
Time-Triggered Mixed-Critical
Scheduler on Single- and

Multi-processor Platforms (Revised
Version)

Dario Socci, Peter Poplavko, Saddek Bensalem, Marius
Bozga

Verimag Research Report no TR-2015-8

August 2015

Reports are downloadable at the following address
http://www-verimag.imag.fr

Unité Mixte de Recherche 5104 CNRS - Grenoble INP - UJF
Centre Equation
2, avenue de VIGNATE
F-38610 GIERES
tel : +33 456 52 03 40
fax : +33 456 52 03 50
http://www-verimag.imag.fr

http://www-verimag.imag.fr

Time-Triggered Mixed-Critical Scheduler on Single- and
Multi-processor Platforms (Revised Version)123

Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

August 2015

Abstract

Modern safety-critical systems, such as avionics, tend to be mixed-critical, because integra-
tion of different tasks with different assurance requirements can effectively reduce their costs
in terms of hardware, at the risk, however to increase the costs for certification, in particular
in the context of proving their schedulability. To simplify the certification costs such systems
use Time Triggered (TT) scheduling paradigm, and a generalization of the Time Triggered
(TT) scheduling paradigm Single Time Table per Mode (STTM). We present a state-of-the art
preemptive STTM algorithm which works optimally on single core and shows good experi-
mental results for multi-cores. In addition, because the algorithm can be applied on top of any
memoryless scheduling policy, we show that applying it to list scheduling leads to support of
task graph (precedence) dependencies for which our algorithm also shows good experimental
results.
Note that list scheduling also supports non-preemptive scheduling and the latter is very im-
portant for certain multi-core platforms. However, for applying our STTM approach for non-
preemptive platform case we now do not have a completely correct algorithm, our previous
tentative in that direction was recently discovered to still require some support of preemp-
tion. The latter discovery has lead to a revised version of this report, where we retract the
non-preemption part of the results.

Keywords: time-triggered architecture, mixed criticality, multi-core scheduling, safety critical, hard real-
time, precedence constraints, list scheduling, synchronous tasks

Reviewers:

How to cite this report:

@techreport {TR-2015-8,
title = {Time-Triggered Mixed-Critical Scheduler on Single- and Multi-processor Platforms

(Revised Version)},
author = {Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga},
institution = {{Verimag} Research Report},
number = {TR-2015-8},
year = {2015}
}

1Revised in Janunary 2016: retracted the claim for the support of non-preemption
2This report is an extended version of [1]
3The research leading to these results has received funding from MoSaTT-CMP – European Space Agency project, Contract No.

4000111814/14/NL/MH, and from CERTAINTY – European Community’s Seventh Framework Programme [FP7/2007-2013], grant
agreement no. 288175.

Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

1 Introduction
Advances in technology lead towards an increasing trend in integration of multiple functionalities on a
single chip. Integration is an effective way of reducing cost and power consumption of embedded systems.
This leads to the growing importance of multi-core/multiprocessor platforms in all areas of computer sys-
tem design. In addition for safety-critical domains, such as avionics, this is leading to the integration of
tasks with significantly different safety requirements on a single assembly of processing resources.

Such system have called into existence a special Mixed-Critical System (MCS) scheduling theory, that
has been developed at least since 2007 [2]. This theory treats the different safety requirements by adequate
scheduling methods, which leads to much more efficient resource usage compared to classical scheduling
approaches [3].

Following a significant volume of previous MC scheduling work (e.g., [3, 4]) in this paper we consider
the basic problem of scheduling a finite set of jobs whose exact arrival times are known a priori. Such a
problem formulation can result from considering a hyperperiod of a synchronous periodic task system. As
pointed out in [4], this assumption is natural for a broad class of safety critical systems. We also restrict
ourselves to dual-critical problems, which are also of practical interest, e.g., for Unmanned aerial vehicles
(UAVs), which assume two criticality levels: safety critical and mission critical.

The Own-Criticality Based Priority (OCBP) [3] is theoretically the best among all Fixed Priority per
job (FP) scheduling algorithms for MCS, however, it works only for single-processor systems. Recent
extensions of the fixed job priority policy, e.g., [5], perform a switch between different priority tables
for different modes. This Fixed Priority per Mode per job (FPM) policy can lead to better results due to
their higher flexibility. In particular, Mixed Criticality Priority Improvement MCPI [6] is an FPM policy
showing state-of-the art schedulability and supporting multiple processors.

