
Predictability in Mixed-Criticality
Systems

Rany Kahil, Peter Poplavko, Dario Socci, Saddek Bensalem

Verimag Research Report no

TR-2018-8

July 02, 2018
last updated: July 2, 2018

Reports are downloadable at the following address
http://www-verimag.imag.fr

Unité Mixte de Recherche 5104 CNRS - Grenoble INP - UGA
Bâtiment IMAG
Université Grenoble Alpes
700, avenue centrale
38401 Saint Martin d’Hères
France
tel : +33 4 57 42 22 42
fax : +33 4 57 42 22 22
http://www-verimag.imag.fr/

http://www-verimag.imag.fr

Predictability in Mixed-Criticality Systems

Rany Kahil, Peter Poplavko, Dario Socci, Saddek Bensalem

July 02, 2018
last updated: July 2, 2018

Abstract

Showing that a policy is predictable is a means to ensure sustainability of a solution
proposed by a scheduling algorithm. A typical way to test a solution for correctness
consists in conservative evaluation of its behavior under a specially selected set of high-
workload runtime scenarios. Sustainability is a property that states that if a solution
is deemed correct then it satisfies all the deadlines not only under the set of high-
workload scenarios, but also in all less workload scenarios. The predictability property
is a special case of sustainability under the assumptions that the workload is measured
only by job execution times and that the correctness test consists of a simulation of the
scheduling policy for finite set of jobs. In this paper we extend the predictability prop-
erty to the case of mixed criticality jobs. We restrict ourselves for simplicity with just
two levels of criticality. The ordinary, single criticality, scheduling policies commonly
used in practice, are predictable in the usual sense, and thus it is sufficient to test them
just for a single scenario with the worst-case execution times. We show that the typical
generalization of the common scheduling policies to support the mixed criticality spec-
ifications renders them non-predictable, whereas they are still predictable according to
our proposed extended definition. We also show that our definition implies applica-
bility of a previously existing method for testing mixed-criticality jobs by simulation,
which previously had only a narrow application.

Keywords: mixed-critical systems, real-time scheduling, computational complexity

Reviewers: Saddek Bensalem

Notes: Extended version of a short paper at 24th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA’2018)

How to cite this report:

@techreport {TR-2018-8,
title = { Predictability in Mixed-Criticality Systems },
author = {Rany Kahil, Peter Poplavko, Dario Socci, Saddek Bensalem},
institution = {{Verimag} Research Report},
number = {TR-2018-8},
year = {}

}

Predictability in Mixed-Criticality Systems Rany Kahil, Peter Poplavko, Dario Socci, Saddek Bensalem

1 Introduction

In the context of this paper, under “scheduling algorithm” we understand a union of three ingredients. Firstly,
it is an offline algorithm to construct a scheduling solution (e.g., a priority table) from the system description.
These offline solutions are used to configure the online scheduling policy, which is the second ingredient.
Thirdly, an offline correctness test is required to give a verdict whether the system is deemed schedulable or
not with the given solution and policy.

Determining the exact execution workload required by a system is generally not possible. Instead up-
per bounds are specified which are used to estimate the Worst Case Execution Time (WCET) of the system.
Scheduling correctness tests base their analysis and correctness tests on these estimated upper bounds. The
system that was proven correctly schedulable in the worst case scenario is expected to remain so as it per-
forms better. Sustainability [1] is a characteristic of a scheduling algorithm which assures that if a system
is deemed schedulable by that algorithm, it will remain schedulable if its runtime behavior is better than ex-
pected. Sustainability is a necessary property for any scheduling algorithm for timing-critical (hard real-time)
applications.

In this paper we focus on correctness tests to ensure sustainability of a mixed-critical systems (MCS). We
follow the well-known and generally accepted Vestal model [2] for the definition of mixed-criticality aspects of
the system behavior. This model assumes that if a job exceeds the low-criticality WCET bound then the system
switches the mode, whereby one does not care anymore about low-criticality jobs. We focus on the most basic
variant of the MCS scheduling problem – scheduling a fixed finite set of jobs. This problem has obvious
theoretical relevance, but also is applicable in practice for periodic systems where initial task release offsets
are known apriori as well as for the online tests of correctness, for policies that compute their solutions partially
online. We consider both single- and multi-processor system scheduling of mixed critical jobs. Moreover, like
numerous previous research works, to simplify the problem we focus on dual-criticality problems (with only
two criticality levels).

The correctness test for a fixed set of jobs is usually based on simulation of a single worst-case scenario,
but if the system behavior is characterized by multiple corner cases one tests for a set of respective “basic
scenarios” [3]. Very common online policies in the scheduling theory are fixed job priority (FP) policies.
These policies include EDF, for example, and, for task systems, fixed priority (of tasks) such as RM (rate
monotonic). These policies are predictable, which means that a decrease of execution time of jobs can only
lead to a decrease (and never to an increase) of job termination times in a whole system. For this reason, testing
the correctness of their schedulability by simulation may be restricted to just one worst-case scenario.

However, recall that MCS policies extend the above policies by introducing the mode switching. In this
way, the concept of an FP policy is extended to fixed job priority per mode (FPM). For task systems, numerous
single-processor FPM algorithms have been proposed, many of them being based on modifications of EDF,
for example EDF-VD [4]. For fixed set of jobs, we proposed two FPM algorithms, MCEDF [5] for single
processor, and MCPI [6] for multiprocessors.

An important observation is that, due of the mode switch, a policy may in general become non-predictable
in the usual sense, and a simple test of simulation in one scenario does not apply anymore. Therefore pre-
vious literature [3] also generalized the correctness test by simulation such that it can be applicable also for
mode-switched policies. This generalization extends the testing from a single basic scenario to what we call
canonical correctness test on a specific set of basic scenarios. However, the authors specify only one particular
scheduling policy – let us call it the reference policy – for which the canonical correctness test is applicable.
They showed that a valid solution for all policies can be converted without loss of optimality into a reference
policy solution.

