
Formally Correct Monitors for
Hybrid Automata

Goran Frehse∗, Nikolaos Kekatos∗, Dejan Nickovic†

Verimag Research Report no

TR-2017-5

September 20, 2017

∗Verimag, University of Grenoble Alpes, Grenoble, France.
†Austrian Institute of Technology, Vienna, Austria.

Reports are downloadable at the following address
http://www-verimag.imag.fr

Unité Mixte de Recherche 5104 CNRS - Grenoble INP - UGA
Bâtiment IMAG
Université Grenoble Alpes
700, avenue centrale
38401 Saint Martin d’Hères
France
tel : +33 4 57 42 22 42
fax : +33 4 57 42 22 22
http://www-verimag.imag.fr/

http://www-verimag.imag.fr

Formally Correct Monitors for Hybrid Automata

Goran Frehse∗, Nikolaos Kekatos∗, Dejan Nickovic†

September 20, 2017

Abstract

The paper Pattern Templates and Monitors for Verifying Safety Properties of Hy-
brid Automata aims to facilitate the integration of formal verification techniques
into model-based design. It considers specifications expressed in pattern templates,
which are predefined properties with placeholders for state predicates. Pattern tem-
plates are close to the natural language and can be easily understood by both expert
and non-expert users. In this report, we give formal definitions for selected pat-
terns in the formalism of hybrid automata and provide monitors which encode the
properties as the reachability of an error state. By composing these monitors with
the formal model under study, the property can be checked by off-the-shelf fully
automated verification tools.

Keywords: Hybrid automata, first-order temporal logic, parallel composition, pattern templates

How to cite this report:

@techreport {TR-2017-5,
title = {Formally Correct Monitors for Hybrid Automata},
author = {Goran Frehse, Nikolaos Kekatos, Dejan Nickovic},
institution = {{Verimag} Research Report},
number = {TR-2017-5},
year = {2017}

}

∗Verimag, University of Grenoble Alpes, Grenoble, France.
†Austrian Institute of Technology, Vienna, Austria.

Correctness Proofs Goran Frehse , Nikolaos Kekatos, Dejan Nickovic

1 Hybrid Automata
In this part, we present the preliminaries and give a formal definition of a hybrid automaton and its run
semantics.

Given a set X = {x1, . . . , xn} of variables, a valuation is a function v : X → R. Let V (X) denote the
set of valuations over X . Let Ẋ = {ẋ1, . . . , ẋn} and X ′ = {x′1, . . . , x′n}. The projection of v to variables
Y ⊆ X is v↓Y = {x → v(x)|x ∈ Y }. The embedding of a set U ⊆ V (X) into variables X̄ ⊇ X is
the largest subset of V (Y) whose projection is in U , written as U |X̄ . Given that a valuation u over X and
a valuation v over Y agree, i.e., u↓X∩X̄= v↓X∩X̄ , we use u t v to denote the valuation w defined by
w↓X= u and w↓X̄= v. Let constX(Y) = {(v, v′)|v, v′ ∈ V (X), v↓Y = v′↓Y }.

Definition 1 (Hybrid automaton) [1, 3] A hybrid automaton

H = (Loc, Lab,Edg, X, Init, Inv,Flow, Jump)

consists of

• a finite set of locations Loc = {`1, . . . , `m} which represents the discrete states,

• a finite set of synchronization labels Lab, also called its alphabet, which can be used to coordinate
state changes between several automata,

• a finite set of edges Edg ⊆ Loc×Lab×Loc, also called transitions, which determines which discrete
state changes are possible using which label,

• a finite set of variables X = {x1, . . . , xn}, partitioned into uncontrolled variables U and controlled
variables Y ; a state ofH consists of a location ` and a value for each of the variables, and is denoted
by s = (`,x);

• a set of states Inv called invariant or staying condition; it restricts for each location the values that
x can possibly take and so determines how long the system can remain in the location;

• a set of initial states Init ⊆ Inv; every behaviour of H must start in one of the initial states;

• a flow relation Flow, where Flow(`) ⊆ RẊ ×RX determines for each state (`,x) the set of possible
derivatives ẋ, e.g., using a differential equation such as

ẋ = f(x);

Given a location `, a trajectory of duration δ ≥ 0 is a continuously differentiable function ξ : [0, δ]→
RX such that for all t ∈ [0, δ], (ξ̇(t), ξ(t)) ∈ Flow(`). The trajectory satisfies the invariant if for all
t ∈ [0, δ], ξ(t) ∈ Inv(`).

