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Abstract

Design, implementation and verification of distributed real-time systems is ac-
knowledged to be a very hard task. Such systems are prone to different kind of
delays, such as execution times of actions or communication delays implied by the
distributed platform. The latter, increases considerably the complexity of coordi-
nating the parallel activities of running components. Scheduling such systems must
cope with those delays by proposing execution strategies ensuring global consis-
tency and satisfaction of timing constraints. In this paper, we investigate a formal
model for such systems as compositions of timed automata subject to multi-party
interactions, and propose a method aiming to overcome the communication delays
problem through planning ahead interactions. To be effective in a distributed con-
text, planning an interaction should rely on (as much as possible) local information
only, namely the state of the participating components. However, as shown in the
paper local information is not always sufficient for correctly scheduling interactions
as it may introduce deadlocks. Moreover, delays may also affect the statisfaction
of timing constraints, which also corresponds to deadlocks in the formal model. In
this paper we investigate methods for analyzing such deadlock situations and for
computing deadlock-free scheduling strategies when possible.

Keywords: Distributed Real-Time Systems·Timed Automata·Planning·
Compositional Verification

Reviewers:

How to cite this report:

@techreport {TR-2017-1,
title = {Planning Based Semantics for Distributed Real-Time Systems},
author = {Mahieddine Dellabani, Jacques Combaz, Saddek Bensalem, Marius Bozga},
institution = {{Verimag} Research Report},
number = {TR-2017-1},
year = {}
}

http://www.verimag.fr/rsd


Mahieddine Dellabani, Jacques Combaz, Saddek Bensalem, Marius Bozga

1 Introduction
Nowadays, real-time systems are ubiquitous in several application domains, and such an emergence led
to an increasing need of performance: resources, availability, concurrency...etc. This expansion initiates
a shift from the use of single processor based hardware platforms, to large sets of interconnected and
distributed computing nodes. Moreover, it prompts the birth of a new family of systems known as Net-
worked Embedded Systems, and that are intrinsically distributed. Such evolution stems from an increase in
complexity of real-time software embedded on such platforms (e.g. electronic control in avionics and au-
tomotive domains [7]), and the need to integrate formerly isolated systems [11] so that they can cooperate
as well as share resources, improving functionality and reducing costs.

To deal with such complexity, the community of safety critical systems often restricts its scope to pre-
dictable systems, which are represented with domain specific models (e.g. periodic tasks, synchronous
systems, time-deterministic systems) for which the range of possible executions is small enough to be eas-
ily analyzed, allowing the pre-computation of optimal control strategies. Networked Embedded Systems
usually describes a set of real-time systems, distributed across platform(s) and interacting through a net-
work. Because of their adaptive behavior, the standard practice when implementing such systems is not to
rely on models for pre-computation execution strategies but rather to design systems dynamically adapting
at runtime to the actual context of execution. Such approaches do not offer any formal guarantee of timeli-
ness. The lack of a priori knowledge on system behavior leaves also little room for static optimization.

Model-based development is one promising approach in building distributed real-time system. First,
an application model is designed, expressing abstraction of the timed system behavior. This abstraction is
platform independent, meaning that it does not consider platform introduced delays or CPU speed, which
allows to: (i) model the system at early stages without any knowledge of the target platform, and (ii) verify
the obtained model against some safety properties (functional requirements). Thereafter, the application
source code, which represents the actual implementation of the system on a given platform, is automatically
generated from the model. The big challenge becomes then how to verify the timing behavior of the imple-
mentation, since a lot of assumption drops such as atomic execution of action or timeless communication
delays. In this paper, we propose a model-based approach aiming to mitigate the communication delays
of distributed platforms. In this approach, systems consist of components represented as timed automata
that may synchronize on particular actions to coordinate their activities. We contribute to this research field
by proposing a different semantics than the usual semantics of timed automata. This semantics aims to
distinguish between the decision date of executing interactions and their actual execution dates. It relies on
planning interactions with bounded horizons in order to take into account the communication delays of the
execution platforms and to reduce their impact on systems execution.

This work is an extension of our work presented in [8]. We extend our previous work by (1) defining
a more mature and realistic semantics for planning interactions. Particularly, we introduce a lower bound
planning horizon representing communication delays. In other words, immediate (timeless) planning is no
longer allowed. We also give (2) a formal characterization of deadlocks and (3) provide a simple execution
strategy aiming to avoid deadlocks exhibited in system running under this semantics.

The rest of the paper is organized as follows. Section 2 gives preliminary definitions of timed automata
with respect to multiparty interactions as well as predicates definitions needed for the rest of the paper.
In Section 3, we present our extended planning semantics, discuss its relation with the usual timed au-
tomata semantics, and give a formal characterization of its deadlock states. Then, Section 4 presents an
execution strategy aiming to enforce the correctness of the planning semantics and provide a compositional
verification approach for checking deadlock-freedom property. Additionally, Section 5 explains how the
planning approach can be formalized as a real-time controller synthesis problem and highlights the key
issues met during our reflection and the obtained results. Finally, Section 6 describes our implementation
of the proposed approach and the obtained results.

2 Timed Systems and Properties
In the framework of the present paper, components are timed automata and systems are compositions of
timed automata with respect to multiparty interactions. The timed automata we use are essentially the ones
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from [1], however, slightly adapted to embrace a uniform notation throughout the paper.

Definition 1 (Component). A component is a tuple B = (L, `0,A, T ,X , tpc) where L is a finite set
of locations, `0 ∈ L is an initial location, A a finite set of actions, X is a finite set of clocks, T ⊆
L × (A × C × 2X ) × L is a set of transitions labeled with an action, a guard, and a set of clocks to be
reset, and tpc : L → C assigns a time progress condition, tpc` to each location ` ∈ L, where C is the set
of clock constraints defined by the following grammar:

C := true | x ∼ ct | x− y ∼ ct | C ∧ C | false,

with x, y ∈ X , ∼ ∈ {<,≤,=,≥, >} and ct ∈ Z. Time progress conditions are restricted to conjunctions
of constraints of the form x ≤ ct .

Throughout the paper, we assume components that are deterministic timed automata, that is, at a given
location ` and for a given action a, there is up to one outgoing transition from ` labeled by a. Given a timed
automaton (L, `0,A, T ,X , tpc), we write `

a,g,r−−−→ `′ if there exists a transition τ =
(
`, (a, g, r), `′

)
∈ T .

