
DR-BIP - Programming Dynamic
Reconfigurable Systems

Rim El Ballouli, Saddek Bensalem, Marius Bozga, Joseph

Sifakis

Verimag Research Report no

TR-2018-3

February 27, 2018

Reports are downloadable at the following address
http://www-verimag.imag.fr

Unité Mixte de Recherche 5104 CNRS - Grenoble INP - UGA
Bâtiment IMAG
Université Grenoble Alpes
700, avenue centrale
38401 Saint Martin d’Hères
France
tel : +33 4 57 42 22 42
fax : +33 4 57 42 22 22
http://www-verimag.imag.fr/

http://www-verimag.imag.fr

DR-BIP - Programming Dynamic Reconfigurable Systems

Rim El Ballouli, Saddek Bensalem, Marius Bozga, Joseph Sifakis

University Grenoble Alpes

February 27, 2018

Abstract

The paper introduces DR-BIP, a formal framework for programming dynamic re-
configurable systems. DR-BIP relies on architectural motifs to structure the archi-
tecture of a system and to coordinate its reconfiguration at runtime. An architectural
motif defines a set of interacting components that evolve according to reconfigura-
tion rules. With DR-BIP, the dynamism can be captured as the interplay of dy-
namic changes in three independent directions 1) the organization of interactions
between instances of components in a given configuration; 2) the reconfiguration
mechanisms allowing creation/deletion of components and management of their in-
teraction according to a given architectural motif; 3) the migration of components
between predefined architectural motifs which characterizes dynamic execution en-
vironments. The paper lays down the formal foundation of DR-BIP, illustrates its
expressiveness on several examples and discusses avenues for dynamic reconfig-
urable system design.

Keywords: architectural motifs, components, operational semantics, BIP

Reviewers: Marius Bozga

How to cite this report:

@techreport {TR-2018-3,
title = {DR-BIP - Programming Dynamic Reconfigurable Systems},
author = {Rim El Ballouli, Saddek Bensalem, Marius Bozga, Joseph Sifakis},
institution = {{Verimag} Research Report},
number = {TR-2018-3},
year = {}

}

DR-BIP Rim El Ballouli, Saddek Bensalem, Marius Bozga, Joseph Sifakis

Contents
1 Introduction 2

2 Design Principles 3

3 Component-Based Systems 5
3.1 Component types and instances . 5
3.2 Systems of components . 6

4 Motifs for Dynamic Architectures 6
4.1 Maps and deployments . 7
4.2 Motif types . 7
4.3 Interactions rules . 8
4.4 Reconfiguration rules . 9
4.5 Operational semantics . 10

5 Motif-based Systems 11
5.1 Inter-motif reconfiguration rules . 11
5.2 Operational semantics . 12

6 Examples 13
6.1 Fault-Tolerant Servers . 13
6.2 Task Migration on Multicore Architectures . 14
6.3 Automated Highway . 14

7 Implementation 15

8 Discussion 17

Verimag Research Report no TR-2018-3 1/19

Rim El Ballouli, Saddek Bensalem, Marius Bozga, Joseph Sifakis DR-BIP

1 Introduction
Modern computing systems exhibit dynamic and reconfigurable behavior. They evolve in uncertain envi-
ronments and have to continuously adapt to changing internal or external conditions. This is essential to
efficiently use system resources e.g. reconfiguring the way resources are accessed and released in order to
adapt the system behavior in case of mishaps such as faults or threats, and to provide the adequate func-
tionality when the external environment changes dynamically as in mobile systems. In particular, mobile
systems are becoming important in many application areas including transport, telecommunications and
robotics.

There exist two complementary approaches for the expression of dynamic coordination rules. One
respects a strict separation between component behavior and its coordination. Coordination is exogenous
in the form of an architecture that describes global coordination rules between the coordinated components.
This approach is adopted by numerous Architecture Description Languages (ADL) (see [8] for a survey).

The other approach is based on endogenous coordination by using explicitly primitives in the code
describing the behavior of components. Most programming models use internalized coordination mecha-
nisms. Components usually have interfaces that specify their capabilities to coordinate with other compo-
nents. Composing components boils down to composing interfaces. This approach is usually adopted with
formalisms based on π-calculus and process algebra, such as [1, 10, 12, 13].

The obvious advantage of endogenous coordination is that programmers do not have to build explicitly
a global coordination model. Consequently, the absence of such a model makes the validation of coor-
dination mechanisms and the study of their underlying properties much harder. Exogenous coordination
is advocated for enabling the study of the coordination mechanisms and their properties. It motivated
numerous publications and the development of 100+ ADLs [15].

There exists a huge literature on architecture modeling reviewed in detailed surveys classifying the
various approaches and outlining new trends and needs [8, 9, 14, 15, 17–19]. Despite the impressive
amount of work on this topic there is no clear understanding about how different aspects of architecture
dynamism can be characterized.

We consider that the degree of dynamism of a system can be captured as the interplay of dynamic
change in three independent directions. The first direction requires the ability to describe parametric
system coordination for arbitrary number of instances component types. For example, systems with m
Producers and n Consumers or Rings formed from n identical components.

The second direction requires the ability to add/delete components and manage their interaction rules
depending on dynamically changing conditions. This is needed for a reconfigurable ring of n components
e.g. removing a component which self-detects a failure and adding the removed component after recovery.
So adding/deleting components implies the dynamic application of specific interaction rules depending
on their type. This is also needed for mobile components which are subject to dynamic interaction rules
depending on the state of their neighborhood.

The third direction is currently the most challenging. It meets in particular, the vision of "fluid archi-
tectures" or "fluid software" [19] which entails a virtual but personal computing experience allowing the
users to seamlessly roam and continue their activities on any available device or computer. Applications
and objects live in an environment which is conceptually an architecture motif. They can be dynamically
transported from one motif to another.

Supporting dynamic migration of components allows a disciplined and easy-to-implement management
of dynamically changing coordination rules. For instance, self-organizing systems may adopt different
coordination motifs to adapt their behavior so as to meet a global property.

The paper proposes Dynamic Reconfigurable BIP (DR-BIP) component framework, an extension of
BIP [2, 3] and Dy-BIP [7] frameworks, which encompasses all these three aspects of dynamism. As such,
DR-BIP follows an exogenous approach respecting the strict separation between behavior and architecture.
It directly encompasses multiparty interaction [6] and is rooted in formal operational semantics allowing
a rigorous implementation. It privileges the imperative and exogenous style characterizing dynamic archi-
tecture as a set of interaction rules implemented by connectors and a set of configuration rules.

Although it does not allow ad hoc dynamism, it directly encompasses all kinds of dynamism at run time
[8]: programmed dynamism and in addition adaptive dynamism, and self-organizing dynamism. It provides
support for component creation and removal at run time. In addition to these operations at motif level, our

2/19 Verimag Research Report no TR-2018-3

DR-BIP Rim El Ballouli, Saddek Bensalem, Marius Bozga, Joseph Sifakis

formalism directly supports component migration from one motif to another. It supports programmed
reconfiguration and triggered reconfiguration in particular [9].

The big advantage from using motifs is that when a component is deleted or created its type defines the
interaction with other components. So, a motif is a "world" where components live and from which they
can migrate to join other "worlds" [19].

The paper is organized as follows. Section 2 provides a brief overview of the DR-BIP objectives and
major design principles. Section 3 briefly recalls the foundational component-based model used. Section
4 introduces the motif concept and its semantics. Section 5 introduces motif-based systems. Section 6
presents several examples. Section 7 presents DR-BIP framework implementation. Section 8 presents
conclusions and future work directions.