In our previous work [5], [6] we have discovered that the canonical test is in fact directly applicable, without
any conversion, to a quite general class of online policies, which satisfy a weaker definition of predictability,
which we call here weak-predictability. We also previously conjectured that FPM policies belong to that class
of predictability. However in the previous publications we only gave an imprecise definition of the weaker
predictability and did not provide a proof that FPM is in that class. In the present work we close this gap. We
give a definition and provide the missing proof for the single-processor case. Thereby we give the missing
formalization of our previous work on FPM, whereas we think it can be important also for any other work
where offline or online simulation of jobs is done to test correctness.

Verimag Research Report no TR-2018-8 1/14

Rany Kahil, Peter Poplavko, Dario Socci, Saddek Bensalem Predictability in Mixed-Criticality Systems

We also make an important correction to our previous work by showing that, in fact, contrary to what we
believed before, FPM is not predictable in MCS sense for multiple processors. Consequently, in this case one
cannot directly use an FPM solution tested by the canonical test in the context of online global FPM policy.
Luckily, for our multiprocessor algorithm MCPI [6] we already did a conversion to a reference policy [7]. It
still remains future work to carefully study whether other authors wrongly apply the canonical correctness test
for FPM on multiple processors.

Last but not the least, we exploit the fact that the canonical correctness test of FPM takes polynomial time,
in order to prove that FPM scheduling for dual-critical instances on single processor belongs to complexity
class NP. Note that in [8], we refuted a previously established proof that MCS scheduling in general is in
NP. By showing that FPM is in NP we show that there exists an important policy whose exact solutions can
be potentially constructed by known formal solving techniques for NP problems, such as SAT (satisfiability)
solvers.

2 Problem Formulation
Studying the predictability of a scheduling policy requires knowledge of job execution times, in order to be
able to determine if a policy behaves as predicted during runtime. For this reason we model the workload
of a mixed criticality system as being a set of finite periodic mixed criticality tasks having different WCET
estimates, providing different level of assurance [2]. Tasks are assumed to be independent and have no starting
offsets. Our focus will be on dual-criticality systems. These systems have only two levels of criticality, the
high level denoted as “HI”, and the low (normal) level, denoted as “LO”. An MC periodic task is defined by
a period, a relative deadline, and two WCET estimates one for each criticality level, the LO WCET and the
HI WCET. The former one is for normal safety assurance, used to assess the sharing of processor with the
participation of LO jobs, and the other one, a higher value, is used to ensure certification of HI jobs only. An
MC task can generate an infinite number of MC jobs where each job takes the criticality level of its task.
A job Jj is characterized by a 5-tuple Jj = (j, Aj , Dj , χj , Cj), where:

• j ∈ N+ is a unique index

• Aj ∈ N is the arrival time, Aj ≥ 0

• Dj ∈ N is the deadline, Dj > Aj

• χj ∈ {LO,HI} is the job’s criticality level

• Cj ∈ N2
+ is a vector (Cj(LO), Cj(HI)) where Cj(χ) is the WCET at criticality level χ

The index j is technically necessary to distinguish between jobs with the same parameters. The timing pa-
rameters Aj , Dj , Cj are integers that correspond to time resolution units (e.g., clock cycles). We assume
that: Cj(LO) < Cj(HI). This makes sense, since Cj(HI) is a more pessimistic estimation of the WCET
than Cj(LO). We also assume that LO jobs are forced to terminate after Cj(LO) time units of execution, so:
(χj = LO)⇒ Cj(LO) = Cj(HI).
Focusing on periodic tasks enables us to study the schedulability of the system by studying the schedulability
of the set of jobs generated by these tasks over a hyper-period. The hyper-period is simply the least common
multiple of the periods of the tasks in a system. Tasks within a hyper-period will always generate the same
set of jobs. Thus if this set is found schedulable over one hyper-period, then the task set will be schedulable.
Although hyper-periods can be large in non-trivial systems, some work has been done for adjusting the peri-
ods of tasks in a system to get a smaller hyper-period [9]. Thus we define an MC instance of the scheduling
problem to be a set of jobs J.
In our problem definition we do not permitCj(LO) to be equal toCj(HI) for HI jobs, though this is commonly
allowed in the literature [3]. Allowing this possibility would cause anomalies and complications with regards
to correctness testing, as shown in an example in Section 4. Furthermore this should not be an issue, as in the
usual case, Cj(HI) is larger than Cj(LO) since it is expected to provide higher levels of assurance.
A scenario of an instance J is a vector of execution times of all jobs: c = (c1, c2, . . . , cK), where K is the

2/14 Verimag Research Report no TR-2018-8

Predictability in Mixed-Criticality Systems Rany Kahil, Peter Poplavko, Dario Socci, Saddek Bensalem

number of jobs. We only consider non erroneous scenarios where no cj exceeds Cj(HI). The criticality of
scenario c = (c1, c2, . . . , cK) is LO if cj ≤ Cj(LO), ∀j ∈ [1,K], is HI otherwise.

Basic scenarios are scenarios c such that:

∀j = 1, . . . ,K cj = Cj(LO) ∨ cj = Cj(HI)

One special basic scenario is the “LO basic scenario” where all jobs execute for exactly their C(LO).
A schedule S of a given scenario c is a mapping: S : T 7→ Ĵm, where T is the physical time and Ĵm

is the family of subsets of J that contains all subsets J′ of J such that |J′| ≤ m, where m is the number of
processors. Every job Jj should start at time Aj or later and run for no more than cj time units. We assume
that the schedule is preemptive and that job migration is possible, i.e., that any job run can be interrupted and
resumed later on the same or different processor. Note that in this definition we do not include the mapping
of jobs to processors, but a valid mapping, if needed, can be easily obtained from a simulation which assumes
that a job can be started or resumed at any available processor.
A job J is said to be ready at time t if at that time or earlier it has already arrived and has not yet terminated.
The online state of a run-time scheduler at every time instance consists of the set of terminated jobs, the set of
ready jobs, the remaining workload of ready jobs, i.e., for how much they should still execute in future, and
the current criticality mode, χmode, initialized as χmode = LO and “switched” to “HI” as soon as a HI job
exceeds Cj(LO). It should be noted that in a given schedule it is the first job that exceeds its Cj(LO) that
switches the mode and then the mode remains HI until the end of the schedule. We assume that all LO jobs are
dropped upon switching to HI mode.
Based on the online state, a scheduling policy deterministically decides which ready jobs are scheduled at
every time instant on m processors. A scheduling policy correctly schedules a given problem instance if the
following conditions are respected in any possible scenario:

Condition 1. If all jobs run at most for their LO WCET, then both critical (HI) and non-critical (LO) jobs
must terminate before their deadline.

