
Mixed-Critical Systems Design with
Coarse-grained Multi-core

Interference

Peter Poplavko, Rany Kahil, Dario Socci, Saddek
Bensalem, Marius Bozga

Verimag Research Report no TR-2016-4

July 2016

Reports are downloadable at the following address
http://www-verimag.imag.fr

Unité Mixte de Recherche 5104 CNRS - Grenoble INP - UGA
Batiment IMAG
Universite Grenoble Alpes
700, avenue centrale
38401 Saint Martin dHeres
tel: +33 4 57 42 22 42
fax: +33 4 57 42 22 22
http://www-verimag.imag.fr

http://www-verimag.imag.fr

Mixed-Critical Systems Design with Coarse-grained Multi-core
Interference1

Peter Poplavko, Rany Kahil, Dario Socci, Saddek Bensalem, Marius Bozga

July 2016

Abstract

Autonomic concurrent systems that are timing-critical and compute intensive need special
resource managers in order to ensure adaptation to unexpected situations. So-called mixed-
criticality managers may be required that adapt system resource usage to critical run-time
situations (e.g., overheating, overload, hardware errors) by giving the highly critical subset of
system functions priority over low-critical ones in emergency situations. Another challenge
comes from the fact that for modern platforms – multi- and many- cores – make the schedul-
ing problem more complicated because of their inherent parallelism and because of “parasitic”
interference between the cores due to shared hardware resources (buses, FPU’s, DMA’s, etc.).
In our work-in-progress design flow we provide the so-called concurrency language for ex-
pressing, at high abstraction level, new emerging custom resource management policies that
can handle these challenges. We compile the application into this language and combine it
resource manager into a joint representation used to deploy the given solution on the target
platform. In this context, we also discuss our current work in progress on scheduling tools for
handling the multi-core interference in mixed-critical applications.

Keywords: bandwidth interference, multi-core, embedded multiprocessor, mixed criticality

Reviewers:

How to cite this report:

@techreport {TR-2016-4,
title = {Mixed-Critical Systems Design with Coarse-grained Multi-core Interference},
author = {Peter Poplavko, Rany Kahil, Dario Socci, Saddek Bensalem, Marius Bozga},
institution = {{Verimag} Research Report},
number = {TR-2016-4},
year = {2016}
}

1The final publication at ISOLA’16 will be available at Springer via http://dx.doi.org/TO BE PROVIDED
Research supported by ARROWHEAD, the European ICT Collaborative Project no. 332987, and MoSaTT-CMP, European Space
Agency project, Contract No. 4000111814/14/NL/MH

Peter Poplavko, Rany Kahil, Dario Socci, Saddek Bensalem, Marius Bozga

1 Introduction
In this paper we present our work-in-progress design flow for scheduling and deployment of software
designs for embedded systems. Modern embedded applications constitute so-called nodes of distributed
systems, i.e., they communicate via buses and networks with other applications (nodes). We consider sys-
tems that are not only timing-critical, i.e., subject to hard real-time constraints, but also mixed-critical,
i.e., able to sustain highly-critical functions even under harsh compute-resource shortage situations. The
latter is desirable if the system has to be autonomic [1], i.e., able to operate in open and non-deterministic
environments. An example of an autonomic mixed timing-critical system is a “fleet of UAV’s (unmanned
air vehicles) [2]” that coordinate with the leader UAV within strict time bounds to avoid mutual collision
and to ensure timely response to external events, e.g., appearance of hazards. Such systems should not
only be correctly specified but also implementable, first of all schedulable in real-time. The point is that
control tasks in many applications are augmented by complex computations that can load the processor
significantly (e.g., computer vision, trajectory/route calculation, image/video coding, graphics rendering).
In such cases, to meet the high computational demands inside the nodes while keeping their energy con-
sumption, cost and weight manageable it is important to consider multi- (2-10) or even many-core (x100’s
cores/‘accelerators’) platforms.

A major obstacle for schedulability analysis of multi-core applications is ‘bandwidth interference’ [3],
i.e., blocking due to conflicts in simultaneous accesses to shared hardware resources, such as buses, FPU’s,
DMA channels, IO peripherals. Next to interference, the other dimensions in the scheduling problem are
(i) possible lack of preemption support in many-core systems, (ii) inter-task precedences (dependencies),
commonly implied from the application’s model of computation (MoC) and (iii) switching between nor-
mal and emergency mode in mixed-critical scheduling. To be able to address all these dimensions at the
same time we propose simplifications which make the scheduling problem amenable for known heuristic
methods with some adaptations.

We also put the proposed scheduling approach into the context of our work-in-progress design flow,
which offers not only scheduling but also deployment on the platform. The deployment is ensured by a
compilation tool-chain that is by construction customizable to various MoCs and online scheduling policies
by mapping them to an expressive intermediate ‘concurrency’ language.

In Section 2 we introduce one-by-one the main pillars of our design flow, such as MoCs and mixed-
criticality. Section 3 introduces the structure and assumptions of the proposed flow itself and illustrates it
via a small synthetic application example. Section 4 gives a basic explanation of the scheduling models
and algorithms and presents some experiments for a large set of random benchmarks. Section 5 concludes
the paper and discusses future work.

2 Background

2.1 Models of Computation

To manage concurrency and coordination between tasks in parallel and distributed environments Models
of Computations (MoCs) have been proposed in the literature. They permit the application designer to
define the structure and organize the tasks and their communication channels in a way that resembles high-
level specifications (functional diagrams). MoCs intend to abstract the application’s behavior from any
implementation detail. Figure 1 shows an example: a part of an industrial avionics application modeled in
a MoC called Fixed Priority Process Network (FPPN) [4].

In the figure we see (1) tasks, e.g., ‘HighFreqBCP’, etc., annotated by periods, (2) inter-task channels,
e.g., between ‘DopplerConfig’ and ‘SensorInput’, and (3) precedence relation between tasks, e.g., ‘High-
FreqBCP’ has higher precedence than ‘BCPConfig’. The application consumes data from input buffers,
e.g., ‘AnemoData’, and produces the results to output buffers, e.g., ‘BCP Data’. The buffers are supposed
to hold their input values or output slots during the periodic interval between task arrivals and deadlines. As
a MoC, FPPN should define the partial ordering of execution and interaction steps of concurrent activities
(tasks), and this is done via the precedence relation, which ensures predictable inter-task communication.