2 Design Principles
We are seeking for a general framework, covering as much as possible the current practical needs for
the design of dynamic systems, and therefore fulfilling specific requirements for rigorous modeling and
analysis:

• enforce architectural constraints / styles, that is, allow the definition of architectures as parametric
operators on components guaranteeing by construction specific properties,

• describe systems with evolving architecture, that is, the system architecture must be a living concept
of the description, that can be updated at runtime using dedicated primitives,

• support separation of concerns, namely keep separate the system behavior (functionality) from the
system architecture and so avoid as much as possible blurring the behavior of components with
information about their execution context and/or reconfiguration needs,

• provide sound foundation for analysis and implementation, that is, rely on a well-defined operational
semantics, leveraging on existing models for rigorous component-based design,

The DR-BIP framework relies on the key concept of architectural motif as the elementary unit of
description of dynamic architectures. A motif encapsulates (i) behavior, as a set of components, (ii) inter-
action rules between components and (iii) reconfiguration rules about creating/deleting or moving compo-
nents. Systems are constructed as a superposition of several motifs, possibly sharing their components, and
evolving altogether.

Figure 1 provides an overall view on the structure and evolution of a motif-based system. The initial
configuration (left) consists of six interacting components organized using three motifs (indicated with
dotted lines). The central motif contains components b1 and b2 connected in a ring. The upper motif
contains components b1, c1, c2, c3, with b1 being connected to all others. The lower motif contains con-
nected components b2, c4. The second system configuration (in the middle) shows the evolution following
a reconfiguration step. Component c3 migrated from the upper motif to the lower motif, by disconnecting
from b1 and connecting to b2. The central motif is not impacted by the move. The third system configura-
tion (right) shows one more reconfiguration step. Two new components have been created b3 and c5. The
central motif now contains one additional component b3, interconnected along b1 and b2 forming a larger
ring. In addition a new motif is created containing b3 and c5.

The example above contains actually two types of motifs: ring motif and star motif. Types of mo-
tifs may be defined separately by giving the types of hosted components and parametric interactions and
reconfiguration rules. Then, systems are described by superposing a number of such motifs on a set of com-
ponents. In this manner, the overall system architecture capture/highlights specific architectural/functional
properties by design.

Figure 2 depicts the principle of motif definition in DR-BIP. Motifs are structurally organized as the
deployment of component instances on a logical map. Maps are arbitrary graph-like structures consisting
of interconnected positions. Deployments relate components to positions on the map. The definition of
the motif is completed by two sets of rules, defining respectively interactions and reconfiguration actions.
Both sets of rules are interpreted on the current motif configuration. The first defines a set of interactions

Verimag Research Report no TR-2018-3 3/19

Rim El Ballouli, Saddek Bensalem, Marius Bozga, Joseph Sifakis DR-BIP

b1

b2

c1 c2

c4 c3

b1

b2

c1 c2 c3

c4

b1

b2

c1 c2

c4 c3

b3

c5

Figure 1: An example : system reconfigurations

between components. The second defines reconfiguration actions to update the content of the motif, that
is, the components, the map and/or the deployment.

b2 b3b1 b1 c1 c2

Motif "Ring" Motif "Star"

...
Reconfiguration rules

...

Deployment

Map

Deployment

Map

Interaction rules

Behavior Behavior

Interaction rules

Reconfiguration rules

bi

c j

in out

rcv

snd

sync x1.out x2 .in
when D(x1) 7→ D(x2) when D(x1) 7→ D(x2)

sync x1 .rcv x2 .snd

Figure 2: An example : motifs definition

The "Ring" motif illustrated in Figure 2 (left) defines the first type of motif used in the previous ex-
ample. Three components b1, b2, b3 are deployed into a three-position circular map. Given some deploy-
ment function D, the interaction rule reads as follows: for components x1, x2 deployed on adjacent nodes
D(x1) 7→ D(x2) connect their ports x1.out and x2.in. These rules define three interactions between the b’s
components namely b1.out b3.in, b3.out b2.in, b2.out b1.in that correspond to the ring shown in Figure 1
(right). The "Star" motif illustrated in Figure 2 (right) defines the second type. Here, three components are
deployed into a two-position map. The rule reads as follows: for components x1, x2 deployed on adjacent
nodes D(x1) 7→ D(x2) connect their ports x1.rcv and x2.snd. In that motif configuration, the rule defines
two interactions, namely b1.rcv c1.snd and b1.rcv c2.snd, also illustrated in Figure 1 (middle, right).

The reasons for choosing maps and deployments as a mean for structuring motifs are their simplicity.
On one hand, maps and deployments are common concepts, easy to understand, manipulate and formalize.
On the other hand, they adequately support the definition of arbitrarily complex sets of interactions over
components by relating them to connectivity properties (neighborhood, reachability, etc). Moreover, maps
and deployments are orthogonal to the behavior. Therefore they can be manipulated/updated independently
and provide also a very convenient way to express various forms of reconfiguration.

Finally, the operational semantics of motif-based systems is defined in a compositional manner. Every
motif defines its own set of interactions based on its local structure. This set of interactions and the involved
components remain unchanged as long as the motif does not execute a reconfiguration action. Hence
in absence of reconfigurations, the system keeps a fixed static architecture and behaves like an ordinary
BIP system. The execution of interaction has no effect on the architecture. In contrast to interactions,
system and/or motif reconfigurations rules are used to define explicit changes to the architecture, however,
these changes have no impact on components, that is, all running components preserve their state although
components may be created/deleted. This independence between execution steps is illustrated in Figure 3.

4/19 Verimag Research Report no TR-2018-3

DR-BIP Rim El Ballouli, Saddek Bensalem, Marius Bozga, Joseph Sifakis

b b′

m

m′

α

Interaction

Reconfiguration ρ

Behavior

Configuration

Figure 3: Reconfiguration vs Interaction Steps

3 Component-Based Systems

BIP [2, 3] is the underlying component-based framework for programming dynamic systems (DR-BIP).
In BIP, systems are constructed from atomic components, which are finite state automata, extended with
data and ports. Communication between components is by multiparty interactions with data transfer. BIP
systems are static in the sense that components and interactions are fixed at design time and do not change
during system execution.

In this section we briefly recall the key BIP concepts and their operational semantics. Let V be an
universal domain of data values.

3.1 Component types and instances

A component type Bt is an extended labeled transition system (L,P,V,T), where L is a finite set of control
locations, P is a finite set of ports, V is a finite set of data variables and T ⊆Q×P×Q is a finite set of port
labeled transitions.

For every port p ∈ P, we denote by Vp the subset of variables exported and available for interaction
through p. For every transition τ ∈ T , we denote by gτ its guard, that is, a Boolean expression defined on
V and by fτ its update function, that is, a sequence of assignments v1 := e1,v2 := e2, ... to variables in V .

A valuation of a set of variables V is a function v : V → V. We denote by V the set of all valuations
defined on V .

The semantics of a component type Bt is defined as the labeled transition system [[Bt]] = (Q,Σ,−→)
where the set of states Q = L×V, the set of labels Σ = {p(vp) | vp ∈Vp} and transitions −→ are defined by
the rule:

(COMP)

τ = `
p−→ `′ ∈ T

gτ(v) v′′p ∈ Vp v′ = fτ(v[v′′p/Vp])

Bt : (`,v)
p(v′′p)−−−→ (`′,v′)

That is, (`′,v′) is a successor of (`,v) labeled by p(v′′p) iff (1) τ = `
p−→ `′ is a transition of T , (2) the

guard gτ holds on the current state valuation v, (3) v′′p is a valuation of exported variables Vp and (4)
v′ = fτ(v[v′′p/Vp]) that is, the next-state valuation v′ is obtained by applying fτ on v previously updated
according to v′′p. Whenever a p-labeled successor exists in a state, we say that p is enabled in that state.