Condition 2. If at least one job runs for more than its LO WCET, then all critical (HI) jobs must terminate
before their deadline, whereas non-critical (LO) jobs may even be dropped.

A policy is said to be work-conserving if it never idles the processor if there is pending workload. An
instance J is MC-schedulable if there exists a correct scheduling policy for it.
The predictability of different scheduling policies will be studied in the next section. A short description
of each is provided in this section, starting by the conventional mixed-criticality agnostic fixed job priority
(FP) policy. FP is a scheduling policy that can be defined by a priority table PT , which is a K-sized vector
specifying all jobs in a certain order. The position of a job in PT is its priority, the earlier a job is to occur in
PT the higher the priority it has. Among all ready jobs, the fixed-priority scheduling policy always schedules
the m highest-priority jobs in PT . Fixed priority is a work-conserving policy. A priority table PT defines a
total ordering relationship between the jobs. If job J1 has higher priority than job J2 in table PT , we write
J1 �PT J2 or simply J1 � J2, if it is clear from the context to which priority table we are referring to.
Fixed priority per mode (FPM) is a natural extension of fixed-priority for mixed critical systems. It has one
priority table for each criticality mode. In the case of dual- criticality systems FPM has two tables: PTLO

and PTHI. The former includes all jobs. The latter needs to include only the HI jobs. As long as the current
criticality mode χmode is LO, this policy performs the fixed priority scheduling according to PTLO. After a
switch to the HI mode, this policy drops all pending LO jobs and applies table PTHI.
“FPM-equivalent tables” relation “PTLO ∼ PTHI” means that by removing the LO jobs from PTLO while
keeping the same relative order of the HI jobs we obtain the same job order for HI jobs as in PTHI. In this case,
after a mode switch to HI mode and dropping LO jobs, using PTLO or PTHI will result in the same schedule.

3 Predictability in MC-Scheduling
Predictability and sustainability although similar, are not identical in the mixed criticality context. To clearly
distinguish the difference between the two concepts, we start by including a formal definition of both. With

Verimag Research Report no TR-2018-8 3/14

Rany Kahil, Peter Poplavko, Dario Socci, Saddek Bensalem Predictability in Mixed-Criticality Systems

regards to sustainability, a good amount of research has been devoted to the study and analysis of this property
in the scheduling of real time systems. In [1] the authors formalize the sustainability characteristic in real time
systems (non mixed critical) as follows.

“A schedulability test for a scheduling policy is sustainable if any system deemed schedulable by the
schedulability test remains schedulable when the parameters of one or more individual jobs are changed in
any, some, or all of the following ways: decreased execution requirements; later arrival times; smaller jitter;
and larger relative deadlines”.

In [10], the definition of sustainability was extended to mixed criticality systems. The workload of an MC
system was modeled as a finite collection of sporadic tasks with each task having a criticality and possibly
generating an unbounded number of mixed criticality jobs. We include the adapted definition for reference.

“MC sustainability [10]. An MC scheduling policy is said to be sustainable if any MC instance that is MC-
schedulable by the policy remains so if one or more of the parameters characterizing the instance is improved.
Improvements to be characterizing parameters:

1. Decreasing WCET parameters

2. Increasing periods for sporadic task systems

3. Postponing relative deadlines

4. Decreasing the criticality level assignment of a task/job.”

The authors of [10] focus their work as well on dual criticality instances. Six mixed criticality scheduling
policies were evaluated to check whether they are MC-sustainable for the different parameters. It was found
that the polices are all sustainable with respect to WCET, periods and deadlines but some are not sustainable
with respect to the criticality level parameter. Among the six evaluated policies we chose the simplest to show
that it is not predictable according to the definition below.

Definition 1. A scheduling policy is said to be predictable, if for any scenario that is MC-schedulable by
the policy, any other scenario that is better is also MC-schedulable by the policy. For predictability, “MC-
schedulable” means that simulating the given scenario shows that the policy correctly schedules all jobs,
whereas scenario S1 is considered to be “better” than scenario S2, if any job in S1 executes for the same
amount or less than it does in S2.

The parameter that is most interesting to our work from the definitions of sustainability is the “decreased
execution requirements”. Execution requirements are often given by WCET. These are upper bounds that may
overestimate the worst case of the execution due to difficulties in modeling processors with caches, out of
order executions, pipelines etc. Even in the case of a tight upper bound, a job can take numerous execution
paths that are different from its worst-case path resulting in various execution times that are considerably less
that the WCET.

In non mixed-criticality systems1 distinction between sustainability and predictability was not needed,
as sustainability trivially ensured predictability. To show this, suppose that in a system that was deemed
schedulable with respect to WCETs, a job J1 has a WCET of C1. In a certain scenario S1, J1 executes for
c1 such that c1 < C1. If the scheduling policy is sustainable with respect to WCET then the system should
remain schedulable in the case where C ′

1 = c1 since C ′
1 < C1 where C ′

1 is the decreased WCET of J1. But
this case is equivalent to scenario S1 showing its sustainability with regards to execution times. We will show
later that this is not in general the case in MC systems clarifying why this reasoning does not work.

3.1 The Notion of Weak Predictability
In the study of MC-sustainability characteristic the focus was on upper bounds of sporadic tasks and not
exact execution times. In our study of predictability the focus is on evaluating the execution of job set to be
examined with regards to execution time of jobs. We will demonstrate that looking at exact execution times can
be essential to guaranty that a sustainable MC policy will be able to correctly schedule a system that executes

1in those tested for correctness by simulation

4/14 Verimag Research Report no TR-2018-8

Predictability in Mixed-Criticality Systems Rany Kahil, Peter Poplavko, Dario Socci, Saddek Bensalem

for less than the estimated WCET. We begin by giving an example of an MC scheduling policy that is MC
sustainable but not predictable. Criticality Monotonic (CM) scheduling policy is one of the policies that were
studied in [10]. A CM scheduling policy schedules at each time instant a ready job of the highest criticality. It
was proven in [10] that a CM scheduling policy using deadline monotonic scheduler within a criticality level
is MC sustainable. As a consequence it is sustainable with regards to the WCET parameter. In the example
below we show that although this policy is MC-sustainable it is not predictable and there is a case where the
policy will correctly schedule the system but will fail to schedule it when some job executes for less.