We also denote by guard(a, `) the clock constraints of the transition labeled by a and outgoing from ` if it
exists, and false otherwise and we write:

guard(a, `) =

{
g, if ∃τ =

(
`, (a, g, r), `′

)
∈ T

false, otherwise

Let V be the set of all clock valuation functions v : X → R≥0. For a clock constraint C, C(v) is a boolean
value corresponding to the evaluation of C on v. For a valuation v ∈ V , v + δ is the valuation satisfying
(v + δ)(x) = v(x) + δ, while for a subset of clocks r, v[r] is the valuation obtained from v by resetting
clocks of r, i.e. v[r](x) = 0 for x ∈ r, v[r](x) = v(x) otherwise. We also denote by C + δ the clock
constraint C shifted by δ, i.e. such that (C + δ)(v) iff C(v + δ). We also consider the classical backward
and forward operators [14] on clock constraints, i.e. (↙ C)(v) iff ∃δ ≥ 0 . C(v + δ) and (↗ C)(v) iff
∃δ ≥ 0 . C(v − δ). In what follows, we also use two variants of the backward operator considering lower
bounds u ∈ Z≥0 and upper bounds l ∈ Z≥0 ∪ {+∞}: (↙l C)(v) iff ∃δ ≥ l . C(v + δ) and (↙u

l C)(v) iff
∃δ . l ≤ δ ≤ u ∧ C(v + δ).

Definition 2 (Semantics). A component B = (L, `0,A, T ,X , tpc) defines the labeled transition system
(LTS) (Q,A ∪ R>0,→) where Q ⊆ L × V(X ) denotes the states of B, and →⊆ Q × (A ∪ R>0) × Q
denotes the set of transitions between states according to the rules:

• (`, v)
a−→ (`′, v[r]) if `

a,g,r−−−→ `′, and g(v) is true (action step).

• (`, v)
δ−→ (`, v + δ) if tpc`(v + δ) for δ ∈ R>0 (time step).

An execution sequence of B from a state (`, v) is a path in the LTS starting at (`, v) and that alternates
action steps and time steps, that is:

(`, v)
σ1−→ . . .

σi−→ (`n, vn), n ∈ Z>0, σ ∈ A ∪ R>0.

We say that a state (`, v) is reachable if there is an execution sequence from the initial configuration (`0, v0)
leading to (`, v), where v0 assigns 0 to all clocks. In this paper, we always assume components with well
formed guards, that is, transitions `

a,g,r−−−→ `′ satisfy g(v) ⇒ tpc`(v) ∧ tpc`′(v[r]) for any v ∈ V . This
ensures that the reachable states always satisfy the time progress conditions, i.e. if (`, v) is reachable then
we have tpc`(v). Notice that the set of reachable states is in general infinite, but it can be partitioned into
a finite number of symbolic states [14, 4, 10]. A symbolic state is defined by a pair (`, ζ) where, ` is
a location of B, and ζ is a zone, i.e. a set of clock valuations defined by a clock constraint (as defined
in Definition 1). Efficient algorithms for computing symbolic states and operations on zones are fully
described in [4]. Given symbolic states {(`j , ζj)}j∈J of B, the predicate Reach(B) characterizing the
reachable states can be formulated as:

Reach(B) =
∨
j∈J

at(`j) ∧ ζj ,
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where at(`j) is true on states whose location is `j , and clock constraint ζj is straightforwardly applied to
clock valuation functions of states.

We define the predicate Enabled(a) characterizing states (`, v) at which an action a is enabled, i.e.
such that (`, v)

a−→ (`′, v′). It can be written:

Enabled(a) =
∨
`∈L

at(`) ∧ guard(a, `).

A state (`, v) is said urgent if time cannot progress from (`, v), that is, there is no δ ∈ R>0 such that
(`, v)

δ−→ (`, v′). Urgent states are characterized by the predicate:∨
`∈L

at(`) ∧ urg(`) (1)

where urg(`) is a clock constraint characterizing the valuations from which time cannot progress with
respect to the time progress condition of `, that is, it is defined by urg(`) =

∨m
i=1(xi ≥ cti) if tpc` =

m∧
i=1

xi ≤ cti. Notice that due to well-formed guards an urgent reachable state satisfies also (1) if inequalities

xi ≥ cti on clocks are replaced by equalities xi = cti in the expression of urg(`).

Definition 3 (Deadlock and action-time-lock). We say that a state (`, v) of a componentB = (L, `0,A, T ,X , tpc)
is deadlock if, with respect to its semantics, no action can be executed from (`, v) and from its successors,
that is:

6 ∃a ∈ A . (`, v)
a−→ (`′, v′) ∨ (`, v)

δ−→ (`, v + δ)
a−→ (`′, v′).

A deadlock (`, v) is called an action-time-lock when no interaction can execute nor time can progress
from (`, v), that is:

6 ∃a ∈ A . (`, v)
a−→ (`′, v′) ∧ 6 ∃δ > 0 . (`, v)

δ−→ (`, v + δ).

Deadlocks are situations from which a component is stuck a given location without beging able to
progress by executing an action, which must be avoided in reactive systems. Action-time-locks are model-
ing errors and consists in deadlocks from which time cannot progress.

In our framework, components communicate by means of multiparty interactions. A multiparty inter-
action is a rendez-vous synchronization between actions of a fixed subset of components. It takes place only
if all the participants agree to execute the corresponding actions. Given n components Bi, i = 1, . . . , n,
with disjoint sets of actions Ai, an interaction is a subset of actions α ⊆ ∪1≤i≤nAi containing at most
one action per component, i.e. α ∩ Ai is either empty or a singleton {ai}. That is, an interaction α can be
put in the form {ai}i∈I with I ⊆ {1, . . . , n} and ai ∈ Ai for all i ∈ I . We denote by part(α), the set of
components participating in α, that is, part(α) = {Bi}i∈I .

In practice we do not explicitly build compositions of components. We rather interpret their semantics
at runtime by evaluating enabled interactions based on current states of components. In a composition of n
componentsBi∈{1,··· ,n}, denoted by γ(B1, . . . , Bn), an action ai can execute only as part of an interaction
α such that ai ∈ α, that is, along with the execution of all other actions aj ∈ α, which corresponds to the
usual notion of multiparty interaction.

Definition 4 (Standard Semantics of a Composition). Given a set of components {B1, · · · , Bn} and an
interaction set γ. The (standard) semantics of the composition S = γ(B1, · · · , Bn) w.r.t the set of interac-
tions γ, is the LTS LTSg = (Qg, γ ∪ R>0,→γ) where:

• Qg = L × V(X ) is the set of global states, where L = L1 × · · · × Ln and X =
⋃n
i=1 Xi. We write

a state q = (`, v) where ` = (`1, · · · , `n) ∈ L is a global location and v ∈ V(X ) is global clocks
valuations.

• →γ is the set of labeled transitions defined by the rules:

– (`, v)
α−→γ (`′, v′) for ` = (`1, · · · , `n) and α = {ai}i∈I ∈ γ, if ∀i ∈ I (`i, vi)

ai−→ (`′i, v
′
i) and

∀i /∈ I (`i, vi) = (`′i, v
′
i).
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`10

`11

C

init0
z > 25

start0
z := 0

`20 `21

`22 x ≤ 30

T1

`23x ≤ 4

init1

start1
x := 0

process1
10 ≤ x ≤ 30, x := 0

end1
x ≤ 4

`31`30

`32 y ≤ 30

T2

`33y ≤ 4

init2

start2
y := 0

process2
10 ≤ y ≤ 30, y := 0

end2
y ≤ 4

`40

R

`41

take

free

init2 start2

end2process2

init1start1

end1 process1

take

free

init0 run

α5α6

α1α2

α3α4

α7α8

Figure 1: Task Manager

– (`, v)
δ−→γ (`, v + δ) for δ ∈ R>0 if ∀i ∈ {1, · · · , n} tpc`i(vi + δ) where ` = (`1, . . . , `n) and

vi denotes the restriction of v to clocks Xi of Bi.

