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Abstract. In this paper we describe an approach for real-time modeling
in UML focusing on analysis and verification of time related properties.
As a motivation, we present some alternatives for extending an untimed
computational model with time. We show that the use of time stamped
events, representing instant of state changes, provides the right level of
abstraction for reasoning about timed computations. This is also, at no-
tation level, the choice of the OMG UML Real-Time Profile. We complete
this profile by identifying important events and durations. The original-
ity of our approach is that it provides a formal semantics of the time
related primitives in terms of timed automata with urgency. An inter-
esting point is that this time extension is defined independently of the
semantics of the functional part.

1 Introduction

At a time when the real-time and embedded fields are using more and more
modelling and verification, in particular time analysis and verification, we are
surprised to notice the relatively little efforts on applying time analysis meth-
ods and verification to UML methods. The design and analysis of real-time and
embedded systems relays on detailed knowledge not only of the functional re-
quirements, but also of their real-time aspects. The time occupies a key place in
the context of the real-time specification. The use of time-aware formalisms and
the theoretical results on them, have made possible the development of model
checking and verification tools: Kronos [Yov97] - based on timed automata [?],....

The purpose of this paper is to describe a framework for annotating UML
models with time information in order to apply verification techniques on timed
annotated models. This work was performed in the framework of the OMEGA
project (http://www-omega.imag.fr). The purpose of this project is to develop
a methodology for the development and specification of real-time and embed-
ded systems that gets help from formal techniques in verification and model
checking. In this context, we use a MDA approach for specifying real-time ap-
plications, by adding as much as possible information at model level. We think
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here in particular at adding at model level platform dependent information, that
is indispensable for deriving useful properties of the system.

Our approach consists in adding temporised annotations on a model in a
systematic manner, and then performing model verification based on these prop-
erties (verify that they are not contradictory and infer additional properties). In
order to do this, we define a set of possible time annotations based on events
(see Section 2 for the advantages of an event driven approach) and inline with
the UML RT Profile. We define the semantics of the timed part of a model using
timed automata. This semantics is defined independently on the semantics of
the functional part, and can be mixed with any semantics of the functional part
provided that the events we use can be identified in that semantics.

The rest of the paper is organized as follows. Section 2 describe various strate-
gies for adding time information into untimed specifications. Section 3 overviews
related effort on working with time in UML models. Section 2 contains a discus-
sion on the mechanisms for adding time information in an untimed framework.
Section 4 presents the concrete approach in the context of UML, and Section
5 gives its semantics. The tool features based on this timed framework are de-
scribed in Section 6. Concluding remarks and discussions are given in Section
7.

2 Extending computation with time

3 Related work on UML and time

UML offers a variety of notations for capturing many aspects of the software de-
velopment, mostly focused on functional aspects, but also covering requirement
analysis, implementation, verification, and testing. In this paper we address an
often neglected aspect of UML: the specification of the model behavior with re-
spect to time evolution. In this section we discuss the related work on explicit
handling of time and/or of time related information.

The UML Real-Time profile [OMGO02] (UML RT) represents the first step
in answering OMG’s request for a “ UML-based paradigm for modeling time-,
schedulability-, and performance-related aspects of real-time system that would
be used (among others) to (1) enable the construction of models that could be
used to make quantitative predictions regarding these characteristics and (2) to
enable inter operability between various analysis and design tools". UML RT
defines indeed a very rich vocabulary of real-time related concepts, and their
mutual relationships. Due to its goals (mainly (2)), the UML RT remains at a
high level it and does not enter into time semantic details. Although it represents
a key step towards specifications completely covering the time dimension, as it
is, the profile is not sufficient as it is for achieving this goal.

The UML 2.0 [Gro03] proposal (as far as available at the time we write
these lines) gives more attention to time related aspects than the current UML
standard [UMLO1]. Indeed, all the time-related concepts we added in Section 4
are already present in [Gro03] (therefore in the context of UML 2.0 we won’t



need to care for adding them explicitly). However, as the UML definition does
not aim at providing a formal semantics to the concepts it defines, the time-
related part contains open questions and does not offer a framework directly
usable for simulation and verification.