Example 1. Consider a periodic system that has two tasks with periods T = 20. At start of the system each
task will release a job. The jobs to be scheduled are shown in the table below:

Job A D Criticality C(LO) C(HI) Priority
1 0 10 HI 6 8 1

2 0 10 LO 5 5 2

Example 1 represents a mixed criticality system with two tasks, one having LO criticality and the other is
of HI criticality. Since both tasks have the same period, each task will generate one job during a hyper-period.
Jobs generated are shown in the table. We assume the system is being scheduled by a CM policy with deadline
monotonic scheduler within a criticality level. Testing the correctness of this policy for the worst case scenario,
a simulation will be performed where J1 is assumed to execute for 8 units of time and J2 for 5.

The simulation of the policy will execute J1 first, as it is the highest criticality job, until it terminates at
t = 8. Then it will schedule J2 which will terminate at t = 13 missing its deadline. Although J2 missed
its deadline, the system is deemed MC-schedulable. This is the case because J1 executed for more than its
C(LO) thus only HI criticality tasks are required to meet their deadlines. It could be the case that at runtime
job J1 executes for only 6 units of time instead of 8. In this case J2 still misses its deadline, but now the
system is no longer MC-schedulable since no job executed for more than its C(LO), and in this case all jobs
are required to meet their deadlines. This oversimplified example shows the complications that arise in testing
for correctness in MC-systems. It gives one case of an MC-sustainable policy being able to correctly schedule
a scenario but failing to schedule another one with decreased execution requirements on one job.

Example 1 shows that unlike the single criticality case, in an MC system not all MC-sustainable scheduling
policies are predictable. Another observation is that correctly testing the schedulability of a policy by simu-
lating the worst case scenario does not imply anymore the correctness in other scenarios. We expect that the
CM policy will not be the only one that is not predictable. This is primarily due to the fact that decreasing
the execution of a high criticality job, might stop the system from switching to HI-criticality mode, thus all
jobs are required to meet their deadlines whereas before the decrease only HI jobs had to meet their deadlines.
For this reason we provide a weaker definition of predictability that will be sufficient to perform a sustainable
schedulability test proposed in the next section.

Definition 2 (Weak Predictability). An MC scheduling policy is weakly-predictable if for any scenario that is
MC schedulable, decreasing the execution time of a job A – while keeping all other execution times the same
– should not delay the termination time of any other job B under the following two conditions:

• If job A caused a mode switch, then the decrease in the execution of job A does not cancel the mode
switch that was caused by A

• Job B terminates in the same criticality mode, before and after the decrease of execution of A

In a weakly-predictable policy, if at least one of the two conditions above is not met a decrease in the
execution of one job is allowed to delay the termination of another job. Thus a weakly-predictable policy does
not always have to be predictable. But a predictable scheduling policy is always weakly-predictable and all the
results that follow from the weakly predictable property can be applicable. The main intuition behind this weak
definition of predictability is that it removes the difficult case when a decrease in an execution time cancels the
mode switch, adding the requirement to verify that LO jobs meet their deadlines. Thus MC-policies are more
likely to be weakly-predictable and able to use the correctness test proposed later on for such policies.

We formulate below another interpretation of the definition of a weakly-predictable policy, in the case of
increasing (instead of decreasing) the execution of a job. This interpretation is equivalent to the definition

Verimag Research Report no TR-2018-8 5/14

Rany Kahil, Peter Poplavko, Dario Socci, Saddek Bensalem Predictability in Mixed-Criticality Systems

given above, we only include it as it proves helpful and is used later on in the proofs.
A scheduling policy is weakly-predictable if for any scenario that is MC schedulable, increasing the execution
time of any job A – while keeping all other execution times the same – should not make any other job B
terminate earlier only when the following two conditions hold:

• If job A did not cause a mode switch then the increase of its execution also does not lead it to cause the
mode switch.

• Job B terminates in the same criticality mode before and after the increase of execution of A

If at least one of these two conditions is violated then B may terminate earlier. The first condition can only
be violated if before the increase A executed for at most LO WCET and after the increase it is the first job to
exceed the LO WCET thus causing a mode switch.

3.2 Predictability in Fixed Priority per Mode
The following theorem from [11] states a very useful property, for which we formulate a corollary:

Theorem 1. Fixed-priority policy is sustainable and thus predictable with respect to execution times, for
single- and multi-processor scheduling.

Corollary 1. For single-processor dual-criticality instances FPM is weakly predictable.

Proof. Consider a dual-criticality FPM policy with given priority tables PTLO and PTHI. Consider any scenario
c. For a given job A, let scenario c′ differ from c only by an increase in execution time of job A by ∆cA, such
that this increase does not lead A to be the job that causes a mode switch in c′. Let job B be an arbitrary job.
We have to prove that B can only terminate at the same time or later in c′ compared to c, but never earlier,
provided that B terminates in both scenarios in the same criticality mode.

If there is no mode switch in c then predictability in this case follows from the predictability of FP schedul-
ing. So let us first consider the case where A terminates after the mode switch in c. This means that the sched-
ules of c and c′ are the same up until the switch time. At switch time the same LO jobs are dropped, if any,
and both scenarios are left to execute the same jobs using same priority table PTHI with only one difference,
the increase in the execution of A. Thus it follows directly from the predictability of FP that in this case B will
never terminate earlier in c′.

Secondly, we consider the case where both A and B terminate before the mode switch in c. If the increase
in execution leads B to terminate after the mode switch then the condition that B terminates in the same
criticality mode does not hold and we have nothing to prove. If after the increase in the execution of A, job B
terminates before the mode switch then by predictability of FP it can not terminate earlier than in c.

Hence the only non-trivial case that we are left with is that in scenario c, jobA terminates before the switch
executing entirely in the LO mode, and job B terminates in both scenarios after the mode switch.