• a jump relation Jump, where Jump(e) ⊆ RX × RX′ defines for each transition e ∈ Edg the set of
possible successors x′ of x; jump relations are typically described by a guard set G ⊆ RX and an
assignment (or reset) x′ = r(x) as

Jump(e) = {(x,x′) | x ∈ G ∧ x′ = r(x)}.

A jump can be cast as urgent, which means that time cannot elapse when the state is in the guard set.

We define the behavior of a hybrid automaton with a run: starting from one of the initial states, the state
evolves according to the differential equations whilst time passes, and according to the jump relations
when taking an (instantaneous) transition. Special events, which we call uncontrolled assignments, model
an environment that can make arbitrary changes to the uncontrolled variables.

Definition 2 (Run semantics) An execution of a hybrid automaton H is a sequence

(`0,x0)
δ0,ξ0−−−→ (`0, ξ0(δ0))

α0−→ (`1,x1)
δ1,ξ1−−−→ (`1, ξ1(δ1))

αN−1−−−−→ (`N ,xN),

with αi ∈ Lab ∪ {τ}, satisfying for i = 0, . . . , N − 1:

Verimag Research Report no TR-2017-5 1/11

Goran Frehse , Nikolaos Kekatos, Dejan Nickovic Correctness Proofs

1. Trajectories: In location `i, ξi is a trajectory of duration δi with ξi(0) = xi and it satisfies the
invariant. It does not go through urgent guard sets unless duration δi is 0.

2. Jumps: If αi ∈ Lab, there is a transition (`i, αi, `i+1) ∈ Edg with jump relation Jump(e) such that
(ξi(δi),xi+1) ∈ Jump(e) and xi+1 ∈ Inv(`i+1).

3. Uncontrolled assignments: If αi = τ , then `i = `i+1 and ξi(δi) ↓Y = xi+1 ↓Y . This represents
arbitrary assignments that the environment might perform on the uncontrolled variables U = X \Y .

A run of H is an execution that starts in one of the initial states, i.e., (`0,x0) ∈ Init. A state (`,x) is
reachable if there exists a run with (`i,xi) = (`,x) for some i.

Note that the strict alternation of trajectories and jumps in Def. 2 is of no particular importance. Two
consecutive jumps can be represented by inserting a trajectory with duration zero (which always exists),
and two consecutive trajectories can be represented by inserting an uncontrolled assignment jump that does
not modify the variables. Having an event at the end of the run will simplify the notation in the remainder
of the paper.

2 Formalizing Pattern Templates for Hybrid Automata
In this section, we introduce the pattern templates, list the requirements considered in this paper, give a
compact (intuitive) definition in structured English, and a formal definition based on the runs of the hybrid
automaton.

Our work builds upon the pattern templates introduced by Konrad and Cheng in [4]. While in [4], the
patterns were formally defined using temporal logics (MTL), these definitions do not immediately carry
over to monitoring with hybrid automata. In this respect, we select some common pattern templates and
define them in a formalism that is suitable for hybrid automata.

2.1 Preliminaries
We now introduce some notation to denote in a compact manner the states on runs and the times at which
these states are taken by the run. This will allow us to express properties of runs in a clear and concise
manner.

Let p be a predicate over the state variables, i.e., a function RX→ B. We write the shorthand p(x) to
denote that p is true for x. Let the set of runs of a hybrid automaton H be Runs(H). In the following
we consider a run r ∈ R given by locations `i, continuous states xi, trajectories ξi, and durations δi. To
simplify the formalization of the properties, we introduce some further notation for the timing of states
on runs. For a run r the event-times are ti =

∑i
j=0 δi, so the jump number i takes place at time ti for

i = 0, . . . , N − 1. For notational convenience, let t−1 = 0. We introduce a total order on the time points
of the run by looking at pairs (i, t), where i is an index and t is the global time. Formally, let the event-time
be T = N0 × R≥0. To clarify the difference, we denote real time with t and event-time with τ ∈ T. We
use the lexicographical order on event-times, formally

(i, t) < (i′, t′)⇔ (i < i′) ∨ (i = i′ ∧ t < t′).

The event-time allows us to uniquely identify discrete and continuous states on the run. The event-time
domain of a run r is the set of pairs

dom(r) =
{

(i, t)
∣∣ 0 ≤ i ≤ N − 1, ti−1 ≤ t ≤ ti} ∪ {(N, tN−1)

}
,

where the latter term captures that the last state in the run, (`N ,xN) is taken at time tN−1 (total duration
of the run). The open truncated event-time domain of a run r excluding the last T time units is the set of
pairs

dom−T (r) =
{

(i, t) ∈ dom(r)
∣∣ t < tN−1 − T

}
.