Next to FPPN, many MoCs have been proposed in the literature for embedded multi-core systems, to

Verimag Research Report no TR-2016-4 1/17

Peter Poplavko, Rany Kahil, Dario Socci, Saddek Bensalem, Marius Bozga

SensorInput

200ms200ms200ms200ms

AnemoConfig

2 per200ms2 per200ms2 per200ms2 per200ms

GPSConfig

2 per200ms2 per200ms2 per200ms2 per200ms

IRSConfig

2 per200ms2 per200ms2 per200ms2 per200ms

DopplerConfig

2 per200ms2 per200ms2 per200ms2 per200ms

HighFreqBCP

200ms200ms200ms200ms
LowFreqBCP

5000ms5000ms5000ms5000ms

MagnDeclin

1600ms1600ms1600ms1600ms

BCPConfig

2 per200ms2 per200ms2 per200ms2 per200ms

Performance

1000ms1000ms1000ms1000ms

MagnDeclinConfig

5 per1600ms5 per1600ms5 per1600ms5 per1600ms

PerformanceConfig

5 per1000ms5 per1000ms5 per1000ms5 per1000ms

AnemoData

GPSData

IRSData

DopplerData

PerformanceData

BCP Data

precedence indicator

Figure 1: Application modeled in a MoC: Flight Management System in FPPN

name just a few: MRDF (multi-rate data-flow, often named SDF – Synchronous Dataflow) [5], Prelude [6],
SADF (scenario-aware data-flow) [7] and DOL-Critical [8].

2.2 Resource Managers and Concurrency Language

An important property of autonomic embedded systems is their ability to adapt themselves to unexpected
phenomena [1]. When a system is compute-intensive (which should be the case when a multi-core imple-
mentation is necessary) and time-critical it has to be able to adapt itself to exceptional shortage in compute
resources. In real-time systems, ‘resource managers’ are software functions that monitor utilization of
compute resources and ensure such adaptation. For this they apply different mechanisms, such as mixed-
criticality, QoS management, DVFS (Dynamic Voltage and Frequency Scaling), etc.. Especially the mixed-
criticality approaches are gaining more an more interest and have a high relevance for collective adaptive
systems [2]. Resource managers are implemented as integral part of online schedulers i.e., middlewares
for customized online scheduling policies.

Unfortunately, there is a considerable semantical gap between different online schedulers and middle-
wares for MoC, even though both define software concurrency behavior. We aim at a common approach
that can ensure consolidation, by representing middlewares in a language that is expressive enough such
that it can encompass all possible concurrency behaviors for real-time systems, including their timing con-
straints. We refer to that common language as concurrency language (or backbone language) [9].

We believe that for autonomic timing-critical systems a proper choice of concurrency language is a
combined procedural and timed automata language extended with tasks, i.e., so-called task automata [10,
11]. Timed-automata languages in general are known to be convenient means to specify resource man-
agers, such as QoS [12] and mixed criticality [13]. In our design flow the concurrency language is BIP.
Under ‘BIP’ we mean in fact its ‘real-time dialect’ [12], designed to express networks of connected timed
automata components. In [14] this language was demonstrated useful for modeling distributed autonomic
systems. In [8] it was extended from timed to task automata, by introducing the concept of self-timed (or
‘continuous’) automata transitions, i.e., transitions that have non-zero execution time, in order to model
task execution.

In our approach, the applications are still programmed in their appropriate high-level MoC because
in many cases an automata language, though being appropriate for resource managers, may still be too
low-level for direct use in application programming. Instead, we assume automatic compilation of higher-

2/17 Verimag Research Report no TR-2016-4

Peter Poplavko, Rany Kahil, Dario Socci, Saddek Bensalem, Marius Bozga

level MoCs into the concurrency language. Due to well-known high expressive power of automata to
model concurrent systems this must be possible for most MoCs. In ideal case, the compilation would be
configured by a user-defined set of grammar rules for automatic translation of his/her preferred MoC into
automata.

2.3 Concurrency Language based Representation of System Nodes
Figure 2 gives a generic structure of a concurrency language model of a distributed-system node running
an application expressed in a certain MoC. We also zoom into the BIP model of an important part of the
system.

TC1

T1

Online Scheduler

TC2

T2

TC3

T3

MoC Controller

In
pu

it
Bu

ffe
r

O
ut
pu

t B
uf
fe
r

Distr. System Node

S0

Start

TaskController(D) periodic implicit-deadline case

S1

S2

S3

Arrive
reset x

Finish

Deadline
when [x ≤ D]

Figure 2: Concurrency Language Representation of a Timing-critical Application

The basic components of the model are automata, i.e., finite-state machines that can interact with other
components by participating in a set of interactions with other automata as they make discrete transitions
(basic steps of execution). In our model, we have one automaton per application task and one per inter-
task channel, and also an automaton to control each task – the so-called task controller. There is also
an automaton that ensures proper task execution order according to model-of-computation semantics, we
refer to that automaton as MoC controller. One can also introduce an automaton that further restricts the
ordering and timing of task executions – the online scheduler. Note that some automata can be hierarchical,
i.e., they may represent a composition of several more primitive automata.

In Figure 2 we zoom into a task controller for periodic tasks whose deadline is equal to the period. It
consists of a cyclic sequence of states, with initial state ‘S0’ and first transition ‘Arrive’, which models task
arrival and is followed by transition ‘Start’, which corresponds to starting a new iteration of task execution,
called a job. The ‘Start’ transition is followed by ‘Finish’ transition when the job finishes. After the finish,
the deadline-check transition ‘Deadline’ is executed. The deadline is checked as follows: upon task arrival
a so-called clock variable x is reset to zero. This variable acts a timer indicating the time elapsed since the
last clock reset. After the job has finished we check whether the deadline D was respected, i.e., whether
x ≤ D.

Note that the given task controller example is time-driven, but depending on the employed MoC it can
also be event-driven, where events can indicate availability of task input data, or task buffer space or other
conditions prescribed by a given MoC for task execution.

2.4 Multi-core Interference Aspects
When dealing with multi-core platform architectures as targets for timing critical applications a particular
serious problem arises. Spontaneous unpredictable or hardly predictable ‘parasitic’ timing delays – ‘inter-
ference’ – manifest themselves when multiple threads run in parallel in the same hardware system; they
are caused by parallel activity of other threads. Interference appears when threads await response from
resources that are in use by other threads.

The concerned resources can be either hardware or protected logical (software) resources. Shared hard-
ware resources that can cause interference can be global buses, bus bridges and switches, coprocessors,

Verimag Research Report no TR-2016-4 3/17

Peter Poplavko, Rany Kahil, Dario Socci, Saddek Bensalem, Marius Bozga

peripherals, and even FPU’s (if they are shared between cores to save on-chip area). Software shared re-
sources are, for example, mutex-lock segments in the source code and calls for mutually exclusive services
in the system runtime environments.

