A Broadcast-based Calculus for Communicating Systems

Cristian ENE!, Traian MUNTEAN"?

! University of Marseilles
Laboratoire d’Informatique de Marseille; Parc Scientifique de Luminy - Case 925
F-13288 Marseille, France
tel: 33 - 491 82 85 32, fax: 33 - 491 82 85 11
cene@esil.univ-mrs.fr, muntean@lim.univ-mrs.fr

2 CNRS

This paper is a revised version of [5]

Abstract. This paper presents a process calculus for reconfigurable communicating systems
which has broadcast as basic communication primitive, and we provide an operational se-
mantics for this calculus. We illustrate the calculus through some examples, and we propose
three behavioral equivalences for reasoning about systems of broadcasting processes, namely,
barbed equivalence, step-equivalence and labelled bisimilarity. An important result, is that
all these relations coincide, providing different ways to study the equivalence/non-equivalence
of two systems. Then, we provide a direct characterization for the strong congruence rela-
tion induced by these equivalences. Finally, we give a complete axiomatisation for strong
congruence.

1 Introduction

Communication between processes is the main aspect of concurrency when dealing with
distributed and/or parallel computing. One can specify basic communications from several
points of view; primitives interactions can be, for instance, synchronous or asynchronous,
associated to point-to-point or broadcast (one-to-many) message exchange protocols. The
theory behind point-to-point communication is today well-established in process algebra
(e.g. started with Milner’'s CCS and Hoare’s CSP pioneering works). On the other hand
more complex and higher level communication schemes, like broadcast or multicast are
encountered in many applications and programming models, but they remain nevertheless
poorly represented in the algebraic theory of distributed systems. We emphasize here
that group interactions shall be considered as a more appropriate exchange scheme for
modelling and reasoning about many communicating systems and networking applications
(e.g. multimedia, data and knowledge mining, mobile computing). Group communications
are, in our opinion, a more abstract and higher level concept of interaction in distributed
computing than the commonly used point-to-point communications, usually expressed by
handshaking message-passing primitives or by remote invocations. Broadcast has been
even chosen as a hardware exchange primitive for some local networks, and in this case
point-to-point message passing (when needed) is to be implemented on top of it. Primitives
for broadcast programming offer several advantages: processes may interact without having
explicit knowledge of each other, receivers may be dynamically added or deleted without
modifying the emitter, and activity of a process can be monitored without modifying the
behaviour of the observed process (this is clearly not the case with the classical rendez-
vous communications). Moreover, from a theoretical point of view, it appears difficult [3]
to encode broadcast in calculi based on point-to-point communications.



Thus, developing an algebraic theory for models based on broadcast communication has
its own interest. Hoare’s CSP [9] is based on a multiway synchronisation mechanism, but
it does not make any difference between input and output. Or, in a broadcast setting the
anti-symmetrie between these two kinds of actions is particularly important (in a broadcast
communication there is one sender, and an unbounded or possibly empty set of receivers;
this is well represented in the I/O automata of Lynch and Tuttle ([10]) where outputs are
non-blocking and locally controlled, whereas inputs are externally controlled and can not
be refused). In [15], Prasad introduces and develops [16] a calculus of broadcasting systems,
namely CBS. His calculus, inspired by Milner’s CCS ([11]), has as main goal to provide
a formal model for packets broadcast in Ethernet-like communication media. It is based
on broadcast, but its main limitation is that it does not allow to model reconfigurable
finer topologies of networks of processes which communicate by broadcast (as dynamic
group communications). It is up to the receiver to use the received value or to discard it.
In [8], Hennessy and Rathke present a process calculus based on broadcast with a more
restrictive input (z € S7p), but the continuation process p, do not change dynamically
his restrictions on further inputs; so it cannot model reconfigurable systems based on
broadcast. To summarise, it seems that there is not a framework which try to analyse
(at least at theoretical level) what it happens if we combine mobility and broadcast (as
it is the case for processes which use group communications a la PVM [6], buses-based
reconfigurable architectures or Packet Radio Networks).

The aim of this paper is to introduce a new process calculus, whose unique and basic
communication primitive is broadcast, and which permits to model reconfigurable group
communication systems.

The rest of the paper is as follows. In section 2 we present the br-calculus (already
briefly introduced in [3]) as a variant of a broadcast calculus (inspired from [16]) together
with some examples. Section 3 presents three equivalences between processes, and a proof
of their similar discriminative power. The section 4 is devoted to the congruence induced
by the already defined equivalences. In section 5 we provide for the congruence a com-
plete axiomatisation. Section 6, discusses related works and presents future directions of
research. Due to the limited length of this paper, the proofs of presented results have been
omitted; they are included in the full version of this paper [4].

2 Preliminaries

2.1 The br-calculus

The br-calculus is a process calculus in which broadcast is the fundamental communica-
tion paradigm. It is derived from the broadcast calculus proposed by Prasad [16], and the
w-calculus proposed by Milner, Parrow and Walker [12]. It differs from the broadcast cal-
culus, in that communications are made on channels or ports (and transmitted values are
channels too), and from the m-calculus in the manner the channels are used: for broadcast
communications only. Let C'hy be a countable set of channels. Processes are defined by the
grammar of Table 1.

where 7 belongs to the set of prefixes 7 :=xz(y) | zg | 7,and z,5 C Chy, z, € Chy,.

Prefixes denote the basic actions of processes: 7 is a silent action (which corresponds
to an internal transition), z(g) is the input of the names § on the channel z, and zy is



Poopu= mnil | mp | vep | (x=y)p,q | p1+p2 | pr|lp2 | A@E) | (rec A(@).p){H)

Table 1. Processes in br-calculus

the output of the names ¢ on the channel x. nil is a process which does nothing. 7.p is
the process which realize the action denoted by 7w and next behaves like p. p; + p2 denotes
choice, it behaves like p; or py. vap is the creation of a new local channel z (whose initial
scope is the process p). (x = y)p1,p2 is a process which behaves like p; or ps depending
on the relation between = and y. p; || p2 is the parallel composition of p; and po. X is a
process identifier whose arity is satisfied by (Z) and (recX(Z).p)(y) is a recursive process
(this allows to represent processes with infinite behaviour), with Z containing all the free
names which appear in p. In this article, we assume that X occurs guarded in any recursive
definition (underneath a prefix).

The operators vz and y(%), are x — binders, i.e. in vzp and y(Z).p, x and Z are bound,
and bn(p) denotes the set of bound names of p. The free names of p are those that do
not occur in the scope of any binder, and are denoted by fn(p). The set of names of p is
denoted by n(p). Alpha-conversion is defined as usual.

Definition 1. Actions, ranged over o, are defined by the following grammar:
ax=a(Z) | vgaz | 7 | a:

where a,x € Chy, T,y C Chy. An action is either a reception, a (possibly bound) output, or
the silent action T, denoting an internal transition. In a(Z) and vyaz, a is the subject of the
communication and Z 1s its object. By extension n(a) (fn(a), bn(a)) denotes the names
(respectively free names, bound names) used in the action o ((fn(r) = 0, fn(a(z)) =
{a} Uz, fn(vgaz) = {a} Uz \ 7, fn(a:) = {a}, bn(r) =0, n(a(z)) = 0, bn(vyaz) = 7,
bn(a:) =0, n(a) = fn(a) Ubn(a)).

We give an operational semantics for our calculus in terms of transitions over the set
Py of processes. Before, we define, similarly to [15], a relation —C P}, x Chy, denoted
p -5 and which can be read “p discards all outputs made on the channel a ” (see Table
2).
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Table 2. The ”discard” relation



Intuitively, a process ignores all the communications made on the channels it is not
listening. nil, 7.p or bjj.p discard any communication. A process waiting for a message on a
channel b, discards actions on the other channels a with @ # b. In rule (5) a the condition
z = a expres the possibility that a does not occur free in p. Rules (6) to (10) follow the
structure of the term.

p— ’ /Rl
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Table 3. Operational semantics of br-calculus

To simplify the presentation, we extend sub and we denote sub(7) = obj(7) = 7, and
p —» for any process p.

Definition 2. Transition system The operational semantics of br-calculus is defined
as a labelled transition system defined over the set Py, of processes. The judgement p ——
p' means that the process p is able to perform action o and to evolve next to p'. The
operational semantics is given in Table 3 (we omitted the symmetric versions of rules (11)

and (12)).

A communication between processes is performed through unbuffered broadcast. Com-
pared to w-calculus, outputs are non-blocking, i.e. there is no need of a receiving process.
One of the processes broadcasts an output and the remaining processes either receive or
ignore the sending, according to whether they are “listening” or not on the channel which
serves as support for the output. A process which “listens® to a channel a, cannot ignore
any value sent on this channel.

The operational semantics is an early one, i.e. the bound names of an input are in-
stantiated as soon as possible, in the rule for input.

Rule (1) allows to identify process which are alpha - convertible. Rules (2) to (4) are
straightforward and they have the same signification as in w-calculus. Rule (5) states that
when a local channel name is emitted, the related output has to be bound. The extrusion
is more complex that in 7 -calculus, as more processes could learn the existence of a fresh
name in a single comunication. Rule (6) does not exist in 7 -calculus; it establish the scope
of the names exported on the channel a. Rules (7) to (11) have the same meaning as in 7
-calculus. Rules (12) and (13) are specific to broadcast; the same message can be received



by more processes in a single comunication. In rule (14), a proces which does not listen on
a channel @, remains unchanged during a communcation made on this channel. As usual
we shall use the following notations:

SN N N N N N T Y
_ _0def {% ‘oz is an output or a =T},
2.0 (2,

Sometimes, we shall use, as in [8], we use p —» p instead of p =, if sub(a) = a and we

b)? b b):
denote p a(b)! p' to stand for either p oty p' or p ol p'. Also, we shall omit the trail nil.

We shall also use the notation @(z) to stand for the bound output vzaz.
We shall use the following results in the next sections.

Lemma 1.
vyar

1. If p —p', then fn(p") C

2. Ifp ﬂp', then fn(p')
3. Ifp ¢/, then fn(p)

fn(p) U{g} et (2\ §) C fn(p).
fn(p)U{z}.
fn(p).

NN

Proof
The proof is by a simultaneous induction on the inferrence of the transition p —s p'.
O Lemma 1

Corollary 1. If p == p/, then fn(p') C fn(p).

Proof The corollary is a consequence by induction on the number of transitions in
€ !
p==Dp.

2.2 Examples

In this subsection we give some examples where broadcast is the basic communication
primitive. The ability to send and receive "names on names” as in « -calculus is very
useful, and allows us in Example 2 (Detecting inconsistencies for transactions systems) to
give a description which does not depend on the number of copies present in the system.

Example 1 A distributed algorithm for cycle-detection

We present a distributed algorithm for cycle-detection in a directed graph. Detector is a
process which listens to new edges of the graph on a channel 7, and spawns for each received
pair of names (source and destination of edge) a new “edge manager” Edge_manager. An
edge manager, broadcasts a personal token v (using the mechanism of name-generation).
Next, for each received token w, if it receives the own token v, a cycle is detected and
a signal is sent on o, otherwise, it propagates the token further (along the paths of the
graph). This is done by using the channels a and b, which denote an edge (a,b) in the
graph. Hence, any token received on a, and different from v is transmitted on b.