In contrast to priority-based algorithms discussed above, the Time Triggered (TT) ones statically fix for
all jobs their start times and the time intervals where they may execute. This class of schedulers is important
because they considerably reduce the uncertainty of job execution intervals thus simplifying the safety-
critical system certification (where simplicity is a decisive factor). They also simplify any auxiliary timing-
based analysis that may be required to validate important extra-functional properties in embedded systems,
such as interference on shared buses and caches, peak power dissipation, electromagnetic interference etc..

Therefore, in [4, 7] S. Baruah et al. proposed the idea of transformation of non-TT based solutions into
TT-ones, demonstrating this idea on OCBP for a single processor. To avoid the highly inefficient static
reservation of resources, they proposed mode switching between a different TT tables, one per criticality
mode. We call this scheduling approach Single Time Table per Mode (STTM). In [8] the STTM scheduling
was extended from single to multiple processors, though being restricted to the systems where all jobs have
the same deadline.

This work focuses on STTM algorithms. Our contribution is a novel algorithm that transforms prac-
tically any scheduling algorithm into an STTM one. This way one can, for example, profit from the
state-of-the art FPM algorithms, such as MCPI, which, in general, perform significantly better than OCBP
and have no restrictive assumptions on the deadlines and the number of processors.

An important theoretical result for our algorithm is that it can always perform a successful schedule
transformation into STTM schedule for single processor dual-critical problem instances. Though this result
does not extend directly to multiple processors in theory, our extensive experiments on synthetic multipro-
cessor benchmarks show a high probability of success even for high-utilisation problem instances.

2 Background
Consider a set of hard real-time jobs having different levels of criticality. It is common in literature to
model different criticality requirements by giving different worst-case execution times (WCETs) for the
same job. In dual-criticality systems we have the highly-critical level, denoted as ‘HI’, and the low-critical
(normal) level, denoted as ‘LO’. Every job gets a pair of WCET values: the LO WCET and the HI
WCET. One important remark is that both HI and LO jobs are hard real-time, so both must terminate their
executions before the deadlines. But only HI jobs undergo certification. This means that the designer
is confident that the jobs will never exceed their LO WCET, calculated by exhaustive measurements and

Verimag Research Report no TR-2015-8 1/31

Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

adding some practical margin. However, for certification it is required to prove that the HI jobs will meet
the deadlines even under the unlikely event that some jobs would execute at their HI WCET, calculated by
safer, though more pessimistic, formal WCET analysis tools, required for certification. At the exceptionally
high execution times, exceeding LO the low-critical jobs may be disabled, whereby the system will be able
to compensate this by going into a safe emergency state.

2.1 Problem Definition
The scheduling problem instance consists of the number m of identical processors and a finite set of
jobs. In a dual-criticality Mixed-Critical System (MCS), a job Jj is characterized by a 5-tuple Jj =
(j, Aj , Dj , χj , Cj), where:

• j ∈ N+ is a unique index
• Aj ∈ Q is the arrival time, Aj ≥ 0
• Dj ∈ Q is the deadline, Dj ≥ Aj
• χj ∈ {LO,HI} is the job’s criticality level
• Cj ∈ Q2

+ is a vector (Cj(LO), Cj(HI)) where Cj(χ) is the WCET at criticality level χ.
We assume that Cj(LO) ≤ Cj(HI)[3]. We also assume that the LO jobs are forced to terminate after

Cj(LO) time units of execution, so (χj = LO)⇒ Cj(LO) = Cj(HI).
A scenario of an instance J is a vector of execution times of all jobs: (c1, c2, . . . , ck), where k is the

total number of jobs. If at least one cj exceeds Cj(HI), the scenario is called erroneous. The criticality of
scenario (c1, c2, . . . , ck) is the least critical χ such that cj ≤ Cj(χ), ∀j ∈ [1, k]. A scenario is basic if for
each j = 1, . . . , k either cj = Cj(LO) or cj = Cj(HI). The basic scenario where for each j = 1, . . . , k
cj = Cj(LO), is called the ’LO’ scenario.