To simplify notations, predicates defined on individual componentsBi are straightforwardly interpreted
on states (`, v) of a composition S = γ(B1, · · · , Bn) by considering the projection (`i, vi) of (`, v) on Bi,
which is such that ` = (`1, . . . , `n) and vi is restriction of v to clocks Xi of Bi. For instance, at(`i)
evaluates to true on (`, v) iff ` ∈ L1× . . .×Li−1×{`i}×Li+1× . . .×Ln. Similarly, clock constraints of
components Bi are applied to clock valuation functions v of the composition by restricting v to clocks Xi
of Bi. This allows to write the predicate Enabled(α) characterizing states (`, v) from which an interaction
α = {ai}i∈I ∈ γ can be executed, i.e. such that (`, v)

α−→γ (`′, v′), as:

Enabled(α) =
∧
i∈I

Enabled(ai) =
∨

{`i∈Li}i∈I

∧
i∈I

at(`i) ∧ guard(ai, `i).

Notice that the above formulation of Enabled(α) corresponds to locations enumeration of all components
participating in interaction α. In practice, we rather consider only a subset of locations Lai ⊆ Li, from
which there exists a transition labeled by action ai ∈ α.

The definitions of execution sequences, reachable states, deadlocks and action-time-locks of com-
ponents are also trivially extended to composition of components. Deadlocks of a composition S =
γ(B1, · · · , Bn) can be characterized as follows:∨

`=(`1,...`n)∈L

at(`) ∧
[ ∧
α∈γ
¬ ↙

(
Enabled(α) ∧

∧
1≤i≤n

tpc`i

)]
, (2)

and action-time-locks by:( ∧
α∈γ
¬Enabled(α)

)
∧
( ∨

1≤i≤n

∨
`i∈Li

at(`i) ∧ urg(`i)
])
.

Example 1 (Running Example). Let us consider as a running example the composition of four components
C, T1, T2, and R of Figure 1. Component C represents a controller that initializes then releases tasks
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T1 and T2. Tasks use the shared resource R during their execution. To implement such behavior, we
consider the following interactions between C, R, and T1: α1 = {init0, init1}, α3 = {start0, start1},
α5 = {take, process1}, α7 = {free, end1}, and similar interactions α2, α4, α6, α8 for task T2, as
shown by connections on Figure 1. The controller is responsible for firing the execution of each task. First,
it non-deterministically initializes one of the two tasks, i.e. executes α1 or α2, and then releases it through
interaction α3 or α4. Tasks perform their processing independently of the controller, after being granted
an access to the shared resource (α5 or α6). When finished, a task releases the resource (interactions α7

or α8) and go back to its initial location. An example of execution sequence of the system of Figure 1 is
given below, in which valuations v of clocks x, y, and z are represented as a tuples (v(x), v(y), v(z)):

((`10, `
2
0, `

3
0, `

4
0), (0, 0, 0))

26−→γ ((`10, `
2
0, `

3
0, `

4
0), (26, 26, 26))

α1−−→γ ((`11, `
2
1, `

3
0, `

4
0), (26, 26, 26))

α3−−→γ ((`10, `
2
2, `

3
0, `

4
0), (0, 26, 0))

10−→γ ((`10, `
2
2, `

3
0, `

4
0), (10, 36, 10))

α5−−→γ

((`10, `
2
3, `

3
0, `

4
1), (0, 36, 10))

2−→γ ((`10, `
2
3, `

3
0, `

4
1), (2, 38, 12))

α2−−→γ ((`11, `
2
3, `

3
1, `

4
1), (2, 38, 12))

3 Local Planning of Interactions
High-level coordination primitives, such as multi-party synchronizations (interactions) defined in the pre-
vious section, are rarely built-in primitives of distributed platforms. Hence, their implementation on a
distributed platforms requires synchronization protocols responsible for realizing global synchronizations
using simpler primitives such as point-to-point messages passing as explained by [13]. This is classically
implemented using one ore more additional coordination components observing the system state and de-
ciding on interaction execution. However, due to communication delays, to meet timing constraints of
components, scheduling decisions must be taken before actual executions.

This motivates the introduction of the planning semantics, which distinguishes between the decision
of the execution of an interaction (its planning), and the execution itself. The delay between the planning
of an interaction and its execution is constrained by the (maximal) communication latency induced by
the execution platform, which is a parameter of the semantics. In the proposed semantics, interaction
planning is based only on the states of its participating components, which allows to decide locally without
monitoring the entire system. It is correct in the sense that it refines (it is included in) the semantics of
Section 2. However, being based on local states, planning decisions are too permissive and may introduce
deadlocks when they are not compatible with the global state of the system.

3.1 Definition of the Planning Semantics
Let S = γ(B1, · · · , Bn) be a composition of components B1, . . . , Bn as defined in Section 2. We define
the predicate Plannable(α, δ) characterizing states (`, v) from which an interaction α = {ai}i∈I ∈ γ
is enabled in δ ∈ R≥0 units of time (if time progress by δ units of time), that is, such that Enabled(α)
evaluates to true on state (`, v + δ). It is characterized by:

Plannable(α, δ)⇔
∨

{`i∈Li}i∈I

∧
i∈I

at(`i) ∧
(
guard(ai, `i) + δ

)
(3)

Notice that for an interaction α the predicate Plannable(α, δ) depends only on states of components of
part(α), which motivates the following property.

Property 1. Let (`, v) be a state of the composition S. For any interactions α, β ∈ γ such that, (`, v)
β−→γ

(`′, v′) and part(α)∩part(β) = ∅, if Plannable(α, δ) holds at state (`, v) then it still holds at state (`′, v′).

This property derives directly from fact that executing an interaction β does not change the states of
components participating in an interaction α, provided that α and β have disjoint sets of participating
components, and thus Plannable(α, δ) is not affected by the execution of β in this case. In the following,
we say that two interactions α and β conflicts when they share common participating components, that is,
when part(α)∩part(β) 6= ∅, and we write α#β. We denote by conf(α) the set of interactions conflicting
with α, that is, conf(α) = {β ∈ γ | α#β}.
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Property 2. Let (`, v) and (`, v+δ′), with δ′ ∈ R>0 be two states of the composition S. For an interaction
α ∈ γ, if Plannable(α, δ) holds at state (`, v) then Plannable(α, δ − δ′) also holds at any state (`, v+ δ′)
such that δ′ ≤ δ.