2/11 Verimag Research Report no TR-2017-5

Correctness Proofs Goran Frehse , Nikolaos Kekatos, Dejan Nickovic

The truncated domain will be used for properties that refer to future events that are not covered by the
domain of the run. We take an optimistic view of such cases: if the property holds on the truncated domain,
then it is considered to hold on the run.

For a given τ = (i, t) ∈ dom(r), let r(τ) ∈ RX be the continuous state ξi(t−ti), and let rLoc(τ) ∈ Loc
be the discrete state (location) `i. This denotes the time elapsed between two event-times τ = (i, t), τ ′ =
(i′, t′) as

d(τ, τ ′) = t′ − t.

Sometimes, we are interested in the first time that a predicate holds. If the predicate, say q, is true over
a left-open interval, the infimum shall be used. Let

Infi (r, q) = inf
τ∈dom(r)

q(r(τ)).

If r is clear from the context, we use the shorthand

τq.1 = Infi(r, q).

Similarly, we look for the first time that a predicate p holds up to and before an event-time τ ′,

first (r, τ ′, q) = inf
τ∈dom(r),τ≤τ ′

q(r(τ)).

To formally denote that a predicate holds at time τ for some nonzero amount of time, we define for a
run r, a predicate p, and event-time τ ,

persists (r, p, τ) = ∃δ > 0 : ∀τ ′, τ ≤ τ ′, d(τ, τ ′) ≤ δ : r(τ ′).

2.2 Formal Definitions
We define the properties of a hybrid automaton via its runs. A hybrid automaton H satisfies a property φ if
and only if all runs r ∈ Runs(H) satisfy φ. In the following, we can therefore simply define what it means
for a run r to satisfy the property φ, which we write as r |= φ. Table 1 presents a list of clarifying remarks
regarding the pattern templates.

absence. After q, it is never the case that p holds.

r |= φ iff for all τq, τ ∈ dom(r) with q(r(τq)) and τ ≥ τq , holds ¬p(r(τ)).

absence (timed). When T time units are measured, after q was first satisfied, it is never the case that p
holds.

r |= φ iff for all τq, τ ∈ dom(r) with q(r(τq)) and d(τq, τ) ≥ T holds ¬p(r(τ)).

minimum duration. After q, it is always the case that once p becomes satisfied, it holds for at least T time
units.

r |= φ iff either:

(i) for all τ∗p , τq ∈ dom(r) with q(r(τq)), τ∗p ≥ τq , holds ¬p(r(τ∗p)) (never q, or never p after q), or

(ii) if τq ∈ dom(r) with q(r(τq)), then for τq.1 = Infi (r, q) holds:

(a) for all τ∗p , τ
∗
p̄ ∈ dom(r) with p(r(τ∗p)), ¬p(r(τ∗p̄)), τq.1 ≤ τ∗p < τ∗p̄ , d(τq.1, τ

∗
p̄) > T (p not

becoming false within T after τq.1), and

(b) for all τp, τp̄, τ ′p̄ ∈ dom(r) with τq.1 ≤ τp̄ < τp < τ ′p̄, p(r(τp)), ¬p(r(τp̄)) and ¬p(r(τ ′p̄)), it
holds that d(τp̄, τ

′
p̄) > T (violations of p are more than T apart).

Verimag Research Report no TR-2017-5 3/11

Goran Frehse , Nikolaos Kekatos, Dejan Nickovic Correctness Proofs

Table 1: Remarks on pattern templates.

• The properties in this paper refer to state predicates q, p, s : RX → {true, false}. These predicates
describe states, not events. When p, q, s are always true or false, the monitor automata can be
simplified.

• State predicates can express timing properties by adding an extra clock to the monitor, so that the
time is now a state variable that can be used in q, p and s.

• We show so-called triggered versions of the properties, which only take effect after a predicate q
holds. A run, for which !q always holds, satisfies the property.

• There are more than one equivalent definitions for the properties (e.g. switch between universal and
existential quantifiers). The selection of the most suitable one has been made to reflect the natural
language of the pattern templates in Table 2.

• The universal quantifier of an empty set is always true.

• It is possible to check properties both for the bounded and unbounded time horizon. For some
patterns, these two cases are distinguished explicitly.

• There is both a linguistic and practical difference between becomes true and holds. The former could
be seen as an edge, i.e. the signal was false earlier and then became true. The latter could describe a
property that was always true.

