)) �� p; q; r 2 Pb	S�(p; p) �� p 2 Pb	(h) �xp � p si x 62 fn(p)The relationS8 def= �(�xp; p) �� p 2 Pb; x 62 fn(p)	is a strong bisimulation.Let (p; q) 2 S8. Then p = �xq with x 62 fn(q).If �xq ��! r, then the last used rule to infer this transition is the rule (7), and r = �xq0,where q ��! q0 and x 62 fn(q0). Obviously (�xq0; q0) 2 S8.If q ��! r, then by the appliation of the rule (7), we obtain that �xq ��! �xr and(�xr; r) 2 S8 (sine x 62 fn(r)).(i) �y�xp � �x�yp if x 6= yThe relationS9 def= �(�x1 : : : �xnp; �x�(1) : : : �x�(n)p) �� n 2 N; � permutation of f1; : : : ; ng; for alli; j; xi 6= xj ; p 2 Pbg	is a strong bisimulation.Let (�x1 : : : �xnp; �x�(1) : : : �x�(n)p) 2 S9 and let �x1 : : : �xnp ��! q0 be a transition.By indution on n, we an prove that this transition is derived from a transition of p,p ��! p0. We shall make an analysis by ases, depending on �.� � = � .Then by n appliations of the rule (7), we obtain �x1 : : : �xnp ��! �x1 : : : �xnp0and �x�(1) : : : �x�(n)p ��! �x�(1) : : : �x�(n)p0.16



� � = ah~bi.Then a 62 fx1; : : : ; xng, and by n appliations of the rule (7), we obtain �x1 : : : �xnp ah~bi�!�x1 : : : �xnp0 and �x�(1) : : : �x�(n)p ah~bi�! �x�(1) : : : �x�(n)p0.� � = �~b�a~, and ~ n ~b \ fx1; : : : ; xng = fxi1 ; : : : ; ximg We have two ases again.� a 62 fx1; : : : ; xngThen by n �m appliations of the rule (7) and by m appliations of the rule(5), we obtain �x1 : : : �xnp �xi1 :::�xim�~b�a~�! �y1 : : : �yn�mp0 and�x�(1) : : : �x�(n)p �xi1 :::�xim�~b�a~�! �y�(1) : : : �y�(n�m)p0 for some permutation � off1; : : : ; n�mg and fy1 : : : yn�mg = fy�(1) : : : y�(n�m)g = fx1; : : : ; xngnfxi1 ; : : : ; ximg:� a 2 fx1; : : : ; xngThen by several appliations of the rules (5) and (7) and by an appliation ofthe rule (6), we obtain �x1 : : : �xnp ��! �y1 : : : �yn+kp0 and�x�(1) : : : �x�(n)p ��! �y�(1) : : : �y�(n+k)p0 for some permutation � of f1; : : : ; n+kg, j~bj = k and fy1 : : : yn+kg = fy�(1) : : : y�(n+k)g = fx1; : : : ; xng [ ~b:(j) (�xp) k q � �x(p k q) if x 62 fn(q)The relationS10 def= �((�xp) k q; �x(p k q)) �� p 2 Pb; x 62 fn(q)	S�(p; p) �� p 2 Pb	 *is a strong bisimulation.Let ((�xp) k q; �x(p k q)) 2 S10, with x 62 fn(q).If (�xp) k q ��! r, then the last used rule to infer this transition is one of the rules(12), (13), (14) or the symmetrial of one of the rules (13), or (14).If � = �~b�a~ et x 2 ~b, then for some p0 and q0 we have (�xp) k q �~b�a~�! p0 k q0 and�x(p k q) �~b�a~�! p0 k q0 by the appliation of the rule (5).For all other ases, we obtain (�xp) k q ��! (�yp0) k q0 and �x(p k q) ��! �y(p0 k q0)for some y, p0 and q0.(k) (�xp) + q � �x(p+ q) if x 62 fn(q)(l) hy = zi(�xp); q �b �x(hy = zip; q) if x 62 fn(q) [ fy; zgFor the ases k) and l), the proof that S11 et S12 are strong bisimulations is similar toase e).S11 def= �((�xp) + q; �x(p+ q)) �� p 2 Pb; x 62 fn(q)	S�(p; p) �� p 2 Pb	S12 def= �(hy = zi(�xp); q; �x(hy = zip; q)) �� p; q 2 Pb; x 62 fn(q)[fy; zg	S�(p; p) �� p 2Pb	 � Lemma 6Lemma 2, 4 and 6 allow us to omit the parenthesis in p k q k r or p + q + r in someontexts, and to omit \nil" in some terms.Like in [11℄, we use "bisimulations up-to" to redue the size of relations in the proofs.We shall use just the "bisimulations up-to" �.De�nition 9. A symmetri relation S is a weak bisimulation up-to � if (p; q) 2 S,implies1) if p ��! p0, then 9q0 suh that q �=) q0 and (p0; q0) 2 �S�,17



2) if p �~b�a~�! p0 and ~b \ fn(p; q) = ;, then 9q0 suh that q �~b�a~=) q0 and (p0; q0) 2 �S�,3) if p ah~bi?�! p0 then 9q0 suh that q �=) � ah~bi?�! � �=) q0 et (p0; q0) 2 �S�.The de�nition of strong bisimulation up-to � follows as in the De�nition 8.By lassial arguments, we an prove the next Lemma.Lemma 7. If S is a weak bisimulation up-to � (strong bisimulation up-to �) then S � �(S � �).ProofWe give the proof only for the weak ase.If S is a weak bisimulation up-to �, we prove thatSu def= [n<1Snis a weak bisimulation, where S0 def= �(p; q) �� p � S � q 	Sn+1 def= �(p[~z=~x℄; q[~z=~x℄) j (p; q) 2 Sn; ~z \ fn(p; q) = ;; [~z=~x℄ injetive 	The proof is by indution on n.{ Let (p; q) 2 S0. Then 9p1; q1 suh that p � p1 S q1 � q.1. For any p ��! p0 suh that bn(�) \ fn(p; q; p1; q1) = ;, we an prove that we an�ll the next diagram: p � p1 S q1 � q??y� ??y� ww��̂ ww��̂p0 � p01 � S � q01 � q0We prove the assertion only for the ase � = �~b�a~. The other ases are simpler.Let p �~b�a~�! p0, with ~b \ fn(p; q; p1; q1) = ;.Then p � p1 implies p1 �~b�a~�! p01.Sine p1 S q1, by the de�nition 9 we obtain q1 �~b�a~=) q01 with p01 � S � q01.By indution on the length of �~b�a~=) and using that q1 � q, we obtain q �~b�a~=) q0 withq0 � q01.We use after � Æ ��� to obtain (p1; q1) 2 S0.2. If p �~b�a~�! p0 suh that ~b \ fn(p; q) = ; and ~b \ fn(p1; q1) 6= ;, then let ~d suh that~d\fn(p; q; p1; q1) 6= ;. Repeating the reasoning of ase 1., we obtain that p � ~d�a~�! p",and q � ~d�a~=) q" with p" � S � q".We an prove after that p0 = p"[~b= ~d℄ and q �~b�a~=) q0 with q0 = q"[~b= ~d℄, and hene(p0; q0) 2 S1. 18