Let tc and t′c be the switch times of c and c′. Due to the predictability of FP scheduling, up until the switch
time in c, no job other than A can exceed its C(LO) in c′ before it does in c. And since A does not cause the
mode switch, then we have tc ≤ t′c.

Let tA be the termination time of job A in c. Let tB and t′B be the termination time of job B in c and c′

respectively. Since both terminate after the switch then we have tB > tc and t′B > t′c. But for tB ≤ t′c we
have tB < t′B and this completes the proof for this case. Thus we still have to prove for tB > t′c.

The execution of jobs in the interval [0, tA] is the same in both scenarios c and c′. Let us consider only the
HI jobs that do not terminate by time tc in c. In the time interval [tA, tc], both scenarios are using PTLO as the
priority table. A executed for the same amount or more and FP is predictable thus all other HI jobs executed
for the same amount or less in c′ compared to c. Then in c′ compared to c, every job has to execute for at least
the same amount or more between tc and its termination.

Let us make the following assumption for scenario c. Assume that between tc and tB there are no idle
intervals and the (HI) jobs which execute there have equal or higher priority than B (w.r.t. PTHI). We refer to
this set of jobs as SB . In addition let EB be the execution time between tc and tB . This is the execution time
needed for all jobs in SB to terminate, as they all have higher priority than B and hence terminate before tB .

6/14 Verimag Research Report no TR-2018-8

Predictability in Mixed-Criticality Systems Rany Kahil, Peter Poplavko, Dario Socci, Saddek Bensalem

Now let us consider scenario c′. Recall that at time tc at least the same set of jobs have to execute the same
amount of work as in c. Let us consider what happens after time tc. Since t′B > t′c and all jobs in SB have
equal or higher priority than B according to PTHI then all other jobs in SB terminate before B does. We are
left with two cases:

• Either only jobs from set SB execute between tc and t′c and in this case tB ≤ t′B follows from the fact
that FPM is a work conserving policy and these jobs have at least the same amount of work to execute
in c′.

• Jobs outside of SB execute as well (having higher priority according to PTLO) between tc and t′c but in
this case we also have tB ≤ t′B from the argument on the amount of work to be executed.

Now we remove our earlier assumption for scenario c, instead we suppose that in the time interval [tc, tB],
there are one or more sub-intervals where the processor is idle or it executes jobs with lower priority than B
according to PTHI. We note that this can be the case only if during these sub-intervals there are no “ready”
jobs in SB to execute since B has the lowest priority in SB and FPM is work conserving.

Let [ti, tj] be the last subinterval where the processor was either idle or executing a job with lower priority
than B. Thus in [tj , tB], only jobs from SB execute and we will refer to this set of jobs as S′

B . It is easy to see
that none of the jobs in S′

B arrive before tj .
Noting that in both scenarios, c and c′, jobs in S′

B can not execute before tj as they do not arrive before that
time. Also,in both scenarios, all jobs in S′

B have to execute for the same amount, and terminate before B does
since B terminates in HI mode in both scenarios and is scheduled by PTHI when it terminates. In addition in
c only jobs in S′

B are being scheduled in [tj , tB] with no idle intervals included while in c′ the same set of jobs
are executed where B terminates last but also some other jobs might execute, thus B cannot finish earlier in
c′.

Corollary 2. For single- and multi-processor dual-criticality instances, an FPM policy that generates only
FPM-equivalent tables is weakly-predictable.

Proof. Consider a dual-criticality FPM policy with given priority tables PTLO and PTHI. Let scenarios c, c′

and jobs A, B be defined as in the proof of Corollary 1. We have to prove that B can only terminate at the
same time or later in c′ compared to c, but never earlier, provided that B terminates in both scenarios in the
same criticality mode. The same reasoning as before can be used to show that the only non-trivial case is that
in scenario c job A terminates before the mode switch and job B terminates in both scenarios after the mode
switch.

Let S be the schedule generated for c and S ′ the schedule generated for c′. Let t and t′ be the mode switch
time in S and S ′ respectively. By the predictability of FP, and the fact that job A does not cause the mode
switch, we have t ≤ t′. Since LO jobs are dropped at switch time, only HI jobs that did not finish before the
switch will execute after time t in S.
Since FP scheduling is sustainable, no job other than A can execute in S ′ more than it executed in S up until t.
Thus, the same set of HI jobs that have to execute after t in S will execute in S ′ and possibly jobs may require
more execution time in S ′. In addition, some LO jobs may also execute after t in S ′ as they are dropped at t′

with t ≤ t′.
Note that as a consequence of having FPM-equivalent tables, using PTLO instead of PTHI after dropping

the LO jobs at a mode switch, will not change the generated schedule, because the priority order of the HI jobs
is the same in both tables. Thus for FPM policies having PTLO and PTHI FPM-equivalent, using any table after
a mode switch results in the same schedule. Hence an FP scheduling policy that uses PTLO to schedule the
workload remaining after time t in c will generate the same schedule as S. Also, using the same FP policy to
schedule the workload remaining after time t in c′ will generate the same schedule as S ′.

Since after time t the workload in S ′ is more than that in S and by the predictability of FP scheduling, then
there is no such job B that terminates in S before S ′ after time t.

Lemma 1. An FPM policy that doesn’t restrict its tables to be FPM-equivalent is not weakly predictable for
multiple processors in general.

Verimag Research Report no TR-2018-8 7/14

Rany Kahil, Peter Poplavko, Dario Socci, Saddek Bensalem Predictability in Mixed-Criticality Systems

Proof. Example 2 provides an FPM scheduling policy where PTLO and PTHI are not FPM-equivalent. We
show that it is not weakly predictable.

Example 2. Consider the following 3-processor problem with instance J described in the table below:

Job A D χ C(LO) C(HI)

1 0 6 LO 6 6

2 0 14 HI 4 5

3 6 15 HI 7 8

4 6 8 HI 1 2

5 6 9 HI 1 2

6 6 11 HI 3 4

7 6 13 HI 3 4

8 0 6 LO 6 6

9 0 7 LO 6 6

The Gantt chart in Figure 1 shows the execution in two scenarios: c and c′ for an FPM scheduling policy with
the priority tables specified in the figure, whereby PTLO ∼ PTHI is not satisfied and hence weak predictability
is not guaranteed. Scenario c′ differs from scenario c only by a larger execution time of J1. The priority tables
of the two modes in this example differ only by the relative priority of J5 and J6 and the window between τ
and τ ′ is just one time unit. Nevertheless we see that job J7 (as well as J5) terminates in scenario c′ earlier
than in scenario c. This behavior contradicts the requirements of weak-predictability.