• The monitor automata are nondeterministic because this can lead to more compact automata.

maximum duration. After q, it is always the case that once p becomes satisfied, it holds for less than T
time units.

r |= φ iff for all τq ∈ dom(r) with q(r(τq)) either

(i) for all τ ∈ dom(r) with τ ≥ τq , ¬p(r(τ)) (never q, or p never holds after q), or

(ii) for all τp, τ ′p ∈ dom(r) with τp ≥ τq , p(r(τp)), p(r(τ ′p)) one of the following holds:

(a) d(τp, τ
′
p) < T (τ ′p is early enough, including the τp = τ ′p case), or

(b) there is a τp̄ such that ¬p(r(τp̄)) and τp < τp̄ < τ ′p (p is false in between).

bounded recurrence. After q, it is always the case that p holds at least every T time units.
For the unbounded case, r |= φ iff for all τq ∈ dom(r) with q(r(τq)) both following criteria hold:

(i) for all τp ∈ dom(r) with p(r(τp)) and τp ≥ τq there is a τ ′p ∈ dom(r) such that τp < τ ′p, d(τ ′p, τp) ≤
T and p(r(τ ′p)) (τp’s with distance less than T).

(ii) there is a τp ∈ dom(r) with τp ≥ τq , p(r(τp)) such that d(τq, τp) ≤ T . (distance between τq and
first τp is less than T).

For a bounded time horizon, r |= φ iff for all τq ∈ dom−T (r) with q(r(τq)) both following criteria
hold:

(i) for all τp ∈ dom−T (r) with p(r(τp)) and τp ≥ τq there is a τ ′p ∈ dom(r) such that τp < τ ′p,
d(τ ′p, τp) < T and p(r(τ ′p)).

(ii) there is a τp ∈ dom(r) with τp ≥ τq , p(r(τp)) such that d(τq, τp) ≤ T .

4/11 Verimag Research Report no TR-2017-5

Correctness Proofs Goran Frehse , Nikolaos Kekatos, Dejan Nickovic

bounded response (persisting). After q, it is always the case that if p holds, then s persists (holds for
nonzero time) after at most T time units.

For an unbounded time horizon, r |= φ iff for all τq ∈ dom(r) with q(r(τq)) one of the following
holds:

(i) for all τ ∈ dom(r) with τ ≥ τq , ¬p(r(τ)) (never q, or p never holds after q), or

(ii) for all τp ∈ dom(r) with τp ≥ τq and p(r(τp)), there is a τs ∈ dom(r) such that τp ≤ τs, d(τs, τp) ≤
T and persists (r, τs, s).

For a bounded time horizon, r |= φ iff one of the following holds:

(i) for all τq, τ ∈ dom(r) with q(r(τq)), τ ≥ τq , holds ¬p(r(τ)) (never q, or p never holds after q), or

(ii) for all τq, τp ∈ dom−T (r) with τp ≥ τq , q(r(τq)) and p(r(τp)), there is a τs ∈ dom(r) such that
τp ≤ τs, d(τp, τs) ≤ T and persists (r, τs, s).

Remark 1 The reason why we require τ ∈ dom−T (r) in the bounded time horizon (with the restricted
domain being right-open) is the following: We assume an optimistic interpretation of bounded runs, in the
sense that if there is a continuation of the run for which the system satisfies the property, then the bounded
run satisfies the property. If the restricted domain was right-closed, then a run ending with ¬s could
violate the property, but have a continuation that (in zero time) sets s to true, which then should satisfy the
property.

Remark 2 We require s to hold for nonzero time, formally with the use of persists (·), because the monitor
automaton may give a false alarm otherwise.

bounded invariance. After q, it is always the case that if p holds, then s holds for at least T time units.
r |= φ iff one of the following holds:

(i) for all τq ∈ dom(r) with q(r(τq)), there is no τp with τp ≥ τq such that p(r(τp)) (never q, or p never
holds after q), or

(ii) for all τp ∈ dom(r) with τp ≥ τq.1, p(r(τp)), and for all τ ∈ dom(r) such that τp ≤ τ , d(τp, τ) < T ,
the predicate s(r(τ)) is true.

Remark 3 Note that in the case that predicates s = p, then p has to hold forever (by recursion).

3 Monitor Automata for Reachability
In this section, we define monitor automata that, composed with the system under test, encode the require-
ments as reachability properties as follows. Consider a system under test H and a monitor automaton M .
The goal is that H satisfies a property φ if and only if the location error is unreachable in the parallel com-
position H||M . We prove correctness of M by showing that every violating run of H has a corresponding
run in H||M that reaches the error location, and vice versa. The monitor automata are shown in Table 2.

