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Abstract

This work can serve to analyze schedulability of non-critical systems, in particular those that
have soft real-time constraints, where one can rely on ‘conventional’ statistical techniques to
obtain a maximal probabilistic execution time (MET) bound. Even for hard real-time systems
for certain platforms it is considered eligible to use statistics for WCET estimates, calculated
as MET at extremely high probability levels; such levels are ensured by a technique called
extreme value theory. Whatever technique is used, a major challenge is dealing with the de-
pendency on input data values, which makes the execution times non-random. We propose
methods to obtain adequate data-dependency models with random errors and to take advantage
of the rich set of model-fitting tools offered by ‘conventional’ statistical techniques associated
with linear regression. These methods can compensate for non-random input data dependency
and do not only provide average expectations, but also probabilistic bounds. We demonstrate
our methods on a JPEG decoder running on an industrial SPARC V8 processor.
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1 Introduction
We propose a new approach for timing analysis of software tasks, focussing on measurement-based sta-
tistical methods. In these methods, highly-probable execution time overestimations are preferred to ‘true’
100% worst-case execution times (WCET), which can be justified in many practical situations. For sys-
tems that have no safety requirements (e.g., car infotaintment) with weak, soft or firm real-time constraints,
one can rely on statistical (over-)estimations based on exhaustive measurements, which we call proba-
bilistic maximal execution times (MET). The methods to obtain arguably reliable METs are referred to
measurement-based timing analysis (MBTA) techniques. In recent research literature, MBTA techniques
have improved their reliability considerably, even to the point of being considered eligible to produce
the WCET estimates for hard real-time systems, though under some restrictive hardware assumptions
(e.g., cache randomisation). These WCET estimates are the so-called probabilistic WCETs, i.e., METs
that hold at an extremely high probability level (1−α) with α = 10−15 per task execution [1] or 10−9 per
hour, which corresponds to the highest requirements in safety-critical standards. ‘True’ WCET methods
(with α = 0) are costly to adapt to new application domains and processor architectures, as they require
complex exact models to be constructed and verified. However, non safety-critical systems can rely on
MET, characterized by α a few orders of magnitude smaller than the ‘15’ claimed by EVT methods. In
this case, a rich set of ‘conventional’ statistical model fitting tools, developed during decennia if not cen-
turies, can be applied. By abstracting the error of non-exact model as random ‘noise’ these methods permit
to avoid the laborious and costly process of constructing an exact model. Therefore, we focus on such
techniques.

A linear regression based approach is introduced for MET analysis. We demonstrate it with a JPEG
decoder case study, having a large number of execution time dependency factors, running on a state-of the
art industrial SPARC V8 architecture with caches. In Section 2, we discuss important aspects of statistical
analysis for probabilistic MET. In Section 3, we introduce the regression model that gives probabilistic
upper bounds using confidence intervals. Section 4 describes the techniques used for program instrumen-
tation, measurements and collecting candidate predictor variables for the model. Section 5 describes the
method for identifying the subset of useful predictors and presents the case study results. Related work is
discussed together with conclusions in Section 6.

2 Measurement-based Probabilistic Analysis
MBTA consists of initially performing multiple execution time measurements for a task and/or different
blocks of code in the task and of an analysis to combine the results and thereafter construct a MET model.
The probabilistic variant of MBTA is based on statistical methods [1].

Let us denote with Y the execution time, thus indicating that in general depends on some other vari-
ables, Xi. A MET bound with probability (1 − α) can be obtained by finding the minimal y such that:
Pr{Y < y} ≥ (1 − α). Suppose that Y is random with a known continuous distribution ‘f ’, denoted
Y ∼f . Then the solution is given through the quantile function of that distribution: y = Qf (1−α), which
returns a value y such that Pr{Y < y} = (1− α).