Interference can be coarse-grain or fine-grain. In the former case the accesses to the shared resource
occurs in ‘coarse’ blocks, called superblocks [15], which occur just once or a few times per task execution.
Often a task has one superblock to read all the input data from global to local memory at the start and to
write the data at the end. Fine-grain interference is sporadic and can occur a large number of times per task
execution, e.g., bus accesses due to loads/stores in the memory.

Interference deteriorates the canonical ‘worst-case execution time (WCET) analysis’→ ‘schedulabil-
ity analysis’ design process of timing-critical systems due to a feedback influence. Luckily, coarse-grain
interference can be controlled by scheduling the superblocks in a way that influence of resource con-
flicts on the WCET is eliminated because the ordering of shared-resource accesses is taken care of by
the schedule. Moreover, fine-grained interference can sometimes be partly or completely transformed
into coarse-grained one by ‘concentrating’ the resource-access intensive parts of source code together into
coarse-grained blocks.

In our scheduling algorithm we assume fully controlled coarse-grained interference, whereas the re-
maining fine-grained interference that could not be transformed into coarse-grained one is assumed to be
taken into account either via extra WCET margins or, more conservatively, by modeling complete tasks as
blocks. Moreover, though different resources (e.g., different FPU’s and different memory banks) can be
accessed in parallel and though different blocks can have different timing costs, we make a simplifying
assumption that there is only one shared resource and the duration of all blocks is the same, we denote
it δ. A particular case of such interference that emerges in the context of our concurrency language based
design approach is runtime overhead of the centralized ‘engine’ [8]. In our concurrency model, governed
by automata, one can distinguish discrete steps of execution, which correspond to discrete transitions of
the automata components that constitute the system. Suppose that these transitions for all system-node
components are realized by a single central control thread called the engine. This is, for example, the case
in the runtime environment for the BIP language employed in our design flow. Suppose that δ is the worst-
case time to handle one automaton transition. Then the runtime overhead to execute certain sequence of
control operations can be conveniently modeled as the number of discrete transitions times δ [8]. Beyond
the necessary accesses to the engine itself, accesses to other interfering resources can be, in principle, also
modeled and programmed in a concurrency language as explicit transitions, and this approach is well-
known in the literature. For example, in [16], coarse-grained accesses to global bus are explicitly modeled
as extra special sub-tasks which are scheduled next to ordinary tasks and which are joined with tasks in a
common state-transition model. In principle, our presented scheduling method can handle a general class
of coarse-grain interference models that can be reflected in a static task graph. We exemplify this by mod-
eling the interference in the engine. We assume constant block size δ, whereas blocks with duration longer
than δ can be modeled by chains with multiple δ-transitions. Therefore, our assumptions can be used in
quite general case, though possibly introducing some inefficiency.

We assume single shared resource equal-block duration coarse-grained interference model and refer to
it as δ-interference model. Generalizing δ-interference for improved efficiency to multiple resources and
different block durations is future work.

To manage interference in hard real-time systems we advocate a time-triggered scheduling approach,
i.e., letting the tasks start at fixed time instances even if previous tasks finish earlier. This approach does not
make worst-case response-times of tasks worse, while it significantly reduces the complexity of fine-grain
interference analysis (if the corresponding WCET margins are to be computed) and improves its accuracy.
The point is that when tasks do not shift their execution earlier upon earlier completion of previous tasks
the number of task pairs that can potentially run in parallel (and hence interfere) is significantly reduced,
which effectively cuts the number of analysis cases to be covered.

2.5 Mixed-Criticality Aspects
In adaptive autonomous systems one has to provide for unexpected situations. In terms of scheduling this
means allocating worst-case amount of resources with a significant extra margin. To damp the high costs
that such margins incur, the allocated extra resources are given, ‘on an interim basis’, to less-critical and

4/17 Verimag Research Report no TR-2016-4

Peter Poplavko, Rany Kahil, Dario Socci, Saddek Bensalem, Marius Bozga

less important functions in the system which can be stopped at any time to free up the resources in the case
when highly-critical and highly-important functions need them. This reasoning leads to a generic resource
management approach commonly referred to as mixed-criticality, see Figure 3.

Utilization, %

Normal Mode

Sh.Resources

Proc. Cores HI LO

HI LO mode switch

Utilization, %

Emergency Mode

Sh.Resources

Proc. Cores HI LO

HI

Figure 3: Mixed-criticality Resource Management

We currently consider a common case of having just two levels of criticality. Less-critical functions
are given low criticality level, commonly denoted ‘LO’. Highly-critical functions are given high criticality
level, commonly denoted ‘HI’. For example, in a UAV system LO can correspond to mission critical and
HI to flight-critical functions.

As shown in Figure 3, in case of emergency the HI tasks get high resource utilization margins. However
in normal mode of operation these margins are never used and are given to LO tasks. Only when emergency
situation occurs where HI tasks need more resources a ‘mode switch’ from normal to emergency mode is
performed by the resource manager whereby the extra margins are ‘claimed’ by HI tasks. In our approach,
the respective resource management policy can be implemented in concurrency language as part of the
‘online scheduler’ automaton component [13].

There are two distinct approaches to free up the resources from LO tasks in the case of mode switch.
The first approach is dropping the LO tasks (i.e., instantaneous aborting them with possibility to resume
their execution later on). The second approach is putting the LO tasks in degraded mode, i.e., signalling
or enforcing them to do less computations and accesses to shared resources at the cost of the lower output
quality or missed deadlines. A major challenge in mixed criticality scheduling is that the mode switch
may occur at any time not known in advance and that it is required to guarantee schedulability no matter
whether and when the switch occurs [17].

As explained in the previous section, to better handle interference we use the time-triggered scheduling,
to be more specific, we use STTM (static time triggered per mode) online policy [17, 18], which is a
generalization to mixed-criticality scheduling. In this policy, the normal and the emergency modes both
have a time-triggered table. A switch from normal to emergency table can occur at any time instant, while
it should be guaranteed that if HI critical tasks need to claim their extended resource budgets reserved for
unpredictable situations then they will always get them in full amount. Though this appeared to be by far
not trivial, in [18] we have proved theoretically and experimentally that this approach is as optimal in the
worst case as the event-triggered approach.

3 Work-in-progress: Design Flow

3.1 Underlying Paradigm
There is neither a single MoC nor a single online scheduling policy that would be recognized univer-
sal for all application domains and platforms. This is especially the case for multiprocessor systems and
when interference, task-dependency and mixed-criticality challenges are to be considered. The policies
and MoCs will continue intensive evolution whereas industrial systems need rapidly adjustable imple-
mentations, while the corresponding analysis techniques need a basis to establish formal proofs for them.
Therefore our target design flow is customizable, at least conceptually, to different MoCs and policies
by compiling the MoC and scheduling policy to the common task-automata based concurrency language,
for which, in our design flow, we use BIP. Therefore, we do not create a custom middleware specialized

Verimag Research Report no TR-2016-4 5/17

Peter Poplavko, Rany Kahil, Dario Socci, Saddek Bensalem, Marius Bozga

for FPPN MoC and for STTM scheduling policy, but instead we express them in BIP [9, 8]. The BIP
implementation of the system on top of BIP runtime environment (RTE) should not leave the underly-
ing platform any significant real-time scheduling decision freedom but should map the user-programmed
scheduling policies to basic operating system mechanisms, like threads and dynamic priorities [8, 19].