This example illustrates not just an exceptional case but well-known common properties of multiproces-
sor scheduling, differentiating them from single-processor case. Changing the order of job execution leads
to a change of load distribution of different jobs between processors, which leads to different interference
w.r.t. lower priority jobs. In our case, in window [τ, τ ′] swapping the priority order between J5 and J6 has
perturbed the load balance between the processors, such that a smaller priority job J7 terminates earlier. Note
that in both priority tables the set of jobs that have higher priority than J7 is the same and all of them arrive no
later than J7. Under the same conditions on single processor these jobs would inevitably have the same total
interference on J7 in the two scenarios, but not on multiple processors.

4 Testing for Correctness
There are two general classes to test the schedulability of a system, either by simulation or response time
analysis. In this section our focus is on schedulability tests by simulation. One possible schedulability test
for a fixed set of jobs is the examination of basic scenarios that should represent all corner cases of execution
times. This test can be applied for fixed set of jobs offline, and, potentially, for task systems online at the
moment when the job arrival times are known until a point when the processors become idle.

In order to adapt with the requirements of mixed criticality systems, scheduling policies had to be modified
by allowing LO jobs to miss their deadlines or even be dropped, in cases of mode switch to HI criticality. In
particular, the previous literature has extended the concept of fixed job priority to fixed job priority per mode
(FPM). For a fixed set of jobs, we proposed two FPM algorithms, MCEDF for single processor, and MCPI [6]
for multiprocessors. For task systems, numerous single-processor FPM algorithms have been proposed, many
of them being based on modifications of EDF, for example EDF-VD[4].

Unfortunately, because these policies support a mode switch, they become non-predictable in the usual
sense, and a simple test of simulation in one scenario does not apply. We propose an adapted simulation-based
schedulability test, that verifies the correctness of a scheduling policy and asserts a correct predictable behavior
during runtime in case it is successful.

4.1 Basic Scenarios for Correctness Testing
Definition 3. [Basically Correct Policy] [3] An online scheduling policy is basically correct for instance J if
for any basic scenario of J the policy generates a feasible schedule.

8/14 Verimag Research Report no TR-2018-8

Predictability in Mixed-Criticality Systems Rany Kahil, Peter Poplavko, Dario Socci, Saddek Bensalem

1

0 5 10 15

2 3

5

4

1

0 5 10 15

c1

C

C

PTLO = (9, 8, 3, 4, 5, 6, 7, 1, 2)

PTHI = (3, 4, 6, 5, 7, 1, 2)

c
c

c

c

5

6

6

4 5

7

7

3

2

7 terminates earlier

2

Proc. M1

Proc. M2

Proc. M3

Proc. M1

Proc. M2

Proc. M3

8

9

8

9

Time scope of PTHI

Time scope of PTLO

Figure 1: FPM non-predictable demonstration on multiprocessor case, using Example 2. Gantt charts
of two scenarios: c and c′. Mode switch times are τ and τ ′, resp. Scenario c is defined by
(c1 = 2, c2 = 5, c3 = 8, c4 = 2, c5 = 2, c6 = 4, c7 = 4, c8 = c9 = 6). Scenario c′ differs from c by c′1 =
c1 + ∆c1 = 2 + 4. Job J7 violates weak-predictability conditions by terminating in c′ earlier than in c,
while terminating in the same mode (HI) in both scenarios.

Verimag Research Report no TR-2018-8 9/14

Rany Kahil, Peter Poplavko, Dario Socci, Saddek Bensalem Predictability in Mixed-Criticality Systems

Figure 2: A scenario where for Example 3, WCETs of a HI job are equal, J3 terminates in dce earlier than c

Lemma 2. [Correctness Test by Checking all Basic Scenarios] If a scheduling policy is weakly-predictable
then the policy correctness follows immediately from its basic correctness. In other words, if the policy gives
a feasible schedule in all basic scenarios then this is also the case for the non-basic scenarios as well.

Proof. For a given scheduling policy, let us call basic scenario dce the ceiling scenario of scenario c if in dce
each Ji executes for time Ci (χTERM(c, i)), where χTERM(c, i) is the mode in which job Ji terminates in scenario
c. It is obvious that in dce all the jobs have at least the same or higher execution time.

The plan of the proof is as follows. Let JTERM(c, χ) be the set of jobs that terminate in c in mode χ. We split
the set of all jobs into JTERM(c,LO) and JTERM(c,HI). It is easy to show that by weak predictability all the jobs
in the first subset will terminate in the LO basic scenario no earlier than in scenario c. In the rest of the proof
we show that the other subset will terminate in the ceiling scenario, dce, no earlier than in scenario c. Thus, the
correct termination can be checked in basic scenarios, namely in the “LO” scenario and in the scenario “dce”.

To prove for the second subset of jobs, suppose we could build a sequence of scenarios c1, . . . cm . . . cM
such that c1 = c, cM = dce and we would obtain cm+1 from cm by increasing the execution time of some job
“A” in such a way that this increase does not let “A” cause a mode switch. Suppose also that the jobs from
JTERM(c,HI) would terminate in all scenarios cm in the HI mode. By weak predictability this would lead to the
required conclusion.

The first subsequence of the required sequence is obtained by iteratively taking a job from JTERM(cm,HI)
that executes for less than Cj(HI) and increasing its execution time to Cj(HI) in cm+1. This job terminates
in HI both before and after the increase, so it does not cause a mode switch. We repeat the process until no
matching jobs are left.

In the second subsequence, we take the jobs from JTERM(cm,LO) and increase their execution times to
Cj(LO). It is easy to show by induction that the resulting sequence satisfies the requirements. Note that if
we allowed job systems with Cj(LO) = Cj(HI) for HI jobs then in the second subsequence some jobs that
terminated in HI may start terminating in LO after a job execution time increase. In Example 3 we show that
systems with Cj(LO) = Cj(HI) for HI jobs would violate the present lemma.