We consider a finite set of component types, fixed a priori. A component instance b is a couple (Bt ,k)
for some k ∈ N. We denote respectively by ports(b), states(b), labels(b) the set of ports, states and labels
associated to the instance b according to its type.

Example 3.1 Figure 4 (left) illustrates graphically a component type. The component has three ports (in,
out, rcv) attached with variables (respectively u, v, w). It has two control locations (idle, busy) and three
transitions labeled by the ports. For example, the transition labeled by in changes the control location from
idle to busy while performing the computation v := f (u,w).

Verimag Research Report no TR-2018-3 5/19

Rim El Ballouli, Saddek Bensalem, Marius Bozga, Joseph Sifakis DR-BIP

out v u in

true→ u:=v

in

rcv

u

busy

idle
outv

v:=f(u,w)
in

out

rcv

w

b2

b4

b5

b1

b3

b6

out out

out

outout

out

in
in

inin

in

in

Figure 4: Component types, interactions and systems in BIP

3.2 Systems of components
Systems of components Γ(B) are obtained by composing a finite set of component instances B= {b1, ...,bn}
using a finite set of multiparty interactions Γ.

A multiparty interaction a is a triple (Pa,Ga,Fa), where Pa ⊆
⋃n

i=1 ports(bi) is a set of ports, Ga is a
guard, and Fa is a data transfer function. By definition, Pa must use at most one port of every component
in B, that is, |Pi∩Pa| ≤ 1 for all i ∈ {1..n}. Therefore, we simply denote Pa = {bi.pi}i∈I , where I ⊆ {1..n}
contains the indices of the components involved in a and for all i ∈ I, pi ∈ ports(bi). Ga and Fa are both
defined on the variables exported by the ports in Pa (i.e.,

⋃
p∈Pa Vp).

The semantics of a system S = Γ(B) is defined as the labeled transition system [[S]] = (Q,Σ,−→) where
the set of states Q = 〈b 7→ q | b ∈ B, q ∈ states(b)〉, the set of labels Σ⊆ P (ports(B)×P (V)) contains the
ports and sets of values exchanged during interactions and transitions −→ are defined by the rule:

(SYS)

a = ({bi.pi}i∈I ,Ga,Fa) ∈ Γ Ga({vpi}i∈I) {v′′pi
}i∈I = Fa({vpi}i∈I)

∀i ∈ I.
(

Bt
i : (`i,vi)

pi(v′′pi
)

−−−−→ (`′i,v
′
i)

)
∀i 6∈ I. (`i,vi) = (`′i,v

′
i)

Γ(B) : 〈(`1,v1)/b1, . . . ,(`n,vn)/bn〉
{bi.pi(v′′pi

)}i∈I
−−−−−−−−→ 〈(`′1,v′1)/b1, . . . ,(`

′
n,v
′
n)/bn〉

For each i ∈ I, vpi above denotes the valuation vi restricted to variables of Vpi . The rule expresses that
S can execute an interaction a ∈ Γ enabled in state ((`1,v1), . . . , (`n,vn)), iff (1) for each pi ∈ Pa, the
corresponding component instance bi can execute a transition labeled by pi, and (2) the guard Ga of the
interaction holds on the current valuation vpi of exported variables on ports in a. Execution of a triggers
first the data transfer function Fa which modifies exported variables Vpi . The new values obtained, encoded
in the valuation v′′pi

, are then used by the components’ transitions. The states of components that do not
participate in the interaction remain unchanged.

Example 3.2 Figure 4 (right) illustrates a system obtained by composing six bi instances with six out in
interactions in a ring structure. It shows a binary interaction between two ports out, in, having guard true
and data transfer u := v. That is, whenever the interaction is executed, the data is transferred from the out
port to the in port.

4 Motifs for Dynamic Architectures
Motifs are dynamic structures of interacting components. Their structure is expressed as a combination
of three concepts namely, behavior, map and deployment. The behavior consists of a set of components.
The map is an underlying logical structure (backbone) used to organize the interaction of components.
The deployment provides the association between the components and the map. The components within
a motif run in parallel and synchronize using multiparty interactions. The set of multiparty interactions
is defined by interaction rules evaluated on the structure of the motif. Finally, the motif structure is also
evolving. Any of the three layers can be modified i.e., components can be added/removed to/from the
motif, the map and/or the deployment can change. The motif evolution is expressed using reconfiguration
rules, which evaluate and update the motif structure accordingly. The following section introduce formally
all the motif-related concepts.

6/19 Verimag Research Report no TR-2018-3

DR-BIP Rim El Ballouli, Saddek Bensalem, Marius Bozga, Joseph Sifakis

4.1 Maps and deployments
Maps and deployments are abstract concepts used to organize the motifs. Maps denote arbitrary dynamic
collections of inter-connected nodes (positions). They are defined as particular instances of generic map
types Ht characterized by

• an underlying domain N(Ht) of nodes

• a set of primitives Ω(Ht) to update/access the map content

• a logic L(Ht) to express constraints on the map content

We use maps as dynamic data structures (objects). For any primitive op ∈ Ω(Ht) we will use the dotted
notation H.op(· · ·) to denote the update and/or access to the map H according to op. Moreover, for any
ψ ∈ L(Ht) we will use H |= ψ to denote that the constraint ψ is satisfied on H.

Example 4.1 Maps can be graphs (V,E) where vertices V ⊂ N denote the position (here assumed to be
natural numbers) and edges E ⊆ V ×V expressing the connectivity between these positions. Such maps
can be manipulated explicitly using primitives such as addVertex, remVertex, addEdge, remEdge.
Constraints might include predicates such as edge constraints · −→ ·, path constraints · −→∗ ·), etc, with an
usual meaning.

Example 4.2 For the "Ring" example, the map is restricted to a cyclic graph. In this case, we consider
specific primitives initialize, add, remove to respectively initialize, extend by one new position and remove
one position from the map. Also, we consider the predicate · 7→ · to denote the edge relations.

Deployments are mappings of a set B of components instances to the nodes of a map H, formally
D : B→ dom(H)⊥.

As for maps, we use deployments as dynamic data structures (objects). We consider a set of primitives
Ω(Dt) to update and/or access the deployment content as well as a logic L(Dt) to express constraints on
the deployment.

Practically, both maps and deployments are implemented as dynamic collections of objects, with spe-
cific interfaces, in a similar way to standard collections libraries available for regular programming lan-
guages (Java, C++, Python, etc).

4.2 Motif types
Definition 4.1 (motif type) A motif type Mt is a tuple ((B,H ,D), I R , R R) where:

• the triple (B,H ,D) are motif meta-variables used to maintain respectively the set of component
instances, the support map and the deployment of component instances to the map,

• I R is a set of motif interaction rules of the form (Z, Ψ, PI , GI , FI) where Z is a set of rule parameters
(context), Ψ is a rule constraint, and (PI ,GI ,FI) is the interaction specification, namely the set of
ports, the guard and the data transfer.

• R R is a set of motif reconfiguration rules of the form (Z, Ψ, GR, ZL, AR) where as before Z is a set
of rule parameters (context), Ψ is a rule constraint, GR is a reconfiguration guard, ZL are local rule
parameters, and AR is a (sequence of) reconfiguration action(s).

The motif configuration/content is defined by a consistent valuation of meta-variables B , H , D respectively
as B, a set of components instances, H a map, and D : B→ dom(H)⊥ a deployment.