The main contribution of the present paper is handling coarse-grained interference in the context of
mixed-critical systems with precedence constraints between multi-rate tasks. We address the complex
problem by practically meaningful simplifications. We assume that the task system is synchronous-periodic
or can be over-approximated as such by periodic servers. A synchronous system can be represented by a
semantically-equivalent static task graph, [20, 4], conveniently presentable to a list-scheduling heuristic,
which, in turn, has reputation of reasonable performance for comparable practical instruction-level schedul-
ing problems [21]. Moreover, we present a practical design flow where applications can be programmed.
Existing design flows that integrate programming and scheduling e.g., [10, 2, 6, 8, 22, 23], make some
restrictive assumptions but in return offer different features, e.g., distributed-system/network support or
expressive power. We compare to [8] in the next section. The scheduling techniques [20, 17, 11, 15, 24,
18, 16, 7] also have some restrictions, while in return offering important theoretical properties and features.
We discuss related work further in Section 4.3.

3.2 Flow Structure and Assumptions
Our target design flow is shown in Figure 4. At the input we take the application specified as a MoC
instance (i.e., a network of task elements connected to channel elements and annotated by parameters) and
functional code for the tasks. From the MoC instance the tools derive a task-graph for offline scheduling.
The task graph describes the application hyperperiod in terms of jobs nodes and precedences edges. The
‘jobs’ are task executions and the precedences are derived from the semantics of the given MoC. The
application is translated into concurrency language – BIP. The schedule obtained from the offline scheduler
is translated into parameters of the online-scheduler model specified in BIP.

The joint application-scheduler model (with a basic structure as previously outlined in Figure 2) is
translated by the BIP compiler into a C++ executable. The executable is linked with BIP RTE (the ‘engine’)
and executes on a platform on top of the real-time operating system.

When executing on the platform, the binary executable encounters interferences, as discussed in Sec-
tion 2.4. Handling interference requires a feedback loop from the binary executable back to the offline
scheduler tool. Next to the worst-case execution times (WCET’s) of tasks, the worst-case execution times
of (blocks) of accesses to the shared resources should be obtained from WCET analysis and back-annotated
at the input of the scheduler tool, and then the flow should be re-iterated (at most once, as the ‘pure’ WCET
should not depend on the schedule).

We put the following requirements on our target design flow. We assume FPPN as application MoC.
The offline scheduler should support non-preemption, precedence constraints implied from the FPPN and
take into consideration coarse-grained interference. The online scheduler should support task migration and
task dropping. The online scheduling should be based on STTM scheduling policy for mixed criticality.

The main reason of assuming non-preemption is lack of support of preemption in the current version
of BIP language and RTE engine. Though preemption can be modeled and simulated [13], it cannot yet
be executed in real-time mode. This is subject of future work, where we will possibly extend the concept
of self-timed (i.e., continuous) automata transitions to retractable (i.e., preemptable) transitions. Never-
theless a justification for considering non-preemption is lack of support of preemption in many multi-core
platforms that have a large number (> 8) cores (so-called many-core platforms and graphical accelerators).

In our design flow we reuse certain elements from our previous ‘DOL-BIP-Critical’ flow [8] which
was co-developed in collaboration with partners. The name of the MoC involved in that flow was DOL-
Critical. It is closely related to FPPN, and the same specification language, named DOL-C, is currently
used to specify instances of both FPPN and DOL-Critical models. FPPN has more general notion of task
precedence than DOL-Critical, as it supports precedences between any pair of tasks, and not only between
equal-rate periodic tasks.

There were essential differences in the scheduling assumptions taken in the previous flow, where the
tasks were executed essentially in as-soon-as-possible (ASAP) fashion i.e., immediately after the previous
task mapped to the same partition. Instead we impose time-triggered start of each task, which should

6/17 Verimag Research Report no TR-2016-4

Peter Poplavko, Rany Kahil, Dario Socci, Saddek Bensalem, Marius Bozga

mixed-critical application

multi-core platform

MoC instance
specification

(DOL-C XML)

app2bip compiler offline scheduler

bip2cpp compiler

executable

application controllers + tasks + online scheduler (BIP)

BIP RTE (Engine)

functional
code

(C/C++)

task graph -interference
model

engine runtime
overhead

global bus periferals,
coprocessors,
FPUs, DMAs

the sources of
interference

(shared resources)

Figure 4: Work-in-progress Design Flow

significantly simplify the analysis of bandwidth interference. The offline scheduler of previous flow had
the advantage of supporting time partitioning, degraded mode and excluding the interference between HI
and LO criticality levels.

Currently in our work-in-progress we have an initial version of an offline scheduler that satisfies the de-
sired criteria, except that the interference models presented at the input of this tool are currently restricted
to those for BIP engine interference of implicit-deadline periodic task controllers. Though advanced inter-
ference detection methods are known in related work [25], we still miss them in our flow. If such tools were
available we could adapt or extend the δ-interference model assumed in the offline scheduler. Next to this,
the online scheduler is not yet properly integrated, as it still does not support dropping and task migration,
though such features are within reach, e.g., we demonstrate a restrictive form of BIP-component migration
in [8] and thread API’s offer means for dropping.

In the remainder of the paper we discuss the currently available tools and illustrate their use by concrete
examples. For multi-core experiments presented here, we use a LEON4 multiprocessor implemented on
FPGA board, using an RTEMS OS with symmetric multiprocessing. For this platform, as measurements
show, the worst-case execution time of one BIP interaction step takes: δ = 1 ms.

3.3 An Example Illustrating the Flow
Figure 5 gives a synthetic application example with three tasks. The ‘split’ task puts two small (a few
bytes) data items to the two output channels and sleeps for around 1 ms to imitate some task execution
time. Tasks ‘A’ and ‘B’ read the data. Task ‘A’ sleeps alternately for 6 ms and 12 ms, to model ‘normal’
and ‘emergency’ workload levels. This task models a high-criticality task. Task ‘B’ supports two modes

Verimag Research Report no TR-2016-4 7/17

Peter Poplavko, Rany Kahil, Dario Socci, Saddek Bensalem, Marius Bozga

of execution: normal and degraded. In normal mode it sleeps for 6 ms, in degraded mode it skips all
execution, even reading the input data. This task models a low-criticality task.