Example 3. Fig. 2 shows two scenarios for a job instance that allows WCETs of HI jobs to be equal:

Job A D χ C(LO) C(HI)

1 0 2 LO 2 2

2 0 5 HI 1 2

3 2 3 HI 1 1

10/14 Verimag Research Report no TR-2018-8

Predictability in Mixed-Criticality Systems Rany Kahil, Peter Poplavko, Dario Socci, Saddek Bensalem

Keeping in mind that FPM policy, which we apply here, is weakly-predictable, we have two important
points to observe in this example. First, observe that J3 terminates in the HI mode in scenario c while it
terminates in the LO mode in its ceiling scenario dce. Thus, if the two WCET estimates of a HI job are
allowed to be equal, weak-predictability is not always sufficient to ensure that the basic scenarios cover all
other scenarios. Second observation is that this instance has only two basic scenarios, one is dce and the other
one is exactly the same but with job J2 terminating at t = 4 instead of switching to execute up until t=5. In both
basic scenarios the instance is schedulable by the given FPM policy. Yet in c job J3 misses its deadline. This
shows that in the case where a high criticality job is allowed to have its C(LO) = C(HI), even if all possible
basic scenarios are simulated and successfully scheduled, this might not be enough to ensure the correctness
of the scheduling policy with respect to all possible runtime behaviors. Due to this complication and the fact
that we believe that disallowing HI jobs to have equal WCET does not limit the model as it can be ensured by
an arbitrarily small increase of CHI, we decided to include this restriction in our problem formulation.

Lemma 3. [Basically Correct Policy is Sufficient to Schedule an Instance] An instance J is MC-schedulable
if it admits a basically correct scheduling policy.

The above lemma is Lemma 1 from [3]. At first glance, it seems to be contradicting to the observations
we just made in Example 3, where the basic scenario coverage is not sufficient for FPM schedulability, but
it should be noted that the lemma only claims that a correct policy exists, not that this policy is FPM. In the
proof given in [3] they show a simple procedure to transform any basically correct policy into a similar policy
which is, in fact, weakly predictable, and hence correct, by Lemma 2.

In fact, Lemma 2 implies that a complete correctness test can be reduced to testing all basic scenarios.
However, this statement does not directly show that a complete correctness test of a weakly predictable policy
can be done in polynomial time, as it requires testing all basic scenarios, whereas there is an exponential
number of such scenarios. Fortunately, testing in all basic scenarios is redundant. Suppose that we have
a predictable scheduling policy. It turns out that to test the policy correctness for a dual-critical instance it
suffices to simulate H + 1 basic scenarios, where H is the total count of HI jobs in the problem instance, as
shown in the next subsection.

4.2 Canonical Correctness Test
Definition 4. [Job-specific Basic Scenario] For a given problem instance, scheduling policy and a HI job Jh,
the job-specific basic scenario for job Jh is denoted by HI-Jh and defined as follows. Job Jh executes for
its C(HI). For any other HI job, if it terminates in the LO basic scenario schedule SLO before Jh terminates,
then it executes for its C(LO) else it executes for its C(HI). The schedule for HI-Jh is denoted by SHI-Jh .

In multiprocessor scheduling, for a given job Jh multiple jobs may also terminate exactly at the same time
in SLO as Jh, and they are conservatively assumed to also execute for their C(HI) in HI-Jh.

Definition 5. [Canonical Basic Set] It is the set that contains the LO basic scenario and the job-specific basic
scenarios for all HI jobs of the given instance.

Note that SHI-Jh coincides with SLO up to the time when job Jh switches, and after the switching time it
starts using HI execution times for the jobs that did not terminate before the switch.

Example 4. Figure 3 shows Gantt charts for the job-specific scenarios of the single-processor problem instance
given in the table below:

Job A D χ C(LO) C(HI)

1 0 30 HI 10 12

2 2 10 HI 2 8

3 1 8 LO 2 2

4 8 17 HI 2 7

5 7 11 LO 2 2

If we look at the termination times of HI jobs in SLO (the schedule for the LO basic scenario) we see that
J2 finishes first followed by J4 then J1. Thus in scenario HI-J4, J2 will execute for its C(LO) since it

Verimag Research Report no TR-2018-8 11/14

Rany Kahil, Peter Poplavko, Dario Socci, Saddek Bensalem Predictability in Mixed-Criticality Systems

Figure 3: The job-specific scenario schedules for Example 4 obtained with priority table PT =
(J2, J4, J3, J5, J1)

terminates before J4 in SLO and the rest of the jobs will execute for their C(HI) resulting in the schedule
shown for HI-J4 in Figure 3. The rest of the job-specific schedules are generated in the same manner.

Theorem 2. [Canonical Correctness Test] To ensure correctness of a scheduling policy that is weakly-predictable
it is enough to test it for the canonical basic set.

Proof. Consider any basic scenario c and simulate the policy until either the mode switch, if any, or the end
of the schedule. Let Jh be the job that switches. After the switch, increasing the job execution times can lead
only to non-decreasing termination times, therefore we can conservatively replace c by HI-Jh. Hence, the
policy is basically correct, and, by Lemma 2, also (completely) correct.

Unfortunately, since by Lemma 1 FPM is not weakly-predictable in multiprocessor case and the canonical
correctness test might not be sufficient under such general conditions, in this case by Corollary 2, we may need
the FPM policy to have FPM-equivalent tables to obtain weak-predictability and use the correctness test.

4.3 Building the Case for Class NP for FPM
The canonical correctness test algorithm was directly derived from the correctness test procedure described
in [3], used in an attempt to prove that MC-scheduling is in class NP. Note that their algorithm is more complex
and more general, as it applies to a number criticality levels more than two. Though that procedure, for
efficiency reasons, would organize the schedules of basic scenarios in a tree structure and use backtracking,
our less efficient formulation has only polynomially higher complexity, which does not impact on the reasoning
on NP complexity. We now reapply the line of reasoning of [3] to prove that FPM is in class NP.