In [Dou99] Douglass argues on the importance of specifying time-related in-
formation in (some) real-time systems. Douglass distinguishes between six kinds
of time (absolute, mission, friendly, simulation, interval and duration), but most
of these distinctions do not really help to solve the analysis problem. This ap-
proach can also be used for schedulability analysis. Douglass describes a timing
analysis approach and tool that uses rate monotonic analysis (RMA) [HKO193|
on a set of periodic tasks to (statistically) estimate execution times.

Lavazza et al. [LQVO01] give an approach to real-time development centered
on a concrete case study. The approach consists in translating UML models into
first-order temporal logic with time, on which it uses model checking.

Knapp et al. [KMRO2] use timed state machines and collaboration diagrams
with time constraints, whose content is checked against the specification pro-
vided in the state machine. In order to do this, the authors compile the timed
state machine into timed automata and they use the constraints contained in
the collaboration diagrams to generate observer time automata. They are then
used together with the model checker tool UPPAAL [LPY97] to verify the com-
patibility between constraints and specification.

On the side of commercial UML tools, we mention here Rhapsody [Ilo], who
uses a synchronous approach. The system advances like a sequential system in
global steps (cycles) and time is measured in number of cycles. The analysis of
time within a cycle is RMA.

Although not UML-based, we mention here the related efforts done in the
context of SDL [] because of the similarities of the two formalisms. SDL has basic
concepts for: time, time-related data types (time and duration), and time mea-
suring (timer). [BKM*01] describes extensions needed to SDL to better address
real-time needs. [Gra02] gives a framework for specifying real-time systems and
performing verification on them. While, QSDL [?] propose to attach timing in-
formation by means of SDL constructs and to provide some minimal deployment
information.

Several approaches dealing with temporal aspects on UML, basically handle
order (in general preorder) of successive steps in the behaviour. This is the case
for instance of the OCL extensions for specifying timing constraints [FMO02].
Here, OCL is extended with logic, by adding operators for reasoning on state
sequences.

Harel and al. [?] apply temporal logic on LSC [DH99], an extension of se-
quence diagrams with mandatory/optional behaviour. They embed a subset of
LSC in CTL*, and can thus use LTL and CTL model checkers for verifying
LSCs.



4 Framework for timed annotations

In this section we give a brief overview of the time constructs we use in our
approach. We need time primitives (time related data types and time measuring
mechanisms), that give us the vocabulary for the time annotations.

4.1 Time primitives

We use a very small set of time primitives, which are defined with the concern
of being compatible with the UML RT [OMGO02]. The time model is based on
two data types: Time - relating to time instances, and Duration - relating to
the time elapsed between two instances of time. A particular instance of time is
now, which always holds the current time and it is visible throughout the whole
model. now can be used in action specification, guards or constraints. Neverthe-
less, the model may not explicitly alter the value of nmow, this is done by some
external uncontrolled mechanism, who satisfies the constraint that its values
grow monotonically. Model dependent time constraints can add new restrictions
on time progress, as discussed below. !

As in UML RT, we use two related timing mechanisms: timer and clock.
Timer is a mechanism that generates timeout events when a specified duration
time elapsed. A clock is similar to a periodic timer and emits ticks.

4.2 Timed events

We mentioned in Section 2 that we base our approach on events. In particular,
in our setting all the events are timed, i.e. a time stamp holds their occurrence
time.

An important dimension of our approach is the definition of a throughout set
of events associated to all relevant moments of a behaviour. For instance, with
any transmission of the signal s three events are associated: send(s) - the instant
at which the signal is sent by the sender, receive(s) - the instant at which the
signal reached the receiver (its input queue), and consume(s). It may be that
the three events have the same time stamp attached, or that the send and the
receive have the same time (if there is no communication delay), however we
need means to distinguish all these events.

Similarly, we associate events to operation calls (decomposed as two signal
transmission, thus resulting in six events), actions (the initiation/termination
of an action execution), transitions (the start/end of a transition), states (en-
try/exit in/of the state), Boolean conditions (the enabling/desabling of the con-
dition), timers and clocks (the start/stop/reset of the timer, the timeout occur,
the clock’s tick, etc.).

! Note that UML we already have the case of an instance name that can be used
all over the model without being defined. It is the case of self which refers to the
runtime instance evaluating this expression.



The above described concepts: time-related data types, time measuring mech-
anisms and timed events (plus the means to identify them) represent the building
blocks of our approach. They are used in the timed annotations.