{ Let (p; q) 2 Sn+1. Then 9(p1; q1) 2 Sn suh that p = p1[~z=~x℄, q = q1[~z=~x℄, fn(p1; q1) \~z = ; et [~z=~x℄ is an injetive substitution.let p ��! r0. We an prove that exists �0 injetive, suh that p = p1[~z=~x℄ = p1�0,q = q1[~z=~x℄ = q1�0, r0 = r�0, � = �0(�) and prod(�0) \ fn(p1; q1; �) = ;. It followsp1 ��! r, and sine (p1; q1) 2 Sn, by indution hypothesis, we obtain q1 �=) s with(r; s) 2 Sm for some m 2 N.Hene q = q1�0 �=) s�0 and prod(�0) \ fn(r; s) = ;, so (r�0; s�0) 2 Sm+1:The proof for the strong bisimulation up-to � is similar. � Lemma 7Labelled bisimulation is a ongruene with respet to restrition and parallelism.Lemma 8. If p � q (p � q) then �ap � �aq (�ap � �aq).ProofWe shall prove that the relation S def= 1[n=0SnwhereS0 def= �(p; q) �� p � q	Sn+1 def= �(p; q) �� 9a 2 Chb;9(p0; q0) 2 Sn; p = �ap0; q = �aq0	is a weak bisimulation.We an prove that z 62 fn(p; q) and p � q imply p[z=x℄ � q[z=x℄, and after, we anprove by indution on n, that z 62 fn(p; q) and (p; q) 2 Sn imply (p[z=x℄; q[z=x℄) 2 Smwith m � n.Using this, we an also prove by indution on n, that if (p; q) 2 Sn and p �� p1, thenit exists q1 and m � n suh that q �� q1 et (p1; q1) 2 Sm. (1)Now, we prove by indution on n, that if (p; q) 2 Sn and p ��! p0 where � satis�es theonditions in the De�nition 7, then it exists m 2 N and q �̂=) q0, suh that (p0; q0) 2 Sm.The ase n = 0 follows diretly from the De�nition 7.Let (p; q) 2 Sn+1. Hene p = �ap1 et q = �aq1 with (p1; q1) 2 Sn.Let p ��! p0.If the last rule used is (1), with p �� p1 and p1 ��! p0, we use 1 to obtain a orre-sponding q1 and we repeat the reasoning for p1 et q1 (in this manner we redue stritlythe number of appliations of the rule (1)). So we an suppose that the last rule used isnot (1).We have several ase, depending on the ation �.{ � = � . Then the last applied rule is (6) or (7).If the last applied rule is (6), then p1 �~b�a~�! p01 and p0 = �a�~bp01. By indution, 9m suhthat q1 �~b�a~=) q01 and (p01; q01) 2 Sm. We obtain by an appliation of the rule (6) and byseveral appliations of the rule (7), that q �=) �a�~bq01 with (�a�~bp01; �a�~bq01) 2 Sm+1+j~bj.19



If the last applied rule is (7), then p1 ��! p01 and p0 = �ap01. By indution 9m suhthat q1 �=) q01 and (p01; q01) 2 Sm. We obtain by several appliations of the rule (7),that q �=) �aq01, and (�ap01; �aq01) 2 Sm+1.{ � = �~b �d~. So d 6= a and that last rule used is (5) or (7).If the last applied rule is (5), then p1 �~b �d~�! p0 and a 2 ~ n (~b [ fdg). By indution 9msuh that q1 �~b �d~=) q0 and (p0; q0) 2 Sm. We obtain by an appliation of the rule (5) andby several appliations of the rule (7), that q �a~b �d~=) q0.If the last applied rule is (7), then p1 �~b �d~�! p01, p0 = �ap01 and a 62 (~ n ~b) [ fdg. Byindution 9m suh that q1 �=) q01 et (p01; q01) 2 Sm. We obtain by several appliationsof the rule (7), that q �~b �d~=) �aq01, and (�ap01; �aq01) 2 Sm+1.{ � = dh~bi?. So d 6= a and the last rule used is (7). Then p1 dh~bi?�! p01, and p0 = �ap01. Byindution 9m suh that q1 �=) � dh~bi?�! � �=) q01 and (p01; q01) 2 Sm. We obtain by severalappliations of the rule (7), that q �=) � dh~bi?�! � �=) �aq01, and (�ap01; �aq01) 2 Sm+1.The ase \strong bisimulation" is similar. � Lemma 8Lemma 9.1. If p � q then p k r � q k r.2. If p � q then p k r � q k r.ProofFor the ase "weak bisimulation", we prove that the relationT def= �(p k r; q k r) �� p � q 	is a weak bisimulation.Let p k r ��! s.If the last applied rule is (1), with p k r �� p1 k r1, we have q k r �� q k r1 and p1 � q(in this manner we stritly redue the number of appliations of the rue (1)). So we ansuppose that the last rule used is not (1).{ p k r ��! s. There are two ases:� s = p0 k r et p ��! p0.Sine p � q then 9q0 suh that q �=) q0 and p0 � q0. Hene q k r �=) q0 k r, with(p0 k r; q0 k r) 2 T .� s = p k r0 et r ��! r0.Then q k r ��! q k r0, with (p k r0; q k r0) 2 T .{ p k r �~b�a~�! s with ~b \ fn(p; q; r) = ;. There are two ases:� s = p0 k r0, p �~b�a~�! p0 and r ah~i?�! r0.Sine p � q then q �~b�a~=) q0 and p0 � q0, and so q k r �~b�a~=) q0 k r0, with (p0 k r0; q0 kr0) 2 T . 20



� s = p0 k r0, p ah~i?�! p0 and r �~b�a~�! r0.Sine p � q then q �=) q00 ah~i?�! q000 �=) q0 for some q00; q000 and p0 � q0, and soq k r �~b�a~=) q0 k r0, with (p0 k r0; q0 k r0) 2 T .{ p k r ah~bi?�! s.s = p0 k r0, p ah~bi?�! p0 and r ah~bi?�! r0.Sine p � q then q �=) q00 ah~bi?�! q000 �=) q0 for some q00; q000 et p0 � q0, and heneq k r �=) q00 k r ah~bi?�! q000 k r0 �=) q0 k r0, with (p0 k r0; q0 k r0) 2 T .The ase "strong bisimulation" is similar. � Lemma 9The following lemmas prove that labelled bisimulation is a pretty strong relation.Lemma 10.1) p � q implies p �b q.2) p � q implies p �b q:ProofWe prove only the weak ase. We prove that � is a weak barbed bisimulation.Let (p; q) 2�.{ Let p #. Then p ��! for an output � of subjet . Sine p � q, we obtain that q �=)and so q +.{ Let p ��! p0. Sine p � q, then q �=) q0 with (p0; q0) 2�. � Lemma 10Corollary 3.1) p � q implies p e�b q.2) p � q implies p e�b q:ProofWe give the proof for the weak ase.Let p � q.Let C be an arbitrary stati ontext.By indution on the struture of C, and using the Lemmas 8, and 9, we obtain thatC[p℄ � C[q℄.By the Lemma 10, we obtain that C[p℄ �b C[q℄. So p e�b q. � Corollary 3In the same manner, we an prove the next results.Lemma 11.1) p � q implies p �� q.2) p � q implies p �� q:Corollary 4. 21



1) p � q implies p e�� q.2) p � q implies p e�� q:We use similar arguments as in [18℄, to prove that labelled bisimulation, � - equivaleneand barbed equivalene oinide for an important lass of proesses, namely image �niteproesses.A labelled transitional system (P; At; 7!) is image �nite if for any proesses p andation �, the set fq j p �7! qg est �nite (in our ase �7! an stand either for the strong orfor the weak redution).A proesses p is image �nite if for any ation �, the set fq j p �7! qg is �nite, and forany proesses q and ation � suh that p �7! q, q is image �nite.Remark that in what onerns the strong redution, any proesses is image �nite (up-toalpha-onversion).In order to keep the notations simple, we shall give the proof just for the monadiversion of b� -alulus (but our results an be easily extended to the polyadi version).Lemma 12. For all image �nite proesses p and q,1) p e�b q implies p � q,2) p e�b q implies p � q:ProofWe shall give the proof only for the weak ase.Let F a monotoni funtion de�ned on the set of relations between proesses P(Pb�Pb)assoiated to the de�nition of labelled bisimulations.If S is a relation on Pb, then (p; q) 2 F(S), only if the following onditions are satis�ed:1) if p ��! p0, then 9q0 suh that q �=) q0 and (p0; q0) 2 S,2) if p �~b�a~�! p0 and ~b \ fn(p; q) = ;, then 9q0 suh that q �~b�a~=) q0 and (p0; q0) 2 S,3) if p ah~bi?�! p0 then 9q0 suh that q �=) � ah~bi?�! � �=) q0 and (p0; q0) 2 S.Let �0 = Pb�Pb, �n+1 = F(�n), and �! = Tk<!�k . We all�m a weakm-bisimulation.It is well known [7℄, that for an image �nite labelled transitional system �! = �:It suÆes to prove that 8m, p e�b q =) p �m q:For a set N of pairs of names, we shall denote Ni the projetion on the i-Th element,n(N) = N1 [N2, and we shall require N1 \N2 = ;. We use H+ (Y �) as an abbreviationfor H [f(y1; y01)g (Y n f(y1; y01)g). H1 plays the role of names whih an be known by p orq, and Y plays the role of names whih an be learned by p or q. To prove the impliation,we build a ontexts family CnM;H;Y [�℄ suh that the relationrm = n(p; q) j 9n;M;H; Y; ~x suh that n(H) \ n(Y ) = ;; jY j = m; fn(p k q) � H1 �M;(H1 [ Y1) � f~xg; (H2 [ Y2) \ f~xg = ;; �~xCnM;H;Y [p℄ �b �~xCnM;H;Y [q℄ois a weak m-bisimulation.Let in, out, new and fbnjn � 0g be some "fresh" names, suh that (f~xg [ n(H) [n(Y )) \ (fbnjn � 0g [ fin; out; newg) = ;. 22