For the normal distribution, Y ∼N (µY , σY ), we have y = µY + σY Φ−1(1 − α), where Φ−1 is the
inverse of the cumulative distribution function forN (0, 1). Note that to calculate MET using this formula,
the ‘mean’ µY and ‘standard deviation’ σY have to be estimated from measurements with enough precision,
which requires a large enough number of measured Y samples. The justification of normal distribution is
the central limit theorem, according to which Y ∼ N (µY , σY ) by approximation, if Y is obtained by
adding a large number of independent random components. Intuitively, this condition holds, for example,
if we run a long loop with fixed loop bounds, while every loop iteration gets a random temporal component,
due to some random hardware factor. Normal distribution opens a rich set of tools of conventional statistics
for reliably estimating various useful parameters from measurements. In practice, however, the loop bounds
and variability components depend on the input data.

But even when an approximation by normal distribution is justified it still gives accurate results only for
α values that are not too small. Therefore, for very small α, MBTA analyses use the statistical techniques
of the so-called extreme value theory (EVT), which is better adapted to this situation [1].
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As noted in [1], for the applicability of EVT, as well as of other statistical methods, an important
obstacle is that it may be inadequate to see subsequent execution times observed at runtime as random
samples, i.e., as independent identically distributed (iid) variables, due to the dependency on input data
via multiple conditional execution paths in the program. The solution proposed in [1] assumes that the
input data parameters and hence Y are random, therefore they fit their models by giving random input
data samples. However, for usual safety requirements, in terms of probability per unit of time, we have
to consider how the input data parameters are presented at run time. In reality, subsequent data samples
(such as signals obtained from natural sources) typically show significant autocorrelations and moreover
their ‘observed distributions’ can change rapidly and significantly in time, and the same can be said about
Y . In this sense, we assume that the input data parameters and execution times are ‘non-random’.

In the present paper, we propose conventional-statistic methods to deal with non-random data-dependent
execution times and obtain a MET. Note that though no exact practical probability values are assigned to the
properties of such variables, one can still talk about probability bounds, e.g., Pr{Y < MET} > (1− α).
Of course, like any statistical method we still make some randomness assumptions, and in fact we assume
that if we obtain a sufficiently accurate model of Y , the model error can be considered random.

3 Linear Regression for MET
Our MBTA approach is based on linear regression, where the basic idea is to model the investigated
measured variable Y with other measurable variables Xi, called predictors. It is assumed that Xi have
nearly linear contribution to Y . Concrete values of predictors Xi give the possibility to ‘explain’ (or
‘predict’), with a certain precision the concrete value of Y . For MET, an important implication is that if
we know bounds for Xi this helps us to give a bound to Y as well. In linear regression, e.g., [2], the
dependence of Y on Xi is given by:

Y (n) = β0 + β1X1(n) + . . .+ βp−1Xp−1(n) + ε(n) (1)

In the context of MBTA, the dependent variable Y is the task execution time, and Y (n) is its n-
th measurement in a series of measurements. Coefficients βi are parameters that have to be fitted to
measurements Y (n) to minimize regression error ε(n). The dependent variable Y , error ε, and parameters
βi are interpreted as execution times and therefore they can be modeled to be real (and not necessarily
integer) numbers. Thus, the probability distributions for those metrics are assumed to be continuous (and
not discrete), as is usually assumed for timing metrics in statistical MET methods. On the contrary, in
MBTA the predictors Xi are discrete; they are in fact non-negative integers that count the number of times
that some important branch or loop iteration in the task program is taken or skipped. The corresponding
parameter βi can be either positive, to reflect the processor time spent per unit of Xi, or negative, to reflect
the time economized. In Section 4, we define the semantics of predictors and give an example.

From the point of probabilistic MBTA, the Equation (1) has a concrete meaning. We would like to
‘filter away’ the ‘non-randomness’ of Y by building a model

∑
i βiXi(n) which ‘explains’ its non-random

part, determined by the dependencies of Y on some metrics, Xi, of complexity of the task’s algorithm
for processing input data. Ideally, the remaining ‘non-explained’ part is a random variable β0 + ε(n), of
which β0 represents the mean value and ε(n) represents random deviation, whereby measurements ε(n)
are hopefully independent and normally distributed by N (0, σε). The probability bounds presented in this
paper are accurate only if this assumption holds, but they are generally believed to be robust against devia-
tions from the normal distribution. Hereby one can justify the ‘randomness’ of ε by the hypotheses that all
non-random factors have been captured by Xi. The normality of ε can be justified using the central limit
theorem by an intuitive observation that different sources of execution time variation, e.g., non-linearity of
different Xi, bus jitter, cache miss delay, branch-predictor miss delay are additive and independent.