All tasks have the same periodic scheduling window, with period and deadline being 25 ms. In a real
application, this would correspond to the time during which the two imaginary input data buffers should be
read, computations should be done and the output buffers should be written.

split25ms25ms25ms25ms

In
p

u
t

B
u

ff
e

r

A25ms25ms25ms25ms
B25ms25ms25ms25ms O

u
tp

u
t

B
u

ff
e

r1

O
u

tp
u

t
B

u
ff

e
r2

J2

split [1]

(1) ms

J1

A [1]

(12) ms

J3

B [1]

(6) ms

J2 - HI

split [1]

(1,1) ms

J1 - HI

A [1]

(6,12) ms

J3 - LO

B [1]

(6) ms

Jiiii : : : : AAAAiiii = 0= 0= 0= 0, , , , DDDDiiii = = = = 25 25 25 25 msmsmsms , , , , δδδδ = = = = 1 1 1 1 msmsmsms

Figure 5: Three-Task Example: MoC (left), Ordinary Task Graph (middle) and Mixed-critical Task Graph

The middle part of the figure gives the ‘ordinary’ (i.e., non mixed-critical) variant of the task graph.
Every task is represented by a job. The jobs are numbered: Ji = J1, J2, J3 and annotated by their worst-
case execution times. Their individual arrival times Ai and deadlines Di are the same in this example. The
right part of the figure corresponds to the ‘mixed-critical’ variant of the same graph. The execution times
of highly-critical tasks are represented by a two-valued vector: normal-mode time and emergency-mode
time.

The engine runtime overhead (as it will become clear later) constitutes 4δ = 4 ms per task (in total
12 ms). Therefore, when assuming ordinary execution times this example cannot run on a single core, as the
total execution time amounts to 12+1+12+6=31 ms, which is larger than the 25 ms deadline. The offline
scheduler evaluates the load (i.e., maximal demand-to-capacity ratio) of this example to 31/25=124 %.
Therefore it predicts that at least two processors are necessary.

On the other hand, in the mixed-criticality case we consider the two execution modes – normal and
emergency – separately. In the normal mode Task ‘A’ has execution time 6 ms, which is 6 ms less, and
we have a load 25/25 = 100 %, for which a single-core may be sufficient. In the emergency mode the
execution time of Task ‘A’ is again 12 ms, but we drop Task ‘B’, which saves us 6 + 4=10 ms and leads to
the load of 21/25=84 %, which again may be doable on a single core, as evaluated by the tool. Thus mixed
criticality can be used to use the cores more economically.

The tool generates the schedules for the ordinary graph and for the mixed-critical one, as shown in
Figure 6. Figure 7 shows the Gantt charts of executing the two variants of the schedule on the LEON4
board.

In every Gantt chart the first line shows the execution of the BIP Engine on ‘Core 0’. One may wonder
why a whole core would have to be reserved to a runtime environment. This is due to lack of support
of preemption in current BIP RTE. Moreover, it should be noted that in many-core systems (or graphical
accelerators), this is justifiable, as in practice there are plenty of cores available – e.g., 16 per shared-
memory cluster in [26] – and no preemption is allowed. On the contrary, for a multi-core system such as
LEON4, which supports preemption, in future work we intend to interleave high-priority engine control
operations with lower-priority execution of the actual task schedule. Note that the engine thread executes
also the BIP components responsible for control operations, such as the task controllers, the MoC controller
and the online scheduler.

Recall that the shared resource on which interference-modeling is currently supported by the tools is
the engine. As we see in the Gantt chart, every task execution is prefixed and suffixed by two δ-accesses
to Core 0 (in fact, two δ’s at the prefix and two δ’s at the suffix). In the ordinary schedule, Task ‘split’ and
Task ‘A’ are mapped to Core 1 and Task ‘B’ to Core 2.

The platform-measurement charts show two periods, one in normal and one in emergency mode. The
offline scheduler ‘ordinary’ solution assumes the overall worst-case, whereas the mixed critical (MC) solu-

8/17 Verimag Research Report no TR-2016-4

Peter Poplavko, Rany Kahil, Dario Socci, Saddek Bensalem, Marius Bozga

p2

p1

Engine

 0 5000 10000 15000 20000 25000

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12

R
e
so

u
rc

e
s

Time

LO Timetable with Engine Access

J1J2 J3J4 J5 J6J7 J8J9J1
0

J1
1

J1
2

J1J2J4 J5 J6J7 J8J9J1
0

J3 J1
1

J1
2

(a) Ordinary Schedule

p1

Engine

 0 5000 10000 15000 20000 25000

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12

Re
so

urc
es

Time

LO Timetable with Engine Access

J1J2 J3J4 J5 J6J7 J8J9 J10 J11 J12

J1J2 J3J4 J5 J6J7 J8J9 J10 J11 J12

(b) MC Schedule: Normal Mode

p1

Engine

 5000 10000 15000 20000 25000

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12

Re
so

urc
es

Time

HI Timetable with Engine Access

J1J2 J4 J5 J6J7 J8J9

J1J2 J4 J5 J6J7 J8J9

(c) MC Schedule: Emergency Mode

Figure 6: Three-Task Example: Offline-Scheduler Solutions

Verimag Research Report no TR-2016-4 9/17

Peter Poplavko, Rany Kahil, Dario Socci, Saddek Bensalem, Marius Bozga

2

1

0

 0 10000 20000 30000 40000 50000

Pr
oc

es
so

rs

time

Gantt chart

P1
P2
P3

P20

P2
0

P1

P2
0

P3
P2

P2
0

P2
0

P2
0

P1

P2
0

P2

P3

P2
0

P2
0

(a) Ordinary Execution Traces (No mode switch in the second period)

1

0

 0 10000 20000 30000 40000 50000

Pr
oc

es
so

rs

time

Gantt chart

P1
P2
P3

P20

P2
0

P1

P2
0

P2

P2
0

P3

P2
0

P2
0

P1

P2
0

P2

P2
0

P3

P2
0

(b) Mixed-critical Execution Traces (Dropping J3 in the second period)

Figure 7: Three-Task Example: Platform Execution Traces

10/17 Verimag Research Report no TR-2016-4

Peter Poplavko, Rany Kahil, Dario Socci, Saddek Bensalem, Marius Bozga

tion distinguishes two modes. Comparing the corresponding segments of Gantt charts of the solutions and
measurements we see a match, though not a perfect one. This is because the offline scheduler output is not
yet supported as input to the online scheduler in general. We see that in the emergency mode MC case the
offline scheduler drops task ‘B’ altogether, whereas the online scheduler still makes a short execution of
Task ‘B’ in degraded mode.