This property can be found directly by writing Equation 3 on state (`, v + δ′).
As previously explained, due to communication latencies induced by the platform we assume that

interactions cannot be planned in δ units of time if δ < hmin, where hmin ∈ Z≥0 is a parameter representing
the minimal planning horizon, which should represent the upper bound communication latencies. Notice
that for the sake of simplicity, we consider a global parameter hmin but we could also assume different
parameters for each interaction. For an interaction α we define the predicate Plannable(α) characterizing
states from which α can be planned in a delay respecting the planning horizon hmin, that is:

Plannable(α)⇔ ∃δ ≥ hmin . Plannable(α, δ),

It can be written formally as follows:∨
{`i∈Li}i∈I

(∧
i∈I

at(`i)
)
∧
(
↙hmin

[∧
i∈I

guard(ai, `i)
])
. (4)

Definition 5 (Plan). A plan π is a function π : γ → R≥0 ∪ {+∞} defining relative times for executing
interactions, with the convention that an interaction α if planned to execute in π(α) time units only if
π(α) < +∞. Plans satisfy that for any two interactions α 6= β such that π(α) < +∞ and π(β) < +∞,
then interactions α and β are not conflicting (i.e. ¬(α#β)).

We denote by conf (π) the set of interactions conflicting with the plan π, i.e. conf (π) = {α | ∃β#α . π(β) <
+∞}, and part(π) the set of components participating in interactions planned by π, i.e. part(π) =
{Bi | ∃α . π(α) < +∞ ∧ Bi ∈ part(α)}. Notice that since π stores relative times, whenever time pro-
gresses by δ, the value π(α) assigned by π to an interaction α should be decreased by δ until it reaches
0, meaning that α have to execute. We write π − δ to describe the progress of time over the plan, that is,
(π− δ)(α) = π(α)− δ for interactions α such that π(α) < +∞. Similarly, π[α 7→ δ] assigns relative time
δ to α, α /∈ conf(π), into existing plan π, i.e. (π[{α 7→ δ])(β) = δ for β = α, (π[α 7→ δ])(β) = π(β)
otherwise.

Definition 6 (Planning Semantics). Given a set of components {B1, · · · , Bn} and an interaction set γ, we
define the planning semantics of the composition γ(B1, · · · , Bn), as the LTS LTSp = (Qp, γ ∪ R>0 ∪
{plan},∼∼∼>γ) where:

• Qp = L × V(X ) × Π, where L is the set of global location, V(X ) is the set of global clocks
valuations, and Π is the set of plans. Again, in the following to simplify notations predicates defined
on states (`, v) ∈ Qg = L × V(X ) of the standard semantics are straightforwardly interpreted on
states (`, v, π) ∈ Qp considering the projection (`, v) of (`, v, π) on Qg .

• plan defines the action of planning interactions

• ∼∼∼>γ is the set of labeled transitions defined by the rules:

– (`, v, π) ∼∼∼∼>
plan(α,δ)

γ (`, v, π[α 7→ δ]) for α ∈ γ and δ ≥ hmin if α /∈ conf (π) and Plannable(α, δ)
holds on (`, v, π).

– (`, v, π) ∼∼∼>
α

γ (`′, v′, π[α 7→ +∞]) for α ∈ γ if π(α) = 0.

– (`, v, π) ∼∼∼>
δ

γ (`, v + δ, π − δ) for δ ≤ min π, ` = (`1, . . . , `n), if tpc`i(v + δ) for components
Bi ∈ part(π) and tpc`i(v + δ + hmin) for components Bi /∈ part(π).

States of the planning semantics does not include only locations and clocks valuations, but also the
relative execution times of the planned interactions stored by π. Initially, no interaction is planned, that
is, initial states (`0, v0, π0) satisfy π0 = +∞. Planning an interaction α to be executed at a relative time
δ ≥ hmin corresponds to the operation π[α 7→ δ] on the plan, which can only be done if α is not conflicting
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with the plan, and if it becomes enabled if time progress by δ (i.e. if Plannable(α, δ)). On the other hand,
time progress not only updates clocks value but also the plan by decreasing the relative execution times
of the planned interactions. To force the execution of planned interactions when their relative execution
times reach 0, time cannot progress more than the relative execution times of the interactions (more than
δ ≤ min π). As for the standard semantics, time progress is limited by the time progress conditions of
the components, but with the following significant difference. Components Bi ∈ part(π) participating in
planned interactions behaves as in the standard semantics, that is, time can progress until their time progress
conditions expire. For components Bi /∈ part(π) that are not participating in planned interactions, we take
into account the minimal delay hmin needed for planning and then executing an interaction: in components
Bi /∈ part(π) time can progress only up to hmin time units before their time progress conditions expire.
By doing so we are sure that there always remains enough time to plan interactions involvingBi /∈ part(π)
, if they exist, and execute them before their time progress condition expire.

Example 2. Let us consider the following execution sequence for example of Figure 1 under the planning
semantics with hmin = 2.

((`10, `
2
0, `

3
0, `

4
0), (0, 0, 0),+∞) ∼∼∼∼∼∼>

plan(α1,26)

γ ((`10, `
2
0, `

3
0, `

4
0), (0, 0, 0), {α1 7→ 26})∼∼∼>26

γ

((`10, `
2
0, `

3
0, `

4
0), (26, 26, 26), {α1 7→ 0}) ∼∼∼>

α1

γ ((`11, `
2
1, `

3
0, `

4
0), (26, 26, 26),+∞)

∼∼∼∼∼∼>
plan(α3,2)

γ ((`11, `
2
1, `

3
0, `

4
0), (26, 26, 26), {α3 7→ 2}) ∼∼∼>2

γ ((`11, `
2
1, `

3
0, `

4
0), (28, 28, 28),

{α3 7→ 0}) ∼∼∼>
α3

γ ((`10, `
2
2, `

3
0, `

4
0), (0, 28, 0),+∞) ∼∼∼∼∼∼>

plan(α2,26)

γ ((`10, `
2
2, `

3
0, `

4
0),

(0, 28, 0), {α2 7→ 26}) ∼∼∼>26
γ ((`10, `

2
2, `

3
0, `

4
0), (26, 54, 26), {α2 7→ 0})∼∼∼>

α2

γ

((`11, `
2
2, `

3
1, `

4
0), (26, 54, 26),+∞) ∼∼∼∼∼∼>

plan(α4,2)

γ ((`11, `
2
2, `

3
1, `

4
0), (26, 54, 26), {α4 7→ 2})

∼∼∼>
2

γ ((`11, `
2
2, `

3
1, `

4
0), (28, 56, 28), {α4 7→ 0}) ∼∼∼>

α4

γ ((`10, `
2
2, `

3
2, `

4
0), (28, 0, 0),+∞)

∼∼∼∼∼∼>
plan(α6,30)

γ ((`10, `
2
2, `

3
2, `

4
0), (28, 0, 0), {α6 7→ 30})

This execution sequence represents a path that alternates plan actions, time progress and execution of
some interactions, and leads to the action-time-lock state ((`10, `

2
2, `

3
2, `

4
0), (0, 0, 28), {α6 7→ 30}). In fact,

the time progress condition x ≤ 30 in component T1, imposes the planning of interaction α7 at the latest
hmin units of time before it becomes urgent. However, since interaction α6 was planned in 28 units of time,
α7 cannot be planned since it is conflicting with α6. This execution sequence shows that a given system
can action-time-locks under the planning semantics, even if it is deadlock-free in the standard semantics.