Example 4.3 Figure 5 illustrates the definition of the motif type for the "Ring" example. The motif con-
figuration is defined by the set of six component instances B = {bi}i=1,6, the map H defined as the cyclic
graph of six nodes {ni}i=1,6, and the deployment D = {bi 7→ ni}i=1,6. The motif type contains one inter-
action rule denoted as sync-inout and three reconfiguration rules denoted respectively do-init, do-insert
and do-remove. The meaning of the rules is explained in the next subsections.

Verimag Research Report no TR-2018-3 7/19

Rim El Ballouli, Saddek Bensalem, Marius Bozga, Joseph Sifakis DR-BIP

b2

b4
b1

b3

b6 b5

n1
n6 n5

n4

n3n2

B

D

H

sync-inout(x1: C, x2 : C) ≡
when D(x1) 7→ D(x2)
sync x1.out x2.in / true→ x2.u := x1.v

do-init() ≡ when B = /0

do H.empty(), x1 := B.create(C, busy),
n1 := H.add(), D(x1) := n1
x2 := B.create(C, idle),
n2 := H.add(), D(x2) := n2

do-insert() ≡
do x := B.create(C, idle),

n := H.add(), D(x) := n
do-remove(x : C) ≡ when |B| ≥ 3 ∧ x.idle

do n := D(x), B.delete(x), H.remove(n)

Figure 5: The "Ring" motif type

The motif behavior is defined by interaction and reconfiguration rules. Rule parameters Z include
symbols denoting (sets of) component instances (resp. map nodes) and interpreted as (subsets) elements of
B (resp. dom(H)). Rule constraints Ψ are boolean combinations of equality, map, deployment constraints
built using parameters in Z and meta-variables B , H , D:

Ψ ::= ψ
0 | ψH | ψD | Ψ1∧Ψ2 | ¬Ψ

In the above, Ψ0 denotes any constraint using equality and set operators, ΨH denotes a logical constraint
on the map (conforming to the map logic L(Ht))) and ΨH denotes a logical constraint on the deployment
(conforming to the deployment logic L(Dt))).

For fixed motif content in terms of B,H,D, for given interpretation ζ of parameters, the constraint
satisfaction B,H,D,ζ |= Ψ is defined recursively on the structure of Ψ as follows:

B,H,D,ζ |= ψ0 iff ζ∪ [B/B,H/H ,D/D] |= ψ0

B,H,D,ζ |= ψH iff H,ζ∪ [B/B,D/D] |= ψH

conform to L(Ht)

B,H,D,ζ |= ψD iff D,ζ∪ [B/B,H/H] |= ψD

conform to L(Dt)
B,H,D,ζ |= Ψ1∧Ψ2 iff B,H,D,ζ |= Ψ1 and B,H,D,ζ |= Ψ2

B,H,D,ζ |= ¬Ψ iff B,H,D,ζ 6|= Ψ

That means, equality constraints are evaluated in the usual way on the context ζ extended with the current
valuation for meta-variables B , H , D . Map constraints are evaluated as defined by their underlying logic
L(Ht)on the map H and the context ζ extended with the valuation for meta-variables B , D . The evaluation
of deployment constraints is similar.

4.3 Interactions rules
Interaction rules are used to define multiparty interactions on the components instances within the motif.
The syntax of the interaction specification part is presented below:

ports: PI ::= x.p | X .p | PI PI
guard: GI ::= t | eI | GI ∧GI | ¬GI
action: FI ::= ε | x.v := eI | X .v := eI | aI ,aI

expression: eI ::= x.v | X .v | op(eI , · · · ,eI)

The symbols x, X are rule parameters denoting respectively component instances or sets of component in-
stances. Moreover, p is a component port, v is a component (exported) data variable and op is an operation
on data values. A rule is syntactically well-formed iff all parameter names used in expressions (part of the

8/19 Verimag Research Report no TR-2018-3

DR-BIP Rim El Ballouli, Saddek Bensalem, Marius Bozga, Joseph Sifakis

guard or data transfer) are also used as part of the interacting port specification. That is, the guard and data
transfer involve only component data participating in the interaction.

For given B, H and D in a motif, the set of multiparty interactions Γ(r) corresponding to an interaction
rule r = (Z,Ψ,PI ,GI ,FI) is defined as:

Γ(r) =

(Pa,Ga,Fa)
B,H,D,ζ |= Ψ

Pa = PI(ζ), Ga = GI(ζ), Fa = FI(ζ)
(Pa,Ga,Fa) well formed

The triple Pa, Ga, Fa is considered well formed iff it conforms to the definition of multiparty interactions,
namely if Pa does not contain replicated or multiple ports of the same components, as well as if Ga and Fa
use and update only variables exported on ports in Pa.

Example 4.4 The ring motif illustrated in Figure 5 has a unique interaction rule denoted sync-inout. The
rule connects the out port of a component x1 to the in port of the component x2 deployed next to it on the
map. The resulting interactions are depicted in the right part of Figure 4.

4.4 Reconfiguration rules

Reconfiguration rules are used to define actions impacting the content/organization of the motif. These
actions essentially include creating/deleting component instances, updating the map structure and/or the
deployment of component instances to the map. They are expressed as specific updates on the correspond-
ing B , H , D meta-variables. For enhanced expressiveness, reconfiguration rules might use additional local
parameters (that is, the local context ZL) with arbitrary types (data, component instances, map nodes, etc).
The local context is updated using standard assignments. The syntax of reconfiguration guards and actions
is presented below:

guard: GR ::= GI
action: AR ::= ε | x := B.create(Bt ,q) | B.delete(x) |

H .op1(...) | D.op2(...) | z := e | AR,AR

The symbol x denotes a rule parameter interpreted as component instance, z is an arbitrary local rule
parameter and e is an arbitrary expression built on parameters and available operators. The intuitive mean-
ing of reconfiguration actions is as follows. The action ε denotes an empty action with no effect. The action
x := B.create(Bt ,q) denotes the creation of a new component instance of type Bt . The newly created in-
stance is x and is added to the set of components instances B. The parameter q denotes the initial state for
the instance. The action B.delete(x) denotes the deletion of the component x from the motif, that is, the
removal of the component instance x from the set B. The action H .op1(...) denotes an update of the map
according to an operator op1 from Ω(Ht) and specific parameters. Similarly, the action D.op2(...) denotes
denotes an update of the deployment according to an operator op2 from Ω(Dt). Finally, the action z := e
denotes an update of a rule parameter according to the expression e.

Formally, the semantics [[AR]] of a reconfiguration action AR is defined as a function1 updating the motif

1up to the choice of fresh component instance

Verimag Research Report no TR-2018-3 9/19

Rim El Ballouli, Saddek Bensalem, Marius Bozga, Joseph Sifakis DR-BIP

content (B, H, D), the set of component configurations (b) and the parameter context (ζ):

[[ε]](B,H,D,b,ζ) = (B,H,D,b,ζ)
[[x := B.create(Bt ,q)]](B,H,D,b,ζ) =

= (B∪{b},H,D[⊥/b],b[q/b],ζ[b/x])
where b = (Bt ,k) fresh

[[B.delete(x)]](B,H,D,b,ζ) = (B\{b},H,D|B\{b},b,ζ)
where b = ζ(x) ∈ B

[[H .op1(...)]](B,H,D,b,ζ) = (U,H ′,D|H ′ ,b,ζ)
where H ′ = H.op1(...)

[[D.op2(...)]](B,H,D,b,ζ) = (B,H,D′,b,ζ)
where D′ = D.op2(...)