Because of current temporary lack of tool integration we had to do manual modifications in the con-
currency model that was automatically generated from FPPN, in order to ensure that the online behavior
matches the offline solution. Note that a possibility for the user to refine the behavioral model by such
modifications is itself an attractive design-flow property. We made modifications in the mixed-criticality
variant of the design, in order to introduce the switch from normal to emergency mode. We ensure that
if Task ‘A’ executes beyond its normal-mode execution time then Task ‘B’ is executed in degraded mode.
These modifications are shown in Figure 8.

S1a

S1
…

TC-A (D := 25ms)

S2
FinishA

S3

TC-modified-B (D := 25ms, ThrA := 16 ms)

S1b

StartB(`NORMAL’)

StartB(`DEGRADED’)
……

FinishAFinishA StartB FinishB

Figure 8: Three-Task Example: Manual Modification Introducing a Mode Switch

We have modified the structure of the TC for Task ‘B’, which originally was as shown in Figure 2, by
introducing a new transition between the ‘Arrive’ and ‘Start’ for Task ‘B’. This transition is synchronized
with ‘FinishA’ transition in the TC of Task ‘A’. We check the value of clock ‘x’ which measures the time
since the begin of the current period. If this value is larger than a certain threshold ThrA then ‘B’ is
executed in degraded mode.

4 Offline Scheduling Algorithm

4.1 Algorithm Description
In this section we zoom into a particular tool in our design flow – the offline scheduler. We give some basic
idea on the scheduling problem, the δ-interference model and the scheduling algorithm. Finally we show
schedulability-evaluation experiments with random benchmarks.

A scheduling problem instance consists of a DAG task graph obtained automatically from a MoC; we
have seen examples in Figure 5. The nodes, Ji are obtained from tasks and are annotated by parameters
(Ai, Di, χi, Ci), where [Ai, Di] give the job scheduling window (between arrival and deadline relative to
the hyperperiod), χi gives the job criticality level (‘LO’ or ‘HI’) and Ci is a vector that gives the execution
time in the normal and emergency modes. The problem instance also includes the selected number of cores
(not counting the engine core) and some information on interference, currently we only take the value of
δ, whose meaning is interference at the start of each job. The δ-interference model is shown at the left side
of Figure 9.

This model can be described by a hypothesis that we have a global system controller i.e., the automaton
obtained from a combination of all concurrency-model automata present in the system. Lets call it by
abuse of terminology the ‘engine’. The engine controller makes discrete transitions (control steps), each
step costing execution time δ at the control core. At certain steps the engine spawns a job on a compute
core taken from a pool of cores. For this, an idle core is selected and reserved at the beginning of the step.

Verimag Research Report no TR-2016-4 11/17

Peter Poplavko, Rany Kahil, Dario Socci, Saddek Bensalem, Marius Bozga

Time

BIP Engine
(or Shared Res)

Core k Ji

δδδδ

insert TC transition nodes

Ji

(Ci)
Ji

(Ci)

arri

(0000)

fini

(0000)

ddli
(0000)

insert δδδδ nodes

nodej

(Cj)
engj

(δδδδ)

nodej

(Cj)

Figure 9: Engine (‘Delta’) Interference and its Modeling in the Task Graph

The steps that do not spawn any computations are modeled as steps that spawn a job with zero execution
time. The engine does not make execution steps all the time, for some time intervals it may decide to do
idle-waiting.

As we have seen in Figure 2, a periodic controller can be modeled as a system component that, for a
given task lets the engine make four subsequent steps corresponding to the following transitions: arrival,
start, finish and deadline check. The real computation job is, in fact, triggered by the ‘start’ step, the other
steps do not trigger any computations. Therefore, as shown in Figure 9, to model periodic jobs we insert
three corresponding zero-execution time ‘satellite’ jobs. The arrival job becomes an extra predecessor of
the original job, the finish job becomes the new successor after which all the original successors follow,
where we also introduce a new successor – the deadline-check job. Now it should become clear why in
our example in the previous section every job execution is prefixed and suffixed by two δ-steps. To model
the part of the job that is executed on the engine Figure 9 shows the second graph transformation, which
inserts a δ-predecessor at every job. Except for the execution time, the newly inserted ‘satellites’ get the
same characteristics (i.e., scheduling window and criticality) as the original job.

The scheduling algorithm is applied in our design flow to a graph obtained from the original MoC
after it has been post-processed by the two graph transformations defined above. The algorithm generates
the two schedules for the two execution modes. These schedules act online as tables for time-triggered
execution, see e.g., Figures 6(b) and 6(c).

First the normal-mode table is generated. This is done using global fixed-priority simulation that takes
precedences into account. This algorithm is also known as list-scheduling. As mentioned before, we
assume non-preemptive scheduling. The algorithm has been adapted to take into account two types of
resources: a single control core and a pool of compute cores. In order to execute, every job first needs one
instance of both resource types for time duration δ to execute its δ-predecessor and then during its own time
duration Ci continues running on the compute core only, whereas the control core is available to spawn
another job. The algorithm maintains a list of ready jobs (and hence its name). As soon as the control core
and a compute core become available to start another job the algorithm picks the highest-priority ready
job and starts its simulated execution. A job is considered ready to execute if two conditions hold. Firstly,
the job scheduling window [Ai, Di] must be already begun, i.e., for the current simulated time t we have
t ≥ Ai. Secondly, all DAG predecessors of the job (if any) must be finished.

The priorities for selecting the next job to be scheduled are obtained from an earliest-ALAP-first
(ALAP means ‘as late as possible’) fixed priority table. Job’s ALAP time gives the latest time when it
may complete its execution such that neither that job nor any of its transitive DAG successors will miss
the deadlines. ALAP times are computed recursively, from the sinks to the sources, taking into account
the execution times. Before ALAP times are calculated, the deadlines of the HI jobs are reduced by the
value of their execution time uncertainty, i.e., the difference between their execution times in the emergency
and normal modes. Those are the effective deadlines that should be met to avoid missing the deadlines if a
switch to the emergency mode occurs. These ‘effective’ deadlines give a HI job higher priority with respect
to a LO job whose nominal deadline is the same. It is due to this reason that in our Three-Task example, in
its mixed-criticality variant, (see Fig. 5, 6(a)), the HI Task ‘A’ is scheduled before the LO Task ‘B’.

The emergency mode table is calculated such that at any moment of time a switch from normal to

12/17 Verimag Research Report no TR-2016-4

Peter Poplavko, Rany Kahil, Dario Socci, Saddek Bensalem, Marius Bozga

emergency mode may take place such that the HI jobs may continue without being preempted or migrated
in the middle of execution to another core. To this end, the schedule start times in the normal mode are
regarded as job arrival times in the emergency mode. Further, in this mode, we simulate only the HI jobs
(while the LO jobs are dropped) taking into consideration only HI-to-HI job precedences while keeping the
same job-to-core mapping and the same relative order of HI-job execution as in the normal mode. When a
job deadline miss is detected in any of the two modes the algorithm fails.