A (preemptive) schedule S is a mapping: S : R≥0 → Nm. S should split the time axis into a finite set
of non-empty intervals inside which S takes a constant vector values. Sp(t) = j, j > 0 indicating that job
Jj running on processor p and Sp(t) = 0 indicating idle processor. Every job should start at time Aj or
later. If schedule is generated for a particular scenario c, then each job should run for no more than cj time
units. A job may be assigned to only one processor at time t, but we assume that job migration is possible
to any processor at any time.

Based on the scheduling problem instance and the current online state, a scheduling policy (a determin-
istic online algorithm) decides which ready jobs, i.e., those arrived and not terminated so far, are scheduled
at every time instant on m processors and for how long they will continue running unless an arrival or
termination job is signalled by the environment, requiring a new decision from the policy. Note that we
assume that for each ready job its termination is signalled immediately when it stops running. The online
state of a (memoryless) policy at every time instance consists of the set of ready jobs (i.e., the jobs arrived
and not yet terminated), the current progress of each job (i.e., for how much a job has executed so far), and
the current criticality mode, χmode, initialized as χmode = LO and the mode is switched to ‘HI’ as soon as
a job reaches Cj(LO) without signalling its termination.

The ultimate goal of a scheduling policy is to ensure that the schedule is feasible. A schedule is feasible
if the following conditions are met:

Condition 1. If all jobs run at most for their LO WCET, then both HI and LO jobs must meet their
deadlines.

Condition 2. If at least one HI job exceeds its LO WCET execution time, than all HI jobs must meet their
deadlines, whereas LO jobs may be even dropped.

A scheduling policy is correct for the given instance J if for each non-erroneous scenario it generates a
feasible schedule. One also says that in this case the given instance J is schedulable by the given policy. If
no policy is specified, an instance schedulable instance is an instance for which a correct scheduling policy
exists.

A scheduling policy is work-conserving if it never lets any ready job to wait (i.e., to not execute on
any processor) if there is an idle processor available. Because we assume preemptive scheduling with
zero preemption cost and allow job migration, in our model having a non work-conserving policy cannot
improve schedulability of a policy.

2/31 Verimag Research Report no TR-2015-8

Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

Scheduling policies are split into classes (sets of policies), e.g., fixed priority (FP) policies, single time-
triggered table (STTM) policies, etc.. Different policies in a given class differ by certain class-specific
parameters, e.g., priority assignment in the case of FP policies. A scheduling policy is called optimal in
a class of policies if for any instance J holds that if that instance is schedulable by a certain policy in the
given class then it is also schedulable by the specified policy.

2.2 Correctness and Predictability
To verify the correctness of a scheduling policy one usually tests it for the maximal possible execution
times, which in our case corresponds to HI WCET. However, to justify this test a scheduling policy must
be predictable, which means that reducing execution time of any job ‘A’ (while keeping all other execution
times the same) may not delay the termination of any other job ’B’. In other words, predictability means
that the termination times have monotonic dependency on execution times.

For mixed-critical scheduling the predictability requirement is too restrictive, as it does not take into
account that increase of an execution time of a HI job to a level that exceeds its LO WCET may lead
to a mode switch and hence to dropping the LO jobs, which, in turn may lead to an earlier termination of
another HI job, and hence non-monotonic dependency of termination times. Therefore, a weaker property is
adopted in this case, which we call predictable per mode. This property poses almost the same requirement
of non-increasing termination time of a job ‘B’, but now it is not required anymore to hold under arbitrary
execution time reduction of a job ‘A’. Now it is required only if the reduction does not lead to the change
of the mode in which job ‘B’ terminates, e.g., when the reduction keeps the execution time higher than LO
WCET.

The generalization of predictable policies to predictable-per-mode ones raises the problem of how to
test the correctness of such policies, as we cannot anymore rely on the traditional method and just test
the scheduling using one worst-case scenario. It turns out that in this case we have to test the scheduling
policies for H + 1 basic scenarios, where H is the total count of HI jobs in the problem instance.

Consider a LO basic scenario schedule SLO and select an arbitrary HI job Jh. Let us modify this
schedule by assuming that at time th when job Jh reaches its LO WCET (Ch(LO)) it does not signal its
termination, thus provoking a mode switch. Then, by Condition 2, we should ensure that Jh and all the
other HI jobs that did not terminate strictly before time th will meet their deadlines even when continuing to
execute for their maximal execution time – the HI WCET. Note that in multiprocessor scheduling multiple
jobs may also terminate exactly at time th in SLO and they are deliberately assumed to also continue their
execution after time th in the modified schedule. The behavior described above is formalized to a basic
scenario where all HI jobs that execute after time th have HI WCET.