Detector (i, 0) et



i(z).i(y).(Detector(i, o) || Edge_manager(o,x,y)))
Edge_manager(o, a, b) et
vu((recY (b,u).{bu.Y (b,u)})(b,u) ||
(recX (o, a,b,u).{a(w).
((u = w)o.nil, (bw.nil || X{o,a,b,u)})(0,a,b,u))))
Example 2 Detecting inconsistencies for transactions systems

We extend the previous example to give an implementation in br-calculus of a fully
distributed algorithm for detecting inconsistencies in partitioned distributed databases
(our implementation is inspired from [1]).

In a replicated database, there exist several copies of each data item, with copies
located at distinct sites in the system. We suppose that the database becomes partitioned
(partitions p; with j = 1,...,n).

We allow transactions to continue to execute, but when the network is reconnected
(simulated in our implementation by a broadcast on the channel "unif”) , we have to check
for inconsistencies. The idea is to construct a precedence graph that captures the temporal
partial order between transactions. Then, the database is consistent iff the precedence
graph contains no cycle. The vertices of the graph are all the transactions. An edge <
t,p >—< t1,p1 > indicates that transaction ¢ occurred before transaction ¢y, where p, pq
indicate the partition in which the transactions were executed.

Such an edge exists iff one of the following holds:

1. ¢ read a data item ¢ that was later written by ¢; and p = p;
2. t write a data item 7 that was later read or written by ¢; and p = p;
3. t read a data item i that was written by ¢; and p # p;

The database can be simulated by:
Database el

H [ H Item(jl,jg,pjl,unif, Va’l>]

Jj=Lk l:l,n(])

where j; and jo are channels associated with data j, each data item j having n(j) copies,
and pj, € {p1,... ,pn(j)} is the corresponding partition.

An item manager waits for transactions; for each new transaction, it forks a new
transaction manager, and serves the user which was making the request. A transaction
for a data item 4, is an output on the channel 41, and contains the transaction identifier
t1, the type (read or write), the partition affected, the return channel, and a value (which

make sense for a write transaction).

Item(iy,i9, p,unif,Val,w) ef

unif(p1).ITtem(iy,ia, p1,unif, Val)+
i1(t1, type,p1,meq,V).(p1 = p)
{(type = w)
[Item@la i?apa U’I’Llf, Vva U)) “ TT—Man’LU@la i?apa U’I’Llf, t1>]7



[Item@la i?apa U’I’Llf, Valv U)) || TT‘_MG/ILT (7:17 7:2,]7, ’LL’/LZf, t1> “ T—qual + ’I"Bq(V)]},
Item(iy, i9, p,unif, Val, w)
A transaction manager generates a new edge manager for each new ongoing transaction

which affects the same data item on the same partition (cases 1. or 2. ).
. . d
Tr_Many iy, iz, p,unif,t) lef

i1(t1, type, p1,req, V).{(p1 = p)
[Tr_Many (i1, i2,p,unif,t) || unif(p). Edge-manager(error,t,ti)],
Tr_Man, iy, iz, p,unif,t)}+

unif(p1).STr_Many(iz, p,t, w)

Tr_Man,(i1,iz,p,unif,t) ]

i1(t1, type, p1,req, V) .{(p1 = p)
[Tr_Man,(i1,i2,p,unif,t) || (type = w)unif(p). Edge_manager{error,t,t),nil],
Tr_Man, (i1, i2,p,unif,t)}+

unif(p1).STr_Man, iz, p,t,T)

Once the network reconnected, transaction managers change their behaviour, trying to

detect edges of the third kind. In addition, if there are two transactions which have written

the same data item in two distinct partitions, then an error is detected (two contrary edges

. . d
between two vertices). STr_Man., iz, p, t) &)

ia(t1, type, p1)-{(p1 = p)

STr_Man,, iz, p,t),

(type = wyerror, [STr_Man(iz,p,t) || Edge_manager{error,ty,t)]}+
ialt,w, p|.STr_Many/ iz, p, t)

STr_Man,(iz, p,t) def

i2(t1, type, p1).{(p1 = p)
STr_Man,(ia, p,t),
STr_Man,(iz,p,t) || (type = rynil, Edge_manager{error,t,t;)]}+

ialt,r, p|.STr_Man, (iz, p, t)

We note that this example uses the entire expressiveness power of our calculus. The
same data item can be replicated (for reliability or efficiency reasons) and a transaction
t can affect several data items; in this case broadcast is a quite natural communication
primitive. In the same time, the ability to send and receive channel names across channels
is used by item managers to fork new transaction managers corresponding to the received
identifier.

Example 3 Semantics of group communication primitives

brr-calculus provide a framework to specify and analyse systems which interact by a
broadcast (or multicast) mechanism combined with mobility of processes ( names, ad-
dresses). We take here, as an example programs which use communication primitives of
PVM-like libraries ([6]). PVM is a software system that permits a network of heteroge-
neous computers to be used as a single parallel computer (the virtual machine). Thus large
computational problems may be solved using the power of many computers. PVM supplies
functions to automatically start up tasks on the virtual machine, and allows task to com-
municate (by point-to-point or group communications) and synchronize with each-other.



The interesting part is the simple simulation of group communication primitives, which
seems difficult to express in a process algebra based on point-to-point communications
([3])- Moreover, even in CBS ([16]) it is unclear how one can implement the primitives
which permit to have dynamic groups (processes can freely join or leave a group, once
they have knowledge of the name of the group). We present just a few communication
primitives specific to concurrent applications (for the interpretation of imperative features
in process algebra, see for example [17]):

I := send(a,m) | bcast(g,m) | = = receive() | = = newgroup() | joingroup(g) |
leavegroup(g) | = = spawn(Q)
P = 1| ILP

A process (or a task) is a sequence of actions. An action is either an output of a
message m (to another process a or to a group g of processes), or an input (from the
own buffer) of a message (stored after in variable z), or a creation of a new group g, or a
joining to a group g, or a leaving of a group g or a spawning of a child ). Once a process
become member of a group g, it receives any message sent to that group. Communications
are asynchronous, in that outputs are non-blocking (messages being stored in the buffers
of receivers). For the sake of simplicity, we suppose that there is no guarantee in what
concerns the order of messages’ arrival.

Then, a possible encoding { P}, of a process P of address (pid) a is given below:

d
{PYa & vrovka(Pool(a, ra, ka) || [Pl )

Pool{a,r, k) ko a(z).(Pool{a,r k) || Cell{r,x))

Cell{r, x) def r(c).(¢x + c(y).Cell{r,x))

[z = receive(); P]r,m def vt(rt || t(x).[P]r,m)

[send(a, m); P]yar el vt(am.t || t.[P]r,ar)
[beast(g, m); Plym def vt(gm.t || t.[P]r,ar)
[joingroup(g); Plrm et vivky(tky.Pool(g,r, kg) ||
kg) [Pl mUg(g,k0)})

lg = newgroup(); Py aef vivguky(tg.tky.Pool(g,r, kg) ||
t(9)-t(kg)-TPly,mu{(g,k,)})

de - .
[leavegroup(q); Pl aof(gp,)y = vilkgEnil || t.[Plrar)
d _
[z = spawn(Q); Plea < vavt({Q}a || a || Hx).[P]r.ar)

[STOP], = ky,.....kg,.T.nil)

g1,kgl),~..,(gn,kgn)}

The translations of “send” and “bcast” primitives are similar, but actually, for a chan-
nel a¢ which appears as the argument of the “send” primitive, there is exactly one receiver,
whereas for a channel g which appears as argument for the “bcast” primitive, there can
be zero or many receivers (depending on the actual number of members in group g).



3 Bisimulations

We define now appropriate tools allowing to reason about processes. Bisimulations have
been successfully used in processes algebra to compare two systems according to their
operational ability to simulate each other. For the rest of the paper, we shall use the term
process to stand for a closed process (which does not contain free identifiers), and we shall
specify explicitly open processes.

3.1 Barbed Equivalences

Barbed bisimulation was firstly introduced by Sangiorgi and Milner (in [13], [18]) for the
m-calculus. It is a natural relation which is easy definable in various calculi (or rewriting
systems): it suffices to define a observability predicate and then to distinguish between
two processes whenever they are not similarly observable, or their similar observability
is not preserved by reduction (or rewriting). Barbed bisimulations were already used for
calculi based on broadcast [8], but in a calculus where communications are made on a
global ether rather than explicit channels.

Barbed bisimulation describes a relation between processes which can make the same
“visible” actions, and whenever one can silently progress, so can the other, evolving to a
process preserving the relation. It remains to precise some parts of this informal definition.
In a broadcast calculus, outputs are visible (if we are listening a process on a channel, we
receive any value it sends on it), while inputs are not (as sending is not blocking, we do
not know if the observed process was receiving or discarding our value). We write p |,
(p Uo) if p == p' (and respectively p == p') for some output « of subject a.

Definition 3. Barbed Bisimulation
A symmetric relation S over the set Py (of processes) is a weak barbed bisimulation
if whenever (p,q) € S, then

— if p =9/, then 3¢' such that ¢ == ¢’ and (p',q') € S,
— Ya € Chy, if p lg then q {q.

Two processes p and q are weak barbed bisimilar, noted p =y q, if (p,q) € S for
some barbed bisimulation S. The strong barbed bisimilarity ~ is defined similar by
replacing = by — and | by |.

We prove some equivalences between processes considered syntactical congruent in
some classical presentation of m-calculus.

Next lemma resumes a few properties of the relation ~y,.
Lemma 2. ~y satisfies the following properties:

(a) p =a q implies p ~y q
(b) p || nil ~p p
(c)pllg~pqllp

(d) (plla)[lr~ppll(qllr)
(e) p+mnil ~, p



(f) p+aq~pq+p

(9) p+q)+r ~yp+(g+7)

(h) vap ~y p if x & fn(p)

(i) vyvep ~y vevyp sic £y

(G) (vzp) | ¢ ~v ve(p |l q) if z € fn(q)

(k) (vxp) +q ~p vo(p+q) if o & fn(q)

(1) (y = 2)(vap),q ~p vz({y = 2)p,q) if v & fn(q) U{y, 2}

Proof
Consequence of Lemma 6 et 10.
O Lemma 2

Next lemma proves an interesting property of barbed bisimilarity: barbed bisimilarity
is preserved by parallelism.

Lemma 3. ~y and = are preserved by parallelism:

— p ~p q implies Vr, p || r ~y q |,
— p Ry q implies Vr, p || r =y q |,

Proof

We prove (for example), just the weak case. It suffices to prove that the relation R

wheredf
e
R = {(p || 7’a‘]|| 7a) ‘p7Q7rEPb7 P ~=b q}

is a weak barbed bisimulation.

— Let p “ r ~La-
Then we have either p |4, or r |,.
If p |q, since p =y g we obtain ¢ |, and by successive applications of rule (14), we
obtain (q || r) Uq- If r |4, then obviously (q || 7) la-

— Let p || r —— s be a silently transition of p.
Then, the last applied rule used to infer this transition is either the rule (14) or its
symmetrical.
If the last applied rule is the rule (14), then s = p' || r and p — p'. Since p = ¢,
we obtain ¢ == ¢’ with p’ ~, ¢’. By successive applications of rule (14), we obtain
alr=sdr
If the last applied rule is the symmetrical of the rule (14), then s = p || v’ and r — 7.
By an application of the symmetrical of the rule (14) (14) we obtain ¢ || r — ¢ || 7.

O Lemma 3

Remark 1. Contrary to mw-calculus, in the br-calculus it is no more true that p = g (p ~p q),
. . . def _
implies vap =y, vaq (vap ~p vaq) for any channel a. For example, it suffices to take py 2] ab

d . T .
and qq lef ab.cd which are strongly barbed bisimilar, whilst vapy et vaqy are not even
barbed bisimilar.