[[z := e]](B,H,D,b,ζ) =
= (B,H,D,b,ζ[z 7→ e(ζ∪ (B/B,H/H ,D/D))])

[[AR1,AR2]](B,H,D,b,ζ) = ([[AR2]]◦ [[AR1]])(B,H,D,b,ζ)

These rules formalize the intuitive description of the reconfiguration actions. Their interpretation is straight-
forward, except maybe few subtle inter-dependencies of updates for component deletion and map update.
First, the deletion of a component instance removes it from the component set B and therefore restricts the
deployment domain. Nevertheless, the component configuration is not removed from the set of configura-
tions b because components might be shared among several motifs. Second, a map update might have an
impact on the deployment, therefore, the deployment co-domain must be restricted accordingly (e.g., the
deployment of component instances mapped to positions removed from the map will be undefined).

Example 4.5 The ring motif illustrated in Figure 5 contains three reconfiguration rules. The rule do-init
initializes the motif with a ring of two components. The rule do-create creates a new component in the
ring. The rule do-remove(x) removes an idle component x from the ring, provided it contains more than 3
components.

4.5 Operational semantics
A motif evolves by performing two categories of steps, namely interactions and reconfigurations. Interac-
tions are defined from interaction rules and are executed by motif components. Reconfiguration are defined
by reconfiguration rules.

Formally, the semantics of a motif type Mt = ((B,H ,D),I R ,R R) is defined as the labeled transition
system [[Mt]] = (Q,Σ,−→) where

• the set of states Q correspond to motif configurations B, H, D consistently extended with configura-
tions for all component instances b = 〈b 7→ q | b ∈ B,q ∈ states(b)〉,

• the set of labels Σ correspond to valid interactions α constructed on components and reconfiguration
actions ρ,

• the set of transitions −→=−→
I
∪ −→

R
correspond to execution of respectively multiparty interactions as

defined by interaction rules (−→
I

) and reconfiguration actions, as defined by reconfiguration rules (−→
R

),

formally

(MOT-I)
Γ = ∪r∈I R Γ(r) Γ(B) : b α−→ b′

Mt : (B,H,D,b) α−→
I
(B,H,D,b′)

(MOT-R)

(Z,Ψ,GR,ZL,AR) ∈ R R
B,H,D,ζ |= Ψ GR(ζ)(b) = true
[[AR]](B,H,D,b,ζ) = (B′,H ′,D′,b′,ζ′)

Mt : (B,H,D,b) ρ−→
R

(B′,H ′,D′,b′)

The rule (MOT-I) says that the motif executes a multiparty interaction α and change the configurations
of components instances from b to b′ iff (1) α belongs to the set of valid interactions Γ defined from the
interaction rules and (2) a valid step labeled by α is indeed allowed between b and b′ according to the

10/19 Verimag Research Report no TR-2018-3

DR-BIP Rim El Ballouli, Saddek Bensalem, Marius Bozga, Joseph Sifakis

component-based semantics. The rule (MOT-R) says that the motif executes a reconfiguration if (1) some
reconfiguration rule is enabled at the current motif configuration, when both its constraint Ψ and guard GR
are satisfied and (2) the current and next motif configuration are related according to the semantics of the
action AR.

The distinction between interaction and reconfiguration steps ensures separation of concerns for exe-
cution within a motif. On one hand, execution of interactions does not have any impact on the structure
of the motif, but only on component states. That is, the motif structure is fully preserved. On the other
hand, while the execution of reconfiguration steps has an impact on the motif structure, it does not change
component states. That is, reconfiguration may change the set of components instances, the map and the
deployment, while it leaves unchanged components states. Yet, new instances can be created and added to
the set.

5 Motif-based Systems

We consider systems defined as collections of motifs sharing a set of components. In such systems, every
motif can evolve independently of the others, depending on its internal structure and associated rules.
In addition, several motifs can also synchronize altogether and perform a joint reconfiguration over the
system.

Two ways of coordination between motifs are therefore possible: implicit coordination, by means of
shared components and explicit coordination, by means of inter-motif reconfiguration rules.

This section introduces formally inter-motif reconfiguration and defines the operational semantics of
motif-based systems. We consider a finite set of motif types. A motif instance m is a couple (Mt ,k) for
some k ∈ N.

5.1 Inter-motif reconfiguration rules

The rules for inter-motif reconfiguration allow joint reconfiguration of several motif instances. In addi-
tion to the application of local reconfiguration actions, these rules allow two additional types of actions,
respectively creation and deletion of motif instances, and exchanging component instances between motifs.

Inter-motif reconfiguration rules are defined as tuples (Z?, Ψ?, G?, Z?
L, A?

R) similar to local reconfigu-
ration rules. The set of rule parameter Z? might include additional symbols denoting motif instances (y).
The constraints Ψ∗ are defined by the grammar:

Ψ
∗ ::= Ψ

0∗ | 〈y : Ψ〉 | Ψ∗1∧Ψ
∗
2 | ¬Ψ

∗

In the above, Ψ0∗ denotes some basic equality constraint expressed on context parameters, 〈y : Ψ〉 denotes
a local constraint Ψ to be checked in the context of the motif instance y.

These constraints are evaluated on motif configurations extended with context parameters. Motif con-
figurations are tuples (M,m) where M is a set of motif instances and m= 〈m 7→ (B,H,D) |m∈M〉 provides
the structure of these instances in terms of behavior, map and deployment. The constraints are evaluated as
follows:

M,m,ζ |= Ψ0∗ iff ζm |= Ψ0∗

M,m,ζ |= 〈y : Ψ〉 iff B,H,D,ζm |= Ψ

where m 7→ (B,H,D) ∈m and ζ(y) = m
M,m,ζ |= Ψ∗1∧Ψ∗2 iff M,m,ζ |= Ψ∗1 and M,m,ζ |= Ψ∗2

M,m,ζ |= ¬Ψ∗ iff M,m,ζ 6|= Ψ∗

In the above, ζm denotes an extended context, including valuations for all meta-variables B , H , D accessed
using parameters y of ζ:

ζm = ζ ∪ 〈y.B 7→ B,y.H 7→ H,y.D 7→ D |
ζ(y) = m, m 7→ (B,H,D) ∈m〉

Verimag Research Report no TR-2018-3 11/19

Rim El Ballouli, Saddek Bensalem, Marius Bozga, Joseph Sifakis DR-BIP

Inter-motif reconfiguration guards and actions are defined by:

guard: G?
R ::= GI

action: A?
R ::= ε | y := M .create(Mt ,(eB,eH ,eD)) |

M .delete(y) | y.B.migrate(x) |
〈y : AR〉 | z := e | A?

R,A
?
R

That is, guards are the same as for interaction rules. The action y :=M .create(Mt ,(eB,eH ,eD)) denotes the
creation of a new motif instance y of type Mt , with initial structure defined by the valuation of eB,eH ,eD.
The action M .delete(y) denotes the deletion of the motif instance y, that is, its removal from the set of
motif instances. The action y.B.migrate(x) denotes the insertion of an existing component instance x within
the set of component instances of the motif y. Finally, the action 〈y : AR〉 denotes any local reconfiguration
action to be executed in the context of the motif instance y.