Let CnM;H;Y [�℄ def= [�℄ k ASensorr;nhMi k GSensors;mhH;Y iwhere jM j = r; jHj = s; jY j = m,The role of GSensor is to provide to p et q all the possible ommuniations. Theonditions fn(p k q) � H1, fn(p k q)\Y1 = ; and jY1j = m assure that GSensors;mhH;Y ian \satisfy" all the possible ommuniations of p or q during m transitions.GSensors;m def= (H;Y )X((a;a0);(b;b0))2H�H+ �ab:(�:GSensors+1;m�1hH+; Y �i+ �:W ha0; b0; ini)+ Xa2H1 a(y):asehy;H1; (Rz)z2H1 ; R0yi; with jHj = s; jY j = mW def= (a; b; r)(�a + �:(�b+ �r));Rz def= �:GSensors;m�1hH;Y �i+ �:W ha0; z0; outiR0y def= �:GSensors+1;m�1hH [ f(y; y01)g; Y �i+ �:W ha0; new; outiasehy;H; (Ry)y2H ; Ri def= (R si H = ;;hy = ziRz; asehy;H 0; (Ry)y2H0 ; Ri if H = H 0 [ fzg: (2)ASensor ounts the number of visible made by p, q or GSensors;m (hene the onditionfn(p k q) � H1 �M).ASensorr;n def= (M)(bn + Xa2M a(x):ASensorr+1;n+1hM [ fxgi); with jM j = rWe prove that rm is a weak m-bisimulation.Let (p; q) 2 rm: Then 9n;M;H; Y; ~x suh that n(H)\n(Y ) = ;; jY j = m; fn(p k q) �H1 �M; (H1 [ Y1) � f~xg; (H2 [ Y2) \ f~xg = ;; �~xCnM;H;Y [p℄ �b �~xCnM;H;Y [q℄:[1℄ Let suppose p ��! p0:Then �~xCnM;H;Y [p℄ ��! �~xCnM;H;Y [p0℄: Then we must have a transition�~xCnM;H;Y [q℄ �=) t �b �~xCnM;H;Y [p0℄Sine �~xCnM;H;Y [p0℄ #bn , we an infer that ASensor remains unhanged, and sineH1 �M , we obtain that t � �~xCnM;H;Y [q0℄ where q �=) q0:[2℄ Let suppose p �ab�! p0.Then�~xCnM;H;Y [p℄ ��! �~x(p0 k ASensorr+1;n+1hM [ fbgi k asehb;H1; (Rz)z2H1 ; R0bi)= t1 ��! �~x(p0 k ASensorr+1;n+1hM [ fbgi k GSensors;m�1hH;Y �i)= t2 = �~xCn+1M[fbg;H;Y � [p0℄23



Then it should exist the proesses u1, u2 derived from �~xCnM;H;Y [q℄ suh that�~xCnM;H;Y [q℄ �=) u1 �b t1u1 �=) u2 �b t2First step: �~xCnM;H;Y [p℄ ��! t1: The on�guration �~xCnM;H;Y [q℄ must do at least one step,sine �~xCnM;H;Y [q℄ #bn whilst t1 6+bn . Beause t1 #bn+1 , p and GSensor an not make morethan one visible step. We obtain that u1 must have the following form:� ~x0(q00 k ASensorr+1;n+1hM [ fb1gi k v00)for some b1; q00; v00; � ~x0, q �0=) q00, GSensors;mhH;Y i �00�! v00, where �00 and �0 are om-plementary ations. The fat t1 =)+fa0;b0;out;bn+1g implies that �0 is an output, and �00must be the orresponding input; moreover, �0 an not be a bound output. Hene weobtain that �0 = a1b1, where fa; bg = fa1; b1g. If we suppose a1 = b; b1 = a, we shouldobtain t1 =)+fb0;out;bn+1g, transition that u1 an not math. For the seond step, we eas-ily obtain that u2 must have the following form �~xCn+1M[fbg;H;Y � [q0℄ where q00 �=) q0 etv00 ��! GSensors;m�1hH;Y �i[3℄ Let suppose p �b�ab�! p0.Then�~xCnM;H;Y [p℄ ��! �b�~x(p0 k ASensorr+1;n+1hM [ fbgi k asehb;H1; (Rz)z2H1 ; R0bi)= t1 ��! �b�~x(p0 k ASensorr+1;n+1hM [ fbgi k GSensors+1;m�1hH [ f(b; y01)g; Y �i)= t2 = �b�~xCn+1M[fbg;H[f(b;y01)g;Y � [p0℄Then it should exist the proesses u1, u2 derived from �~xCnM;H;Y [q℄ suh that�~xCnM;H;Y [q℄ �=) u1 �b t1u1 �=) u2 �b t2The �rst step: �~xCnM;H;Y [p℄ ��! t1: The on�guration �~xCnM;H;Y [q℄ must do at least a step,sine �~xCnM;H;Y [q℄ #bn or t1 6+bn . Sine t1 #bn+1 , p and GSensor an not make more thana single visible step. Hene we obtain that u1 must have the following form:� ~x0(q00 k ASensorr+1;n+1hM [ fb1gi k v00)for some b1; q00; v00; ~x0, q �0=) q00, GSensors;mhH;Y i �00�! v00, where �00 and �0 are om-plementary ations. Sine t1 =)+fa0;new;out;bn+1g we dedue that �0 is an output, and �00must be the orresponding input; moreover, �0 must be a bound output. Then �0 = �ba1b,where neessarily a = a1. For the seond step, we easily prove that u2 must have theform �b�~xCn+1M[fbg;H[f(b;y01)g;Y � [q0℄ where q00 �=) q0 and v00 ��! GSensors+1;m�1hH [f(b; y01)g; Y �i[4℄ Let suppose p ah~bi?�! p0. 24