Definition 2.1 (Job-specific Basic Scenario). For a given problem instance, LO basic-scenario schedule
SLO and HI job Jh, the basic scenario defined above is called ‘specific’ for job Jh and is denoted HI-Jh,
whereas its schedule is denoted SHI-Jh .

Note that SHI-Jh coincides with SLO up to the time when job Jh switches, and after the switching
time it starts using HI execution times for the jobs that did not terminate before the switch. Figure 1 shows
Gantt charts for the basic scenarios of a certain single-processor problem instance. We see, for example
that in the LO scenario job J2 terminates at time 9, but in the HI-J2 scenario job J2 switches at time 9
and continues to execute, because, apparently, it has a HI WCET larger than the LO WCET.

Theorem 2.2 (Correctness Verification by Job-specific Scenarios). To ensure correctness of policy that is
predictable per mode it is enough to test it for the LO scenario and the scenarios HI-Jh of all HI jobs Jh.

This theorem can be derived from the properties of the correctness verification algorithm presented
in [3].

2.3 Priority-based Scheduling
A fixed-priority scheduling policy is a policy that can be defined by a priority table PT , which is a vector
specifying all jobs in a certain order. The position of a job in PT is its priority, the earlier a job is to occur

Verimag Research Report no TR-2015-8 3/31

Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

in PT the higher the priority it has. Among all ready jobs, the fixed-priority scheduling policy always
selects them highest-priority jobs in PT . A priority table PT defines a total ordering relationship between
the jobs. If job J1 has higher priority than job J2 in table PT , we write J1 �PT J2 or simply J1 � J2,
if PT is clear from the context. In this paper we assume global fixed-priority scheduling which allows
unrestricted job migration.

A fixed priority per mode (FPM) policy uses two tables: PTLO and PTHI. The former includes all jobs.
The latter includes only HI jobs. As long as the current mode is LO, this policy performs the fixed priority
scheduling according to PTLO. After a switch to the HI mode, this policy drops all pending LO jobs and
applies priority table PTHI.

EDF (earliest deadline first) [9] is a fixed-priority algorithm with a priority table PT that gives jobs
with smaller deadlines higher priority: Di < Dj ⇒ Ji �PT Jj . EDF is an optimal scheduling policy
for ordinary (non-mixed critical) single-processor problems. Given this, and observing that scheduling
after the mode switch is an ordinary scheduling problem, we identify the following important class of
single-processor policies.

Definition 2.3 (‘Reasonable’ Single-processor Policies). A single-processor dual-critical scheduling pol-
icy is called ‘reasonable’ if after the mode switch it applies EDF for the HI jobs and either drops the LO
jobs altogether or gives them less priority than that of any HI job.

For single-processor problems, any policy can be translated into a reasonable policy letting it behave
according to the definition above whenever a mode switch occurs. All the instances schedulable in the
original policy would remain so in the translated policy.

Consider a reasonable FPM policy. In this case PTHI is known a priori, as it is an EDF table. Therefore
only the calculation of PTLO requires an optimization algorithm to achieve good schedulability. In contrast
to the single-processor case, in the multi-processor case EDF is not optimal, so there is no straightforward
way to extend the ‘reasonable policy’ definition to this case.

For computing PTLO and PTHI table for multiprocessor platforms, in [6], we proposed Mixed Criticality
Priority Improvement (MCPI) algorithm. We use this algorithm as an integral part (the basis scheduler) for
the STTM algorithm proposed here, although any other (memoryless) scheduling policy can be used for
this role.

Fixed-priority (FP) policy is predictable, both in the single- and the multi-processor cases [10]. Intu-
itively, this implies that FPM policy is predictable per mode, and hence, by Theorem 2.2, the schedulability
of FPM can be verified by simulation in the LO and all the HI-Jh scenarios.

Example 2.1. Let us consider the following instance on single processor as an example:

Job A D χ C(LO) C(HI)
1 0 12 HI 3 5
2 6 11 HI 2 4
3 7 8 LO 1 1
4 1 4 HI 1 2

and assume the following FPM priority assignment (which can be computed using MCPI [6]):

PTLO = J3 � J2 � J4 � J1
PTHI = J2 � J4 � J1

For this example, Fig. 1 shows the schedules obtained by simulation of the FPM policy in the basic LO
scenario and all job-specific HI scenarios. It can be concluded that in the LO scenario all the jobs meet
their deadlines and in the HI scenarios all the HI jobs meet their deadlines. Therefore, by Theorem 2.2, this
instance is schedulable under the FPM policy with the given priority tables.