10



Lemma 3 and Remark 1 present interesting differencies between bm-calculus and -
calculus. In our model, barbed bisimilarity is preserved by parallelism, but it is not pre-
served by restriction. In 7-calculus, barbed bisimilarity is preserved by restriction but it
is not preserved by parallelism.

Since barbed bisimilarity it is not preserved by restriction and can not make any
distinction between a.p and a.q for any p, q, a # T, it is necessary to close it over various
classes of contexts. A context (defined in Table 4) is a term containing a single “hole”,
such that placing another term in the hole defines a valid term. A static context (defined
in Table 5) is a context which is build using just “the hole”, constants, parallelism and
name creation.

C:o= o | alC |vzC | (z=y)C,p | (z=y)p,C | C+p |
p+C | Cllp | pllC | (rec A(Z).C){H)

where p € Py et a i=2x(y) | Zy | 7 with 2 € Chy, 5 C Chy.

Table 4. Family of contexts Con

C:= o | vzC | Cllp | pllC

where p € Ppet a=z(y) | z§ | 7 with z € Chs,§ C
Chy.

Table 5. Static contexts Cons

Definition 4. Barbed Equivalence

— Two processes p and q are weak barbed equivalent, shortly p éb q, if for every
static context C' € Consg, C[p] = Clq].

— Strong barbed equivalence(rfb) 15 obtained similarly from strong barbed bisimilarity
over processes.

By a classical reasoning, we can prove that =, ~y, Rgb et ~p, are equivalence relations.
Remark 1 implies that barbed equivalence does no more coincide with the closure of
barbed bisimilarity with respect to arbitrary testers (as is the case in m-calculus).

3.2 Step Equivalences
In our calculus =2 is the rewriting and not —. This is the reason which push us to define

another characterization of barbed equivalence, still based on testers.
We denote p Uff if p NN p’ for some output a of subject a.
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Definition 5. Step-Bisimulation
A symmetric relation S over the set Py (of processes) is a weak step-bisimulation
if whenever (p,q) € S, then

— ifp -2 p!, then 3¢ such that ¢ =2 ¢' and (p',q') €S,
— Va € Chy, if p lq then q uﬁ.

Two processes p and q are weak step-bisimilar, noted p =4 q, if (p,q) € S for some
step-bisimulation S. The strong step-bisimilarity ~ is defined similar, but replacing

=2 by 25 and ¢ by |.

Intuitively, step-bisimilarity identifies processes which can broadcast messages on the
same set of channels (immediately or after some autonomous transitions), and whenever
one can progress without implicating the environment, so can the other, evolving to a
process preserving the relation. In fact, for our calculus, step-bisimilarity is more natural
than barbed bisimilarity since the real reduction is —2» (%) and not — (or —) as
in m-calculus. Like barbed bisimilarity, step-bisimilarity is a very weak relation (it is not
preserved by parallel composition), so it is necessary to close it with respect to observers.

From now on, we shall also use ¢ - bisimilarity to stand for step-bisimilarity.

As for barbed bisimilarity, we have the following step-bisimilarities.

Lemma 4. ~ satisfies the following properties:

(a) p=a q implies p ~4 q

(b) p |l nil ~4 p

(c)pllg~yqllp

(@) plla)lm~ppll(alr)

(e) p+nil ~4 p

(f) p+q~pq+p

(9) p+q)+r ~yp+(qg+r)

(h) vep ~y p if © & fn(p)

(i) vyvap ~g vavyp if x £y

(G) (vxp) [l g ~4 va(p || @) if z & fn(q)
(k) (vazp) +q ~¢ va(p+q) if = & fn(q)
(1) (y = 2)(vep),q ~y ve({y = 2)p,q) if z & fn(q) U{y, 2}

Proof
Consequence of Lemma 6 and 11.
O Lemma 4

As for barbed bisimilarity, step-bisimilarity is a very weak relation (it is not preserved
by parallelism, nor by restriction).

Remark 2.

1. =4 (~¢) is not preserved by ||;

2. =4 (~¢) is not preserved by v;

3. ~p (=) et ~4 (=) are incomparable.

Proof

12



1. Let pq def b+T1.E q def b+ b.¢ and ry def b+ a.

Then p; ~¢ ¢qi. On the contrary (p1 || 1) #¢ (g1 || 1) because ¢; || 71 can not simulate
the transition (p; | 1) — (€| b+ a).

2. Let ps def ba.a, go def be.a.

Then p2 ~¢ g2. On the contrary vap, %4 vaqo, because vags can not simulate the

o vaba _
transition vaps — a.
3. Since vapy ~y, vage and vaps #4 vaqa, we obtain

LR -

We have p; % qi since ¢; can not match the transition p; — &. Since p; ~g q1 We
obtain
~o LR -

To obtain the assertion 3. it suffices to use the inequalities ~,C~ and ~3,Cry .

O Remark 2

Remark 2 justifies the definition of the closure of step-bisimilarity with respect to static
contexts.

Definition 6. Step-Equivalence

— Two processes p and q are weak step-equivalent, shortly p ze¢ q, if for every static
context C, Cp] =4 Clq].

— Strong step-equivalence (~?¢) 15 obtained similarly from strong step-bisimilarity over
Processes.

Using some convenient contexts, we can prove that step-equivalence implies barbed
equivalence.

Lemma 5.
e . .
1)p ~g q 1mplies p~pq
e
2) p =y q implies pxyq.
Proof
We proof only the weak case.
Let p di) g and let M Y | a € fn(p,q)} aset of channels such that M N fn(p,q) =0

and ¢ a new channel such that ¢ ¢ M U fn(p,q). Let T def Eaefn(p,q)a(x).c;’ +c.
We shall prove that the relation

def
RTZ{W.d) | frn'.d) C fnlp,q), o' II T =y d | T}

is a weak barbed bisimilarity.
Let (p',¢') € RT. Then fn(p',q') C fn(p,q), ' | T =y ¢ || T.

— Let p’ 14
It follows that d # ¢, and p' — for an output « of subject d. We obtain p' || T —
(p" || d). Since p’ | T =4 ¢' || T, we obtain that ¢' | T == r where (p" || d') ~4 7.
Then r = (¢" || &), where ¢/ =5 ¢"" == ¢, for an output v of subject d.

13



— Let p/ 5 p.
Then p' | T -5 p" || T. Since p' || T =4 ¢' || T, it follows that ¢’ | T == r, where
p" || T =y r. If ¢ # €, it is easy to remark that 7" had to participate in the transition,
and that r Jf2, whilst (p” || T) L., contradiction with p” || T ~¢ 7. S0T =¢" || T where
¢ = ¢". From the corollary 1 we obtain also that fn(p”,¢") C fn(p',q).

O Lemma 5

Corollary 2.
1)p r\9¢ q implies p ,Sb q
2) p ze¢ q implies p Rgb q.

Proof

We prove only the weak case.

Let p ze¢ g and let C4[e] an arbitrary static context. For any static context C[e], since
C[Ci[e]] is a static context, by the Definition 6 we obtain that, C[C|[p]]=,C[Ciq]]. We
also obtain C'[p] wfd) Cilq].

By the Lemma 5, we obtain that C}[p]~,Ci[q]. By the Definition 4 we obtain that

e
P =bq-
O Corollary 2

3.3 Labelled Bisimulations

In order to prove that two processes p and ¢ are not (weak) step-equivalent (or weak
barbed equivalent), it is enough to find a suitable static context C, such that C[p] and
Clq] are not (weak) step bisimilar (respectively (weak) barbed bisimilar). But the converse
(i.e. proving the step-equivalence or the barbed equivalence) is much harder to prove in
general just using the given definitions; indeed, this requires a quantification over all the
contexts. Thus, it is interesting to have another way to directly prove that two systems
are equivalent.

Definition 7. Weak labelled bisimulations A symmetric relation S over the set Py
(of processes) is a (weak) bisimulation if whenever (p,q) € S, then

1) ifp ', then 3¢’ such that ¢ == ¢ and (p',q') € S,
2) if p Vb—d(;:p' and b0 fo(p,q) =0, then 3¢ such that q vbag q and (p',q) €S,
3) ifp Mi);p’ then 3¢’ such that ¢ = ) o -5 q and (p',q') €8S.

Two processes p and q are weak bisimilar, noted p ~ q, if (p,q) € S for some weak
bisimulation S.

The strong bisimilarity ~ is defined similar, by substituting — to = in conditions

b)? by?
1) and 2), and replacing condition 4) by “if p OQ) p' then 3¢’ such that ¢ M ¢ and

(',q") € S”.
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Definition 8. Strong labelled bisimulations A symmetric relation S over the set Py,
(of processes) is a strong bisimulation if whenever (p,q) € S, then

1) if p ¢, then 3¢ such that ¢ — ¢ and (p',q') € S,

2) ifp Vb—d(;:p' and b0 fo(p,q) =0, then 3¢ such that q vbag q and (p',q') €S,
b)? b)?
3) if p alb)] p’ then 3¢ such that q a{b)! q and (p',q') € 8S.
Two processes p and q are strong bisimilar, noted p ~ q, if (p,q) € S for some strong
bisimulation S.

By classical arguments [11], we can prove that ~ and ~ are equivalence relations.
As for barbed bisimilarity and for ¢ - bisimilarity, we have for the strong labelled
bisimilarity the next lemma.

Lemma 6. ~ satisfies the following properties:

(a) p=q q implies p ~ q

(b) p | nil ~p

(c)pllg~qlp

(@) plla)lr~pll(gllr)

(e) p+mnil ~p

(f) p+q~q+p

(9) p+q) +r~p+(qg+r)

(h) vop ~ pif x & fn(p)

(i) vyvxp ~ vovyp if x #y

(G) (vxp) || ¢ ~ va(p || q) if v & fn(q)
(k) (vzp) +q ~ vo(p+q) if z & fn(q)
(1) {y = 2z)(vap),q ~ ve({y = 2)p,q) if © & fn(q) U{y, 2}

Proof

a) p =, ¢ implies p ~ ¢
The relation S where
SY Y {(p,q) | pa € Pr p=ad}
is a strong bisimulation. The result follows from the observation that p = g and p AN p'
implies ¢ — p' (by the application of the rule (1) from the Table 3).
b) p || nil ~p
The relation
8> {(p | nit,p) | p.€ P}
is a strong bisimulation.
Let (p,q) € S?. Then p = q || nil.
If p == p', then the last used rule to infer this transition is the rule (14). So p’ = ¢’ || nil
et ¢ = ¢'. Then (¢ || nil,q') € S2.
If ¢ == ¢/, by the application of the rule (14) we obtain p —— ¢' || nil with (¢’ ||
nil,q') € S2.
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c) pll g ~ ql p The relation

def
S*={wlaqlp)|paecP}
is a strong bisimulation.

If p || ¢ — r, then the last used rule to infer this transition is one of the rules (12), (13)
or (14) and r = p' || ¢'. By the application of the rule (12), or one of the symmetrical
of the rules (13) or (14), we obtain ¢ | p — ¢ || p'-
d) (plla)lIr~pll(alr)
Th%erelation
s*={wlalirplllalr)|paren}
is a strong bisimulation. The proof is similar to the previous case.
e) p+mnil ~p

Th% relation

S5 {(p+nil,p) | pe P }U{(p:p) | p € Py}

is a strong bisimulation.