Then �~xCnM;H;Y [p℄ ��!�~x(p0 k ASensorr+1;n+1hM [ fbgi k (�:GSensors+1;m�1hH+; Y �i+ �:W ha0; b0; ini))= t1 ��! �~x(p0 k ASensorr+1;n+1hM [ fbgi k GSensors+1;m�1hH+; Y �i)= t2 = �~xCn+1M[fbg;H+;Y � [p0℄Then it should exist the proesses u1, u2 derived from �~xCnM;H;Y [q℄ suh that�~xCnM;H;Y [q℄ �=) u1 �b t1u1 �=) u2 �b t2The �rst step: �~xCnM;H;Y [p℄ ��! t1: The on�guration �~xCnM;H;Y [q℄ must do at least a step,sine �~xCnM;H;Y [q℄ #bn and t1 6+bn . Sine t1 #bn+1 , p or GSensor an not make more thanone single visible step. Hene we obtain that u1 must have the following form:� ~x0(q00 k ASensorr+1;n+1hM [ fb1gi k v00)for some b1; q00; v00; � ~x0, q �0=) q00, GSensors;mhH;Y i �00�! v00, where �00 et �0 are om-plementary ations. Sine t1 =)+fa0;b0;in;bn+1g then �0 must be either an input, either adisard, whilst �00 is the orresponding output. Hene �0 = a1h ~b1i?, �00 = a1b1, where ne-essarily fa; bg = fa1; b1g. If we suppose a1 = b; b1 = a, we should obtain t1 =)+fb0;in;bn+1g,transition that u1 an not math. For the seond step, we easily obtain that u2 must havethe form �~xCn+1M[fbg;H+;Y � [q0℄ with q00 �=) q0 and v00 ��! GSensors+1;m�1hH+; Y �i� Lemma 12Theorem 1. For all image �nite proesses p and q,1) p e�b q i� p e�� q i� p � q2) p e�b q i� p e�� q i� p � q:ProofThe assertion of the theorem is an immediate onsequene of Corollaries 2 and 4 andof Lemma 12. � Theorem 14 CongruenesIn this setion we fous on the ongruene indued by barbed bisimilarity. Our goal willbe to de�ne a relation R over the set Pb of proesses suh that if p R q then p andq are observable on the same set of hannels, observability is preserved by redution,and moreover, when plaed in an arbitrary ontext C, p and q annot be distinguished(C[p℄ R C[q℄). In this paper we shall onentrate on the strong ongruene, for the weakase (whih abstrats for internal steps), we shall defer to future work.25



De�nition 10. Barbed CongrueneTwo proesses p and q are barbed ongruent, shortly p �b q, if for any ontext C,C[p℄ �b C[q℄:Obviously, �b is by de�nition a ongruene. But as for barbed equivalene, this def-inition is more appropriate to prove the non-ongruene rather than the ongruene oftwo proesses. So we are interested in �nding a diret haraterization of this ongruenebased on labelled transitions.Unfortunately, � is not the target haraterization, as it follows from the above remark.Remark 3.{ � is not preserved by hoie. We have that a � b, but a+ � 6� b+ �:{ � is not preserved by substitution. Let p def= �x:y:� + y:(�x k �) and q def= �x k y:�. Thenp � q, but p[x=y℄ 6� q[x=y℄:{ � is not preserved by pre�xing. It is a diret onsequene of the previous item.Unlike strong bisimilarity from the �-alulus, � is not preserved by hoie. We borrowideas from [8℄ and [14℄ to obtain a ongruene relation whih do not require losure withrespet to ontexts.De�nition 11. Let �+ be given by1) if p ��! p0, then 9q0 suh that q ��! q0 and p0 � q0,2) if p �~b�a~�! p0 and ~b \ fn(p; q) = ;, then 9q0 suh that q �~b�a~�! q0 and p0 � q0,3) if p ah~bi�! p0, then 9q0 suh that q ah~bi�! q0 and p0 � q0,Let � be given by p � q if p� �+ q� for all substitutions �.Remark 4.{ ���+��.{ the inlusions are strit.{ �+ is preserved by +, � and k.ProofThe inlusions follow diretly from the de�nitions.To prove that the �rst inlusion is strit, it suÆes to take p def= �x:y:� + y:(�x k �) andq def= �x k y:�. Then p �+ q, but p 6� q:To prove that the seond inlusion is strit, it suÆes to take p def= a et q def= b. Thenp � q, but p 6�+ q:The fat that �+ is preserved by � and k an be proved by an analysis by ases, inthe same manner as for � in Lemmas 8 and 9.The fat that �+ est preserved by + is proved by an analysis by ases.Let p �+ q. We prove that (p+ r) �+ (q + r).If p+r ��! s, then this transition is inferred using the rule (8), from p ��! s or r ��! s.If p ��! s, sine p �+ q, using the De�nition 11, we obtain q ��! t with s � t. Usingthe rule (8), we obtain q + r ��! t.If r ��! s, using the rule (8), we obtain q + r ��! s, and obviously s � s.The ase q + r ��! s is similar. � Remark 426



Lemma 13. � is preserved by pre�x, restrition, summation, mathing and parallelism.Proof{ p � q =) �:p � �:q: for any pre�x �.� � = �:Let � be a substitution. Then p � q =) p� �+ q� =) p� � q� =) �:(p�) �+�:(q�) =) (�:p)� �+ (�:q)�:Hene �:p � �:q:� � = �ab:Let � be a substitution. Then p � q =) p� �+ q� =) p� � q� =)(�a~b)�:(p�) �+ (�a~b)�:(q�) =) (�a~b:p)� �+ (�a~b:q)�:We obtain �a~b:p � �a~b:q:� � = a(~b):Let � be a substitution. Then p � q =) p� �+ q� =) p� � q� =)(a(~b):p)� �+ (a(~b):q)�:Hene a(~b):p � a(~b):q:{ p � q =) �ap � �aq for any hannel a 2 Chb.Let � be a substitution. We an suppose a 62 (prdom(�)[ prod(�)). Then p � q =)p� �+ q� =) (from the Remark 4) (�ap)� �+ (�aq)�:Hene �ap � �aq:{ p � q =) p+ r � q + r:Let � be a substitution. Then p � q =) p� �+ q� =) (from the Remark 4)p� + r� �+ q� + r� =) (p+ r)� �+ (q + r)�:We obtain p+ r � q + r:{ p � q =) hx = yip; r � hx = yiq; r ^ hx = yir; p � hx = yir; q:Let � be a substitution. We an prove the impliations by an analysis by ases (de-pending on the relation between �(x) and �(y)), using the fat that �+ is reexive.{ p � q =) p k r � q k r for any proesses p 2 Pb.Let � be a substitution. Then p � q =) p� �+ q� =) (from the Remark 4)p� k r� �+ q� k r� =) (p k r)� �+ (q k r)�We obtain p k r � q k r: � Lemma 13For a proess E whih ontains a free identi�er X, and a proess p, we denote E(p)for the proess obtained from E by replaing Xh~yi by ph~y=~xi where ~x denotes the freenames of p. For example, if p def= (x1; x2)( �x1:x2 k �x2) and E def= �ab:Xha; bi + ��a:Xh; bi,then E(p) = �ab:(�a:b k �b) + ��a:(�:b k �b).De�nition 12. Let E and F be two proesses whih ontain a free identi�er X. ThenE � F (respetively E �+ F , E � F ) if E(p) � F (p) (respetively E(p) �+ F (p),E(p) � F (p)) for any proess p:We shall use the bisimulations up-to �+.De�nition 13. A symmetri relation S is a bisimulation up-to �+ sif for any (p; q) 2S, we have 27