Parameters βi are ‘ideal’ abstractions and their 100%–exact values in general cannot be obtained by
measurements. They can only be estimated based on measurement data, using the least-squares method.
The estimate of βi is denoted bi. Substituting ‘b’ as ‘β’ and ‘0’ as ‘ε’ into (1) we get an unbiased regression
model:

Ŷ (n) = b0 + b1X1(n) + . . .+ bp−1Xp−1(n) (2)
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Figure 1: Parameter Confidence Interval
whereas the difference eres(n) = Y (n)− Ŷ (n), called residual, serves as an estimation of the error ε(n):
ε(n) ≈ eres(n).

For convenience, let us introduce a p-dimensional vector x = (Xi | i = 0 . . . (p− 1)), where X0 = 1
is a virtual predictor that corresponds to b0. Then the regression model can be seen as a scalar product of
vector b by vector x.

The process of obtaining the model parameters from measurements is called model training (or fitting).
The set of measurements used to obtain the model parameters is called the training set. In our case, the
training set consists of N measurements of Y (n) and x(n), where in practice it is recommended to set
N � p, at least N > 5p. We need a training-set predictor measurements that will be organized in a p×N
matrix; we also need a corresponding N -dimensional vector of execution time measurements:

Xtrain = [x(1) . . .x(N)] ytrain = (Y (n) | n = 1 . . . N)

The least-squares method provides a linear-algebra formula to obtain the vector b from Xtrain and ytrain,
see e.g., [2]. However, each least-square model parameter bi is itself a random variable, because it is
obtained from a train-set ytrain ‘perturbed’ with a random error ε. It turns out from theoretical studies that
each estimate bi can itself be seen as a sample from a normal distribution, where different training sets
would lead to different samples bi, see Fig. 1. This distribution has as mean value the unknown parameter
βi therefore our sample bi is quite likely to be close to βi.

For MET estimation, we cannot be satisfied by model parameters b which are simply ‘close’ to β.
For a conservative model we rather prefer parameters b+ that are likely to be larger than β. To obtain
these parameters we use the statistical notion of parameter confidence interval, which is an interval ∆b =
[b−, b+] that is quite likely to contain β, see Fig. 1:

Pr{β ∈ ∆b} = (1− α) (3)

where α is some small value, usually specified in percents; often α = 5 % is chosen in practice. Note that
in Fig. 1 the least-squares estimate b is in the center of the interval, as the best apriori estimate of the ‘true’
position of β. The size ∆b is calculated as function of α and the training set, using ‘conventional’ statistics
confidence-interval formulas [2], and a typical implementation of regression in mathematical packages
calculates not only b but also ∆b. We say that β has a 100(1 − α) percent confidence interval, e.g., 95%
interval, which would mean, in simple words, that if we make experiments with 100 different training sets
and compute for each set the corresponding confidence interval, then on average 95 instances of ∆b will
contain the true value of β; our assumption that β ∈ ∆b is wrong only in 5% of cases. By symmetry in
the distribution of b, if we use b+, the upper bound of ∆b, as our model coefficient, then our model in the
above example is conservative w.r.t. this parameter in the 97, 5% of cases, i.e., with probability (1− α/2).