3.2 Relation between Standard Semantics and Planning Semantics
We use weak simulation to compare the model under the standard semantics and the planning semantics
by considering plan-transitions unobservable. As shown in Example 2, the planning semantics does not
preserve the deadlock freedom property of our system. Nevertheless, the following proves weak simulation
relations between the two semantics.

Lemma 1. Given a reachable state (`, v, π) of the planning semantics. If for α ∈ γ, π(α) < +∞ ⇒
Plannable(α, π(α)).

Proposition 1. An interaction can execute from a state (`, v, π) in the planning semantics only if it can
execute from (`, v) in the standard semantics, that is:

∀α ∈ γ.(`, v, π) ∼∼∼>
α

γ (`′, v′, π′)⇒ (`, v)
α−→γ (`′, v′).

Proposition 1 is a consequence of Lemma 1: an interaction α can execute in the planning semantics
only if π(α) = 0 (see Definition 5). That is, a state (`, v, π) of the planning semantics from which α can
execute satisfy Plannable(α, 0 ) or equivalently Enabled(α), which demonstrates that α can execute from
(`, v) in the standard semantics.
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Proposition 2. Time can progress by δ at a state (`, v, π) in the planning semantics only if time can
progress by δ at (`, v) in the standard semantics, that is:

∀δ ∈ R>0.(`, v, π) ∼∼∼>
δ

γ (`′, v′, π′)⇒ (`, v)
δ−→γ (`′, v′).

Proposition 2 is a direct consequence of the definition of time progress in the planning semantics which
is a restriction of the one of the standard semantics.

Corollary 1. If a state (`, v, π) is reachable in the planning semantics the state (`, v) is reachable in the
standard semantics.

Corollary 1 is obtained from Propositions 1 and 2 and the fact that plan−
transitions (labeled by plan(α, δ)) affect only the plan π in states (`, v, π) of the planning semantics.

Definition 7 (Weak Simulation). A weak simulation over
A = (QA,

∑
∪{β},→A) and B = (QB ,

∑
∪{β},→B) is a relation R ⊆ QA × QB such that we have:

∀(q, r) ∈ R, a ∈
∑
.q

a−→A q′ =⇒ ∃r′ : (q′, r′) ∈ R ∧ r β∗aβ∗−−−−→B r′ and ∀(q, r) ∈ R : q
β−→A q′ =⇒

∃r′ : (q′, r′) ∈ R ∧ r β∗−→ r′. B simulates A, denoted by A vR B, means that B can do everything A does.

The definition of weak simulation is based on the unobservability of β−transitions. In our case,
β−transitions corresponds to plan−transitions.

Corollary 2. LTSp vR LTSg with R = {(q, π); q) ∈ Qp ×Qg}.

Corollary 2 corresponds to a notion of correctness of the planning semantics: any execution in the
planning semantics corresponds to an execution in the standard semantics. In addition, if interactions are
allowed to be planned with relative execution times of 0 (i.e. hmin = 0) then the planning semantics
simulates the standards semantics [8]. However, this is no longer true in general if hmin > 0 which means
that not all execution sequences of the standard semantics are preserved by the planning semantics. Notice
that the planning semantics also preserves non zenoness of the standard semantics (by Corollary 2 and the
fact that it is not possible to have infinite sequences of plan-transitions without interaction execution).

Proposition 3. For a given composition γ(B1, · · · , Bn), if its standard semantics is deadlock-free then its
planning semantics is deadlock-free if and only if it is action-time-lock free.

Proposition 3. We use proof by contradiction to proof Proposition 3. Let us assume that the system under
the standard (resp. planning) semantics is deadlock free (resp. action-time-lock free). Let (`, v, π) be a
reachable deadlock state of the planning semantics. We have:

@σ ∈ γ ∪ {plan}.(`, v, π) ∼∼∼>
σ

γ (`′, v′, π′) ∨ (`, v, π) ∼∼∼>
δ

γ (`, v + δ, π − δ) ∼∼∼>σ γ (`′, v′, π′)

We denote by wait(`, v, π) the set of allowed waiting times at state (`, v, π), that is:

wait(`, v, π) = {0} ∪ {δ ∈ R>0|(`, v, π) ∼∼∼>
δ

γ (`, v + δ, π − δ)}

We also put max(wait(`, v, π)) to denote the maximal waiting time at state (`, v, π).

Lemma 2. Let (`, v, π) be a reachable state of the planning semantics. For k ∈ R≥0, such that k =
max(wait(`, v, π)), we have the following properties:

P1 If k < +∞ then (`, v, π) ∼∼∼>
k

γ (`, v + k, π − k) ∧ wait(`, v + k, π − k) = {0}

P2 If π 6= +∞ then k < +∞∧ k ≤ minπ

We distinguish 2 cases:
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Case 1: no interaction was planned (i.e. π = +∞)
By definition of the planning semantics, it is clear that for π = +∞, there is no interaction to execute from
(`, v, π) or any of its successor (`, v + δ, π − δ).

1. wait(`, v, π) = {0}:
This means that time progress is not allowed at state (`, v, π). We also have @σ ∈ {plan}.(`, v, π)∼∼∼>

σ
γ

(`′, v′, π′) (deadlock assumption). We can conclude that (`, v, π) is a reachable action-time-lock
state, which contradicts the assumption that the system under the planning semantics is action-time-
lock free.

2. wait(`, v, π) 6= {0}:

(a) max(wait(`, v, π)) = +∞:

Lemma 3. Let (`, v, π) be a reachable state of the planning semantics. If ∀δ ∈ R>0.(`, v, π)∼∼∼>
δ

γ

(`, v + δ, π − δ) ∧ ¬Plannable(α) at (`, v, π), then we have ¬Enabled(α) at (`, v + δ, π − δ)
with δ ≥ hmin.

Using the deadlock assumption and P1 of Lemma 3 we can deduce that ∃δ ≥ hmin.(`, v, π)∼∼∼>
δ

γ

(`, v + δ, π − δ) such that we have:
∨
α∈γ ¬ ↙ (Enabled(α)). Finally, since the state

(`, v + δ, π − δ) is reachable in the standard semantics, and by evaluating the deadlock char-
acterization 2 on state (`, v + δ, π − δ), we can conclude that the system under the standard
semantics deadlocks, which contradicts the assumption of deadlock freedom of the system un-
der the standard semantics.

(b) max(wait(`, v, π)) < +∞:
Considering that k = max(wait(`, v, π)), then we have by P1 of Lemma 2: (`, v, π) ∼∼∼>

k
γ

(`, v + k, π − k) ∧ wait(`, v + k, π − k) = 0. Using the deadlock assumption we have:∨
α∈γ ¬Plannable(α) at state (`, v + k, π − k). Since the system cannot progress beyond this

state (wait(`, v + k, π − k) = 0), we can conclude that (`, v + k, π − k) is a reachable action-
time-lock state, which contradicts the assumption that the system under the planning semantics
is action-time-lock free.