4.3 Derived durations

The reasoning on the constraints between the occurrences of an event evl and
subsequent event ev2 takes an important place in our approach. In a sequence
of occurrences of ev! and ev?2, several options exist to identify the “matching”
(evl, ev2) pairs. We distinguish between three patterns for matching pairs:

1. duration(evl, ev2) represents the duration between an occurrence of ev!
and the next occurrence of ev2 such that there is no other occurrence of
evl in between. If evaluating duration(evl, ev2) only at the occurrence of
the first ev2 after a (series of) evl, the value of duration(ev!, ev2) is that of
now - time(evl) that is the time passed since the last event evl. At other
points of time, its value is difficult to express only in terms of occurrence
times of events: time(pre" (ev2)) - time(evl) where n is chosen such that
time(pre™ 1 (ev2)) < time(evl) < time(pre” (ev2)).

2. When several request events (each corresponding to evl), may all be an-
swered by a single effect event (corresponding to ev2), and this should hap-
pen within a limited time starting from the first request, the time elapsed
between the first event of a series of occurrences of ev! and the first consec-
utive ev?2 is relevant.

3. Finally, we consider the case where several pairs (evl,ev2) can be “active”
simultaneously. In most cases, one can find a parameter x (or combination
of parameters) identifying the matching pairs, and express the required con-
straint on matching pairs by For any z: duration(evl(* z,*),ev2(* z,*)) < d.
Nevertheless, due to the implicit use of FIFO buffers for storing signals in ob-
jects, it might be impossible to always find the matching parameters, and for
this purpose we introduce pipelineDuration(evl, ev2), where the matching
pairs may be overlapping, observed in a pipelined fashion.

To facilitate the use of duration expressions, we define a set of duration ex-
pression corresponding to frequently used durations in practice, and we express
them in terms of the predefined events mentioned above. For instance, we define
the client response time as the time elapsed between the moment a call was
emitted and the moment at which the response is consumed by the client. Ad-
ditionally we define notions as server response time, execution delay, execution
time, period, reactivity, and transmission delay. We do not give here the meaning
of these predefined durations (for most of them the naming should be telling)
nor the mapping to basic events (which is straightforward), for this the reader
is referred to [SG02].

4.4 Timed annotations

The goal of our approach is to use timed annotations throughout a UML model,
and to apply model checking and verification on these annotations. The timed



annotations are time dependent Boolean expressions, that, depending on their
use, can be interpreted in various ways: as predicates, as invariants or as con-
straints.

A predicate is a time dependent Boolean expression used as guard on state
machine transitions or as conditions in decision actions. A time predicate is either
true or false depending on the values of the instances (both time dependent
and time independent) composing the Boolean expression. The time-dependent
values are considered when the trigger event occurs.

An invariant, of the form invariant(p) - where p is a time dependent predicate
- is true only if p holds true on the entire execution leading to the state 2 to which
it is attached. In order to ease the expression of invariants, we allow to “attach”
invariants with states s or events e as a short hand for a global invariant of the
form invariant(in(s) = p) or invariant(in(e) = p), meaning that p must hold
at each occurrence of event e, respectively in all time points in which the system
is in state s. Invariants can be used as properties which should be derivable by
a given system description.

A constraint represents an invariant which is interpreted as assumed fact
on the system under consideration, its environment or the underlying execution
platform. An assignment z := 0 viewed as constraint can be read as whenever
this step is executed, in the state just after its execution, the variable x has the
value 0. Note that we don’t have to care for how this is achieved exactly.

5 Semantics of the timed annotations

In this Section we give the basis of the semantics of the timed annotations
introduced in Section 4. As anticipated in Section 2, our approach is based on
events.

The semantics of the timed annotations is defined independently of the se-
mantics of the functional behaviour. It is required that the untimed semantics
can be viewed as a labeled transition systems where transitions represent events.
Additionally, all the events referred to in the timed part must be identifiable in
the transition system defining the functional semantics. This requirement is not
very strong as most operational semantics use a state base approach where the
needed events, or a subset of them, are identifiable. Note that if only a subset
of these events can be identified in the untimed semantics, this only means that
it is impossible to use the timed events that cannot be identified, while the use
of the others is not restricted.