Therefore, our maximal regression model is not the usual unbiased regression model of Eq. (2), but:

Ŷ +(n) = b+0 + b+1 X1(n) + . . .+ b+p−1Xp−1(n) + ε+ (4)

where we assume that ε+ is the (probabilistic) maximal error. By analogy to b+, we try to set it to the
value such that Pr{ε(n) < ε+} ≥ (1 − α/2). Because ε ∼ N (0, σε) we could use σε · Φ−1(1 − α/2).
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However, as we did not know the ‘ideal’ value of βi and had to obtain an estimate bi instead, we should
do the same for σε. Similarly to the case of b+, the estimate σ̂+

ε should be pessimistic, i.e., it should be
biased to be larger than the ‘ideal’ value σε with a high probability. When obtaining its unbiased estimate,
σ̂ε, one involves the sum of squares of regression ‘residual’, e2res(n) = (Y (n) − Ŷ (n))2, calculated over
the training set. Using the quantile function of χ2 distribution with (N − p) degrees of freedom one can

show that for σ̂+
ε =

√
N∑
n=1

(Y (n)− Ŷ (n))2/Qχ2(N−p)(α/2), we have Pr{σε < σ̂+
ε } = (1− α/2).

By comparison of (1) and (4) we see that all the terms of the first are likely to be inferior to the
corresponding terms of the second, and therefore Ŷ +(n) is a probabilistic bound of Y (n):

Pr{Y (n) < Ŷ +(n)} ≥
(

1− (p+ 2)α

2

)
(5)

since we have (p+ 2) parameter estimates.

3.1 Applying Regression for MET Estimates

In practice, an adequate regression model is obtained after having collected a proper set of measurements
(i.e., the training set) and by identifying a proper set of predictors. In the next two sections, we discuss
how to define and select the predictors. The set of measurements should represent all important scenarios
that can occur at runtime. To ensure this, the engineer should discover the most influential algorithmic
complexity parameters of the program that may vary at run time. Then the engineer needs to obtain an
input data set, where every combination of these factors is represented fairly.

For linear regression, an important mathematical metric of input-data quality is the Cook’s distance.
Given a set of measurements, this metric ranks every measurement n by a numeric ‘distance’ value D(n)
indicating how much the given measurement influences the whole regression model. There should be no
‘odd’ measurements that dominate the regression model; it is generally recommended to haveD(n) < 1 or
even D(n) < 4/N . For convenience, let us refer to the measurements with D(n) > θ for some threshold θ
as the bad samples. These samples should be examined and either add more representatives that are similar
to them (so that they are not exceptional anymore) or remove them from the training set (use them only for
testing).

An adequate maximal regression model can be used [3] in the context of the implicit path enumera-
tion technique (IPET). In our case, this technique would evaluate MET by ε+ + maxx∈X

(∑p−1
i=0 b

+
i Xi

)
,

where X is the set of all vectors x that can result from feasible program paths. For this, the integer linear
programming (ILP) problem is solved with a set of constraints on the variables Xi. The constraints are
derived from static analysis of the program, which itself requires sophisticated tools, and from user hints,
such as loop bounds.

Though we use some of the IPET linear constraints, as mentioned in the next section, we have not yet
involved ILP and the associated tools. Currently, we assume that we have for each predictor (either from
measurements or user hint) its minimal and maximal bound, X− and X+ and we calculate what we call
pragmatic MET: ε+ + b+0 +

∑p−1
i=1 (bX)+i , where (bX)+ is b+X+ if b+ > 0 or b+X− otherwise. This

method can be very pessimistic; for example, in the case of switch-case branching it may associate with
every case a separate predictor and then assume that they all take the maximal value. Nevertheless this
bound is safe if the regression model is safe.

4 Instrumentation and Measurements

4.1 Instrumentation Points and Predictors

For a regression based approach, the execution-time measurements are done only for the whole task,
i.e., end-to-end. In MBTA, generally, multiple code blocks are usually measured. Such measurements
can be intrusive, and a simple addition of the block contributions can lead to inaccurate results, due to
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Figure 2: Instrumentation and i-point graph
various hardware effects (e.g. pipelining). For end-to-end Y (n) measurements, the program instrumen-
tation is trivial and the measurements take place with the program running on the target platform. Let us
consider the measurements required to construct the set of potential predictors P and their measured values
Xi(n), i ∈ P . For these measurements, the instrumented program does not have to run on the target plat-
form; a workstation can be used instead, but the same input data should be used, as for the measured Y (n).
Upon having obtained the potential predictors P , the final model predictors p ⊆ P can be identified, as
described in Section 5. Note that, by abuse of notation, ‘p’ and ‘P ’ represent both the set and the number
of predictors; we always include a single constant predictor, virtual predictor X0 = 1, which corresponds
to β0.