Let (p,q) € S?. Then p = ¢+ nil ou p = q.

The case p = q is obvious.

Let p = q + nil.

If ¢ + nil - r, then the last used rule to infer this transition is the rule (8), and

r = ¢, where ¢ — ¢'. Obviously (¢',¢') € S2.

If ¢ — r, by the application of the rule (8), we obtain g 4+ nil — r and (r,r) € S2.
f) p+qg~q+p
g) (pta)+r~p+(g+r).
For cases f) and g), the proof that S% et S are strong bisimulations is similar to case
e).

S {p+aq,9+p) | pacPIU{(p.p) | pe Py}

S Y {(p+a)+rp+@+r) | par€PYU{p) | p€Ps}

(h) vap ~psiz & fn(p)

Th% rfelation

8% = {(vap,p) | p € Po,x & fnlp)}

is a strong bisimulation.

Let (p,q) € S®. Then p = vaq with = & fn(q).

If vzq — r, then the last used rule to infer this transition is the rule (7), and r = vz¢/,
where ¢ = ¢’ and z ¢ fn(q'). Obviously (vzq',¢') € S8.

If ¢ - r, then by the application of the rule (7), we obtain that vzq —— var and
(var,r) € S (since = & fn(r)).

(i) vyvap ~ vavyp if x #y

The relation

§9 { (VE1. . VTP, VTo(1) - - - VI g(n)D) ‘ n € N, o permutation of {1,...,n}, for all
27.77 T 7é Tj,p € Pb}}

is a strong bisimulation.

Let (va1...vZnp,VTo(1) - VEIa(n)P) € S? and let vz ... vz,p — ¢ be a transition.
By induction on n, we can prove that this transition is derived from a transition of p,

p i> p’. We shall make an analysis by cases, depending on 3.

e f=r.
Then by n applications of the rule (7), we obtain vz ...ve,p — vE|...vELP'
T
and VIy(1) ... VTg(n)D — VTg(1) - - - VEg(n)P'-
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o B=alb. )
a(b)

Thena & {z1,...,x,}, and by n applications of the rule (7), we obtain vz, ...vzr,p —
(b)
VI . .;I/fEnpl and VIo(1) -+ VT a(n)P o VEg(1) -+ - VEg(n)D'-
e f=vbac, and ¢\ bN{z1,...,zn} ={zi,,...,zi,} We have two cases again.
* a g{xla"'axn}
Then by n — m applications of the rule (7) and by m applications of the rule

VT, ...V T, vbae

(5), we obtain vy ...vE,p — VYl ... VYp_mp and
VT oV Tipy, vbad ' .
VTq(1) -+ - VTq(n)P — VYp(1) - - - VYp(n—m)P for some permutation p of
{1,..o,n=m}and {y1 .. . Yn-m} = {¥p(1) - - - Ypn—m)} = {215 2n P\ {@iy, .-, 75, }-
x a €{x1,...,2n}

Then by several applications of the rules (5) and (7) and by an application of
the rule (6), we obtain vz ...ve,p — vy ... vyprp’ and
VEg(1) - - - VEg(n)P BLE VYp(1) - - - VYp(ntk)P' for some permutation p of {1,...,n+
k}, |1~)| =k and {y1 ces yn+k} = {yp(l) R yp(n-i—k)} = {:El, R ,:En} Ub.
() (vap) g ~vap |l q) if 2 & fn(q)
The relatlon

S0 L(wap) | qva(p || 9) | p € Poz & frle) Y U{(pp) | pe P} *

is a strong bisimulation.

Let ((vap) |l ¢, vz(p || q)) € $'°, with = ¢ fn(q).

If (vzp) || ¢ - r, then the last used rule to infer this transition is one of the rules
(12), (13), (14) or the symmetrical of one of the rules (13), or (14).

l/

If « = ygéé et 2 € b, then for some p’ and ¢’ we have (vap) || ¢ == a¢ p || ¢ and

ve(p || q) — V o€ p' || ¢’ by the application of the rule (5).
For all other cases, we obtain (vzp) | ¢ — (vyp') || ¢ and vz(p || q) —— vy(®' || ¢)
for some gy, p’ and ¢'.
(&) (vep) + 4 ~ va(p+q) it 2 ¢ folq)
() (y = 2)(vzp), ¢ ~p vz({y = 2)p,q) if z & fn(q) U{y, 2}
For the cases k) and [), the proof that S'! et S'2 are strong bisimulations is similar to
case e
)

S {(wap) + q,va(p+q) | p € Prx & fr(@)}U{(pp) | p € P}
812}def{ (y = 2)(vzp),q,vz((y = 2)p,q)) | p,q € Pyz & fnlq)U{y,z}} U{(p.p) | p €
Py

O Lemma 6

Lemma 2, 4 and 6 allow us to omit the parenthesis in p || ¢ |  or p + ¢ + r in some
contexts, and to omit “nil” in some terms.

Like in [11], we use "bisimulations up-to” to reduce the size of relations in the proofs.
We shall use just the ”bisimulations up-to” ~.

Definition 9. A symmetric relation S is a weak bisimulation up-to ~ if (p,q) € S,
implies

1) if p - ¢, then 3¢ such that ¢ == ¢' and (p,q') € ~S~,
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2) ifp @p' and b0 fn(p,q) =0, then 3¢ such that q vhag q and (p',q') € ~S~,
b)? b)?
3) if p M p' then 3¢’ scuh that ¢ = OQ) o= ¢ et (p',q) € ~S~.
The definition of strong bisimulation up-to ~ follows as in the Definition 8.

By classical arguments, we can prove the next Lemma.

Lemma 7. If S is a weak bisimulation up-to ~ (strong bisimulation up-to ~) then S C ~

(SCn~).

Proof
We give the proof only for the weak case.
If S is a weak bisimulation up-to ~, we prove that

s ] s,

n<oo
is a weak bisimulation, where

def

So'={pq|p~S~q}

Snir {2/, 412/7)) | (p,q) € Sny 20 frlp,q) =0, [5/i] injective }

The proof is by induction on n.

— Let (p,q) € Sp. Then Ipy, g1 such that p ~p1 S ¢1 ~ q.

1. For any p —— p’ such that bn(a) N fn(p,q,p1,q1) = 0, we can prove that we can
fill the next diagram:

p o~ S @~ q
oo oo |
pho~p ~8~dq ~¢
We prove the assertion only for the case a = vbaé. The other cases are simpler.

bac . b
Let p =% p/, with b fn(p, ¢, p1,q1) = 0.

Then p ~ py implies py @ P
Since p; S q1, by the definition 9 we obtain q; @ ¢y with p| ~ S ~ ¢}.
By induction on the length of @ and using that q; ~ ¢, we obtain ¢ @ q with
q ~ q.
We use after ~ o ~C~ to obtain (p1,q1) € Sp.
2. If p 1@; p' such that bN fa(p,q) = 0 and bN fn(pr,q1) # 0, then let d such that

dn fn(pj q,p1,q1) # 0. Repeating the reasoning of case 1., we obtain that p vdag p”,
and ¢ vdag q” with p” ~ § ~ ¢”.

14

We can prove after that p' = p”[b/d] and ¢ vbag
(v, q') € S1.

¢’ with ¢ = ¢”[b/d], and hence
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— Let (p,q) € Spt1. Then I(p1,q1) € Sy, such that p = p1[2/Z], ¢ = 1[2/%], fn(p,q1) N
Z = () et [2/%] is an injective substitution.
let p —= r'. We can prove that exists o’ injective, such that p = p1[2/Z] = p1o’,
q=q[z2/Z] = qio’, ' = ro’, a = o'(B) and preod(a’) N fn(p1,qi,8) = 0. It follows

p1 2z, r, and since (p1,q1) € Sp, by induction hypothesis, we obtain ¢; by s with
(r,s) € Sy, for some m € N.
Hence q = q10’ == so’ and prcod(c’) N fn(r,s) = 0, so (ro’,s0') € Smi1.

The proof for the strong bisimulation up-to ~ is similar.
O Lemma 7

Labelled bisimulation is a congruence with respect to restriction and parallelism.

Lemma 8. Ifp = q (p ~ q) then vap = vaq (vap ~ vaq).

Proof
We shall prove that the relation

d (0.0

s s,
n=0
whsr?
(5
So = {(p,q) | p~q}
def

Sn1 = {(p,q) | Fa € Chy,3(p',q') € Sny p=vap', q=raq'}

is a weak bisimulation.

We can prove that z € fn(p,q) and p =~ ¢ imply p[z/z] ~ q[z/z], and after, we can
prove by induction on n, that z € fn(p,q) and (p,q) € S, imply (p[z/z],q[z/x]) € Sm
with m <n.

Using this, we can also prove by induction on n, that if (p,q) € S, and p =, p1, then
it exists

q1 and m < n such that ¢ =, q1 et (p1,q1) € Sp- (1)

Now, we prove by induction on n, that if (p,q) € S, and p - p' where « satisfies the

conditions in the Definition 7, then it exists m € N and ¢ == ¢, such that (p’,q') € Sn..

The case n = 0 follows directly from the Definition 7.

Let (p,q) € S,+1. Hence p = vap; et ¢ = vaq; with (p1,q1) € Sp.

Let p - p'.

If the last rule used is (1), with p =, p; and p; -2 p/, we use 1 to obtain a corre-
sponding ¢; and we repeat the reasoning for p; et ¢; (in this manner we reduce strictly
the number of applications of the rule (1)). So we can suppose that the last rule used is
not (1).

We have several case, depending on the action a.

— «a = 7. Then the last applied rule is (6) or (7).
If the last applied rule is (6), then py vbag P, and p’ = vavbp!. By induction, Im such
that ¢ vba¢ ¢y and (p},q|) € Sm. We obtain by an application of the rule (6) and by

several applications of the rule (7), that ¢ = vavbq, with (vavbp!, vavbq,) € Sm+1+\(3\'
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If the last applied rule is (7), then p; — p} and p’ = vap). By induction Im such
that ¢ == ¢} and (p},q}) € Sm. We obtain by several applications of the rule (7),
that q~:T> vaqy, and (vapi,vaq)) € Smi1.

— a = vbdé. So d # a and that last rule used is (5) or (7).

If the last applied rule is (5), then py I ' and a € ¢\ (bU {d}). By induction Im
such that ¢; vbd¢ ¢ and (p',q') € Spn. We obtain by an application of the rule (5) and
by several applications of the rule (7), that ¢ abde q.

If the last applied rule is (7), then py vbdg Py, o' = vap, and a ¢ (¢\ b) U {d}. By
induction 3m such that ¢; == ¢} et (p},q}) € Sm. We obtain by several applications
of the rule (7), that ¢ id_g vaqy, and (vap!,vaq)) € Sm1-

— o = d(b)?. So d # a and the last rule used is (7). Then p, [@; P}, and p’ = vap). By
induction Im such that ¢ = e @; e == ¢\ and (p,q}) € S,,. We obtain by several

d(b)?
applications of the rule (7), that ¢ == e 1, == vaq}, and (vap),vaq)) € Smi1.

The case “strong bisimulation” is similar.
0 Lemma 8

Lemma 9.
1. Ifp~qthenpl|r~qlr.
2. Ifp=qthenp|r=q|r.

Proof
For the case ”weak bisimulation”, we prove that the relation
def
T={plralr)|[p=a}

is a weak bisimulation.

Let p || r — s.