For instance, we have taken two different UML formal semantics on which we
worked: one based on labeled transition systems [WD02] and the other written in
ASM [Obe03]. In both of them the timed events mentioned in the previous section

2 Here the state represents a state in the semantics, not one in a UML state machine.
As we anticipated (and it is described more in detail in Section 5) the UML model
execution can be regarded as a transition system, whom states we refer to and which
are nit directly connected to state machine states. Note that even the execution of
a UML model with no state machines results in states at the semantics level.



can be identified, though they were developed with no timming capabilities in
mind, therefore it is possible to time both semantics using the approach described
in this paper. Although the two semantics differ 3, both of them can be timed so
that we can reason about e.g. the duration of an operation call or the execution
time of an action.

The semantics of the time related concepts is defined by a set of timed au-
tomata with urgency [BST98| constraining the occurrence time (and only the
occurrence time) of all the events whose possible occurrence ordering is given by
the untimed semantics.

Thus, the timed behaviour of a system is the synchronized product of the
event labeled transition system defining its functional behaviour and a set of
time automata defining constraints on the occurrence times of events. The result
is a global timed automaton defining constraints on the occurrence time of each
event.

It is relatively easy to represent all the time related concepts described in
Section 4 as timed automata. To illustrate our approach, we present here timed
automaton associated with a timer.

The time automaton associated with a timer instance is given in Figure 1a.
It does not express any constraint on the occurrence times of the set and reset,
but we suppose that they occur immediately after the preceding action (in the
same sequential behaviour), which in the timed automaton is expressed by an
eager transition. Also, given an occurrence of set, this automaton constrains
the occurrence time of the timeout (i-e. the occur event) to exactly the defined
timeout time: time(set(timer,delay)) + delay. This also corresponds to an eager
transition in the timed automaton.

The point of time of the consumption of the timeout, however, is not re-
stricted by the timer itself. Additional constraints can be added in order to
constrain the consumption of the timeout. For example “always the time between
the timeout and the corresponding consumption is smaller than d™, which can
be expressed by an invariant of the form;

invariant( at(consume(t)) = now - time(occur(t)) < consume-delay )
or by the shorthand:
invariant( duration(occur(t), consume(t)) < consume-delay )

Figure 1b shows the timed automaton corresponding to the composition of the
timer timed automaton and the timed automata associated with this constraint,
where the transition associated with the consume event is delayable, meaning
that it will occur somewhere within the specified delay.

3 For example, the concurrency model is different: while [WD02] considers that an
active class has a single execution thread, in [Obe03] an active class may do several
things at a time, a new thread being created for each accepted operation call.

* under the condition on the functional model that the timer is only set again after
the timeout has been consumed



reset(timer)

set(timer,dela;
set(x)

reset(timer)

reset(timer)

x = delay

occur(timer)

set and reset transitions are not time constraint, but
eager, that is immediate

occur transitions are time constraint and eager

that is, they happen exactly at timeout time

consume transitions are time constaint and delayable
that is, they occur within the specified interval

consume(timer)
y = consume-delay

(@) (b)

Fig. 1. timed automaton for a timer (a) with constraint consumption delay (b)

6 Tooling openings

The time related constructs described in Section 4 bring a benefit to the modeller
only if included in some tool features. In this section we describe what tool
features are made possible by the time constructs.

Our main concern is to express constraints on execution times and on dura-
tions between the defined events. For models where time is sensitive, the anno-
tation with time constraints is needed. The annotation consists in giving both
annotations corresponding to a priori information on the model (i.e. the as-
sumption), and annotations corresponding to the timed requirements. These
annotations can be given as constraints on the elements of a class diagram, of a
statechart, or of an action specification.

Additionally, the time annotations can also be given on sequence diagrams.
When given on sequence diagrams, the time annotations have a limited form:
interval constraints on occurrence time of events or on durations between pairs
of events and timers. This adds to the "classical" drawback of sequence diagrams
that comes from the difficulty to interpret their meaning: for instance, consider
an interval constraint between two events present in the sequence diagram, it is
unclear whether it holds between any occurrences of the given events or not.

Such a UML model annotated with time information is fed to a timed veri-
fication tool. The verification tool can check that the various time annotations
are not contradictory. If coupled with a simulator (i.e. symbolic execution) the
time verification tool could filter the system runs that comply to all timed an-
notations, or detect that there is no such run.