3.1 Parallel Composition
We now give a formal definition of the standard way to couple two hybrid automata. We will use this
operation to connect the system under test with its monitor. Intuitively, both automata must agree on every
change of a variable. The operator is similar to the composition operator in [2].

The jump relations of synchronized transitions result from the conjunction of the participating transi-
tions. Independent transitions, i.e., those that do not synchronize, are allowed to change variables arbitrarily
and the variables over which their jump relation is not defined are set to remain constant.

Verimag Research Report no TR-2017-5 5/11

Goran Frehse , Nikolaos Kekatos, Dejan Nickovic Correctness Proofs

Table 2: Pattern templates and translation to monitor automata.

Pattern name Language Template Monitor Automaton

absence After q, it is never the case
that p holds.

absence (timed) When T time units are mea-
sured, after q was first satis-
fied, it is never the case that
p holds.

minimum duration After q, it is always the case
that once p becomes satis-
fied, it holds for at least T
time units.

maximum duration After q, it is always the case
that once p becomes satis-
fied, it holds for less than T
time units.

bounded recurrence After q, it is always the case
that p holds (for nonzero
time) at least every T time
units.

bounded response
(persisting)

After q, it is always the case
that if p holds, then s persists
(holds for nonzero time) af-
ter at most T time units.

bounded invariance After q, it is always the case
that if p holds, then s holds
for at least T time units.

6/11 Verimag Research Report no TR-2017-5

Correctness Proofs Goran Frehse , Nikolaos Kekatos, Dejan Nickovic

Definition 3 (Composition of HA) The parallel composition of hybrid automata H1 and H2 is the hybrid
automaton H = H1||H2

• Loc = Loc1 × Loc2,

• Lab = Lab1 ∪ Lab2,

• Edg = {((`1, `2), α, (`′1, `
′
2)) | (α ∈ Lab1 ⇒ (`1, α, `

′
1)) ∧ (α ∈ Lab2 ⇒ (`2, α, `

′
2))},

• X = X1 = X2 (by assumption), Y = Y1 ∪ Y2, U = (U1 ∪ U2) \ Y ,

• Jump((`1, `2), a, (`′1, `
′
2)) with µ = {(v, v′) ∈ µi} iff for i = 1, 2,

– a ∈ Labi and (`i, ai, µi, `
′
i) ∈ Edg i, or

– a /∈ Labi, `′i = `i, and µi = constXi(Zi), where Z1 = Y1\Y2 and Z2 = Y2\Y1;

• Flow(`1, `2) = Flow1(`1) ∩ Flow2(`2);

• Inv(`1, `2) = Inv1(`1) ∩ Inv2(`2);

• Init(`1, `2) = Init1(`1) ∩ Init2(`2).

Without loss of generality we can assume thatH andM have the same variables. IfM has a variable not
in H , e.g., a clock variable for measuring the time between events, we can add it to H without restricting it
in the invariants, guards, or flows. Note that all transitions inM have the label τ , so they do not synchronize
with any transitions in H .

A run rH||M in H||M is given by locations `i = (`Hi , `
M
i), continuous states xi, trajectories ξi, du-

rations δi, and labels αi. Let rH be the projection of the run onto H , obtained by replacing `i with `Hi ,
and let rM be the projection of the run onto M , obtained by replacing `i with `Mi and αi with τ . Then by
definition, we have that for any run rH||M in Runs(H||M), rH ∈ Runs(H) and rM ∈ Runs(M).

3.2 Operations on Runs
We use the following shorthand notation to improve the readability of the proofs. As shorthand, we will
define a run by the sequence (`i,xi, δi, ξi, αi)i=0,...,N−1. Given a run r and an event-time τ∗ = (k∗, t∗) ∈
dom(r), the run can be split into the prefix up to τ∗, and the postfix after τ∗. The prefix is extended with a
silent transition, which by definition can be injected anywhere:

prefix (r, (k∗, t∗)) = (`i,xi, δi, ξi, αi)i=0,...,k∗−1; (`k∗ ,xk∗ , t
∗ − tk∗−1, ξk∗ , τ). (1)

postfix (r, (k∗, t∗)) =
(
`k∗ , r(k

∗, t∗), δk∗ − tk∗−1, ξ
∗, αk∗

)
; (`i,xi, δi, ξi, αi)i=k∗+1,...,N−1, (2)

where r(k∗, t∗) = ξk∗(t
∗−tk∗−1), and ξ∗(t) = ξk∗(t−tk∗−1) is the trajectory ξk∗(t) shifted backwards in

time by tk∗−1. Similarly, the infix between event-times τa = (ka, ta) ∈ dom(r), τb = (kb, tb) ∈ dom(r),
with τa ≤ τb, is

infix (r, (ka, ta), (kb, tb)) = prefix (postfix (r, (ka, ta)) , (kb − ka, tb − ta)) . (3)