Case 2: at least an interaction was planned (i.e. π 6= +∞)
Considering that k = max(wait(`, v, π)), since π 6= +∞, we have by P2 of Lemma 2: k < +∞∧ k ≤
minπ. Using the deadlock assumption we can infer that k < minπ, since no executions is possible
from (`, v, π) or any of its successors. This means that (`, v + k, π − k) is a reachable action-time-lock
state, which contradicts the assumption that the system under the planning semantics is action-time-lock
free.

Proposition 4. A state (`, v, π) of the planning semantics is an action-time-lock if and only if π > 0 and:∧
α/∈conf(π)

¬Plannable(α) ∧
∨
`i∈Li

Bi /∈part(π)

at(`i) ∧ (urg(`i) + hmin).

As shown in Example 2, the planning semantics may also introduce deadlocks. The source of deadlocks
is twofold: (i) due to communication delays consecutive execution in a component are separated by at least
hmin units of time which may be incompatible with its timings constraints, and (ii) conditions for planning
interactions are too permissive as they only take into account timing constraints of participating components
whereas they may block additional components, namely the ones participating in conflicting interactions.
In the rest of the paper we study how to generate planning strategies for preserving deadlock-freedom. They
restrict the plan-transitions of the planning semantics so that deadlock states become unreachable. Such a
strategy may not exist when timing constraints cannot accommodate with the communication delays hmin.
Notice that by Proposition 3 it is sufficient to focus on the action-time-locks of the planning semantics for
systems that are initially deadlock-free.
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4 Enforcing Deadlock-Free Planning

As explained above, the planning semantics is based on local conditions for planning interactions and may
exhibit deadlocks even when the system is deadlock-free with the standard semantics. Such deadlocks are
partly due to the fact that planning an interaction may block, in addition to the participating components,
extra components whose timing constraints are not considered by these local conditions. In this section,
we investigate simple execution strategies that only restrict the horizon used for planning interactions with
upper bounds. By reducing the period of time during which components are blocked, they tend to remove
deadlocks from the reachable states. In addition we provide sufficient conditions for checking deadlock-
freedom of the planning semantics subject to upper bounded horizons. In what follows, we consider a
composition of components S = γ(B1, · · · , Bn) such that it is deadlock-free in the standard semantics.

4.1 Planning with Upper Bounded Horizon

We slightly modify the planning semantics of Definition 6 of Section 3.1 by considering upper bounds
hmax : γ → Z≥0 ∪ {+∞} for interactions such that for any interaction α we have hmax(α) ≥ hmin. In
the modified semantics interactions α can be planned only using planning horizon δ satisfying hmin ≤ δ ≤
hmax(α). Notice that planning semantics as presented in Section 2 corresponds to the choice hmax(α) =
+∞ for all interactions α ∈ γ. The predicate Plannable(α) introduced in Section 3.1 and characterizing
states from which α can be planned in a delay respecting the constraints on the planning horizon becomes:

Plannable(α)⇔ ∃δ ∈ R≥0 . hmin ≤ δ ≤ hmax(α) ∧ Plannable(α, δ),

more formally: ∨
{`i∈Li}i∈I

(∧
i∈I

at(`i)
)
∧
(
↙hmax(α)
hmin

[∧
i∈I

guard(ai, `i)
])
.

It can easily be shown that all results of Section 3.2 also apply to this variant of the planning semantics.
The characterization of action-time-locks of Proposition 4 is still valid provided Plannable(α) is computed
using its refined version presented above. In the rest of the section we always consider this modified version
of the planning semantics.

4.2 Checking Deadlock-Freedom

As explained in Section 3.2, action-time-lock-freedom is a sufficient condition for deadlock-freedom of the
planning semantics. By Proposition 4 a state (`, v, π) is an action-time-lock in the planning semantics iff
π > 0, that is, no interaction can be executed from (`, v, π), and:∧

α∈γ\conf(π)

¬Plannable(α) ∧
∨
`i∈Li

Bi /∈part(π)

at(`i) ∧ (urg(`i) + hmin).

The above predicate characterizes the fact that no interaction can be planned, nor time can progress in
component Bi /∈ part(π). Consequently, we deduce that a necessary condition of action-time-lock is,
besides π > 0, the existence of a component Bi /∈ part(π) such that time cannot progress in Bi and Bi
cannot be planned in an interaction, that is:∧

α∈γ(Bi)\conf(π)

¬Plannable(α) ∧
∨
`i∈Li

at(`i) ∧ (urg(`i) + hmin).

where γ(Bi) denotes the subset of interactions in which Bi participate, that is, γ(Bi) = {β ∈ γ | Bi ∈
part(β)}. Notice that the above equation strongly depends on the plan π, which is diffcult to characterize
in practice. The following theorem proposes sufficient plan-independent conditions characterizing action-
time-lock states of the planning semantics.
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Theorem 1. Let φ be the following predicate:∨
1≤i≤n

[ ∨
`i∈Li

at(`i) ∧ (urg(`i) + hmin) ∧
∧

α∈γ(Bi)

(
¬Plannable(α) ∨

∨
β∈conf (α)
Bi /∈part(β)

Plannable(β)
)]
.

We prove that a reachable action-time-lock state (`, v, π), satisfies φ.

Theorem 1. A reachable action-time-lock state of the planning semantics satisfies:

(π > 0) ∧
∧

α∈γ(Bi)\conf(π)

¬Plannable(α) ∧
∨
`i∈Li

Bi /∈part(π)

at(`i) ∧ (urg(`i) + hmin).

In order to approximate the above equation, we distinguish two cases:

Case 1: no interaction was planned (i.e. π = +∞)
From π = +∞we deduce directly there exists an urgent componentBi such that no interaction α involving
Bi can be planned, that is:∨

1≤i≤n

( ∨
`i∈Li

at(`i) ∧ (urg(`i) + hmin) ∧
∧

α∈γ(Bi)

¬Plannable(α)
)
. (1)

Case 2: at least an interaction was planned (i.e. π 6= +∞)
In this case there exists an urgent component Bi /∈ part(β) such that no interaction α involving Bi can be
planned either because it conflicts with a planned interaction β or because Plannable(α) is not satisfied,
that is ∃β ∈ π,∃Bi /∈ part(β) satisfying:

(0 < π(β) < +∞) ∧
∧

α∈γ(Bi)\conf(β)

¬Plannable(α) ∧
∨
`i∈Li

Bi /∈part(β)

at(`i) ∧ (urg(`i) + hmin).

or equivalently ∃β ∈ π,∃Bi /∈ part(β) satisfying:∨
`i∈Li

Bi /∈part(β)

at(`i) ∧ (urg(`i) + hmin) ∧
∧

α∈γ(Bi)

(
¬Plannable(α)∨

(
β ∈ conf (α)∧ (0 < π(β) < +∞)

))
.

By Noticing that we have the following implication between quantifiers ∃y,∀x.Q(x, y) =⇒ ∀x, ∃y.Q(x, y),
we can deduce that the above condition implies:∨

1≤i≤n

[ ∨
`i∈Li

at(`i) ∧ (urg(`i) + hmin) ∧
∧

α∈γ(Bi)

(
¬Plannable(α) ∨

∨
β∈conf (α)
Bi /∈part(β)

0 < π(β) < +∞
)]
.