Lemma 4 (From [3]). If an instance is MC-schedulable, then there exists an optimal online scheduling policy
that preempts each job j only at time points t such that at time t either some other job is released, or j has
executed for exactly Cj(i) units of time for some 1 ≤ i ≤ L.

Lemma 4 is taken from the work in [3]. Although in our previous work [8], this lemma was refuted as it
does not hold for all MC polices, it is true by construction in the case of FPM policies. We use this lemma in
the proof of Theorem 3. In the lemma Cj(i) is the WCET estimate for job j at criticality level i and L is the
number of criticality levels in the system. In our usual notations, level 1 is LO, level 2 is HI, Cj(1) is Cj(LO),
Cj(2) is Cj(HI).

Theorem 3. Dual-criticality single processor FPM policies are in class NP.

Proof. It follows from the weak-predictability of single processor FPM polices and Theorem 2 that we can
check for correctness by simulating a polynomial number of scenarios (the canonical basic set). By Lemma 4
the cost of simulating each scenario is also polynomial. Therefore the canonical correctness test has polyno-
mial complexity when testing FPM solutions.

12/14 Verimag Research Report no TR-2018-8

Predictability in Mixed-Criticality Systems Rany Kahil, Peter Poplavko, Dario Socci, Saddek Bensalem

Theorem 4. Under the restriction of having FPM-equivalent tables, dual-criticality single- and multi-processor
FPM policies are in class NP.

Proof. Follows directly from Corollary 2 and Theorem 2

Note that unlike the case of Theorem 3, the case described in Theorem 4 is not known to be NP hard. We
have established the upper bound as NP, but the lower bound in this case is an open problem, it may be either
NP-hard or P, and it may differ for single- and multi-processor cases.

5 Conclusions
Sustainability has been studied and well formalized in the literature [1] [10] for both the single and mixed-
critical scheduling policies. Although sustainability implicitly implied predictability in single criticality sys-
tems, we have given an example of an MC policy that was proven to be MC-sustainable yet is not predictable.
We have shown that testing for correctness using simulation based tests can be problematic if a scheduling
policy is not predictable.

Acknowledging the difficulty of proving an MC-scheduling policy predictable and the difficulty of testing
by simulation of worst case execution scenarios in non-predictable policies, we proposed a weaker form of
predictability that covers a larger class of scheduling policies. We proposed a canonical correctness test that
required the policy to be only weakly predictable. The correctness test verifies the correctness of the policy by
evaluating it for a small number of basic scenarios. If successful the test ensures that the problem instance will
remain correctly schedulable by the policy for any scenario that behaves better than the anticipated worst case
estimations.

We have also shown that the well known class of FPM scheduling policies in dual-criticality, single pro-
cessor case is not predictable but weakly predictable. We proved that the canonical test can be applicable
in such cases and we studying the computational complexity showing that this special class belongs to NP.
We showed that in the case of FPM policy having FPM-equivalent tables these results can be extended to the
multiprocessor case.

References
[1] Sanjoy K. Baruah and Alan Burns. Sustainable scheduling analysis. In Real-Time Systems Symposium

(RTSS 2006), pages 159–168, 2006. 1, 3, 5

[2] Steve Vestal. Preemptive scheduling of multi-criticality systems with varying degrees of execution time
assurance. In Real-Time Systems Symposium, RTSS’07, pages 239–243. IEEE, 2007. 1, 2

[3] Sanjoy Baruah, Vincenzo Bonifaci, Gianlorenzo D’Angelo, Haohan Li, Alberto Marchetti-Spaccamela,
Nicole Megow, and Leen Stougie. Scheduling real-time mixed-criticality jobs. IEEE Trans. Comput.,
61(8):1140 –1152, aug. 2012. 1, 2, 3, 4.1, 4.3, 4, 4.3

[4] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela, S. van der Ster, and L. Stougie.
The preemptive uniprocessor scheduling of mixed-criticality implicit-deadline sporadic task systems. In
Euromicro Conf. on Real-Time Systems, ECRTS’12, pages 145–154. IEEE, 2012. 1, 4

[5] Dario Socci, Peter Poplavko, Saddek Bensalem, and Marius Bozga. Mixed critical earliest deadline first.
In Euromicro Conf. on Real-Time Systems, ECRTS’13, pages 93–102. IEEE, 2013. 1

[6] Dario Socci, Peter Poplavko, Saddek Bensalem, and Marius Bozga. Multiprocessor scheduling of
precedence-constrained mixed-critical jobs. In IEEE ISORC 2015, 2015. 1, 4

[7] Dario Socci, Peter Poplavko, Saddek Bensalem, and Marius Bozga. Time-triggered mixed-critical sched-
uler on single-and multi-processor platforms. In 17th IEEE International Conference on High Perfor-
mance Computing and Communications (HPCC), 2015. 1

Verimag Research Report no TR-2018-8 13/14

Rany Kahil, Peter Poplavko, Dario Socci, Saddek Bensalem Predictability in Mixed-Criticality Systems

[8] Rany Kahil, Peter Poplavko, Dario Socci, and Saddek Bensalem. Revisiting the computational complex-
ity of mixed-critical scheduling. In Proc. Workshop on Mixed Criticality (WMC), 2017. 1, 4.3

[9] Ismael Ripoll and Rafael Ballester-Ripoll. Period selection for minimal hyperperiod in periodic task
systems. IEEE Transactions on Computers, 62(9):1813–1822, 2013. 2

[10] Zhishan Guo, Sai Sruti, Bryan C Ward, and Sanjoy K Baruah. Sustainability in mixed-criticality schedul-
ing. In RTSS’17. 3, 3, 3.1, 5

[11] Rhan Ha and J. W S Liu. Validating timing constraints in multiprocessor and distributed real-time sys-
tems. In Proc. Int. Conf. Distributed Computing Systems, pages 162–171, Jun 1994. 3.2

14/14 Verimag Research Report no TR-2018-8

	Introduction
	Problem Formulation
	Predictability in MC-Scheduling
	The Notion of Weak Predictability
	Predictability in Fixed Priority per Mode

	Testing for Correctness
	Basic Scenarios for Correctness Testing
	Canonical Correctness Test
	Building the Case for Class NP for FPM

	Conclusions