For instrumentation, we insert proper instrumentation points (i-points) into the program; the measure-
ments are then used to construct the so-called instrumentation point graph (IPG) that characterizes the
program’s control flow [4] (Fig. 2). The i-points are inserted at every program point, where the control
flow diverges or converges, e.g., at the start/end of the conditional and loop blocks, at the branches of the
conditional statements etc. An i-point is a subroutine call passing the i-point identifier ‘q’, e.g., in Fig. 2
we have points with q = 1, 2, 3. The goal is to get a measurement record about the path followed in the
current execution run. This information consists of the sequence of i-points visited during the execution
run, which is called i-point trace and is denoted as Tr(n) = (q1, q2, q3, . . .). As the program executes,
the i-points insert the identifiers q into the current trace. For the linear regression, a training set of size
N is generated by N traces. All traces together are used to generate the IPG graph and to define the set
of predictors P , whereas the n-th trace is used to obtain the n-th value of all predictors, Xi(n). For the
example in Fig. 2, the set of possible traces is {(1, 2, 3), (1, 2, 4)}, but, in general, the number of possible
traces can be exponential in the size of the program.

To compute the value of a predictor from a trace, we count the occurrences of a code block. A simple
block (q, r) is a pair of points that may occur one immediately before the other in the trace. In our examples,
the simple blocks are (1, 2), (2, 3), and (2, 4). They all correspond to some blocks of code in Fig. 2,
e.g., (2, 3) corresponds to the body of the ‘if’ operator.

The set of all i-points that occur in the training set yields the vertices Q of the IPG graph and the set
of all simple blocks yields the set P of its directed edges. Thus, the IPG graph is a digraph (Q,P ). We
deliberately use the notation P for the edges, as they correspond one-to-one to the potential predictors.
Fig. 2 shows the IPG graph for a small program example with an ‘if’ operator. The parameter β0 is
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associated to the part of the program executed unconditionally and the predictor X1 with the body of the
‘if’ operator. This predictor corresponds to the edge (2, 3). An IPG graph has exactly a source and sink,
i.e., the vertex that has no incoming resp. outgoing edges.

We define the flow counter f(q, r) as the number of times that a simple block (q, r) occurs in the trace.
The n-th value, Xi(n) of a predictor Xi that corresponds to an IPG edge, Xi ∼ (q, r), is given by the
counter f(q, r) for the measured trace Tr(n).

For a given vertex r, which is neither source nor sink, we can write the following ‘structural constraint’:∑
q∈I

f(q, r) =
∑
s∈O

f(r, s)

where I and O is the set of predecessors resp. successors of r in IPG. The structural constraints can
be used as part of the IPET model to calculate the IPET MET by solving the ILP [3]. We use them to
perform a simple elimination of variables. The elimination process can be represented by an IPG graph
transformation, assuming that the IPG graph is a multi-graph, i.e., it may contain multiple edges for the
same pair of nodes. The transformation can be represented by the selection of an edge between different
nodes, the removal of the edge and the joining of the two nodes into one. Note that we also remove from P
all predictors measured as constants, but we add a virtual predictor X0 = 1 that is needed for regression.

4.2 Example: JPEG Decoder on a SPARC Platform

A JPEG decoder in C2 is used, as a running example for illustrating the measurements and predictor
identification. The JPEG decoder processes the header and the main body of a JPEG file. Basically,
the main body consists of a sequence of compressed MCUs (Minimum Coded Units) of size 16 × 16 or
8×8 pixels. An MCU contains pixel blocks also referred to as ‘color components’, as they encode different
color ingredients. In the color format ‘4:1:1’ an MCU contains six blocks. For monochromatic images,
the MCU contains only one pixel block. The pixel blocks are represented by a matrix of Discrete Cosine
Transform (DCT) coefficients, which are encoded efficiently in as few bits as possible, so that a whole
pixel block can fit in a few bytes.