If the last applied rule is (1), with p || r =4 p1 || 71, we have ¢ || 7 =4 q || 71 and p1 = ¢
(in this manner we strictly reduce the number of applications of the rue (1)). So we can
suppose that the last rule used is not (1).

— p|| 7 = s. There are two cases:
e s=p | retp-—p.
Since p &~ ¢ then 3¢’ such that ¢ == ¢’ and p’ ~ ¢. Hence ¢ || r == ¢ || r, with
@ rdllr)eT.
o s=plretr—r.
Then ¢ || r — ¢ || ¥/, with (p || ', q || ') € T.

—plr ¢ ¢ with b fn(p,q,7) = 0. There are two cases:

P &)?
. s:p'||r',p%p'andrtﬂ>'r’.
Since p ~ qthenq@q’ and p' ~ ¢/, and so q || r@q' | ', with (p" || ', 4" ||
ryeT.
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a{é)? baé
. s:p'||r',pﬁ>p'andry—>acr’.

&)?
Since p ~ ¢ then ¢ = ¢ 0@) ¢" = ¢ for some ¢",¢"" and p' =~ ¢/, and so
vbaé

qllr =4 || v, with (p' | ',¢' || ') € T.

a(b)?
—pllr—s.
by? by?
s=1p ||r',p0ﬂ>p’androﬂ>r’.

b)?
Since p &~ ¢ then ¢ = ¢ o) g = ¢ for some ¢",¢" et p =~ ¢, and hence

a(b)? .
gllr==q"|r==q" |l =¢ || with (¢t | r',q | r') € T.

The case ”strong bisimulation” is similar.
0 Lemma 9

The following lemmas prove that labelled bisimulation is a pretty strong relation.

Lemma 10.

1) p ~ q implies p ~yp q.

2) p = q implies p = q.
Proof

We prove only the weak case. We prove that ~ is a weak barbed bisimulation.
Let (p,q) €~

— Let p l.. Then p — for an output « of subject ¢. Since p ~ ¢, we obtain that ¢ =
and so q ..
— Let p — p'. Since p ~ ¢, then ¢ == ¢’ with (p',¢') €x.

O Lemma 10

Corollary 3.
1) p ~ q implies p ~y q.
2) p = q implies p 2% q.

Proof
We give the proof for the weak case.
Let p = q.
Let C be an arbitrary static context.
By induction on the structure of C', and using the Lemmas 8, and 9, we obtain that
Clp] ~ Cla).
By the Lemma 10, we obtain that C[p] ~;, Clq]. So p ~ q.
O Corollary 3

In the same manner, we can prove the next results.

Lemma 11.
1) p ~ q implies p ~4 q.
2) p = q implies p =4 q.

Corollary 4.
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1) p ~ q implies p "?dJ q.
2) p = q implies p mfd) q.

We use similar arguments as in [18], to prove that labelled bisimulation, ¢ - equivalence
and barbed equivalence coincide for an important class of processes, namely image finite
processes.

A labelled transitional system (P, Act,+—) is image finite if for any processes p and
action a, the set {q | p *> ¢} est finite (in our case > can stand either for the strong or
for the weak reduction).

A processes p is image finite if for any action «, the set {q | p A q} is finite, and for
any processes ¢ and action « such that p + ¢, ¢ is image finite.

Remark that in what concerns the strong reduction, any processes is image finite (up-to
alpha-conversion).

In order to keep the notations simple, we shall give the proof just for the monadic
version of brr -calculus (but our results can be easily extended to the polyadic version).

Lemma 12. For all image finite processes p and q,

1) p ~y q implies p ~ q,
e
2) p =y q implies p = q.

Proof

We shall give the proof only for the weak case.

Let F a monotonic function defined on the set of relations between processes P (P, x Py)
associated to the definition of labelled bisimulations.

If S is a relation on Py, then (p, q) € F(S), only if the following conditions are satisfied:

1) if p = p', then 3¢’ such that ¢ == ¢’ and (p',¢') € S,

2) ifp @p’ and bN fn(p,q) = 0, then 3¢’ such that ¢ vbag ¢ and (p',q¢') € S,

3) ifp Mp’ then 3¢’ such that ¢ == e NN ¢ and (p',¢') € S.

Let &) = P, x Py, "+ = F(x"), and & =, _, ~" . We call #™ a weak m-bisimulation.
It is well known [7], that for an image finite labelled transitional system ~“ = .

It suffices to prove that Vm, p Rgb g=—=p~"q.

For a set N of pairs of names, we shall denote INV; the projection on the 7-Th element,
n(N) = Ny U Ny, and we shall require Ny N Ny = (). We use H* (Y ™) as an abbreviation
for HU{(y1,9})} (Y \{(v1,9})})- H1 plays the role of names which can be known by p or
q, and Y plays the role of names which can be learned by p or gq. To prove the implication,
we build a contexts family C}; ;ry-[8] such that the relation

™ = {(p,0) | 3, M, H,Y, & such that n(H) An(Y) =0, Y| =m, fa(p| q) C Hy C M,

(Hy UY)) C {#}, (HaUYa) N {5} =0, viClypy el = viClypyldl}

is a weak m-bisimulation.
Let in, out, new and {by|n > 0} be some ”fresh” names, such that ({z} Un(H) U
n(Y)) N ({bp|n > 0} U {in, out,new}) = 0.
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Let C iy [o] ol [o] || ASensor, (M) || GSensors,(H,Y)

where |M|=r, |H|=s, |[Y|=m

The role of GSensor is to provide to p et ¢ all the possible communications. The
conditions fn(p || ¢) C Hi, fn(p || ) NY: = 0 and |Y;| = m assure that GSensors ,(H,Y)
can “satisfy” all the possible communications of p or ¢ during m transitions.

GSensors m el (H,Y)

Z ab.(1.GSensors i1 m—1 (H, YY) + 7. W {(d, ¥, in))
((a,a), (b)) EH X H+
+ Z ).case(y, Hy, (Rz)zeHI,R;>, with |H| = s, |Y] =
a€H;
def

W (a,b,7)(@+7.(b + 7)),

R, el T.GSensors m_1(H,Y ) + 7.W{d', 2, out)

R, def T.GSensorsi1m—1(HU{(y,y1)},Y ) + 7.W(d', new, out)

R si H=10,

def
case(y, H, (R yR) = 2
(y: H, (By)yem, R) {(y = 2)R;, case(y, H', (Ry)yen, R) if H=H'"U{z}. ?

ASensor counts the number of visible made by p, ¢ or GSensors y, (hence the condition
fn(p |l q) € Hi C M).

ASensorrn = ) (b, + Z ). ASensory 1 i1 (M U{z})), with |M| =7
a€EM

We prove that ™ is a weak m-bisimulation.

Let (p,q) € r™. Then 3n, M, H,Y, % such that n(H)Nn(Y) =0, |Y|=m, fn(p| ¢q) C
Hi CM, (HiuYy) C{z}, (HoUYs)N{z} =0, vaCly; v [p] = v3Ch g y-[q]-

[1] Let suppose p — p'.

Then vZCY; v [p] RUEN vZCYy gy [p']. Then we must have a transition

viChy myldl ==t =y viCly iy [p']

Since U:iC’]T(/[’H’Y[p’] 1b,, we can infer that ASensor remains unchanged, and since
Hy C M, we obtain that t = viC}; ;y[q'] where ¢ = q.
[2] Let suppose p _ab, p.
Then
viChy iy [P] s vi(p' || ASensory i1 pni1(M U{b}) || case(b, Hy, (R,).cm,, Rp))

=t; — vi(p' | ASensor, i1 ni1(M U{b}) || GSensors,—1(H,Y "))

VxCMU{b} HY~ [P
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Then it should exist the processes u1, uz derived from vzCl H’Y[q] such that
I/i‘C]T\L/[’Hyy[q] é ur ~p t

€
Ul = U % to

First step: v2CY; 5 v [p] ~5 t;. The configuration viCYy jry[g) must do at least one step,
since vZCYy 5 y[q] dp, whilst ¢1 . Because ¢1 1y, ,,, p and GSensor can not make more
than one visible step. We obtain that u; must have the following form:

va!(¢" || ASensory 11 (M U {bi}) || v")

for some by, q", v", va', q N q", GSensors,(H,Y) o v”, where o and o' are com-
plementary actions. The fact t1 =4 i out,p,,,} implies that o' is an output, and o
must be the corresponding input; moreover, o’ can not be a bound output. Hence we
obtain that o/ = @yb;, where {a,b} = {a1,b1}. If we suppose a; = b, by = a, we should

obtain t1 =y outb,,}, transition that u; can not match. For the second step, we eas-
ily obtain that us must have the following form U:%C]%—'L__Jl{b}, H’Y,[q’ ] where ¢"" == ¢ et

" L GSensorsm—1(H,Y ™)

[3] Let suppose p vbag p.
Then

viChy gy |[p] s vbvi(p' | ASensoryi1 pi1(M U{b}) || case(b, Hi, (R.).cm,, R}))

=t — vbvi(p' || ASensor, i1 ,p1{M U{b}) || GSensorsyim 1(HU{(b,y})},Y ™))

CTL+1

=19 = vbv MU{b}, HU{(by})},Y ~ [p,]

Then it should exist the processes 11, us derived from U:%C;L/[’ H’Y[q] such that
l/i’C]T\LI’Hyy[q] :€> Uy p tl

€
Ul == U % to

The first step: vZCY 5y [p] — ¢;. The configuration vZCyy iy [q) must do at least a step,
since U:iC}\lL H’Y[q] 1y, or t1 fp,. Since t1 1y, ,, p and GSensor can not make more than
a single visible step. Hence we obtain that u; must have the following form:

va!(q" || ASensorysi (M U {bi}) || v")

for some by, ¢", V", o, q LN q", GSensors ,(H,Y) o v", where o and o are com-
plementary actions. Since t1 == l{4 new,outb,,,} We deduce that o is an output, and o
must be the corresponding input; moreover, o’ must be a bound output. Then o/ = vbaib,
where necessarily a = ay. For the second step, we easily prove that wo must have the

form uwaC’]’\’/[tl{b}’HU{(b’y,l)}’Y,[q’] where ¢ == ¢ and v" - GSensorsiim—1(H U

{(b,y1)},Y7)

b)?
[4] Let suppose p a{b)! p.
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Then
V:%C]T\L/[,H,Y[p] —

vi(p' || ASensor, i1 ni1(M U{b}) || (T.GSensorsy1m—1(HT,Y ")+ 7.W(a',¥',in)))

=t —> vi(p' || ASensor, i1 i1 (M U{b}) || GSensorsi1m 1(H,Y ™))

- 1
=1y = VQZCJT\L/[J[J{b},H'*‘,Y— [p']

Then it should exist the processes u1, uz derived from vzCl H’Y[q] such that
viChymyldl = u ~ t

€
Ul = U o to

The first step: vZCY; 5 1 [p] ~L5 t;. The configuration viClyy iy [q) must do at least a step,
since U:iC}\lL H’Y[q] b, and t1 Yfp,. Since t1 |y, ,, p or GSensor can not make more than
one single visible step. Hence we obtain that u; must have the following form:

va!(¢" || ASensor, 11 (M U {b}) || v")

for some by, q", V", va', q LN q", GSensors ., (H,Y) o v", where o et o are com-
plementary actions. Since t1 =={(4" i inb,,,} then o' must be either an input, either a
discard, whilst & is the corresponding output. Hence o = a;(b;)?, o' = @yb;, where nec-
essarily {a,b} = {a1,b1}. If we suppose a; = b, by = a, we should obtain t; =141/ in b, 1}
transition that u; can not match. For the second step, we easily obtain that us must have
the form ViC]T\}tl{b},H+,Y_ [¢'] with ¢" == ¢' and v" -5 GSensors 1 m 1(HT,Y ™)

O Lemma 12

Theorem 1. For all image finite processes p and gq,

p Sy q iff p~pq iff p~gq
e . e .
2)p =y q iff p =y q iff prg

Proof
The assertion of the theorem is an immediate consequence of Corollaries 2 and 4 and
of Lemma, 12.
O Theorem 1

4 Congruences

In this section we focus on the congruence induced by barbed bisimilarity. Our goal will
be to define a relation R over the set P, of processes such that if p R ¢ then p and
q are observable on the same set of channels, observability is preserved by reduction,
and moreover, when placed in an arbitrary context C, p and ¢ cannot be distinguished
(C[p] R Clq]). In this paper we shall concentrate on the strong congruence, for the weak
case (which abstracts for internal steps), we shall defer to future work.
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Definition 10. Barbed Congruence
Two processes p and q are barbed congruent, shortly p ~y q, if for any contezt C,

Clp] ~ Clal-

Obviously, ~5, is by definition a congruence. But as for barbed equivalence, this def-
inition is more appropriate to prove the non-congruence rather than the congruence of
two processes. So we are interested in finding a direct characterization of this congruence
based on labelled transitions.