As π > 0, and if we consider only reachable action-time-locks, we have 0 < π(β) ≤ hmax(β), and by
Lemma 1 we have Plannable(β, π(β)). That is, β satisfies Plannable(β) in which the lower bound hmin

is replace by the strict lower bound 0, i.e.:

Plannable(β)⇔ ∃δ > 0 . δ ≤ hmax(β) ∧ Plannable(β, δ).

Then, the above equation becomes:∨
1≤i≤n

[ ∨
`i∈Li

at(`i) ∧ (urg(`i) + hmin) ∧
∧

α∈γ(Bi)

(
¬Plannable(α) ∨

∨
β∈conf (α)
Bi /∈part(β)

Plannable(β)
)]
. (2)
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By remarking that Equations 1 implies Equation 2, we can conclude that an action-time-lock of the
planning semantics satisfies:∨

1≤i≤n

[ ∨
`i∈Li

at(`i) ∧ (urg(`i) + hmin) ∧
∧

α∈γ(Bi)

(
¬Plannable(α) ∨

∨
β∈conf (α)
Bi /∈part(β)

Plannable(β)
)]
.

In order to attest that planning interactions does not introduce deadlocks, we use an SMT solver to check
the satisfiability of φ. As explained earlier, a given system is deadlock-free under the restricted planning
semantics if Reach(LTSp) ∧ φ is unsatisfiable. Since Reach(LTSp) ⊂ Reach(LTSg) (Corollary 2), we
can verify the above on Reach(LTSg).

Effectively, we do not compute Reach(LTSg) to avoid the combinatorial explosion problem, inherent
to composition of timed automata. In fact, we rather build an over-approximation, Reach(LTSg)

∼
of the

latter, an use it during our verification. The computed over-approximation combines the reachable states
of individual components. However, in general not all combinations are reachable since components are
not fully independent and may synchronize together through interactions. Moreover, individual invariants
alone do not express the fact that time progresses the same way in components. In order to capture these
additional information, we use different kind of invariants: (1) linear invariants [5] that capture the con-
straints on location configurations of the components induced by their synchronizations (interactions), and
(2) interaction inequalities for history clocks [12], allowing to relate the local constraints obtained individ-
ually on components, as well as separation constraints for interaction [12] that describes dis-equalities (or
separations) constraints between interactions.

5 Planning Semantics as Real-Time Controller Synthesis

In Section 4, we presented a method that provides execution strategies by restricting the upper bounds
planning horizon for each interaction. Since the given approach checks a sufficient condition for deadlock-
freedom, it may give false-positives results, that is, it will find a state verifying condition φ of Theorem 1 but
which is not deadlock state. In such cases, an alternative is to tackle the problem as a real-time controller
synthesis problem. Expressing the planning problem as a real-time controller synthesis problem is not
an easy task. Effectively, in order to encode the planning in timed automata, horizon values must be
integer. Moreover, for timing constraints not restricted with upper bounds, we end up by an infinity of
plan transitions. Consequently, the first thing to do is to discretize the planning horizons in order to obtain
finite values in Z>0. For a matter of simplicity, we restrict the planning horizon values by putting for
each interaction α ∈ γ/hmax(α) = hmin. Notice that in this case, the method checks if a given system is
deadlock-free when being planned with a hmin horizon.

Real-time controller synthesis is a common method used to extract an execution strategy from formal
specifications satisfying certain properties. Usually, these properties express the reachability (resp. non-
reachability) of a set of wining states (resp. bad states). In case of planning interactions with a hmin

horizon, the idea is to restrict the transition relation so that all the remaining behaviors do not lead to states
where a component is urgent and no possible execution including this component may occur. This can
be formalized as a reachability games for a timed game automaton [6], where the main idea consists in
trying to find an execution strategy guaranteeing that a given set of namely bad states of the system are
never reached. In order to apply this approach, it is required to encode the planning of interactions and their
effects on the system, that is, (i) encode interactions planning as synchronizations between components, (ii)
reserve the components of the planned interactions until their chosen execution date, i.e, keep track of the
planned interactions and their executions date, and (iii) characterize the set of bad states. Thereafter, tools
such as UPAALL-Tiga [3] can be used to find an execution strategy of the planning semantics avoiding the
set of bad states, that is, deadlock states.
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5.1 Planning Zones
From Equation 4, we can see that the clocks values for planning an interaction are calculated at a global
level, that is, by applying the↙hmax(α)

hmin
on the conjunction of its participating actions timing constraints.

Notice that for a timing constraint g = g1 ∧ g2, we have:

↙hmin

hmin
g =↙hmin

hmin
(g1 ∧ g2) 6≡↙hmin

hmin
g1∧ ↙hmin

hmin
g2

The above equation bears out the fact that planning states must be encoded on the composition of the
system model and not on individual components. Therefore, in what follows, we consider models with in-
teractions having timing constraints on up to one of its components participating action. In fact, considering
interactions with up to one action with timing constraints, will allow to encode the planning on individual
components that, additionally to the defined synchronizations (interactions), will also synchronize their
planning actions.

The idea is to split each transition of the initial model into two transitions: (1) a planning transition,
(2) followed by an execution transition hmin after the plan transition being performed. This is achieved by
equipping each component with an additional clock xp, that will be used to track the time. Additionally,
time progress conditions must also be translated to enforce planning at the latest hmin units of time before
their expiry. Figure 2 depicts such transformation:

l1x ≤ k

l2 l3

a, ga, ra b, gb, rb

l1x ≤ k − hmin

la1xp ≤ hmin lb1 xp ≤ hmin

l2 l3

plana
↙hmin

ga
xp := 0

planb
↙hmin

gb
xp := 0

a
xp = hmin

ra

b
xp = hmin

rb

Figure 2: A Timed system

Definition 8 (Planning Timed Automaton). Given n timed components Bi = (Li, `i0,Ai, Ti,Xi, Ii) syn-
chronizing through the interaction set γ such that, for each interaction α ∈ γ the guard of α is equal to the
guard of one of its included actions. We define the corresponding planning model as the composition of the
n timed automata Bpi = (Lpi , `0,Ai ∪ Pi, T

p
i ,Xi ∪ {x

p
i }, I

p
i ), w.r.t the interaction set γ ∪ P , where:

• Pi = ∪a∈Ai pa is the set of Planning Actions

• P = {pα = {pai}i∈I |α ∈ γ ∧ α = {ai}i∈I} is the set of Planning Interactions

• xpi is a Tracking Clock for interactions execution in each component

• Lpi = (Li ∪ Lpi ) is the set of control locations, where Lpi is the set of locations following planning
actions

• T pi is such that for each (`, a, g, r, `′) ∈ Ti, a ∈ α:

– if gα 6= true we have:

Planning transitions:

`
pa,true,∅−−−−−→ `a, if g = true

`
pa,↙

hmin
hmin

g,r(xp
i )−−−−−−−−−−−→ `a, otherwise

Execution transitions:

{
`a

a,true,r−−−−→ `′, if g = true

`a
a,xp

i =hmin,r−−−−−−−−→ `′, otherwise
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where `a ∈ Lpi .