The hardware used for execution time measurements was an FPGA board with a SPARC V8 processor
with 7-stage pipeline, a double-precision FPU, 4 KB instruction and 4 KB data cache, 256 KB Level-2
cache and SDRAM.

For the measurements, we used 99 different JPEG images of different sizes and color formats. Unfor-
tunately, for a technical reason, we cannot obtain more measurements. From the corresponding traces we
obtained 389 simple code blocks, but our simple variable elimination reduced them to 105 simple blocks.
We have randomly split the complete set of 99 measurements into N = 70 for the training set, and 29 for
the ‘test’ set for verifying the obtained regression model. In the training set, 9 additional variables showed
up as constants, so they were eliminated and this left us with P = 95 potential predictors. Obviously, we
cannot use all predictors, but we will instead identify the necessary ones, which will also ensure that the
rule N > 5p is satisfied.

5 Predictor Identification and Experiments
In this section, we show how, upon having obtained P potential predictors, we can identify a compact set
of ‘significant’ predictors for the final model. The rationale is not merely a less costly model, but also the
so-called principle of parsimony: a model should not contain redundant variables. Many predictors are
interdependent, as for example in loop nesting, where the (total) counter f(p, q) of the inner-loop is likely
to have strong dependency on the counter of the outer loop. From a pair of dependent variables we can try
to keep only one, while attributing the small additional effect of the other variable to random error ε. If we
take too many variables from P , we will have overfitting, which means that our model will perfectly fit the
training set, but will it not be able to reliably predict any program execution outside this set. The reason for

2From comments: authored by Pierre Guerrier and Geert Janssen, 1998
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this is that an overfitted model would fit not only the ‘true’ linear dependence βiXi but also the particular
sample of non-linear random noise ‘ε’ encountered in the training set.

For linear regression, in general, the identification of a subset of useful predictors in a set of candidates
is an important subject of study (see Ch. 15 of [2]). One of the well-established methods is the stepwise
regression, which we propose for use in the MET analysis. An overall strategy, proposed in [2], is based on
observing the reduction of the model error when adding new variables. It is thus expected that at a certain
number of variables the error reaches saturation, and new variables do not reduce it significantly anymore.
At this point we can stop by adopting the hypothesis that the remaining error represents ‘random noise’.
Since we had a training set size N = 70, by the rule of thumb we cannot exceed N/5 = 14 variables, to
avoid overfitting. We use α = 0.05 for the maximal regression parameters and MET. All timing values
(e.g., errors) are reported in Megacycle units.

5.1 Basic Models

The simplest model is the case p = 1, where the execution time is modeled as a purely random variable
β0 + ε(n) without non-random contributors. We carried out the Kolmogorov-Smirnov test for Y that
reported only a 2% likelihood for its normality, which was not surprising as the histogram for Y was
considerably skewed with a few extreme values. The maximal extreme value corresponded to a JPEG file
of a particularly large size, yielding maximal measured time of 23643 Mcycles, while the mean time was
only 1000.

For p = 1, we obtained a large (compared to the mean) error ε+ = 6650 and a pragmatic MET ≈ 8000,
which grossly underestimated the maximal measured time; this was attributed to a relatively large error,
whose distribution was essentially not normal. All these factors pointed to a need of adding more variables
into the model.

With one more predictor, we obtain a model with p = 2. For a single variable, a good approach is to
include in P the variable with the highest (by absolute value) Pearson’s correlation ‘ρ’ with the execution
time. Such a variable was the f(271, 244) with ρ = 0.995. From the instrumented code, we found that
this variable corresponds to the byte count in the ‘main body’ of JPEG. The ‘raw’ model with this variable
was first created, without considering the Cook’s distance bad samples. The obtained error was ε+ = 678,
which is greatly reduced compared to the p = 1 case. By computing the regression with threshold θ = 10
(tuned for more illustrative results) we found two bad samples and moved them out of the training set (in
the test set); the error for the refined model of the new regression was ε+ = 572.