Unfortunately, ~ is not the target characterization, as it follows from the above remark.

Remark 3.
— ~ is not preserved by choice. We have that a ~ b, but a + ¢ £ b+ ¢.

— ~ is not preserved by substitution. Let p el z.y.c+y.(Z || ¢) and ¢ 3 | y.¢. Then

p~ g, but plz/y]  qlz/yl.
— ~ is not preserved by prefixing. It is a direct consequence of the previous item.

Unlike strong bisimilarity from the w-calculus, ~ is not preserved by choice. We borrow
ideas from [8] and [14] to obtain a congruence relation which do not require closure with
respect to contexts.

Definition 11. Let ~4 be given by
1) if p ', then 3¢ such that ¢ — ¢ and p' ~ ¢/,

2) ifp vbag P and bN fo(p,q) =0, then 3¢’ such that q vbag q and p' ~ ¢,
b b
3) if p M p', then 3¢ such that q M q andp' ~ ¢,
Let ~. be given by p ~. q if po ~4 qo for all substitutions o.

Remark 4.

— ~e vy G

— the inclusions are strict.

— ~ is preserved by +, v and ||.

Proof
The inclusions follow directly from the definitions.

. . . . . def _  _ _ 0 =
To prove that the first inclusion is strict, it suffices to take p 2] Z.y.c+y.(Z || €) and

def _ _
q= || y.c. Then p ~, g, but p £ q.
def

To prove that the second inclusion is strict, it suffices to take p = a et ¢ def b. Then
p~q, but pLyq.

The fact that ~ is preserved by v and || can be proved by an analysis by cases, in
the same manner as for ~ in Lemmas 8 and 9.

The fact that ~ est preserved by + is proved by an analysis by cases.

Let p ~4 q. We prove that (p +r) ~4 (¢ + ).

If p+r —= s, then this transition is inferred using the rule (8), from p —— s or r — s.

If p %5 s, since p ~ ¢, using the Definition 11, we obtain ¢ — ¢ with s ~ ¢. Using
the rule (8), we obtain g +r — t.

If r - s, using the rule (8), we obtain ¢ + r —— s, and obviously s ~ s.

The case ¢ + r — s is similar.

O Remark 4
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Lemma 13. ~. is preserved by prefix, restriction, summation, matching and parallelism.

Proof

— pr~eq = a.p ~c a.q. for any prefix a.
e a=Tr.
Let o be a substitution. Then p ~. ¢ = po ~; qo = po ~ qo = T.(po) ~4
7.(q0) = (1.p)o ~4 (1.9)0.
Hence 7.p ~. 7.q.
e a=ab.
Let o be a substitution. Then p ~. ¢ = po ~4 ¢qo = po ~ o =
(ab)o.(po) ~4 (ab)o.(qo) = (ab.p)o ~4 (ab.q)o.
We obtain ab.p ~. ab.q.
e a=a(h).
Let o be a substitution. Then p ~. ¢ = po ~4 ¢o = po ~ o =
(a(b).p)o_~4 (a(b).g)o.
Hence a(b).p ~. a(b).q.
— p~cq = vap ~. vaq for any channel a € Chy,.
Let o be a substitution. We can suppose a ¢ (prdom(c) U prcod(c)). Then p ~. ¢ =
po ~4 qo = (from the Remark 4) (vap)o ~; (vagq)o.
Hence vap ~. vagq.
— P~ q=pFT~eqgtT
Let o be a substitution. Then p ~. ¢ = po ~; qo = (from the Remark 4)
po+ro ~y qo+ro= (p+r)o ~y (¢+7r)o.
We obtainp+r ~, g+
—preqg = (F=y)p,r~e (=y)q,r Az =y)r,p ~e (T =Y)1, 0.
Let o be a substitution. We can prove the implications by an analysis by cases (de-
pending on the relation between o(z) and o(y)), using the fact that ~ is reflexive.
— pr~eq=>pll T ~cq| r for any processes p € Py,
Let o be a substitution. Then p ~. ¢ = poc ~; qo = (from the Remark 4)
polro ~4 qollro = (plr)o ~+ (¢l r)o
We obtainp || r ~. q || r.

O Lemma 13

For a process E' which contains a free identifier X, and a process p, we denote F(p)
for the process obtained from E by replacing X (y) by p(y/Z) where Z denotes the free
names of p. For example, if p de/ (z1,22)(21.72 || 72) and E de/ ab.X {(a,b) + veac.X (c,b),
then E(p) = ab.(a.b || b) + vcac.(¢.b || b).

Definition 12. Let E and F be two processes which contain a free identifier X. Then
E ~ F (respectively E ~, F, E ~. F ) if E(p) ~ F(p) (respectively E(p) ~4 F(p),
E(p) ~. F(p)) for any process p.

We shall use the bisimulations up-to ~.

Definition 13. A symmetric relation S is a bisimulation up-to ~ sif for any (p,q) €
S, we have
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1) ifp s ', then 3¢’ such that ¢ — ¢’ and (p',q') € ~S~,
2) ifp @p' and b0 fn(p,q) =0, then 3¢ such that q vbag q and (p',q') € ~S~,
3) if p o) p' then 3¢ such that q oty q and (p',q') € ~S~.

Remark that in the Definition 13, we require (p,¢') € ~S~ and not (p’,¢') € ~;.S~.
Next lemma allow to reduce the size of relations used to prove for two processes p and

q that p~,q.
Lemma 14. If S is a bisimulation up-to ~y then S C ~ 4.

Proof
Let S be a bisimulation up-to ~,. Then § satisfies the conditions of the Definition 9,
and hence § C~.
Now let suppose that (p,q) € S and let p 24 p', where « satisfies the conditions of
the Definition 11. Then by the Definition 13, we obtain that ¢ — ¢’ and (p',¢') € ~S~.
Since S C~ et ~ is transitive, we obtain (p’,¢') € ~.
O Lemma 14

Lemma 15. Let E and F' be open processes which contain X as free identifier. If E ~. F,
then (rec X(Z).E){Z) ~. (rec X(z).F)(z).

Proof(;
Let p ™ (rec X (3).E)(7), q
We prove that the relation

“ (rec X(#).F)(%).

C def {(G(p), G(q)) ‘ G contains only the identifier X }

is a bisimulation up-to ~. Using the Lemma 14 we obtain C C ~,. Choosing G = X (2),
we obtain that p(Z)~, ¢(2) for any Z, and hence p~.q, which prove the assertion of lemma.
Let G(p) = p' (¥).
We shall prove the existence of a corresponding transition G(q) -5 ¢’ which satisfies
the conditions of the Definition 13 by structural induction on the inference of the transition
(). We present only a few cases.

— G(p) = p' using the rule (11).
Then G = X(j), and by a shorter deduction, E(p)[y/Z] = E[j/z](p) — p'. By
induction E[§j/#](¢) — ¢" with p'~C~q". Since E ~. F, we obtain
Elj/#|(q)~+ F[§/)(q); so F[§/%)(q) = ¢' ~ ¢". Using the rule (11) G(q) = q(7) —
q'. The transitivity of ~ implies p'~C~q'.

— G(p) % p’ using one of the rules which concerns the parallelism (12), (13), (14) or
one of theirs symmetric.
If G = G || G2, and by a shorter deduction, G;(p) — p); for some appropriate «;. By
induction G;(q) =% ¢! where pi~ C ~q.. Hence pi~H;(p) C H;(q)~q., and using the
Lemma 9 we obtain that
(0, | )~ (p) | o)) € (H (@) || Ha(@))~(a] | ).

O Lemma 15
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Corollary 5. ~. is preserved by recursion.

Proof
def

Let p ~. ¢ and let D[e] = (recX(z).Cle])(7) be a context such that D[p] and D]q]

are well formed (fn(p || ¢) C z).

Using the Lemma 13 we obtain C[p]~.C[q] (using the Definition 12) , and using the

Lemma 15 we obtain (recX(z).C[p])(y) ~c (recX(z).Clq]){(y).

O Corollary 5

Using Lemma 13 and Corollary 5, we obtain that indeed ~. is a congruence.

Theorem 2. ~. is a congruence.

. . (& . .
Using some convenient contexts, we can prove that ~. and ~y coincide.

Theorem 3. ~, =~

Proof

c
— ~e Gy

Let C be an arbitrary context and let p~.q. By definition C[p]~.C|[q]. Hence C[p]~C]|q]

and by the lemma 10 C[p]~,C]q].
We obtain p ~5 g.

c
— ~pC ~e

Firstly, we remark that with respect to — any processes is image finite. So the first

point 1) of the Theorem 1 can be read
”for all processes p et g:

p~pq iff p~yqg iff p g

Let p ~ ¢ and let Cy]
q) ={z1,22,...,2,}, and fn(p | ¢q) N {u,v} = 0. We prove that

Ci[p]~Cilq] = p~cq.

(3)

o] def u(zy).u(ze) ... u(z,).([o] + D i, zi(x).v), where fn(p ||

(4)

Let o &/ [yi/z;] be a substitution (in the Definition 11 it suffices to restrict us only to

substitutions equal to identity anywhere but fn(p | q)).
Let us consider the derivation

~

) )

n
Ci[p] Uy Ry vy Ry... ulyn R, =plyi/xi] + Zyz(az)z’)
i=1

Since C[p]~Ci]g], it must exist a derivation

g

C1[p] u) S1 Ul Sy... ulvn) Sn = qlyi/zi] + Zyi(x).z‘),
i=1

such that
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plyi/zi] + Y vi(2).0 ~ qlyi/zi] + Y yilz).0 (5)
i=1 i=1

By an analysis on cases, it is easy to prove that the equivalence 5 implies ply; /=i~ qly; / ;]

(any input of p[y;/x;) must be matched by an input of ¢[y;/z;) and conversely).
Since o is an arbitrary substitution, we obtain the implication 4.
Using the assertions 3 and 4, we have the following implications:

(p ~p q) = (Ci]p] ~p Cilg]) = (Cilp] ~ Cilqg])

= (Cilp] ~ Cilg]) = (p ~c9)

OO0 Theorem 3
If we denote by ~9¢ the congruence induced by ~¢, then it is easy to prove that
(& (&
~e :Nb:N¢

As for the strong congruences, we obtain similar results for the weak congruences.