Formally, the semantics [[A∗R]] of inter-motif reconfiguration actions is defined as a function updating
motif configurations (M,m), component configurations (B,b) and context parameters (ζ), as follows:

[[y := M .create(Mt ,(eB,eH ,eD))]](M,m,B,b,ζ) =
= (M∪{m},m′,B,b,ζ[m/y])

where m = (Mt ,k) fresh,m′ = m∪〈m 7→ (eB,eH ,eD)(ζm)〉
[[M .delete(y)]](M,m,B,b,ζ) = (M \{m},m|M\{m},B,b,ζ)

where m = ζ(y) ∈M
[[y.B.migrate(x)]](M,m,B,b,ζ) = (M,m′,B,b,ζ)

where m = ζ(y) ∈M, m 7→ (B1,H,D) ∈m,ζ(x) 7→ b ∈ B
m′ = m[m 7→ (B1∪{b},H,D[b 7→ ⊥])]

[[〈y : AR〉]](M,m,B,b,ζ) = (M,m′,B′,b′,ζ′)
where m = ζ(y) ∈M, m 7→ (B1,H,D) ∈m,
[[AR]](B1,H,D,b,ζ) = (B′1,H

′,D′,b′,ζ′)
m′ = m[m 7→ (B′1,H

′,D′)],B′ = B∪B′1
[[z := e]](M,m,B,b,ζ) = (M,m,B,b,ζ[z 7→ ζm(e)])
[[A∗R1,A

∗
R2]](M,m,B,b,ζ) = ([[A∗R2]]◦ [[A∗R1]])(M,m,B,b,ζ)

These rules formalize the intuitive description provided earlier. We shall notice few inter-dependencies
on various updates. In the case of motif deletion, the motif instance and its configuration are removed
from respectively M and m, however, this action has no effect on the set of component instances and
their configurations B,b. In the case of component migration, component configurations b remain also
unchanged, that is, the component configuration is not replicated but gets shared among different motif
instances.

Example 5.1 Consider the inter-motif reconfiguration rule:

do-merge(y1, y2 : Ring) ≡
when y1.B ∩ y2.B = /0 and |y1.B| + y2.B| ≤ 100
do B = y1.B ∪ y2.B, D = y1.D ∪ y2.D, H = merge-cycle(y1.H, y2.H),

M.create(Ring, (B, H, D)), M.delete(y1), M.delete(y2)

The rule allows merging two Ring motif instances y1, y2 into a single one, whenever their sets of component
instances are disjoint and altogether their number does not exceed 100. The new motif is created by taking
the union of component instances, the union of deployments and the merging of the two underlying cyclic
maps. The original motifs y1 and y2 are deleted.

5.2 Operational semantics
A motif-based system S is defined as a tuple ((Bt

i)i,(Mt
j) j,R R ∗)) consisting of a set of component types

(Bt
i)i, a set of motif types (Mt

j) j and a set of inter-motif reconfiguration rules R R ∗.
A motif-based system evolves either by executing interactions and/or reconfiguration within any of the

motifs, or by executing some inter-motif reconfiguration. Formally, the semantics of motif-based systems
S is defined as the labeled transition system [[S]] = (Q,Σ,−→) where:

12/19 Verimag Research Report no TR-2018-3

DR-BIP Rim El Ballouli, Saddek Bensalem, Marius Bozga, Joseph Sifakis

• the set Q of system configuration contains tuples (M,m,B,b) where M = {m1,m2, ...} is a set of
motif instances, m = 〈m j 7→ (B j,H j,D j) | m j ∈M, B j ⊆ B〉 are the motif configurations, B is the set
of components instances, and b = 〈b 7→ q | b ∈ B,q ∈ states(b)〉 are the component configurations,

• the set of labels Σ correspond to valid interactions α on component instances, local reconfiguration
actions ρ and inter-motif reconfiguration actions ρ∗,

• the set of transitions −→=−→
I
∪ −→

R
∪ −→

R∗
correspond to execution of respectively multiparty interac-

tions as defined by interaction rules (−→
I

), local reconfiguration as defined by local reconfiguration

rules (−→
R

) and global reconfiguration actions (−→
R?

), formally

(MBS-I)

m j 7→ (B j,H j,D j) ∈m Mt
j : (B j,H j,D j,b j)

α−→
I
(B j,H j,D j,b′j)

b′ = b[b′j/B j]

S : (M,m,B,b) α−→
I
(M,m,B,b′)

(MBS-R1)

m j 7→ (B j,H j,D j) ∈m Mt
j : (B j,H j,D j,b j)

ρ−→
R

(B′j,H
′
j,D
′
j,b
′
j)

m′ = m[(B′j,H
′
j,D
′
j)/m j]

B′ = B∪B′j b′ = b[b′j/B′j]

S : (M,m,B,b) ρ−→
R

(M,m′,B′,b′)

(MBS-R2)

(Z∗,Ψ∗,G∗,Z∗L,A∗R) ∈ R R ∗ M,m,ζ |= Ψ
∗ G∗(ζ)(b) = true

[[A∗R]](M,m,B,b,ζ) = (M′,m′,B′,b′,ζ′)

S : (M,m,B,b) ρ∗−→
R?

(M′,m′,B′,b′)

Rules (MBS-I) and (MBS-R1) lift the transitions (steps) allowed within the motifs at the level of the system,
respectively for interactions and reconfigurations. The rule (MBS-R2) handles the execution of inter-motif
reconfiguration. These actions are allowed if (1) some inter-motif reconfiguration rule is enabled and (2)
the current and next system configurations are related by the semantics of A∗R.

6 Examples

The following examples illustrate the expressiveness of DR-BIP.

6.1 Fault-Tolerant Servers

This example illustrates a model of a fault-tolerant server inspired by [1]. A set of active servers strongly
synchronize to deliver some functionality. Any active server may crash and consequently quit the active
set. Any crashed server may be repaired and join back the active set.

For this example, the map contains two positions for respectively, active and inactive servers. The
connectivity is not relevant. The deployment assigns servers to one of the two positions.

Interactions are defined by three rules. The rule sync-active synchronizes all the active servers deployed
on the active position. The rule sync-fail models failures and the rule sync-join models repairs interactions,
for every server. Reconfiguration rules are used to move the servers between the active and inactive position
of the map, according to their configuration. Rule do-leave changes the deployment of a failed server from
from active to inactive. Conversely, rule do-join changes the deployment of a repaired server from inactive
to active.

Verimag Research Report no TR-2018-3 13/19

Rim El Ballouli, Saddek Bensalem, Marius Bozga, Joseph Sifakis DR-BIP

s1

(inactive)(active)

s2 s3 s4 s5

exec exec exec
fail repair

repair

exec

exec

fail
repairfail

up

down

sync-active(X : S) ≡ when X = D−1(active) sync X .exec
sync-fail(x : S) ≡ when D(x) = active sync x.fail
sync-join(x : S) ≡ when D(x) = inactive sync x.join

do-init() ≡ do x := B.create(S); D(x) := active; ...
do-fail(x : S) ≡ when x.down do D(x) := inactive
do-join(x : S) ≡ when x.up do D(x) := active

Figure 6: Fault-tolerant server motif

6.2 Task Migration on Multicore Architectures
Consider task management for a multicore platform. Usually, tasks running on a multicore shall be evenly
distributed amongst the cores so as to optimize the performance of the overall system. Dynamic task migra-
tion can be therefore seen as the result of a load balancing algorithm that aims at continuously improving
the distribution of tasks amongst the cores.