It is straightforward that the concatenation

prefix (r, τ) ; postfix (r, τ)

is a run of H. Similarly, the concatenation

prefix (r, τa) ; infix (r, τa, τb) ; postfix (r, τb)

is a run of H. With a slight abuse of notation, we write r×`∗ to denote the run (`i×`∗,xi, δi, ξi, αi)i=0,...,N−1.
This is not necessarily a run of H||M , but it can be one, such as under the following condition.

Verimag Research Report no TR-2017-5 7/11

Goran Frehse , Nikolaos Kekatos, Dejan Nickovic Correctness Proofs

Lemma 1 Let r = (`i,xi, δi, ξi, αi) be a run of H . If a location `M in M has (i) no invariant constraints
and (ii) no urgent outgoing transitions, then r × `M is a run of H||M .

Lemma 2 Let r = (`i,xi, δi, ξi, αi) be a run of H . If a location `M in M has (i) no invariant constraints
and (ii) one urgent outgoing transition with guard condition p, leading to location `′M that has (iii) no
invariant constraints and (iv) no urgent outgoing transitions then

prefix (r, τp.1)× `M ; postfix (r, τp.1)× `′M

is a run of H||M , where τp.1 = Infi (r, p) is the smallest event time where p holds.

We call a monitorM non-blocking if for any run rH ofH , there is a corresponding run rH||M ofH||M
such that rH is the projection of rH||M onto H . Simply put, there is no deadlock that caused a run to be
terminated.

3.3 Correctness Proofs
A monitor automaton is correct if its error location is reachable exactly when the system H violates the
property. Formally, let h be a run of H that violates a given property φ. Then we first show (a) that there
exists a run r of H||M that reaches the error location. Second, we show (b) that for any run r of H||M
that reaches the error location, the run projected onto H violates the property.

3.3.1 Sufficient Conditions.

absence. Since r 6|= φ, there exist τq, τp ∈ dom(r) with q(r(τq)), τp ≥ τq , and p(r(τp)).
With Lemma 1 and the definition of a jump,

prefix (h, τq)× idle ; infix (h, τq, τp)× loc1 ; postfix (h, τp)× error

is a run of H||M .

absence (timed). Since r 6|= φ, there exist τq, τp ∈ dom(r) with q(r(τq)), d(τq, τp) ≥ T , and p(r(τp)).

M can remain in idle location during prefix (h, τq), then transition to loc1 and remain there during
infix (h, τq, τp). M can then transition to loc2 with Lemma 1. In loc2, M can take the transition to error,
as p holds.

minimum duration. r 6|= φ, so there is τp ≥ τq with p(r(τ∗p)) and q(r(τq)), and one of the following is
true:

(a) there are τp, τ ′p̄ with τq.1 ≤ τp < τ ′p̄, p(r(τp)), ¬p(r(τ ′p̄)), and d(τq.1, τp̄) ≤ T , or

(b) there are τp, τp̄, τ ′p̄ ∈ dom(r) with τq,1 ≤ τp̄ < τp < τ ′p̄, p(r(τp)), ¬p(r(τp̄)), ¬p(r(τ ′p̄)), and
d(τp̄, τ

′
p̄) ≤ T .

In case (a), let τp.1 = first (r, τq.1, p), so τp.1 ≤ τp. M can remain in idle location during prefix (h, τq.1),
then transition to loc1 and with Lemma 2 remain there during infix (h, τq, τp.1). M can then transition to
loc2, setting t to zero with Lemma 1. M can remain in loc2 during infix

(
h, τp, τ

′
p̄

)
. Since d(τq,1, τ

′
p̄) ≤ T ,

we have t ≤ T . M can then transition to error.
In case (b), we first show that M can be at loc1 at τp̄. After τq , M can go to loc2 as soon as p is

satisfied, and move back to loc1 as soon as p is violated. We can therefore assume that M can be loc1 at
τp̄. We match the remainder of the run in analogy to case (a), replacing τq.1 by τp̄.