1) if p ��! p0, then 9q0 suh that q ��! q0 and (p0; q0) 2 �S�,2) if p �~b�a~�! p0 and ~b \ fn(p; q) = ;, then 9q0 suh that q �~b�a~�! q0 and (p0; q0) 2 �S�,3) if p ah~bi�! p0 then 9q0 suh that q ah~bi�! q0 and (p0; q0) 2 �S�.Remark that in the De�nition 13, we require (p0; q0) 2 �S� and not (p0; q0) 2 �+S�+.Next lemma allow to redue the size of relations used to prove for two proesses p andq that p�+q.Lemma 14. If S is a bisimulation up-to �+ then S � �+.ProofLet S be a bisimulation up-to �+. Then S satis�es the onditions of the De�nition 9,and hene S ��.Now let suppose that (p; q) 2 S and let p ��! p0, where � satis�es the onditions ofthe De�nition 11. Then by the De�nition 13, we obtain that q ��! q0 and (p0; q0) 2 �S�:Sine S �� et � is transitive, we obtain (p0; q0) 2 �: � Lemma 14Lemma 15. Let E and F be open proesses whih ontain X as free identi�er. If E � F ,then (re Xh~xi:E)h~xi � (re Xh~xi:F )h~xi.ProofLet p def= (re Xh~xi:E)h~xi, q def= (re Xh~xi:F )h~xi:We prove that the relationC def= �(G(p); G(q)) �� G ontains only the identi�er X 	is a bisimulation up-to �+. Using the Lemma 14 we obtain C � �+. Choosing G � Xh~zi,we obtain that ph~zi�+qh~zi for any ~z, and hene p�q, whih prove the assertion of lemma.Let G(p) ��! p0 (�).We shall prove the existene of a orresponding transition G(q) ��! q0 whih satis�esthe onditions of the De�nition 13 by strutural indution on the inferene of the transition(�). We present only a few ases.{ G(p) ��! p0 using the rule (11).Then G = Xh~yi, and by a shorter dedution, E(p)[~y=~x℄ � E[~y=~x℄(p) ��! p0. Byindution E[~y=~x℄(q) ��! q00 with p0�C�q00. Sine E � F , we obtainE[~y=~x℄(q)�+F [~y=~x℄(q); so F [~y=~x℄(q) ��! q0 � q00. Using the rule (11) G(q) = qh~yi ��!q0. The transitivity of � implies p0�C�q0.{ G(p) ��! p0 using one of the rules whih onerns the parallelism (12), (13), (14) orone of theirs symmetri.If G = G1 k G2, and by a shorter dedution, Gi(p) �i�! p0i for some appropriate �i. Byindution Gi(q) �i�! q0i where p0i� C �q0i. Hene p0i�Hi(p) C Hi(q)�q0i, and using theLemma 9 we obtain that(p01 k p02)�(H1(p) k H2(p)) C (H1(q) k H2(q))�(q01 k q02). � Lemma 1528



Corollary 5. � is preserved by reursion.ProofLet p � q and let D[�℄ def= (reXh~xi:C[�℄)h~yi be a ontext suh that D[p℄ and D[q℄are well formed (fn(p k q) � ~x).Using the Lemma 13 we obtain C[p℄�C[q℄ (using the De�nition 12) , and using theLemma 15 we obtain (reXh~xi:C[p℄)h~yi � (reXh~xi:C[q℄)h~yi: � Corollary 5Using Lemma 13 and Corollary 5, we obtain that indeed � is a ongruene.Theorem 2. � is a ongruene.Using some onvenient ontexts, we an prove that � and �b oinide.Theorem 3. � = �bProof{ � � �bLet C be an arbitrary ontext and let p�q. By de�nition C[p℄�C[q℄. Hene C[p℄�C[q℄and by the lemma 10 C[p℄�bC[q℄.We obtain p �b q.{ �b� �Firstly, we remark that with respet to ��! any proesses is image �nite. So the �rstpoint 1) of the Theorem 1 an be read"for all proesses p et q:p e�b q i� p e�� q i� p e� q:" (3)Let p �b q and let C1[�℄ def= u(x1):u(x2) : : : u(xn):([�℄ +Pni=1 xi(x):�v), where fn(p kq) = fx1; x2; : : : ; xng, and fn(p k q) \ fu; vg = ;. We prove thatC1[p℄�C1[q℄ =) p�q: (4)Let � def= [yi=xi℄ be a substitution (in the De�nition 11 it suÆes to restrit us only tosubstitutions equal to identity anywhere but fn(p k q)).Let us onsider the derivationC1[p℄ u(y1)�! R1 u(y2)�! R2 : : : u(yn)�! Rn = p[yi=xi℄ + nXi=1 yi(x):�vSine C1[p℄�C1[q℄, it must exist a derivationC1[p℄ u(y1)�! S1 u(y2)�! S2 : : : u(yn)�! Sn = q[yi=xi℄ + nXi=1 yi(x):�v;suh that 29



p[yi=xi℄ + nXi=1 yi(x):�v � q[yi=xi℄ + nXi=1 yi(x):�v (5)By an analysis on ases, it is easy to prove that the equivalene 5 implies p[yi=xi℄�+q[yi=xi℄(any input of p[yi=xi) must be mathed by an input of q[yi=xi) and onversely).Sine � is an arbitrary substitution, we obtain the impliation 4.Using the assertions 3 and 4, we have the following impliations:(p �b q) =) (C1[p℄ �b C1[q℄) =) (C1[p℄ e�b C1[q℄)=) (C1[p℄ � C1[q℄) =) (p � q) � Theorem 3If we denote by �� the ongruene indued by ��, then it is easy to prove that� = �b= ��.As for the strong ongruenes, we obtain similar results for the weak ongruenes.De�nition 14. Weak barbed ongrueneTwo proesses p and q are weakly barbed ongruent, denoted p �b q, if for anyontext C, C[p℄ �b C[q℄:De�nition 15. Let �+ be a symmetri relation whih satis�es the following onditions:1) if p ��! p0, then 9q0 suh that q �=) q0 and p0 � q0,2) if p �~b�a~�! p0 and ~b \ fn(p; q) = ;, then 9q0 suh that q �~b�a~=) q0 and p0 � q0,3) if p ah~bi�! p0 then 9q0 suh that q ah~bi�! q0 where q �=)ah~bi:�! q0 and p0 � q0,4) if p a:�!, then q a:=).Let � de�ned by: p � q if p� �+ q� for all substitutions �.Theorem 4. � is a ongruene.Theorem 5. For all image �nite proesses p and qp�q i� p �b q:5 Axiomatisation of strong ongrueneIn this setion we give a omplete axiomatisation of strong ongruene for �nite proesses(without reursion). Our axiomatisation is derived from those given for the �-alulus byParrow and Sangiorgi in [14℄. But we need to take are of the fat that strong ongruene� is not diretly obtained form strong bisimilarity � by losure with respet to all substi-tutions (as for the �-alulus), but from a stritly stronger relation �+. The gap between� and �+ is �lled by the new axiom (H) (whih does not hold for strong ongruene in�-alulus), whih orresponds to the axiom P �Noisy given for CBS in [8℄. To keep thesyntax simple, we use the monadi version of our alulus.30



5.1 Charaterizing strong ongruene over simple proessesIn this subsetion we restrit our attention to proesses given byp ::= nil j �:p j p1 + p2 j �p1; p2where � belongs to the set of pre�xes � ::=� j x(y) j �xy, x; y 2 Chb.where � belongs to the set of pre�xes � ::= � j x(y) j �xy, x; y 2 Chb.Following [14℄ we use the more general form �p1; p2 with� ::= hx = yi j :� j �1^�2with x; y 2 Chb, and we use the shortut �p to stand for � p; nil and hx 6= yip; q for:hx = yip; q . We denote by In(p) the set of all input ports of p (the set of names a suhthat p a(x)�! p0 for some p0).The axiom system A for strong ongruene � is given in Table 6.(A) if p and q are alpha-equivalent, then p = q(IP ) if p = q then �:p = �:q(IC) if p = q then �p = �q(IS) if p = q then p+ r = q + r(H) if x 62 fn(p) and 8b 2 In(p)�) ha 6= bi then �:p = �:(p+ �a(x):p)(S1) p+ nil = p(S2) p+ p = p(S3) p+ q = q + p(S4) (p+ q) + r = p+ (q + r)(C3) if � ()  then �p =  p(C4) False p = False q(C5) �p; p = p(C6) �p; q = :�q; p(CC1) �( p) = [� ^  ℄p(SC1) �(p1 + p2); (q1 + q2) = �p1; q1 + �p2; q2(CP1) if bn(�) \ n(�) = ; then �(�:p) = �(�:�p)(CP2) hx = yi�:p = hx = yi(�fx=yg):p(SP ) a(x):p+ a(x):q = a(x):p+ a(x):q + a(x):(hx = yip; q)Table 6. Axiom system A for strong ongruene.We write A ` p = q whenever p = q an be proved using the rules of the Table 6. Thefollowing theorem is easy to prove:Theorem 6. (soundness of A for �) If A ` p = q then p � q:ProofIt suÆes to prove the orretion of rules given in the Table 6. The assertion followsthen by indution on the length of the inferene of A ` p = q.We justify only the orretion of the axioms (H) and (SP ). The other ases are simpler.31