To model this example we introduce two types of atomic components, namely Task (T) and Core
(C). Multiple cores are interconnected together in a Processor (P) motif type. The interconnecting topol-
ogy reflects the platform architecture e.g., a 2× 2 grid in our example obtained using a similar grid-like
map. Within this motif, any two adjacent cores may interact and exchange specific data according to the
interaction rule:

sync-data-exchange(x1 : C, x2 : C) ≡
when D(x1) 7→ D(x2) ∧ x1 6= x2 sync x1.exchange x2.exchange

Moreover, we use an additional CoreTask (CT) motif type to represent each core with its assigned tasks.
The supporting map of CT is composed of two positions, one deploying the core and the other deploying
the tasks assigned to it. Within this motif we model the execution of a task by the interaction rule:

sync-execute(x1 : C, x2 : T) ≡ sync x1.work x2.execute

The migration of a task from one core to another connected core is realized using an inter-motif reconfig-
uration rule which involves 3 distinct motifs. A task t migrates from motif y1 (of type CT) to motif y2 (of
type CT) if the core x1 of y1 is connected to the core x2 of y2 (according to the processor motif P) and if
the number of tasks in y1 exceeds the number of tasks in y2 by some constant K:

do-migrate(y1 : CT, y2 : CT, y3 : P, x1 : C, x2 : C, t : T) ≡
when 〈 y1 : x1 ∈ B 〉 ∧ 〈 y2 : x2 ∈ B 〉 ∧ 〈 y3 : D(x1) 7→ D(x2) 〉 ∧

|y1.B| > |y2.B| + K ∧ t ∈ y1.B
do y2.migrate(t), y1.delete(t)

Figure 7 illustrates the effect of migration rule applied for several cores and tasks - task t2, t4 migrated from
core c1 to respectively core c4, c2, task t6 migrated from core c3 to core c4.

6.3 Automated Highway
In this example we illustrate the modeling of an automated highway inspired by [5]. In an automated
highway cars can form form platoons to increase the capacity of roads. A platoon is a group of cars that
are closely following a leader car in the same lane. Platoons may merge or split. A merge may take place
if two platoons are close enough. A platoon may split when a car needs to leave the platoon in order to
perform some specific maneuver.

14/19 Verimag Research Report no TR-2018-3

DR-BIP Rim El Ballouli, Saddek Bensalem, Marius Bozga, Joseph Sifakis

c1

c4 c3

c2

P

CT

CT

t1

t7

t4

t2

t3

t6 t5

CT

CT

c1

c4 c3

c2

P

CT

CT

t1 t2 t3 t4

t5 t6 t7

CT

CT

Figure 7: Inter-motif reconfiguration for task migration

We define an atomic component type, Car (C) to model the behavior of a car. Each car maintains its
position pos. A platoon (P) motif is composed of a group of cars. The map of a platoon motif is an instance
of linked list type. We consider primitives head, and tail which point to the position of the leader and tail
of a platoon namely, the beginning and the end of the list. In addition, we consider the primitive append
which appends and links two maps of type linked list together. finally, the primitive sublist and length
creates a sublist from a linked list and returns the length of the list respectively. The deployment assigns
the cars in a bijective manner. We introduce the primitive restrict which retains only the deployment of
elements in a given map.

Interaction within a platoon motif is defined by the rule sync-move, which synchronizes the movement
of all the cars in a platoon by connecting all the move ports of all cars in the motif. The reconfiguration
rules, do-merge, and do-split handle the merging and the splitting of platoons respectively.

do-merge(y1, y2 : P, x1, x2 : C) ≡
when 〈y1 : D(x1) = H.tail〉 ∧ 〈y2 : D(x2) = H.head〉 ∧ |x1.pos −x2.pos| < K
do B := y1.B ∪ y2.B, H := append(y2.H, y1.H), D := y1.D ∪ y2.D,

M.create(P, (B, H, D)), M.delete(y1), M.delete(y2)
do-split(y : P, x : C) ≡

do 〈y : H1 := H.sublist(0, D(x)), B1 := D−1(H1), D1 := D.restrict(H1),
H2 := H.sublist(D(x), H.length), B2 := D−1(H2), D2 := D.restrict(H2) 〉,
M.create(P, (B1, H1, D1)), M.create(P, (B2, H2, D2)), M.delete(y)

The effect of the split rule is illustrated in Figure 8. An initial 8-car platoon is split into two other platoons
as requested by a leave maneuver of car c4.

c1 c2 c4

tail

move

c5 c6 c8

head

c1 c2 c4

tail

move

c5 c6 c8

tail head

move

head

c3

c3 c7

c7

split

Figure 8: Split reconfiguration for platoons

7 Implementation
Our prototype implementation of DR-BIP includes a concrete language to describe motif-based systems
and an interpreter (implemented in JAVA) for the operational semantics. The language provides syntactic

Verimag Research Report no TR-2018-3 15/19

Rim El Ballouli, Saddek Bensalem, Marius Bozga, Joseph Sifakis DR-BIP

constructs for describing component and motif types, with some restrictions on the maps and deployments
allowed2. The interpreter allows the computation of enabled interactions and (inter-motif)reconfiguration
rules on system configurations, and their execution according to predefined policies (interactive, random,
etc).

500

1,000

1,500

av
g

#c
om

po
ne

nt
in

st
an

ce

Fault-Tolerant Servers

500

1,000

Task Migration

100

200

Automated Highway

0 50 100 150 200

500

1,000

1,500

av
g

#e
na

bl
ed

st
ep

0 50 100 150 200
0

200

400

600

moti f count

0 50 100 150 200
0

200

400

600

800

0.4

0.6

10

20

5

10

15

20

ex
ec

ut
io

n
ti

m
e
(s

ec
)

0 50 100 150 200
480

500

520

0 50 100 150 200

200

400

600

800

0 50 100 150 200

200

400

600

800

#e
xe

cu
te

d
st

ep

average enabled interaction count average enabled reconfiguration count
executed interaction count executed reconfiguration count

total execution time (seconds) average component instance count

Figure 9: DR-BIP performance

Figure 9 provides measurements of the coordination overhead (at the top, execution time of interactions
and reconfigurations, and average component instance count) and system’s complexity (at the bottom,
initial motif instance count/ average enabled interactions and reconfiguration count) for examples presented
in section 6. Each example is modeled using the DR-BIP language and simulated for 1000 random steps
by the interpreter. At each step, the interpreter executes randomly either an interaction or a reconfiguration
(either within a motif or an inter-motif reconfiguration). To evaluate scalability, we measured the execution
time for each example while varying the initial motif instance count between 5 to 190. Each motif instance
is initialized with 10 component instances, hence we evaluated the performance on systems of initial size
upto 1,900 components. The execution time varied between 0.2 and 23 seconds with the least execution
times found in the fault-tolerant example which does not have inter-motif reconfigurations. In contrast,
the multicore and automated highway examples include inter-motif reconfiguration rules whose evaluation
causes the most time overhead. The above highlights the effectiveness of the prototype in handling systems
of moderate size at an acceptable cost.

Regarding system’s complexity, we count the average number of enabled steps including interactions
and reconfigurations along with the total count of executed steps. On one hand, in the three examples,
the average number of enabled reconfigurations is greater than the average of enabled interactions. For
instance, in the fault-tolerant servers example, any server can fail/join at any time and this contributes to
the high number of reconfigurations enabled. Similarly, any car in a platoon can request a split in the
automated highway example and any task can migrate between cores in the multicore example. On the
other hand, note that the number of executed steps is balanced between interactions and reconfigurations

2maps are restricted to linear graphs

16/19 Verimag Research Report no TR-2018-3

DR-BIP Rim El Ballouli, Saddek Bensalem, Marius Bozga, Joseph Sifakis

in the fault-tolerant example. However, for the two other examples, the number of executed interactions is
greater than the number of reconfigurations due to the fact that the reconfigurations are enabled only under
specific conditions: platoons can merge only when they are close enough and tasks can migrate between
cores only when there is a load imbalance.