– if gα = true, we choose one action b ∈ α:

Planning transitions:

`
pa,true,∅−−−−−→ `a, if a 6= b

`
pa,true,r(xp

i )−−−−−−−−→ `a, otherwise

Execution transitions:

{
`a

a,true,r−−−−→ `′, if a 6= b

`a
a,xp

i =hmin,r−−−−−−−−→ `′, otherwise

• Ipi is the set of Location Invariants , such that: Ipi (`) =

{
Ii(`)− hmin, if ` ∈ Li
xa ≤ hmin, if ` = `a ∈ Lpi ,

For a composition γ(B1, · · · , Bn), let LTSp = (Qp, γ ∪ R>0 ∪ {plan},∼∼∼>γ) its respective labeled
transition system under the planning semantics. Let also LTSp′ = (Qp′ , γ

′ ∪ R>0,−→γ′) , where γ′ =
γ ∪ P , be the corresponding labeled transition system of its planning model under the standard semantics.

Lemma 4. LTSp′ v LTSg .

The above Lemma is obtained by restricting the horizons values in the planning semantics to hmin.
Once interactions planning encoded, one last thing to do is to add the set of bad states to each planning

automaton (if needed) and find a strategy to avoid those states. Figure 3 depicts the corresponding planning
automaton for a task component of the running example w.r.t Definition 8. Here, xp is the clock used for
tracking the execution date of an interaction within the task component. Locations suffixed by p, correspond
to locations following planning actions, whereas locations ending with err defines the bad states, that is,
states with urgent time progress condition(s) and no possible execution removing the urgency. In this
example, we chose a hmin value of 2.

Figure 3: Planning automaton for the task component

5.2 Discussion
In this section, we explained how the problem of planning interactions can be formalized into a real-time
controller synthesis approach. However, this approach has some drawbacks. In order to encode planning
of interactions in components as timed automata, this approach restricts its scope to discretized horizon
values which results in having less control over the planning dates of interactions, and leads in case of a
high number of discretized values, to an explosion in the number of planning transitions. Additionally, it
considers only a class of systems where interactions have timing constraints on up to one of its participating
components action, otherwise, the planning should be encoded on the composition which represents a
tedious work.

14/17 Verimag Research Report no TR-2017-1



Mahieddine Dellabani, Jacques Combaz, Saddek Bensalem, Marius Bozga

6 Implementation and Experiments
For our experiments, we used the BIP framework [2] as a modeling language to define systems and their
synchronizations. BIP (Behavior, Interaction, Priority), is a component-based framework with a rigor-
ous semantics that allows to model systems as a set of atomics components coordinating their behaviors
through multiparty interactions. The proposed method has been implemented as a middleend filter of the
real-time BIP compiler, aiming to generate information that could be used by the backend during the code
generation process. The presented approach requires a substantial knowledge of the system model, since
the satisfiability verification ofReach(LTSg)
∼

∧φ, needs a deep analysis of the system, in order to generate
the predicates used in the latter. The implementation takes a BIP model as input. Then, the Frontend of
the BIP compiler builds the system metamodel and creates an abstract representation of it. Thereafter, the
named middleend planner performs a model analysis in order to construct the predicates needed in φ, while
keeping interactions upper horizons as free variables. In order to ease the verification process and remove
the back and forth process between the predicates generation and their verification, we fully integrated
the generation of the invariants over-approximation in our middleend. Finally, for each non true compo-
nent time progress condition a Yices [9] file, including system invariants and the predicates approximating
action-time-locks, is generated. The Yices solver then checks the satisfiability of Reach(LTSg)

∼
∧φ. If the

result is unsatisfiable, then planning does not miss the deadline expressed by the considered time progress
condition. Otherwise, if the result is satisfiable, Yices generates a counter-example. Since for each interac-
tion hmin is a fixed value defined by the worst case estimation of the target platform communication delays,
and due to the monotony of φ on hmax side, the generated counter-example is used to find the maximal
value of hmax satisfying the above condition. Due to the early development stage of the implementation,
this part is done manually, but we intend to replace it by a binary search algorithm in the near future. For
the experiments, we chose three additional benchmarks: Temperature controller, Controller workers and
an adaptation of the Train gate controller. A complete description of the benchmarks is available in [12].

Table 1: Detailed Results of the Task Manager Experiments

hmin hmax(α1), hmax(α2) hmax(α3), hmax(α4) hmax(α5), hmax(α6) hmax(α7), hmax(α8)
4 UB UB 29 UB
3 UB UB 28 UB
2 UB UB 27 UB
1 UB UB 26 UB

Table 1 depicts the values hmax for each interaction of the running example, obtained while fixing hmin.
Notice that the symmetry of the system implies the same hmax for interactions αi, αi+1, i ∈ {1, 3, 5, 7}.
By remarking that location `23 (resp. `33) has a time progress condition x ≤ 4 (resp. y ≤ 4), and by
observing that the clock x is reset on the transition leading to this location, we can conclude that planning
the system with hmin > 4 will lead to an action-time-locks. Particularly, in Example 2, for hmin = 2
interaction α6 was planned with a horizon δ = 30, and consequently, leads to a action-time-lock state. Our
method detects such cases and thus, find that the maximum horizon for this interaction is 27. Likewise, the
hmax for interactions α2, α4 and α8 (resp. α1, α3 and α7) is found to be unbounded.

Table 2 summarizes the experiments obtained on the benchmarks stated above. For each model, the
column maxhmin presents the maximum value for hmin for which the system is deadlock-free in the
planning semantics. On the other hand, column hmax shows if a restriction on the upper horizons is
required to avoid deadlocks.

7 Conclusion and Future Work
We presented a local planning semantics for scheduling real-time systems in a distributed context. The
proposed approach intends to mitigate the effect of communication delays through planning interaction
ahead. Sufficient deadlock-freedom condition has been proved, a compositional verification method for
checking action-time-lock-freedom was provided, and a simple execution strategy, based on restricting
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Table 2: Results of Experiments

Model maxhmin hmax

Task Manager 4 B
Temperature Controller 450 UB

Train Gate 10 B
Controller Worker 5 UB

upper bounds horizons planning of interactions, has been presented. Additionally, a formalization of the
planning problem as a real-time controller synthesis approach has been provided. This work shows how to
express the planning semantics as timed game automata and highlights the encountered issues met during
the formalization.

This approach opens a number of directions for future work. In case of action-time-locks of the plan-
ning semantics, a first idea consistes to study their origins and derive a refinement method for models in
order to take into account the communication delays. Another interesting direction is the characteriza-
tion of the reachable states of the planning semantics. Instead of using an over-approximation of systems
reachable states under the standard semantics, a more accurate approach could be to define a method for de-
riving invariants w.r.t the planning semantics. Finally, an interesting idea is to investigate how scheduler(s)
can benefits from the information provided by the presented method in order to optimize their scheduling
policy.
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