8/11 Verimag Research Report no TR-2017-5

Correctness Proofs Goran Frehse , Nikolaos Kekatos, Dejan Nickovic

In the following, we only highlight the differences with the aforementioned proofs (ignoring what happens
before τq and τp).

maximum duration. r 6|= φ implies that

(i) there is τp ≥ τq with r(τp) satisfying p and r(τq) satisfying q, and

(ii)(a) there is τ ′p with p(r(τ ′p)) and d(τp, τ
′
p) ≥ T , and

(ii)(b) there is no τp̄ such that ¬(p(r(τp̄)) and τp < τp̄ < τ ′p.

At τp, M can be either in loc1 or loc2. In loc1, M can take the transition to loc2, as p holds. Once in loc2,
M can wait there for T time units, since with (ii)(a) and (ii)(b), p still holds. M can then transition to error.

bounded recurrence. For the unbounded case (i), there is τp ∈ dom(r) with p(r(τp)) and τp ≥ τq , such
that there is no τ ′p > τp, with d(τ ′p, τp) ≤ T and p(r(τ ′p)) (τp’s with distance less than T).

If M is in loc1 at τp, it takes the transition from loc1 to loc2. If M is in loc2, there are two subcases:

(a) p does not hold within T time units after τp, in which case M can go to loc1, wait for more than T
time and then go to error.

(b) p holds after τp, which means that it holds at a time τ ′p with d(τp, τ
′
p) > T . Let δ = d(τp, τ

′
p) − T .

Then M can wait for δ/3 time in loc2, after which p is false. Then M can go to loc1, wait for T + δ/3
time, and since only T + 2δ/3 time has passed since τp, p is still false. Since t > T , M can go to
error.

bounded response (persisting). For the unbounded time horizon, r 6|= φ implies that

(i) there is τp ≥ τq with r(τp) satisfying p and r(τq) satisfying q, and

(ii) there is no τs ≥ τp such that r(τs) satisfies s, d(τp, τs) ≤ T and persists (r, τs, s).

At τp, M can be either in loc1, loc2, or loc3. In loc1, M can transition immediately to loc2 (because
p is true). In loc2, there are two options. If s is false (@τs : d(τp, τs) ≤ T), M can stay there for
more than T time units. M can then transition to error. If s is not always false, there is a τs such that
¬persists (r, τs, s). At τs, M instantaneously moves to loc3 and then back to loc2 when s does not hold.
From loc3, if ¬s, M can transition to loc2. If s and ¬persists (r, τs, s), M can transition to loc2, since
¬persists (r, τs, s) : ∃τ ′s > τs with d(τs, τ

′
s) = 0 and ¬s(τ ′s).

For the bounded time horizon, r 6|= φ implies that

(i) there is τp ≥ τq with r(τp) satisfying p and r(τq) satisfying q, and

(ii) τq, τp ∈ dom−T (r) and there is no τs ∈ dom(r) such that τp ≤ τs, d(τp, τs) ≤ T and persists (r, τs, s).

The proof is analogous to the unbounded case.

bounded invariance. r 6|= φ implies that

(i) there is τp ≥ τq with r(τp) satisfying p and r(τq) satisfying q, and

(ii) there is a τ with τ ≥ τp such that d(τp, τ) < T and s(r(τ)) is false.

At τp, M can be either in loc1 or loc2. In loc1, M can transition immediately to loc2 (because p is true).
Once in loc2, M can wait there for t = d(τp, τ). Since d(τp, τ) < T , M can remain in loc2 until τ . Since
¬s at τ (¬s(r(τ) holds), M can then transition to error.

Verimag Research Report no TR-2017-5 9/11

Goran Frehse , Nikolaos Kekatos, Dejan Nickovic Correctness Proofs

3.3.2 Necessary Conditions.

For the necessary condition, we need to show that a run r in H||M that ends in location error implies a
run in H that violates the property. Let rH be the projection of the run onto H (removing the locations and
clocks of M). It is straightforward that rH is a run of H . In the following, we show that rH 6|= φ. Note
that r starts in location idle. Note also that any event-times of r are also event-times of rH .

absence. To get from idle to error, M had to take first a transition with guard q and then a transition
with guard p. Consequently, there exist τq and τp with τq ≤ τp, q(rH(τq)) and p(rH(τp)). τq and τp are
witnesses that violate φ.

absence(timed). To get from idle to error, M had to take first a transition with guard q, wait for T time
units, and then take a transition with guard p. Consequently, there exist τq and τp with d(τq, τp) ≥ T ,
q(rH(τq)) and p(rH(τp)). τq and τp are witnesses that violate φ.

minimum duration. Similarly to the above proof of the absence pattern, we can stipulate the existence
of τq , τp and τ ′p̄ with τq ≤ τp ≤ τ ′p̄, q(rH(τq)), p(rH(τp)) and ¬p(rH(τ ′p̄)). τq and τp are witnesses that
violate case (i).