Since our variant of list scheduling algorithm does not use dynamic priority tables and the static table
can be obtained by simple topological sort algorithm, the complexity of our algorithm is the same as the
one of list scheduling. Our implementation of this algorithm according to [18] has complexity:

O(V (log V +M) + E)

where V,E is the number of nodes, edges respectively and M is the number of processors.

4.2 Experiments
We have performed experiments of measuring the success rate of the algorithm for random generated
ordinary and mixed-critical benchmarks that have different level of normalized stress, which is a peak
resource utilization metric – see [24, 18] – ranging from 0 to 100 %. For mixed-criticality experiments,
the stress for both modes of execution was maintained equal. We assumed instances with 10 jobs and no
precedence constraints.

Experiments for three different values of ρwere made: 0.1, 0.5 and 0.8, where ρ is the ratio between the
stress due to δ-jobs only and the stress due to all jobs. As expected, the mixed-criticality instances are much
harder to solve than ordinary ones by the same algorithm. In future work it will be interesting to implement
an exact algorithm, e.g., using SMT solvers, to evaluate the optimality of our algorithm experimentally.

We noticed that, counter-intuitively, no significant sensitivity to the value of ρ was detected. A possible
reason is that ρ appears to have only a weak connection to the ratio between δ and average task execution
time. In future work a better load-related metric for the proportion of interference in the total workload
will be investigated.

4.3 Related Work
Different previous works address related problems, some of them are discussed in this subsection. Refer-
ence [20] is an extension of [17] which calculates STTM tables for multi-rate synchronous mixed-critical
systems. This work is restricted to uniprocessor platforms. Task automata verification [11] has unprece-
dented expressive power, but may be subject to scalability issues for industrial-scale systems unless it is
applied with some approximations and abstractions. The superblock approach [15] is a well-recognized
technique to address even fine-grain interference and it has been further developed in related work. How-
ever a problem remains still open, see [3], concerning calibration of fine-grain analysis techniques to typical
processor and bus architectures that are deeply pipelined and have other performance optimization features.

The semantics of synchronous systems is relaxed even further compared to [20] in the direction of
functionally equivalent asynchronous pipelined execution with self-timed synchronization, following the
philosophy of Kahn process networks (KPN). The goal was to support embedded signal processing and
multimedia stream-processing in general. Rich liveness, memory boundedness, code generation and real-
time throughput/latency analysis theories have been developed for these models, termed data-flow MoCs.
An interesting survey for expressive real-time analyses is given in [7]. Paper [16] studies optimal handling
of coarse-grained interference in simple variants of such MoCs.

In data-flow MoCs, classical concepts such as release times, periods and deadlines are replaced by self-
timed iterations, long-run throughput and multi-iteration latency bounds. The ‘FPPN’ MoC, adopted in our
flow, can be seen a data-flow MoC which, in a way, ‘attempts’ to reconcile itself to classical concepts. Also
our work extends the data-flow-related MoCs to mixed criticality.

Only a few scheduling techniques mentioned above are integrated in software engineering toolchains
that have both real-time scheduling and code generation. First of all, ADA programming language and its
Ravenscar profile are de facto standards for mono-core hard real-time systems. They integrate the most

Verimag Research Report no TR-2016-4 13/17

Peter Poplavko, Rany Kahil, Dario Socci, Saddek Bensalem, Marius Bozga

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

S
ch

e
d

u
la

b
ili

ty

Stress

rho = 0.9
rho = 0.5
rho = 0.1

(a) Ordinary Benchmarks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

S
ch

e
d

u
la

b
ili

ty

Stress

rho = 0.8
rho = 0.5
rho = 0.1

(b) Mixed-critical Benchmarks

Figure 10: Schedulability Results for Random Benchmarks

14/17 Verimag Research Report no TR-2016-4

Peter Poplavko, Rany Kahil, Dario Socci, Saddek Bensalem, Marius Bozga

trusted and safe multi-task programming and scheduling techniques for tasks that have no explicit prece-
dence constraints. For the case of distributed systems that work was extended to multiple mono-core plat-
forms or partitions communicating via bus and network protocols in the context of TASTE design flow [23].
This work requires extension in order to treat multi-core system nodes and precedence-constrained task
models such as FPPN.

Prelude design flow [6] represents an ongoing work on scheduling and deployment of multi-rate syn-
chronous systems defined with more expressive (‘synchronous-language’) semantics than the ones assumed
in our flow and in [20]. It should be noted that the price to be paid for higher expressive power is that it
becomes much less obvious how to generate a semantics-preserving task-graph or data-flow MoC model
in this case that could provide an input to a precedence-constrained scheduling tool.

A variant of superblock approach was implemented in DOL-BIP-Critical design flow [8]. Task-automata
verification is integrated into Times and UPPAAL tools [10]. CompSoC design flow [22] deploys applica-
tions based on scheduling algorithms for data-flow MoCs.

Our previous works [24] and [18] present more elaborate techniques than those presented here for
optimizing priority and time-triggered tables for mixed criticality, but they assume preemption and do not
yet consider interference. In future work we intend to inherit more elements of those techniques into
presented scheduling tool. Integrating these techniques directly into our design flow will be considered
after we extend our BIP preemption modeling techniques from simulation [13] to real-time deployment.

5 Conclusions and Future Work
In this paper we have proposed a scheduling algorithm and a work-in-progress design flow for timing-
critical multi-core applications, taking into account coarse-grained interference, using the interference from
the controlling run-time environment as an example. In our design flow we demonstrate the concept of
using task automata as concurrency language, which can be used to program the custom resource managers,
such as mixed-criticality ones. In future work we plan to introduce the missing features into our design
flow (especially, the runtime environment to support task migration and dropping). We also plan to extend
our interference models to other resources (e.g., buses and peripherals) and to more general task controllers
and models of computation. We also have started a research activity to investigate proper integration of our
design approach with a distributed-system design flow TASTE.