In the test set, the maximal regression model produced overestimations for all samples except two. A
pragmatic MET of 32531 was obtained, whereas, by apparent paradox, the ‘raw’ MET, 24696, was tighter.
This is presumably explained by the degraded stability of regression accuracy for the bad samples; the
sample that providedX+ and maximal Y was among such samples. This corresponded to a monochromatic
image of exceptionally large size, whereas a vast majority of other samples were color images of much
smaller size. In practice, such a situation should be avoided by well prepared measurement data. For
technical reasons we could not repair the situation by adding more measurements but we decided to keep
the bad samples for illustrative purposes. An observation that should be made, though, is that the instability
did not result in unsafe underestimation, but instead in a safe overestimation.

For p > 2 the identification is more sophisticated.

5.2 Stepwise Regression Fitting

The stepwise regression algorithm (see e.g. in [2]) is outlined by the following simple procedure. A
tentative set p of identified predictors is maintained, initially (for p = 1) containing only the constant
predictor X0 = 1, which is always kept in the set. The algorithm first tries to add a variable that is ‘worth’
being added and then to remove a variable that is not worth keeping; the same step is repeated until no
progress can be made. Adding a variable means moving it from P to p and removing means moving it
backwards. When at some step there is no variable that can be added or removed, the algorithm stops.
The ‘worthiness’ criterion for a variable depends on the other variables that are already in p; it is based on
evaluating the least-squares regression Ŷ with and without the variable. Intuitively, a variable is ‘worth’ if
its ‘signal to noise ratio’ is significantly large. The ‘noise’ here is the model error – evaluated based on the
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p b− b+ X− X+ (bX)+

(Constant) 409.660 637.29 1 1 637
f(271, 244) 0.010 0.011 3688 1818500 19752
f(90, 30) 0.055 0.070 28 27215 1917
f(101, 101) −49.506 −11.530 0 5 0
f(80, 81) −113.010 −26.009 0 2 0
f(409, 410) 0.013 0.022 0 192280 4150

ε+ − − − − 240
Pragmatic MET − − − − 26696

Table 1: Stepwise Regression Results in the Training Set
residual sum of squares and the ‘signal’ is the contribution of a variable to the variance of Ŷ . If by keeping
the variable the variance is not changed significantly compared to the error, then the variable is not ‘worth’.
The whole procedure is controlled by a parameter αsw that sets a threshold for variable acceptance and
rejection.

For illustrative purposes we describe in detail only the raw model by assuming a small p. At the end
of this section we give a summary for the refined model and for other p. Let us first have αsw (≈ 20%) to
obtain p = 6, i.e., to have 5 variable predictors. Table 1 shows the identified variables – in the order of their
identification – and the corresponding MET calculation in the training set. The meaning of the identified
variables is the following. The first identified predictor f(271, 244) is the same as for the p = 2 case, the
byte count. The second flow counter f(90, 30) gives the pixel block count, specifically for those blocks that
had correct prediction of the 0-th DCT (Discrete Cosine Transform) coefficient. Such blocks are typically
not costly in terms of needed bytes for encoding. At the same time, the costly blocks’ contribution can
be captured by the first predictor. Hence, the f(90, 30) as second predictor can account for the additional
computations that were not accounted by the first one; a similar variable in P , the total pixel block count,
f(406, 26), would give less additional information. This demonstrates how stepwise regression can find
good combinations of predictors.

The remaining predictors have less impact on the execution time. The third predictor, f(101, 101),
gives the number of elements in the color format minus one, e.g., 5 = 6 − 1 for format 4:1:1 and 0 for
monochromatic images. Equivalently, it gives the number of pixel blocks per MCU block minus one.
Note that this predictor has a negative regression coefficient. The JPEG decoding is characterized by two
related cost components: a cost per pixel block (reflected by the first two predictors) and a highly correlated
cost per MCU block. The more pixel blocks fit into one MCU, the less overhead per pixel block has the
MCU processing and this presumably explains why the found coefficient is negative. The fourth identified
predictor, f(80, 81), counts the number of ‘padded’ image dimensions, X and Y, i.e., the dimensions which
are not exactly proportional to the MCU size (16 or 8 pixels). When an image has such dimensions, less
processing is required and less data copying for ‘partial’ MCU blocks, which presumably explains the
negative coefficient for this predictor. Finally, the predictor f(409, 410) is zero for colored images; it
counts the total number of MCUs in monochromatic images. Its impact is presumably complementary to
that of f(101, 101).