Definition 14. Weak barbed congruence

Two processes p and q are weakly barbed congruent, denoted p %Cb q, if for any
context C, Clp| =~y Clq].

Definition 15. Let ~ be a symmetric relation which satisfies the following conditions:
1) if p ', then 3¢’ such that ¢ == ¢ and p' ~ ¢/,
2) if p @p' and b0 fn(p,q) =0, then 3¢’ such that q vbag q and p' =~ ¢,
b b by:
3) ifp Ak p' then 3¢ such that q oty q where q :T>‘ﬂ> q andp' =~ ¢,
4) if p =, then q =
Let =, defined by: p ~. q if po =4 qo for all substitutions o.

Theorem 4. ~_ is a congruence.

Theorem 5. For all image finite processes p and q
. c
pReq  if  pRya

5 Axiomatisation of strong congruence

In this section we give a complete axiomatisation of strong congruence for finite processes
(without recursion). Our axiomatisation is derived from those given for the 7-calculus by
Parrow and Sangiorgi in [14]. But we need to take care of the fact that strong congruence
~ is not directly obtained form strong bisimilarity ~ by closure with respect to all substi-
tutions (as for the m-calculus), but from a strictly stronger relation ~,. The gap between
~ and ~ is filled by the new axiom (H) (which does not hold for strong congruence in
m-calculus), which corresponds to the axiom P — Noisy given for CBS in [8]. To keep the
syntax simple, we use the monadic version of our calculus.
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5.1 Characterizing strong congruence over simple processes

In this subsection we restrict our attention to processes given by

P == nil | 7p | pi+p2 | p1,p2

where 7 belongs to the set of prefixes 7w ::=
T | fE(y) | TY, T,y € Chb

where 7 belongs to the set of prefixes 7 =17 | z(y) | zy, z,y € Chy,.
Following [14] we use the more general form ¢p1,p2 with

¢ = (z=y) | "¢ | ¢

with z,y € Chy, and we use the shortcut ¢p to stand for ¢ p,nil and (x # y)p, q for
—(z = y)p,q . We denote by In(p) the set of all input ports of p (the set of names a such
that p @ p' for some p').

The axiom system A for strong congruence ~. is given in Table 6.

(A) if p and q are alpha-equivalent, then p = ¢
(IP) if p=q then a.p=ayq

(IC) if p=q then ¢p = ¢q

(IS) fp=qthenp+r=q+r

(H) ifz ¢ fn(p) and Vb € In(p)p = (a # b) then a.p = a.(p + ¢a(z).p)
(S1) p+nil=p

(52) p+p=p

(S3) p+g=gq+p

(54) (p+q@)+r=p+(g+r)

(C3) if ¢ <= 1) then ¢p =¢p

(C4) False p= False q

(C5) ¢p,p=p

(C6) ¢ép,q=—dq,p

(CC1) ¢(vp) = [¢p Alp

(SC1) ¢(p1 + p2), (@1 + g2) = ép1,q1 + Pp2, @2
(CPY) if bn(a) Nn(¢) = O then ¢(a.p) = d(a.¢p)
ECP2) (z = yyap = (z = y)(a{z/y})p

SP) a(z).p+a(r).q = a(z)p+a(z)q+a(@).(z = y)p,q)

Table 6. Axiom system A for strong congruence.

We write A - p = ¢ whenever p = ¢ can be proved using the rules of the Table 6. The
following theorem is easy to prove:

Theorem 6. (soundness of A for ~.) If AFp=q then p ~.q.

Proof

It suffices to prove the correction of rules given in the Table 6. The assertion follows
then by induction on the length of the inference of A+ p =q.

We justify only the correction of the axioms (H) and (SP). The other cases are simpler.
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- (H) if z ¢ fn(p) and Vb € In(p) (¢ = (a # b)) then a.p = a.(p + ¢a(z).p)
Let o be a substitution. We can suppose that = ¢ (prdom(c) U prcod(o).
We must prove that (a.p)o~_(a.(p + ¢a(z).p))o. Using the Definition 11, it suffices
to prove po~(p + ¢a(z).p)o, i.e. po~po + (¢o)o(a)(z).po.
If o does not agree with ¢ (Definition 18), then ¢o <= False, and hence (po +
(po)o(a)(z).po) = ¢ if and only if po - q.
Let suppose that o agree with ¢. If po = ¢, obviously (po + (¢o)o(a)(z).po) — q.
Let suppose (po + (¢po)o(a)(z).po) - q.
Then the last rule used is the rule (8) and either po —— g, either (¢po)o(a)(z).po —= q.
The first case est trivial. Let suppose (¢o)o(a)(z).po — q.
Then, for some ¢ € Chy, o = o(a)(c) and since z € fn(p), we obtain g = polc/z] = po.
Let b € In(p). Then ¢ = (a # b). Since o agree with ¢, using the Definition 18, we
obtain o(b) # o(a). Using that In(po) = {o(b)|b € In(p)}, we obtain o(a) ¢ In(po),

and hence po (ﬂ po.
- (SP)  a(z)p+a(z).q = a(z)p+a(z).q +a(z).(z = y)p,q)
Let o be a substitution. We can suppose that = ¢ (prdom(c) U prcod(o).
We must prove that (a ( )-p + a(z).q)o~y(a(z).p + a(z).qg + a(z).((z = y)p, q)?)la.
If (a(z).p + a(x).q)0 — ¢, obviously (a(z).p + a(z).q + a(z).({z = y)p,q))o — q.

Let suppose (a(z).p + a(2).q + a(@).((z = y)p, q))o — q.
Then the last used rule is the rule (8) and either (a(z).p + a(z).q)0 —— gq, either

(a(z).((x = y)p, q))o — q. The first case est trivial. Let suppose (a(z).((z = y)p, ¢))o —

g. The only interesting case is « = o(a)(c) for some ¢ € Chy. Hence ¢ = (¢ =
o(y))(po)le/x], (qo)[c/z]-

If o(y) = ¢, then using the rules (3) and

(8

(po)[c/x], and it is easy to prove that (¢ = o
(

o

)

) a(a)(c)
[¢/].

~—

, we obtain (a(z).p + a(z).

Y(po)le/x], (qo)lc/x] ~ (po

~—

If o(y) # ¢, then using the rules (3) and (8), we obtain (a(x).p + a(x).q)o o(a)(e)
(qo)[c/z], and it is easy to prove that (¢ = o(y))(po)[c/z], (qo)[c/z] ~ (g0)[c/x].
O Theorem 6

As in [14], it can be proved that for every process, there exists one equivalent process
(in the system of axioms A) which is in “normal form”, and that congruent processes in
normal form can be proved equal in our system of axioms.

Definition 16. [1/] Let V be a set of names; a condition ¢ is complete on V' if for some
equivalence relation R on V, it holds that ¢ = (x = y) iff zRy, and ¢ = (x # y) iff
—(zRy).

Definition 17. (head normal form) Let V' be a set of names. p is in head normal form
onV, if it is of the form Xicrpic;.d;p;, where for all i,

1 bn(oy) € V;
2 ¢; is complete on V.

Lemma 16. For each process p, and for each finite set of names V' with fn(p) CV, there
is a process h of no greater depth than p and in hnf on V, such that A+ p = h.

See [14] for the proof of Lemma 4.8.
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Definition 18. A substitution o agrees with a condition ¢, and ¢ agrees with o, if for
any xz, y which occur in ¢, we have o(z) = o(y) iff $ = [z = y].

Lemma 17. [1}] Let V be a set of names and let ¢ be complete on V.

1. If 0 and o' are substitution V which agree with ¢, then o = o'p for some injective
substitution p.

2. If ¢ is another condition on V', either ¢ A is not satisfiable, either ¢ N <= ¢.

3. If ¢ is another condition complete on V such that ¢ and i agrees with the same
substitution o then ¢ <= 1.

By an analysis by cases we can easily prove the next lemma.
Lemma 18. Let suppose that p ~ q and that o is injective on fn(p,q). Then po ~ qo.

Lemma 19. Let p = ¢p' and q = ¢q', with ¢ complete on a set of names V. Let Vo =
fn(p,q) — Vi and o1 a substitution such that:

1 prdom(c1) C Vi and o1 agrees with ¢;
2 preod(oy) N Vo = 0
3 for any oo with prdom(os) C Va, we have poioa~qo109

Then p ~. q.

Proof Similar to the proof of Lemma 4.5 in [14].
U Lemma 19
Using a similar reasoning as in [14] for the proof of the Theorems 4.9 and 4.11, and
using the axiom (H) when needed, we can prove the following result:

Theorem 7. (completeness of A for ~.) If p ~. q then AFp=gq.

Proof

The proof of Theorem 7 inherits from the proofs of Theorems 4.9 and 4.11 from [14],
but we have to take account of the fact the strong congruence ~. it is not obtained directly
from the strong bisimulation ~ by a closure with respect to substitutions (as in the 7-
calculus), but from a stronger relation ~. The gap between ~ and ~ is filled by the
new axiom (H).

Using the Lemma 16, it suffices to prove the assertion when p and ¢ are in head normal
form on fn(p,q). The proof is by induction on the sum of the depths of p and q.

Let poyr be the "output part” of p (the sum of all output prefix summands plus the
sum of all 7 prefix summands in p), and pg , the sum of summands ¢;«;.p; of p such that
¢; is equivalent to ¢ and such that the prefix «; is the same as a(z) (by taking into account
the alpha-conversion and the identification of names implied by ¢;).

Using several times (S3) et (S4) we can rewrite p into

AFp = pout + > Pg.a

a€In(p),p complete on V

[1.] Firstly we prove that for any summand of pyy, it exists a summand of ¢ which is
equal in the axioms system A.
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Let ¢a.p’ be a summand of p,,s, and let o be a substitution which agrees with ¢; we
can suppose that o coincide with identity anywhere but fn(p,q).

We have po =% p'o. Since p ~, ¢, we obtain that po ~. go. Let 13.¢' be the summand
of ¢ used to match the transition of po. By alpha-conversion we can suppose that all the
names bound (if any) in o and S are the same. By the definition of ~, we have

— o agrees with 1)
— oo = ffo
— plo~do.

Since ¢ and 1) are complete on fn(p,q) and that they agree with o, by the Lemma 17,
we obtain ¢ <= 1 and by (C3) A+ ¥5.¢ = ¢S.¢'. If a and § differ on the names a
and b (a{a/b} = B{a/b}), since aoc = o, we obtain o(a) = o(b). Since ¢ agrees with o,
we obtain 9 = (a = b) and hence

¢8.4 = ¢((a = b)B.q") = ¢((a = b)(B{a/b}).¢") = ¢({a = b)(afa/b}).¢") = or.q’

We can try to prove directly that p’ ~, ¢', because some inputs of one of the processes
can be matched by a "discard” from the other processes. But we shall saturate p’ and ¢
such that neither of them can no more discard the inputs of the other.

Let p' = ¢p”, ¢’ = ¢q¢" and let

s = (¢p" + Z{éa(az).@)" | a € In(q"),Vb € In(p") ¢ = (a#b)})

with z & fn(p"), and
t' = (¢q" + Z{¢a(m).¢q" | a € In(p"),Vb € In(q") ¢ = (a #b)})

with z & fn(q").