References
[1] M. Wirsing, M. M. Hölzl, M. Tribastone, and F. Zambonelli, “ASCENS: engineering autonomic

service-component ensembles,” in FMCO’11, pp. 1–24, 2011. 1, 2.2

[2] S. Chaki and D. Kyle, “DMPL: Programming and verifying distributed mixed-synchrony and mixed-
critical software,” tech. rep., Carnegie Mellon University, 2016. 1, 2.2, 3.1

[3] A. Abel, F. Benz, J. Doerfert, B. Dörr, S. Hahn, F. Haupenthal, M. Jacobs, A. H. Moin, J. Reineke,
B. Schommer, and R. Wilhelm, “Impact of resource sharing on performance and performance predic-
tion: A survey,” in CONCUR, vol. 8052 of Lecture Notes in Computer Science, pp. 25–43, Springer,
2013. 1, 4.3

[4] P. Poplavko, D. Socci, P. Bourgos, S. Bensalem, and M. Bozga, “Models for deterministic execution
of real-time multiprocessor applications,” in DATE’15, 2015. 2.1, 3.1

[5] E. Lee and D. Messerschmitt, “Synchronous data flow,” Proceedings of the IEEE, vol. 75, no. 9,
pp. 1235–1245, 1987. 2.1

[6] M. Cordovilla, F. Boniol, J. Forget, E. Noulard, and C. Pagetti, “Developing critical embedded sys-
tems on multicore architectures: the Prelude-SchedMCore toolset,” in RTNS, 2011. 2.1, 3.1, 4.3

[7] S. Stuijk, M. Geilen, B. D. Theelen, and T. Basten, “Scenario-aware dataflow: Modeling, analysis
and implementation of dynamic applications,” in SAMOS’11, IEEE, 2011. 2.1, 3.1, 4.3

Verimag Research Report no TR-2016-4 15/17

Peter Poplavko, Rany Kahil, Dario Socci, Saddek Bensalem, Marius Bozga

[8] G. Giannopoulou, P. Poplavko, D. Socci, P. Huang, N. Stoimenov, P. Bourgos, L. Thiele, M. Bozga,
S. Bensalem, S. Girbal, M. Faugere, R. Soulat, and B. D. de Dinechin, “DOL-BIP-critical: A tool
chain for rigorous design and implementation of mixed-criticality multi-core systems,” Tech. Rep.
363, ETH Zurich, Laboratory TIK, Apr 2016. 2.1, 2.2, 2.4, 3.1, 3.2, 4.3

[9] D. Socci, P. Poplavko, S. Bensalem, and M. Bozga, “A timed-automata based middleware for time-
critical multicore applications,” in Proc. SEUS’15, IEEE, 2015. 2.2, 3.1

[10] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi, “Times: A tool for modelling and im-
plementation of embedded systems,” in Proc. Tools and Algorithms for the Construction and Analysis
of Systems, pp. 460–464, Springer, 2002. 2.2, 3.1, 4.3

[11] E. Fersman, P. Krcl, P. Pettersson, and W. Yi, “Task automata: Schedulability, decidability and unde-
cidability.,” Information and Computation, vol. 205, no. 8, pp. 1149–1172, 2007. 2.2, 3.1, 4.3

[12] T. Abdellatif, J. Combaz, and J. Sifakis, “Model-based implementation of real-time applications,” in
Proceedings of the tenth ACM international conference on Embedded software, EMSOFT ’10, ACM,
2010. 2.2

[13] D. Socci, P. Poplavko, S. Bensalem, and M. Bozga, “Modeling mixed-critical systems in real-time
BIP,” in ReTiMiCs’2013, 2013. 2.2, 2.5, 3.2, 4.3

[14] S. Bensalem, M. Bozga, J. Combaz, and A. Triki, “Rigorous system design flow for autonomous
systems,” in ISoLA’14, pp. 184–198, 2014. 2.2

[15] R. Pellizzoni, B. D. Bui, M. Caccamo, and L. Sha, “Coscheduling of CPU and I/O transactions in
cots-based embedded systems,” in RTSS’08, pp. 221–231, 2008. 2.4, 3.1, 4.3

[16] S. Sriram and E. A. Lee, “Determining the order of processor transactions in statically scheduled
multiprocessors,” VLSI Signal Processing, vol. 15, no. 3, pp. 207–220, 1997. 2.4, 3.1, 4.3

[17] S. Baruah and G. Fohler, “Certification-cognizant time-triggered scheduling of mixed-criticality sys-
tems,” in RTSS ’11, pp. 3–12, IEEE, 2011. 2.5, 3.1, 4.3

[18] D. Socci, P. Poplavko, S. Bensalem, and M. Bozga, “Time-triggered mixed-critical scheduler on
single- and multi-processor platforms (revised version),” technical report TR-2015-8, Verimag, 2015.
2.5, 3.1, 4.1, 4.2, 4.3

[19] A. Zerzelidis and A. J. Wellings, “A framework for flexible scheduling in the RTSJ,” ACM Trans.
Embedded Comput. Syst., vol. 10, no. 1, 2010. 3.1

[20] S. Baruah, “Semantics-preserving implementation of multirate mixed-criticality synchronous pro-
grams,” in RTNS’12, pp. 11–19, ACM, 2012. 3.1, 4.3

[21] G. De Micheli, Synthesis and optimization of digital circuits. McGraw-Hill Higher Education, 1994.
3.1

[22] A. Hansson, K. Goossens, M. Bekooij, and J. Huisken, “Compsoc: A template for composable and
predictable multi-processor system on chips,” ACM Transactions on Design Automation of Electronic
Systems (TODAES), vol. 14, no. 1, p. 2, 2009. 3.1, 4.3

[23] M. Perrotin, E. Conquet, P. Dissaux, T. Tsiodras, and J. Hugues, “The TASTE toolset: turning human
designed heterogeneous systems into computer built homogeneous software.,” in ERTSS’10, 2010.
3.1, 4.3

[24] D. Socci, P. Poplavko, S. Bensalem, and M. Bozga, “Multiprocessor scheduling of precedence-
constrained mixed-critical jobs,” in ISORC’15, pp. 198–207, IEEE, 2015. 3.1, 4.2, 4.3

[25] H. Shah, A. Coombes, A. Raabe, K. Huang, and A. Knoll, “Measurement based wcet analysis for
multi-core architectures,” in RTNS ’14, ACM, 2014. 3.2

16/17 Verimag Research Report no TR-2016-4

Peter Poplavko, Rany Kahil, Dario Socci, Saddek Bensalem, Marius Bozga

[26] B. D. de Dinechin, D. van Amstel, M. Poulhiès, and G. Lager, “Time-critical computing on a single-
chip massively parallel processor,” in DATE’14, EDAA, 2014. 3.3

Verimag Research Report no TR-2016-4 17/17

	Introduction
	Background
	Models of Computation
	Resource Managers and Concurrency Language
	Concurrency Language based Representation of System Nodes
	Multi-core Interference Aspects
	Mixed-Criticality Aspects

	Work-in-progress: Design Flow
	Underlying Paradigm
	Flow Structure and Assumptions
	An Example Illustrating the Flow

	Offline Scheduling Algorithm
	Algorithm Description
	Experiments
	Related Work

	Conclusions and Future Work