For case (ii), let τq.1 = first (r, 0, q), so that τq.1 ≤ τq . Without loss of generality, we can assume that
τp is the last event-time on r where M entered loc2, so t = d(τp, τ

′
p̄). Because of the transition guard from

loc2 to error, d(τp, τ
′
p̄) ≤ t ≤ T . There are two subcases:

(a) If there is no τp̄ with τq.1 ≤ τp̄ ≤ τp and ¬p(rH(τp̄)), we can conclude that τq.1 = τp.1, where
τp.1 = first (r, τq.1, p). In this case, the run in M goes from idle to loc1 to loc2, so τq.1 = τp.1 = τp.
Consequently, d(τq.1, τ

′
p̄) = d(τp, τ

′
p̄) ≤ T , which violates case (a).

(b) Otherwise, we have τq.1 ≤ τp̄ ≤ τp.1 ≤ τ ′p̄. We will show that there is a τ∗ ≤ τp, with d(τ∗, τp) = 0
and where r(τ∗) violates p. Then d(τ∗, τ ′p̄) ≤ T , which violates case (b). We now show the existence
of τ∗, by first identifying some τ ′ ≤ τp such that M is in loc1 for all τ ′ ≤ τ ≤ τp, and for which r(τ ′)
violates p. Consider that we can assume that loc1 was entered either from idle with p being violated
(otherwise case (a) applies), or from loc2, which also means p is violated. Since the transition from
loc1 to loc2 is urgent, p can not hold for any τ with τ ′ ≤ τ < τp where d(τ, τp) > 0 (no time can
elapse while p is true). So there exists a τ∗ with τ ′ ≤ τ∗ ≤ τp with d(τ∗, τp) = 0.

maximum duration. Let τp be the last event-time on r where M entered loc2. As the loc2 has invariant
p and the transition guard from loc2 to error has the constraint t ≥ T , we know that at least T time units
have elapsed in loc2. That means that there exist τp and τ ′p so that d(τp, τ

′
p) ≥ T without any τp̄ in between

them. Therefore, τq , τp and the absence of ¬p witnesses the violation of φ.

bounded recurrence. Since time can only elapse in loc2 while ¬p and t is reset on all incoming transitions,
we know that ¬p holds for more than T time units, which violates the property.

bounded response (persisting). Similarly to the above proof of the absence pattern, we can stipulate the
existence of τq and τp. Let τp be the last event-time on r where M entered loc2. Cycles between loc2 and
loc3 take zero time: because of the urgent transition from loc2 to loc3, swas false during this time, with the
possible exception of switching to true and back to false in zero time (which doesn’t satisfy the definition
of "persists"). Because the transition guard from loc2 to error has the constraint t > T , we know that more
than T time units have elapsed in loc2. Therefore, τq , τp and the absence of s witness the violation of φ.

bounded invariance. Assuming thatM is in the error location, due to the guard conditions of the incoming
transitions, we know that at some point τ on the run, s did not hold. In loc2, we know from the incoming
guard conditions and its invariance, that p held at some point τp with τp ≤ τ and d(τp, τ) < T . Therefore,
τq , τp, and τ witness the violation of φ.

10/11 Verimag Research Report no TR-2017-5

Correctness Proofs Goran Frehse , Nikolaos Kekatos, Dejan Nickovic

Acknowledgments
The authors gratefully acknowledge financial support by the European Commission project UnCoVerCPS
under grant number 643921.

References
[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis,

and S. Yovine. The algorithmic analysis of hybrid systems. Theoretical computer science, 1995. 1

[2] R. Alur, T. A. Henzinger, and P.-H. Ho. Automatic symbolic verification of embedded systems. ITSE,
1996. 3.1

[3] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What’s decidable about hybrid automata? JCSS,
1998. 1

[4] S. Konrad and B. Cheng. Real-time specification patterns. In ICSE Conference, 2005. 2

Verimag Research Report no TR-2017-5 11/11

	Hybrid Automata
	Formalizing Pattern Templates for Hybrid Automata
	Preliminaries
	Formal Definitions

	Monitor Automata for Reachability
	Parallel Composition
	Operations on Runs
	Correctness Proofs
	Sufficient Conditions.
	Necessary Conditions.