Using repeatedly the axiom (H) and finally the axiom (IC'), we can prove A - ¢a.p’ =
pa.s’ and A F ¢pa.t’ = ¢a.q’. We can not prove directly by induction A F ¢a.s’ = gpa.t’
using s’ ~. t' since the sum of the depths of s’ and ' is the same as for p and ¢, so we
shall use the intermediary process p’ + ¢'.

We prove that s’ ~. (p' +¢') et (p' +¢') ~c t'.

We can prove that s'c ~ (p’ + ¢')o by using the fact that (¢p”)o ~ (¢q")o and that
any input of (¢p”)o, which was matched by a ”discard”, is now matched by a summand
(¢pa(z).¢q")o. In the same manner we prove that (p’ + ¢’)o ~ t'o. Then, we obtain that
s' ~e (p'+4q') and (p' +¢') ~ t' using the Lemma 19 (by taking Vi = fn(p,q) and oy = o).

Using the induction hypothesis, we get A+ s'=p'+¢ and AFp +¢ =1¢.

Consequently, A - s’ = ¢’ and using (IP) and (IC) we obtain A F ¢a.s’ = da.t’, and
hence A+ ¢pa.p’ = B.q'.

[2.] Let pyo = 327, da(@).p; and g0 = D77 da(z).g;

For any i € [1,n] we shall build the processes u; and r; such that

At ¢a(z).p; = pa(x).ui, AF qpa = qga+ ¢a(z).r;, and AFu; =r;.

Let V' = {y1, ..., yx} be the set of free names of py , and ¢4, and let = be a name such
that & fn(pg,a. de,q)- Let o be a substitution which agrees with ¢ (we can suppose that

Vz & {y1,.. -, uk} o(z) = 2).
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po ~4 qo implies py ,0 ~ gy 0. From py .0 aﬂg pio, using the definition of ~_, for

any y € fn(pga, 4pa) U {z}, it exists J(4,y) such that g4 .0 aﬂg Q)0 et pio{y/z} ~
QJ(i,y)U{y/f}-

If M is a set of names, we use the notation [z ¢ M] to stand for [A,cp(z # 2)]. Let
pi = ¢pl, g = ¢q§ and let

= (¢pi+ Y. Y [w=2]Apd(y).¢p]

Ze{ylz ayk} deA.

+ > [ &y ud] A dd(y)-¢pf)
dEA,
with y & fn(p}), Az = {b | b€ In(d}; ,),Va € In(p), [z = z] A ¢ = a # b},
Ay ={b [ b€ In(q); ), Va € In(p)), [z & {y1,-..,yr}] A ¢ => a # b}, and let

ti = (¢q; + Z Z [z = 2] A dd(y).da;

ze{yl,...,yk} deB.,

+ ) [ E g ue A dd(y)-d;)
deB;
with y & fn(d)), B = {b | b€ In(p),Ya € In(g)), [v = 2] A p = a # b},
and By = {b | b € In(p}),Ya € In(q;),[z & {y1,-- ., yx}] A ¢ => a # b}.
Let si0 =t 53,2), Sit = (T = yi)ty(iy,), Sii—1, and r; = s; .
Using repeatedly the axiom (H) and after the axiom (IC) , we can prove that

At a(z).pi = da(z).u; (6)

and A & ¢a(z).q; = pa(z).t;

We prove now that At g4 = g0 + Pa(x).s;; by induction on [.

From A F ¢a(z).q; = ¢a(z).t; and A F g4 = ¢p.a + Pa(x).q; (since ga(zx).q; is a
summand of ¢4 ,), we obtain that A F gy, = qg0 + ¢a(z).t; If | =0, then AF gy, =
Q.0+ da(z).t (i ) follows immediately from the equalities proved previously. By induction
let suppose that

AF Gpa = apa + ¢a(z).si1-1

Since A F qpa = pa + da(z)-t5i,,) We obtain that A F gy = gpa + da(z).551-1 +
pa(x).t y(i ), and by using (SP) we get that A& g4 = 4,0 +da(z).551 1+ da(z).t (4, +
a(T).(T = Yt s(iy,) Sig—1 and after A o = g0 + ¢a(T).(T = Y1)t s(iy,) Sig—1- Making
[ = k we obtain

Al G40 = o0 + da(x).r;. (7)

Now we prove that A+ u; = r;.

We can not apply directly the hypothesis of induction on u; and t; since the sum of
the depths of u; and Z; is the same as for p and ¢. So we shall pass by the intermediary
processes p; + ¢; with j € {1,...,m}. From p;o{y/z} ~ q;;,)0{y/r}, by an analysis by
cases, we obtain

wio{y/z} ~y (pi + Qi) oty/zh ~4 tiayoly/z} (8)
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(the inputs previously matched by discards, are now matched by ”inoffensive” inputs
Pb(y). 4D, or pb(y).9d) ;).

The condition ¢ does not mention z, and it is possible that it is not complete on
fn(pisariiy)) = [n(Pgas9p,0) U {7}; so we can not use directly the Lemma 19; but as in
[14] we can complete it by adding a conditional which agrees with {y/z}. From the equation
8 we obtain (2 = y)uio{y/z} ~ (& = 1)(Di + Qray)oty/e} ~4 (& = Pisyoly/z} for
y €V and (z £ ghuio{y/z} ~s (& £ 500 + G092}~ (5 £ 9 sgmo{y/z} for
y¢v.

Now we apply the Lemma 19 , where V; = V U {z}, 01 = o{y/z} and V5 = ) in the

Lemma, and we get

(z = y)uio{y/z} ~c (x = y)(pi + q506)0{y/2} ~c (2 =Yt yoly/z} fory eV (9)

and

(x # yyuio{y/z} ~c (T # y) (i + Qrgiy))oy/z} ~e (& # Ytyayoly/z} fory gV (10)

and by using the hypothesis of induction, we obtain

Az =y)u; = (z =y)(pi + QJ(i,y)) =(z = y>tJ(i,y) fory € {y1,...,yx}

and
Abfz € Viu =[x € VI(pi + q13,y) = [# € VItsay for y & {y1,...,yx}-

As in the proof of the Theorem 4.11 in [14], using 9 10 we can prove A u; = r; and
then
AF ¢a(z).u; = pa(zx).r;. (11)

From 6, 7 et 11 we obtain that for any i € [1,n] A F q44 = g4,0 + ¢a(z).p;, and then
AF g0 = Qo0 + Pp - By a symmetrical argument, we obtain A & py . = pg.o + ¢g,q and
hence AF gg0 = Pga

O Theorem 7

Moreover, our axioms are independent (this follows from the fact that in [14] it is
proved that all axioms, but (H), are independent, and that (H) cannot be proved from
the others).

5.2 Adding restriction operator

To the grammar given in the previous section, we add the restriction operator:

pu=... | vIp

The axioms to deal with restriction are given in Table 7.

The only axiom which is new (and which does not hold in the 7-calculus) is (RP2).
The soundness of all axioms is easy to prove. For the completeness, the axioms from Table
7 . are used to push a restriction inside a term until either it disappears or it gives rise
to a bound output. The definition for the normal form changes slightly: X;c;¢;a;.¢!p;,
where for all 7,
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bn(a;) €V,
¢; is complete on V,
¢i = ¢, if @ is 7, an input or a free output,

4 ¢ = di A (Nev(z # 2)).

The proof of the completeness is then similar as for Theorem 7.

) vzvyp = vyvep
) va(p+q) =vzp+vag
) if ¢ ¢ n(a) then vra.p = a.vep
) vz Ty.p = T.VIZP
RP3) vz z(y).p = nil
) if © # y then va(zx = y)p = nil
) if © # y, z then ve(z = y)p = (2 = y)vep

Table 7. The axioms for restriction.

5.3 Adding parallelism

To the grammar given in the previous section, we add the parallel operator:

pu=... | p1|lp2

The axioms needed to deal with parallelism are the expansion axiom given in Table 8.
plus the axiom (P1) p || nil = p.

In the Table 8., the first summand corresponds to the situation where both processes
makes an input. The second and the third summands to the situation where one process
makes an output, and the other an input. The fourth and the fifth summands to the
situation where one process makes an output and the other a discard. The sixth and the
seventh to the situation where one process makes an input and the other a discard. And
finally, the eighth and the ninth to the situation where one process makes a silent step
7. To prove the completeness it suffices to eliminate the operator || using the expansion
axiom and the axiom (P1).

6 Related work and conclusions

Closest related work to this paper concerns the work on CBS by Prasad [15], [16], and
the work by Hennessy and Rathke [8]. In [8], the authors present a process calculus based
on broadcast, together with an operational semantics. They also provide simpler char-
acterizations of the congruence induced by barbed bisimilarity, together with complete
axiomatisation for congruences (for finite processes). Our bisimilarities are following ideas

37



Assume

p= Z ‘z’hﬁ[v]'ph + Z ¢i2mi2(v)'pi2+ Z GisT-Pig

i1 EMy i2 € Mo i3€M3

and

9= Z $i1 T [v]-q5, + Z Gin s (v)-qj> + Z PjaT-Qjs

J1ENY Jj2€N2 J3€EN3
where [v] stand for v (free output) or (v) (bound output). Let S ={z; | i € My} and T = {z; | i €

N»}. Then:
plla=  Xgjofi Adia Al@iy = 25,)]2i (v).(pi | 432)+
iy [in Az & Tllzis (v)-(pis | @)+
3852 A lxis & STl (v)-(p [] @55)
Y ir i) [Bin N A iy = i) T o) (piy || @52) +
i) [Bin N b A (win = 2 )R] (pis || @50) +
i (i Az & TIE]-(piy 1 9) + 355, (650 Alwjn & STs[v](p | 51) +
iy GisT(pis 1 @) + 255, dis™-(p || 455)

Table 8. The expansion axiom.

borrowed from their work. However, our calculus focus mainly on the influence of received
values (names) by a process on his further possible communications by using a syntax
closer to the m-calculus. Our axiomatisation is thus closer to the one given by Parrow
and Sangiorgi [14]. The main difference with existing broadcast calculus is the presence
of dynamic scoping (versus static scoping of C'BS). It is common in concurrent program-
ming to have several groups of processes participating in the same protocol concurrently
(using different “channels”). Tt is then essential that communications be kept separate so
that there is no risk of interference between the multiple instances of a protocol executed
simultaneously. This is achieved by lexical scoping. Dynamic scoping is then obtained by
the combination of local scoping and the ability to send channels along channels.

Concerning the expressiveness of our calculus, it is easy ([4]) to give an implementation
(very similar to those given in [2] for a process algebraic approach of Linda) of a Random
Access Machine. Also, it is interesting to compare the br-calculus with the w-calculus. In
[3], we have already proved that “there is no uniform encoding of the br-calculus into the
m-calculus”. The existence of a “good” (compositional) encoding of the br-calculus into
the m-calculus remains an open question. Conversely, we can give an “uniform” encoding
adequate with respect to barbed equivalence of the w-calculus into the bm-calculus.

Also, even if bisimulations provide a nice method to prove the relation which holds
between two equivalents systems (just looking at their states, without building the whole
traces set), we can ask if they are not too restrictive? For example, @.(b + ¢) and a@.b+ a.¢
are not barbed equivalents. This seems surprising, as in our calculus an observer can not
influence the behavior of the two processes, nor it can distinguish them; indeed, this is
the case in processes algebra based on point-to-point communications (C'C'S, m-calculus),
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where an observer provide to tested process the necessary “co-actions”. In a forthcoming
paper we analyse the preorders induced by “may testing” in calculi based on broadcast.
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