{ (H) if x 62 fn(p) and 8b 2 In(p)��) ha 6= bi� then �:p = �:(p+ �a(x):p)Let � be a substitution. We an suppose that x 62 (prdom(�) [ prod(�).We must prove that (�:p)��+(�:(p + �a(x):p))�. Using the De�nition 11, it suÆesto prove p��(p+ �a(x):p)�, i.e. p��p� + (��)�(a)(x):p�.If � does not agree with � (De�nition 18), then �� () False, and hene (p� +(��)�(a)(x):p�) ��! q if and only if p� ��! q.Let suppose that � agree with �. If p� ��! q, obviously (p� + (��)�(a)(x):p�) ��! q.Let suppose (p� + (��)�(a)(x):p�) ��! q.Then the last rule used is the rule (8) and either p� ��! q, either (��)�(a)(x):p� ��! q.The �rst ase est trivial. Let suppose (��)�(a)(x):p� ��! q.Then, for some  2 Chb, � = �(a)hi and sine x 62 fn(p), we obtain q = p�[=x℄ = p�.Let b 2 In(p). Then � ) ha 6= bi. Sine � agree with �, using the De�nition 18, weobtain �(b) 6= �(a). Using that In(p�) = f�(b)jb 2 In(p)g, we obtain �(a) 62 In(p�),and hene p� �(a):�! p�.{ (SP ) a(x):p+ a(x):q = a(x):p+ a(x):q + a(x):(hx = yip; q)Let � be a substitution. We an suppose that x 62 (prdom(�) [ prod(�).We must prove that (a(x):p+ a(x):q)��+(a(x):p + a(x):q + a(x):(hx = yip; q))�.If (a(x):p+ a(x):q)� ��! q, obviously (a(x):p+ a(x):q + a(x):(hx = yip; q))� ��! q.Let suppose (a(x):p+ a(x):q + a(x):(hx = yip; q))� ��! q.Then the last used rule is the rule (8) and either (a(x):p + a(x):q)� ��! q, either(a(x):(hx = yip; q))� ��! q. The �rst ase est trivial. Let suppose (a(x):(hx = yip; q))� ��!q. The only interesting ase is � = �(a)hi for some  2 Chb. Hene q = h =�(y)i(p�)[=x℄; (q�)[=x℄.If �(y) = , then using the rules (3) and (8), we obtain (a(x):p + a(x):q)� �(a)hi�!(p�)[=x℄, and it is easy to prove that h = �(y)i(p�)[=x℄; (q�)[=x℄ � (p�)[=x℄.If �(y) 6= , then using the rules (3) and (8), we obtain (a(x):p + a(x):q)� �(a)hi�!(q�)[=x℄, and it is easy to prove that h = �(y)i(p�)[=x℄; (q�)[=x℄ � (q�)[=x℄.� Theorem 6As in [14℄, it an be proved that for every proess, there exists one equivalent proess(in the system of axioms A) whih is in \normal form", and that ongruent proesses innormal form an be proved equal in our system of axioms.De�nition 16. [14℄ Let V be a set of names; a ondition � is omplete on V if for someequivalene relation R on V , it holds that � ) hx = yi i� xRy, and � ) hx 6= yi i�:(xRy).De�nition 17. (head normal form) Let V be a set of names. p is in head normal formon V , if it is of the form �i2I�i�i:�ipi, where for all i,1 bn(�i) 62 V ;2 �i is omplete on V:Lemma 16. For eah proess p, and for eah �nite set of names V with fn(p) � V , thereis a proess h of no greater depth than p and in hnf on V , suh that A ` p = h:See [14℄ for the proof of Lemma 4.8. 32



De�nition 18. A substitution � agrees with a ondition �, and � agrees with �, if forany x, y whih our in �, we have �(x) = �(y) i� �) [x = y℄.Lemma 17. [14℄ Let V be a set of names and let � be omplete on V .1. If � and �0 are substitution V whih agree with �, then � = �0� for some injetivesubstitution �:2. If  is another ondition on V , either � ^  is not satis�able, either � ^  () �:3. If  is another ondition omplete on V suh that � and  agrees with the samesubstitution � then � ()  :By an analysis by ases we an easily prove the next lemma.Lemma 18. Let suppose that p �+ q and that � is injetive on fn(p; q). Then p� �+ q�.Lemma 19. Let p � �p0 and q � �q0, with � omplete on a set of names V1. Let V2 =fn(p; q)� V1 and �1 a substitution suh that:1 prdom(�1) � V1 and �1 agrees with �;2 prod(�1) \ V2 = ;;3 for any �2 with prdom(�2) � V2; we have p�1�2�+q�1�2Then p � q.Proof Similar to the proof of Lemma 4.5 in [14℄. � Lemma 19Using a similar reasoning as in [14℄ for the proof of the Theorems 4.9 and 4.11, andusing the axiom (H) when needed, we an prove the following result:Theorem 7. (ompleteness of A for �) If p � q then A ` p = q:ProofThe proof of Theorem 7 inherits from the proofs of Theorems 4.9 and 4.11 from [14℄,but we have to take aount of the fat the strong ongruene � it is not obtained diretlyfrom the strong bisimulation � by a losure with respet to substitutions (as in the �-alulus), but from a stronger relation �+. The gap between � and �+ is �lled by thenew axiom (H).Using the Lemma 16, it suÆes to prove the assertion when p and q are in head normalform on fn(p; q). The proof is by indution on the sum of the depths of p and q.Let pout be the "output part" of p (the sum of all output pre�x summands plus thesum of all � pre�x summands in p), and p�;a the sum of summands �i�i:pi of p suh that�i is equivalent to � and suh that the pre�x �i is the same as a(x) (by taking into aountthe alpha-onversion and the identi�ation of names implied by �i).Using several times (S3) et (S4) we an rewrite p intoA ` p = pout + Xa2In(p);� omplete on V p�;a[1.℄ Firstly we prove that for any summand of pout, it exists a summand of q whih isequal in the axioms system A. 33



Let ��:p0 be a summand of pout, and let � be a substitution whih agrees with �; wean suppose that � oinide with identity anywhere but fn(p; q).We have p� ���! p0�. Sine p � q, we obtain that p� �+ q�. Let  �:q0 be the summandof q used to math the transition of p�. By alpha-onversion we an suppose that all thenames bound (if any) in � and � are the same. By the de�nition of �+ we have{ � agrees with  { �� = ��{ p0� � q0�.Sine � and  are omplete on fn(p; q) and that they agree with �, by the Lemma 17,we obtain � ()  and by (C3) A `  �:q0 = ��:q0. If � and � di�er on the names aand b (�fa=bg = �fa=bg), sine �� = ��, we obtain �(a) = �(b). Sine � agrees with �,we obtain  ) ha = bi and hene��:q0 = �(ha = bi�:q0) = �(ha = bi(�fa=bg):q0) � �(ha = bi(�fa=bg):q0) = ��:q0We an try to prove diretly that p0 �+ q0, beause some inputs of one of the proessesan be mathed by a "disard" from the other proesses. But we shall saturate p0 and q0suh that neither of them an no more disard the inputs of the other.Let p0 � �p00, q0 � �q00 and lets0 � (�p00 +Xf�a(x):�p00 j a 2 In(q00);8b 2 In(p00) �) ha 6= big)with x 62 fn(p00), andt0 � (�q00 +Xf�a(x):�q00 j a 2 In(p00);8b 2 In(q00) �) ha 6= big)with x 62 fn(q00).Using repeatedly the axiom (H) and �nally the axiom (IC), we an prove A ` ��:p0 =��:s0 and A ` ��:t0 = ��:q0. We an not prove diretly by indution A ` ��:s0 = ��:t0using s0 � t0 sine the sum of the depths of s0 and t0 is the same as for p and q, so weshall use the intermediary proess p0 + q0.We prove that s0 � (p0 + q0) et (p0 + q0) � t0.We an prove that s0� �+ (p0 + q0)� by using the fat that (�p00)� � (�q00)� and thatany input of (�p00)�, whih was mathed by a "disard", is now mathed by a summand(�a(x):�q00)�. In the same manner we prove that (p0 + q0)� �+ t0�. Then, we obtain thats0 � (p0+q0) and (p0+q0) � t0 using the Lemma 19 (by taking V1 = fn(p; q) and �1 = �).Using the indution hypothesis, we get A ` s0 = p0 + q0 and A ` p0 + q0 = t0.Consequently, A ` s0 = t0 and using (IP ) and (IC) we obtain A ` ��:s0 = ��:t0, andhene A ` ��:p0 =  �:q0:[2.℄ Let p�;a �Pni=1 �a(x):pi and q�;a �Pmj=1 �a(x):qiFor any i 2 [1; n℄ we shall build the proesses ui and ri suh thatA ` �a(x):pi = �a(x):ui, A ` q�;a = q�;a + �a(x):ri, and A ` ui = ri.Let V = fy1, ..., ykg be the set of free names of p�;a and q�;a and let x be a name suhthat x 62 fn(p�;a; q�;a). Let � be a substitution whih agrees with � (we an suppose that8z 62 fy1; : : : ; ykg �(z) = z). 34