The time annotations on the UML model may be incomplete, as opposed
to complete specifications where on any piece of behaviour there is a, direct or
indirect, time annotation (specified as constraint or requirement). Incomplete
specifications make the verification problem more difficult.

In this case, the verification algorithm should synthesize for any transition
the weakest constraint guaranteeing the satisfaction of all future constraints.
When constraints are not “cyclically overlapping”, completing an incomplete se-



quential specification can be done in linear time, even when interval bounds have
parameters. This is useful for simplifying simulation, even in the case where the
overall system is infinite.

Nevertheless, constraint propagation can be done automatically with a rea-
sonable effort only within a sequential behaviour- defined by a (small set of)
active object(s). The budgeting over concurrent agents, must be provided by the
user.

The correct specification of time information involves both knowledge on
deployment and a good methodology for specifying this information. A good
methodology for specifying time information is a specialization of some general
UML modeling spiral methodology. At a first iteration some general time in-
formation is given, which is validated using the tools and refined or corrected
in future steps, until we reach a stage where the timed annotations are de-
tailed enough. In the framework of the IST project OMEGA we work on such a
methodology.

An UML model with time annotations can be simulated (i.e. symbolically
executed) using time aware simulators. Therefore, such a model can be used
for model based testing. Obviously, the verification of arbitrarily complex prop-
erties is undecidable, due to the infiniteness of data domains, to the existence
of unbounded signal queues and to dynamic object creation. Nevertheless, the
verification of time related properties can often be done on a finite control ab-
straction, i.e. on a system with finite data domains, bounded signal queues and
bounded object creation. A number of interesting verification problems are de-
cidable on such a finite control abstraction under the condition that in the timed
automata, obtained by translating the timed part, clocks can only be reset to
zero, stopped and restarted, and the only allowed tests are comparisons of clock
values or differences of clock values with constants. This means that in order to
be able to effectively apply symbolic simulation and verification tools, at UML
model level, the only allowed timed constraints imposed on events are Boolean
combinations of comparisons of the type “duration since the occurrence of some
event lays within an interval” or “the difference of occurrence times between two
past events lays within an interval”.

7 Conclusions

In this paper we describe an approach for adding time information to UML
models. Our approach is based on the definition of a framework for timed an-
notations. This framework is compatible with the UML Real-Time profile for
Performance Scheduling and Real-Time as it is based on some of the concepts
defined by this profile. This framework also represents a specialization of the
UML RT profile as it defines all the relationship between the considered con-
cepts and it uses a set of events larger than those defined in this profile. Events
take a central place in our approach which consists in using timed events as basis
for all time annotations. In the discussion in Section 2 we show that the use of



time stamped events, representing instant of state changes, provides the right
level of abstraction for reasoning about timed computations.

The semantics of the time constraints and of the timed annotations is given
in terms of timed automata with urgency that use the time stamped events de-
scribed in Section 2. These events can in general be identified in any operational
untimed semantics of UML. This is the case with the two UML semantics we
have considered [WD02] and [Obe03]. The timed semantics of a UML model can
be obtained by extending any UML semantics that can be viewed as a labelled
transition system where the transitions represent the considered events (the two
semantics mentioned above both satisfy this requirement).

Many advantages result from this modular definition of semantics. The first
advantage is a result of the separation of concerns: we do not have to carry in
the functional part time related information that is not relevant in this area,
while on the timed part we do not have to take care of the semantics of all
untimed constructs. This resulted semantics is easier to understand and to adapt
to specific needs.

By the fact that we can use a stand alone UML semantics as basis for our
UML timed semantics, we gain the throughout treatment of the untimed con-
cepts. We consider that defining a semantics for timed UML models means not
only to treat the timed part, but also to integrate in properly with the rest of
UML concepts: inheritance, association, data structure etc. Nevertheless, this is
the approach take until now when formalizing time in the context of UML. For
instance, [KMRO02] only considers time properties in the context of a small subset
of the UML concepts (namely state machines) and does not take into account
inheritance, data structure, etc, which are part of a regular UML model.

The time framework described in Section 4 and whose semantics is given in
Section 5 serves as basis for tool features on time analysis. We present in Section
6 the tool features that can be developed in the context of this time framework.
As part of the IST OMEGA project we intend to develop tools corresponding
to these functionalities. The preliminary results obtained until now on small
prototypes allow us to believe that this goal is realistic.
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