By summation of the last column of Table 1, the pragmatic MET was 26696, which, as we hoped,
exceeds 23643, the observed maximal time. For the MET, we used the X+ and X− observed in the
measurements. By existing WCET practices, more reliable bounds on X could be provided without mea-
surements, but it is preferable to sufficiently represent them in the training set. Recall that the pragmatic
MET is likely to incur extra overestimation by including an unfeasible path. In fact, this could happen for
the presented model, as the calculation in Table 1 may combine a relatively large byte and block count
that is typically required for colored images, with pessimistic contributions of the predictors representing
monochromatic images. With the IPET approach this possibility would be excluded and a more ‘intelli-
gent’ worst-case vector x would be obtained. A lower bound on hypothetic IPET results with the given
model is 25764, calculated as the observed maximum value of Ŷ +(n). This lower-bound MET is close to
our pragmatic upper-bound MET, as our largest image was monochromatic. In the test set, we saw rea-
sonably tight overestimations, clearly tighter than in the p = 2 case, which is explained by a significantly
smaller error ε+ = 240; however, we again got two underestimations in the test set.
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We also constructed a refined model for p = 6 (removing two bad samples). The refined-model error
was ε+ = 52 and we observed a tight overestimation at all samples. Again, for the reasons explained
earlier, the MET was less accurate, reaching 28048. The normality test returned 26% likelihood of the
residual normality in the training set.

By experimenting with larger values of p, we found that the p = 8 case was optimal. The error ε+ was
reduced to 35 and stopped improving, thus showing saturation. With more variables a degradation of model
tightness was observed, probably because the new parameters b started getting ‘blurred’, showing a ∆b
much larger than b. The optimal p = 8 yielded 97% error normality likelihood, with tight overestimations
for all measured samples except for the bad ones; the resulting MET was 56538, not tight due to bad
samples, but safe. By (5) this estimate corresponded to Pr > 0.725.

6 Related Work and Conclusions
Historically, linear regression has been mostly used to predict average, not conservative, performance of
software A regression for maximal execution time has appeared in [3], but, unlike our work, their regres-
sion model is not based on statistical techniques. Instead, the authors sketch an ad-hoc linear programming
based approach and they admit that additional future work is still required. In contrast to our work, all po-
tential predictors are included in the model, instead of a small subset of the significant ones, and therefore
their techniques presumably require many more measurements to avoid overfitting, and more costly cal-
culations to estimate all parameters. The coverage criteria are based on existence of an hypothetical exact
model with a large enough number of variables, which should be known, whereas we tolerate presence of
error and estimate the coverage probabilistically. On the other hand, they have showed how a regression
model can be combined with existing complementary WCET techniques for calculating much tighter ex-
ecution time bounds than our pragmatic approach. Among the works on statistical WCET analysis, next
to [1], it is worth to mention [5]. In that work, program paths are modeled using ‘timing schemas’, which
split the program into code blocks. The WCET distributions of each block are measured separately and
then the results for the different blocks are combined. However, this approach requires executing instru-
mentation points together with timing measurements, which introduces the unwanted probe effect.

In this paper, we have presented a new regression based technique for estimation of probabilistic ex-
ecution time bounds. Unlike WCET analysis techniques, it cannot ensure safe estimates at very high
probability levels, but it can be suitable for preliminary WCET estimates and non safety-critical systems.
We have described a complete methodology for model construction, which includes an algorithm for iden-
tifying the proper variables for the model and an algorithm for finding conservative model parameters. So
far, this technique was tested with only one program, a JPEG decoder, by using, for technical reasons, a
limited set of measurements. Nevertheless, our technique has shown promising results, by giving tight
overestimations in the tests.
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