p� �+ q� implies p�;a� �+ q�;a�. From p�;a� ahxi��! pi�, using the de�nition of �+, forany y 2 fn(p�;a; q�;a) [ fxg, it exists J(i; y) suh that q�;a� ahxi��! qJ(i;y)� et pi�fy=xg �qJ(i;y)�fy=xg.If M is a set of names, we use the notation [x 62 M ℄ to stand for [^z2Mhx 6= zi℄. Letpi � �p0i, qj � �q0j and letui � (�p0i + Xz2fy1;:::;ykg Xd2Az[x = z℄ ^ �d(y):�p0i+ Xd2Ax[x 62 fy1; : : : ; ykg℄ ^ �d(y):�p0i)with y 62 fn(p0i), Az = fb j b 2 In(q0J(i;z));8a 2 In(p0i); [x = z℄ ^ � =) a 6= bg,Ax = fb j b 2 In(q0J(i;x));8a 2 In(p0i); [x 62 fy1; : : : ; ykg℄ ^ � =) a 6= bg, and lettj � (�q0j + Xz2fy1;:::;ykg Xd2Bz[x = z℄ ^ �d(y):�q0j+ Xd2Bx[x 62 fy1; : : : ; ykg℄ ^ �d(y):�q0j)with y 62 fn(q0j), Bz = fb j b 2 In(p0i);8a 2 In(q0j); [x = z℄ ^ � =) a 6= bg;and Bx = fb j b 2 In(p0i);8a 2 In(q0j); [x 62 fy1; : : : ; ykg℄ ^ � =) a 6= bg:Let si;0 � tJ(i;x), si;l � hx = ylitJ(i;yl); si;l�1, and ri � si;k.Using repeatedly the axiom (H) and after the axiom (IC) , we an prove thatA ` �a(x):pi = �a(x):ui (6)and A ` �a(x):qj = �a(x):tj .We prove now that A ` q�;a = q�;a + �a(x):si;l by indution on l.From A ` �a(x):qj = �a(x):tj and A ` q�;a = q�;a + �a(x):qj (sine �a(x):qj is asummand of q�;a), we obtain that A ` q�;a = q�;a + �a(x):tj If l = 0, then A ` q�;a =q�;a+�a(x):tJ(i;x) follows immediately from the equalities proved previously. By indutionlet suppose that A ` q�;a = q�;a + �a(x):si;l�1Sine A ` q�;a = q�;a + �a(x):tJ(i;yl) we obtain that A ` q�;a = q�;a + �a(x):si;l�1 +�a(x):tJ(i;yl), and by using (SP ) we get that A ` q�;a = q�;a+�a(x):si;l�1+�a(x):tJ(i;yl)+a(x):hx = ylitJ(i;yl); si;l�1 and after A ` q�;a = q�;a + �a(x):hx = ylitJ(i;yl); si;l�1. Makingl = k we obtain A ` q�;a = q�;a + �a(x):ri: (7)Now we prove that A ` ui = ri.We an not apply diretly the hypothesis of indution on ui and tj sine the sum ofthe depths of ui and tj is the same as for p and q. So we shall pass by the intermediaryproesses pi + qj with j 2 f1; : : : ;mg. From pi�fy=xg � qJ(i;y)�fy=xg, by an analysis byases, we obtain ui�fy=xg �+ (pi + qJ(i;y))�fy=xg �+ tJ(i;y)�fy=xg (8)35



(the inputs previously mathed by disards, are now mathed by "ino�ensive" inputs�b(y):�p0i or �b(y):�q0J(i;y)).The ondition � does not mention x, and it is possible that it is not omplete onfn(pi; qJ(i;y)) = fn(p�;a; q�;a) [ fxg; so we an not use diretly the Lemma 19; but as in[14℄ we an omplete it by adding a onditional whih agrees with fy=xg. From the equation8 we obtain hx = yiui�fy=xg �+ hx = yi(pi + qJ(i;y))�fy=xg �+ hx = yitJ(i;y)�fy=xg fory 2 V and hx 6= yiui�fy=xg �+ hx 6= yi(pi + qJ(i;y))�fy=xg �+ hx 6= yitJ(i;y)�fy=xg fory 62 V .Now we apply the Lemma 19 , where V1 = V [ fxg, �1 = �fy=xg and V2 = ; in theLemma, and we gethx = yiui�fy=xg � hx = yi(pi + qJ(i;y))�fy=xg � hx = yitJ(i;y)�fy=xg for y 2 V (9)andhx 6= yiui�fy=xg � hx 6= yi(pi + qJ(i;y))�fy=xg � hx 6= yitJ(i;y)�fy=xg for y 62 V (10)and by using the hypothesis of indution, we obtainA ` hx = yiui = hx = yi(pi + qJ(i;y)) = hx = yitJ(i;y) for y 2 fy1; : : : ; ykgand A ` [x 62 V ℄ui = [x 62 V ℄(pi + qJ(i;y)) = [x 62 V ℄tJ(i;y) for y 62 fy1; : : : ; ykg:As in the proof of the Theorem 4.11 in [14℄, using 9 10 we an prove A ` ui = ri andthen A ` �a(x):ui = �a(x):ri: (11)From 6, 7 et 11 we obtain that for any i 2 [1; n℄ A ` q�;a = q�;a + �a(x):pi, and thenA ` q�;a = q�;a + p�;a. By a symmetrial argument, we obtain A ` p�;a = p�;a + q�;a andhene A ` q�;a = p�;a � Theorem 7Moreover, our axioms are independent (this follows from the fat that in [14℄ it isproved that all axioms, but (H), are independent, and that (H) annot be proved fromthe others).5.2 Adding restrition operatorTo the grammar given in the previous setion, we add the restrition operator:p ::= : : : j �xpThe axioms to deal with restrition are given in Table 7.The only axiom whih is new (and whih does not hold in the �-alulus) is (RP2).The soundness of all axioms is easy to prove. For the ompleteness, the axioms from Table7 . are used to push a restrition inside a term until either it disappears or it gives riseto a bound output. The de�nition for the normal form hanges slightly: �i2I�i�i:�0ipi,where for all i, 36