8 Discussion

The DR-BIP framework for programming dynamic reconfigurable systems has been designed to encom-
pass three complementary structuring aspects of component-based coordination. Architecture motifs are
environments where live instances of components of predefined types subject to specific parametric inter-
action and reconfiguration rules. Reconfiguration within a motif supports in addition to creation/deletion of
components, the dynamic change of maps and the mobility of components. Maps are a common reference
structure that proves to be very useful for both the parametrization of interactions and the mobility of com-
ponents. It is important to note that a map can have either a purely logical interpretation, or a geographical
one or a combination of both. For instance, a purely logical map is needed to describe the functional or-
ganization of the coordination in a ring or a pipeline. To describe mobility rules of cars on a highway a
map is needed representing at some abstraction level, a geographic map of its external environment e.g. the
structure of the highway with fixed and mobile obstacles. Finally a map with both logical and geographic
connectivity relations may be used for cars on a highway to express their coordination rules. These depend
not only on the physical environment but also on the communication features available.

Structuring a system as a set of loosely coordinated motifs confers the advantage that when components
are created or migrate, we do not need to specify associated coordination rules; depending on their type,
components are subject to predefined coordination rules of motifs.

The proposed framework is sufficiently expressive and general to allow a complete comparison of
existing types of coordination. A basic distinction is between local and shared memory coordination. In
DR-BIP, components have disjoint state spaces so they can directly model local memory systems such as
actors, data flow systems and distributed systems of any kind. Shared memory systems allow only local
interactions between two types of components: objects and threads. Objects can be modeled as non-mobile
components that form the shared memory structure. Threads are mobile components which represent the
flow of computation and ultimately determine its degree of parallelism. It can be shown that any local
memory interacting system can be simulated by a thread-based system.

Clearly these results are too recent and there are many open avenues to be explored. One is how we
make sure that the modeled systems meet given properties. The proposed structuring principle allows a
separation of concerns between interaction and reconfiguration aspects. To verify correctness of the para-
metric interacting system of a motif we extend the approach adopted for static BIP: assuming that dynamic
connectors correctly enforce the sought coordination, it remains to show that restricting the behavior of
deadlock-free components does not introduce deadlocks. We are currently studying an extension of the D-
Finder approach [4] for parametric systems which requires the solution of parametric Boolean equations.

To verify the correctness of reconfiguration operations a different approach is taken. If we have already
proven correctness of the parametric interacting system of a motif, it is enough to prove that its architecture
style is preserved by statements changing the number of components, move components and modify maps
and their connectivity. In other words the architecture style is an invariant of the coordination structure.
This can be proven by structural induction. The architecture style of a motif can be characterized by a
formula of configuration logic φ [16]. We have to prove that if a model m of the system satisfies φ then
after the application of a reconfiguration operation the resulting model m′ satisfies φ.

Finally the language and the supporting tools should be evaluated against real-life applications. These
include mobile systems such as autonomous transport systems, swarm robotics, mobile telecommunication
systems as well as various routing algorithms. This is the object of work in the framework of an ongoing
European project [11].

Verimag Research Report no TR-2018-3 17/19

Rim El Ballouli, Saddek Bensalem, Marius Bozga, Joseph Sifakis DR-BIP

References
[1] Robert Allen, Remi Douence, and David Garlan. Specifying and analyzing dynamic software archi-

tectures. In International Conference on Fundamental Approaches to Software Engineering, pages
21–37. Springer, 1998. 1, 6.1

[2] Ananda Basu, Marius Bozga, and Joseph Sifakis. Modeling heterogeneous real-time systems in BIP.
In SEFM’06 Proceedings, pages 3–12. IEEE Computer Society Press, 2006. 1, 3

[3] Ananda Basu, Saddek Bensalem, Marius Bozga, Jacques Combaz, Mohamad Jaber, Thanh-Hung
Nguyen, and Joseph Sifakis. Rigorous component-based system design using the BIP framework.
IEEE Software, 28(3):41–48, 2011. 1, 3

[4] Saddek Bensalem, Marius Bozga, Thanh-Hung Nguyen, and Joseph Sifakis. Compositional verifica-
tion for component-based systems and application. IET Software, 4(3):181–193, 2010. 8

[5] Carl Bergenhem. Approaches for facilities layer protocols for platooning. In Intelligent Transporta-
tion Systems (ITSC), 2015 IEEE 18th International Conference on, pages 1989–1994. IEEE, 2015.
6.3

[6] Simon Bliudze and Joseph Sifakis. The algebra of connectors—structuring interaction in bip. IEEE
Transactions on Computers, 57(10):1315–1330, 2008. 1

[7] Marius Bozga, Mohamad Jaber, Nikolaos Maris, and Joseph Sifakis. Modeling dynamic architectures
using dy-bip. In International Conference on Software Composition, pages 1–16. Springer, 2012. 1

[8] Jeremy S Bradbury. Organizing definitions and formalisms for dynamic software architectures. Te-
chinical Report, 477, 2004. 1

[9] Arvid Butting, Robert Heim, Oliver Kautz, Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wort-
mann. A classification of dynamic reconfiguration in component and connector architecture descrip-
tion languages. In 4th International Workshop on Interplay of Model-Driven and Component-Based
Software Engineering (ModComp’17), 2017. 1

[10] Calos Canal, Ernesto Pimentel, and José M Troya. Specification and refinement of dynamic software
architectures. In Software Architecture, pages 107–125. Springer, 1999. 1

[11] CITADEL Consortium. Critical infrastructure protection using adaptive mils. http://www.
citadel-project.org/, 2016. H2020/IA-700665. 8

[12] Carlos E Cuesta, Pablo de la Fuente, and Manuel Barrio-Solárzano. Dynamic coordination architec-
ture through the use of reflection. In Proceedings of the 2001 ACM symposium on Applied computing,
pages 134–140. ACM, 2001. 1

[13] Rocco De Nicola, Michele Loreti, Rosario Pugliese, and Francesco Tiezzi. A formal approach to
autonomic systems programming: The SCEL language. TAAS, 9(2):7:1–7:29, 2014. 1

[14] David Garlan. Software architecture: A travelogue. In Future of Software Engineering (FOSE’14),
pages 29–39. ACM, 2014. 1

[15] Ivano Malavolta, Patricia Lago, Henry Muccini, Patrizio Pelliccione, and Antony Tang. What industry
needs from architectural languages: A survey. IEEE Transactions on Software Engineering, 39(6),
June 2006. 1

[16] Anastasia Mavridou, Eduard Baranov, Simon Bliudze, and Joseph Sifakis. Configuration logics:
Modeling architecture styles. J. Log. Algebr. Meth. Program., 86(1):2–29, 2017. 8

[17] Nenad Medvidovic, Eric M Dashofy, and Richard N Taylor. Moving architectural description from
under the technology lamppost. Information and Software Technology, 49(1):12–31, 2007. 1

18/19 Verimag Research Report no TR-2018-3

http://www.citadel-project.org/
http://www.citadel-project.org/

DR-BIP Rim El Ballouli, Saddek Bensalem, Marius Bozga, Joseph Sifakis

[18] Peyman Oreizy. Issues in modeling and analyzing dynamic software architectures. In Proceedings
of the International Workshop on the Role of Software Architecture in Testing and Analysis, pages
54–57. Citeseer, 1998.

[19] Antero Taivalsaari, Tommi Mikkonen, and Kari Systä. Liquid software manifesto: The era of multiple
device ownership and its implications for software architecture. In IEEE 38th Annual Computer
Software and Applications Conference (COMPSAC’14), 2014. 1

Verimag Research Report no TR-2018-3 19/19

	Introduction
	Design Principles
	Component-Based Systems
	Component types and instances
	Systems of components

	Motifs for Dynamic Architectures
	Maps and deployments
	Motif types
	Interactions rules
	Reconfiguration rules
	Operational semantics

	Motif-based Systems
	Inter-motif reconfiguration rules
	Operational semantics

	Examples
	Fault-Tolerant Servers
	Task Migration on Multicore Architectures
	Automated Highway

	Implementation
	Discussion