1 bn(�i) 62 V;2 �i is omplete on V;3 �i = �0i if � is � , an input or a free output,4 �0i = �i ^ (^z2V hx 6= zi).The proof of the ompleteness is then similar as for Theorem 7.(IR) if p = q then �xp = �xq(R) �x nil = nil(RR) �x�yp = �y�xp(RS) �x(p+ q) = �xp+ �xq(RP1) if x 62 n(�) then �x�:p = �:�xp(RP2) �x �xy:p = �:�xp(RP3) �x x(y):p = nil(RC1) if x 6= y then �xhx = yip = nil(RC2) if x 6= y; z then �xhz = yip = hz = yi�xpTable 7. The axioms for restrition.
5.3 Adding parallelismTo the grammar given in the previous setion, we add the parallel operator:p ::= : : : j p1 k p2The axioms needed to deal with parallelism are the expansion axiom given in Table 8.plus the axiom (P1) p k nil = p.In the Table 8., the �rst summand orresponds to the situation where both proessesmakes an input. The seond and the third summands to the situation where one proessmakes an output, and the other an input. The fourth and the �fth summands to thesituation where one proess makes an output and the other a disard. The sixth and theseventh to the situation where one proess makes an input and the other a disard. And�nally, the eighth and the ninth to the situation where one proess makes a silent step� . To prove the ompleteness it suÆes to eliminate the operator k using the expansionaxiom and the axiom (P1).6 Related work and onlusionsClosest related work to this paper onerns the work on CBS by Prasad [15℄, [16℄, andthe work by Hennessy and Rathke [8℄. In [8℄, the authors present a proess alulus basedon broadast, together with an operational semantis. They also provide simpler har-aterizations of the ongruene indued by barbed bisimilarity, together with ompleteaxiomatisation for ongruenes (for �nite proesses). Our bisimilarities are following ideas37



Assume p � Xi12M1 �i1xi1 [v℄:pi1 + Xi22M2 �i2xi2(v):pi2 + Xi32M3 �i3�:pi3and q � Xj12N1 �j1xj1 [v℄:qj1 + Xj22N2 �j2xj2(v):qj2 + Xj32N3 �j3�:qj3where [v℄ stand for v (free output) or (v) (bound output). Let S = fxi j i 2M2g and T = fxi j i 2N2g. Then:p k q = P(i2;j2)[�i2 ^ �j2 ^ hxi2 = xj2i℄xi2(v):(pi2 k qj2 )+Pi2 [�i2 ^ [xi2 62 T ℄℄xi2(v):(pi2 k q)+Pj2 [�j2 ^ [xj2 62 S℄℄xj2 (v):(p k qj2 )P(i1;j2)[�i1 ^ �j2 ^ hxi1 = xj2i℄xi1 [v℄:(pi1 k qj2) +P(i2;j1)[�i2 ^ �j1 ^ hxi2 = xj1i℄xi2 [v℄:(pi2 k qj1) +Pi1 [�i1 ^ [xi1 62 T ℄℄xi1 [v℄:(pi1 k q) +Pj1 [�j1 ^ [xj1 62 S℄℄xj1 [v℄:(p k qj1) +Pi3 �i3�:(pi3 k q) +Pj3 �j3�:(p k qj3)Table 8. The expansion axiom.borrowed from their work. However, our alulus fous mainly on the inuene of reeivedvalues (names) by a proess on his further possible ommuniations by using a syntaxloser to the �-alulus. Our axiomatisation is thus loser to the one given by Parrowand Sangiorgi [14℄. The main di�erene with existing broadast alulus is the preseneof dynami soping (versus stati soping of CBS). It is ommon in onurrent program-ming to have several groups of proesses partiipating in the same protool onurrently(using di�erent \hannels"). It is then essential that ommuniations be kept separate sothat there is no risk of interferene between the multiple instanes of a protool exeutedsimultaneously. This is ahieved by lexial soping. Dynami soping is then obtained bythe ombination of loal soping and the ability to send hannels along hannels.Conerning the expressiveness of our alulus, it is easy ([4℄) to give an implementation(very similar to those given in [2℄ for a proess algebrai approah of Linda) of a RandomAess Mahine. Also, it is interesting to ompare the b�-alulus with the �-alulus. In[3℄, we have already proved that \there is no uniform enoding of the b�-alulus into the�-alulus". The existene of a \good" (ompositional) enoding of the b�-alulus intothe �-alulus remains an open question. Conversely, we an give an \uniform" enodingadequate with respet to barbed equivalene of the �-alulus into the b�-alulus.Also, even if bisimulations provide a nie method to prove the relation whih holdsbetween two equivalents systems (just looking at their states, without building the wholetraes set), we an ask if they are not too restritive? For example, �a:(�b+ �) and �a:�b+ �a:�are not barbed equivalents. This seems surprising, as in our alulus an observer an notinuene the behavior of the two proesses, nor it an distinguish them; indeed, this isthe ase in proesses algebra based on point-to-point ommuniations (CCS, �-alulus),38



where an observer provide to tested proess the neessary \o-ations". In a forthomingpaper we analyse the preorders indued by \may testing" in aluli based on broadast.Aknowledgements. We have gratefully appreiated the useful omments reeivedfrom the referees.Referenes[1℄ B. Bayerdor�er. Distributed programming with assoiative broadast. In Proeedings of the 27th An-nual Hawaii International Conferene on System Sienes. Volume 2: Software Tehnology (HICSS94-2),Wailea, HW, USA, pages 353{362, 1994.[2℄ N. Busi, R. Gorrieri, and G. Zavattaro. A proess algebrai view of linda oordination primitives.Theoretial Computer Siene, 192(2):167{199, 1998.[3℄ C. Ene and T. Muntean. Expressiveness of point-to-point versus broadast ommuniations. In Fun-damentals of Computation Theory, 12th International Symposium, Leture Notes in Computer Siene,volume 1684. Springer Verlag, 1999.[4℄ C. Ene and T. Muntean. A broadast-based alulus for ommuniating systems. Tehnial report,Laboratoire d'Informatique de Marseille, 2000.[5℄ C. Ene and T. Muntean. A broadast-based alulus for ommuniating systems. In 6th InternationalWorkshop on Formal Methods for Parallel Programming: Theory and Appliations, San Franiso, 2001.[6℄ A. Geist, A. Beguelin, J. Dongarra, R. Manhek, W. Jiang, and V. Sunderam. PVM: A Users' Guideand Tutorial for Networked Parallel Computing. MIT Press, 1994.[7℄ M. Hennessy and R. Milne. Algebrai laws for nondeterminism and onurreny. Journal of the Asso-iation for Computing Mahinery, 32(1):137{161, January 1985.[8℄ M. Hennessy and J. Rathke. Bisimulations for a alulus of broadasting systems. In CONCUR 95,Leture Notes in Computer Siene, volume 962. Springer Verlag, 1995.[9℄ C. Hoare. Communiating Sequential Proesses. Prentie-Hall, 1985.[10℄ N. Lynh and M. Tuttle. An introdution to input/output automata. Tehnial report, Centrum voorWiskunde en Informatia, Amsterdam, The Netherlands. Also, Tehnial Memo MIT/LCS/TM-373,Laboratory for Computer Siene, Massahusetts Institute ofTehnology, 2000.[11℄ R. Milner. Communiation and onurreny. Prentie-Hall, 1989.[12℄ R. Milner, J. Parrow, and D. Walker. A alulus of mobile proesses, part I/II. Journal of Informationand Computation, 100:1{77, 1992.[13℄ R. Milner and D. Sangiorgi. Barbed bisimulation. In Pro. of 19-the International Colloquium onAutomata, Languages and Programming (ICALP '92), Leture Notes in Computer Siene, volume 623.Springer Verlag, 1992.[14℄ J. Parrow and D. Sangiorgi. Algebrai theories for name-passing aluli. Information and Computa-tion, 120(2):174{197, 1995.[15℄ K. Prasad. A alulus of broadasting systems. In In TAPSOFT'91, Volume 1: CAAP, Leture Notesin Computer Siene, volume 493. Springer Verlag, 1991.[16℄ K. V. S. Prasad. A alulus of broadasting systems. Siene of Computer Programming, 25, 1995.[17℄ C. Rokl and D. Sangiorgi. A pi-alulus semantis of onurrent idealised algol. In In Proeedings ofFossas'99, Leture Notes in Computer Siene, volume 1578. Springer Verlag, 1999.[18℄ D. Sangiorgi. Expressing Mobility in Proess Algebras: First-Order and Higher-Order Paradigm. PhDthesis, University of Edinburgh, 1992.

39