2.4 Time Triggered Scheduling
An ordinary (i.e., non mixed-criticality aware) Time Triggered (TT) policy defines a static, pre-computed
table that defines at every instant of time which job must be scheduled at each processor provided that it
did not terminate yet and assuming that the job may require up to its WCET time units.

4/31 Verimag Research Report no TR-2015-8

Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

For MCS [4] introduced the Single-Time Table per Mode (STTM) policy, which defines one table
per criticality mode. In a dual-critical system we call LO and HI* the tables for the LO and HI mode,
respectively. The corresponding static schedules are denoted as SLO and SHI∗. The two STTM tables are
correct iff:

1. They schedule all jobs after their arrival and before their deadline, allocating each job Cj(LO) time
units in LO table and each HI job Cj(HI) time units in HI* table.

2. If at any time we switch from LO to HI*, then all not-yet-terminated HI jobs will have enough time
to continue their execution so as to reach Cj(HI) time units.

For the previous example, Fig. 1 shows in the last row the HI* table which, together with the LO table
in the first row, it satisfies the correctness requirements given above. For a given scheduling policy, HI*
table is derived from the LO one by simulating a variant of the same scheduling policy transformed by the
algorithm presented in the next section.

3 Transformation Rules
Our algorithm, denoted T (ALG) transforms a given ‘basis’ scheduling policy ALG into an STTM policy
by augmenting it with additional rules. In practice, we use an FPM policy, in particular, MCPI, as the basis
policy.

The table LO is simple to obtain, we just simulateALG for the LO basic scenario and use the generated
schedule SLO. Our algorithm mainly consists of the method to obtain a correct table HI*. We propose a
method to generate this table by simulating ALG in the HI mode (i.e., initializing χmode = HI) for HI jobs
with C(HI) times and assuming that a HI job can be disabled at any time when all three enabling rules
defined in this section are false. These rules are based on the LO table and their purpose to ensure that any
switch from table LO to the HI mode in table HI* will be correct.

Note that a memoryless basis policy by definition relies only on the set of current ready jobs to construct
the schedules. For this reason, such a policy is always able to produce consistent results even if this set
is changed by the environment by job enabling/disabling. In particular, when ALG is an FPM policy,
this means executing fixed priority policy with priority table PTHI , whereby whenever a ready HI job is
(temporarily) disabled, a lower-priority HI job can execute instead, which means that a priority inversion
may occur, but the schedule will still be correct. Enabling/disabling the jobs is exactly what is done by
extra rules added into the basis policy by the transformation algorithm.

Let us give some supplementary definitions. Let TLOj (t) (resp. THIj (t)) be the cumulative execution
progress of job Jj by time t in table LO (resp. HI*). We call a HI job that has executed for more than its
C(LO) a switched job. It is non-switched otherwise. We say that a job switches at time t when TLOj (t)
reaches Cj(LO). A job Jj is enabled at time t if:

• the job has arrived: t > Aj

• the job has not yet terminated: THIj (t) < Cj(HI)

• at least one of the following rules is true:

TLOj (t) = Cj(LO) (1a)

THIj (t) < TLOj (t) (1b)

THIj (t) = TLOj (t) ∧ ∃p . SLOp (t) = j (1c)

Informally, Rule (1a) permanently enables all switched jobs, while Rules (1b) and (1c) assure that a job
will not run in HI* for more time than in LO before the switch.

Example 3.1. Consider again the problem instance of Example 2.1, whose schedules in the basic scenarios
is shown in Figure 1. The LO table coincides with the schedule in the LO scenario, and table HI*, also
shown in the figure, is obtained by the transformation algorithm based on table LO. The algorithm performs
the simulation of HI jobs, explained below in detail.

Verimag Research Report no TR-2015-8 5/31

Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

Figure 1: Basic scenarios and TT tables

At time 0, only J1 has arrived, and it is enabled by Rule (1c). At time 1, J4 arrives, it has higher priority
then J1 and it is enabled by Rule (1c), so it is chosen by the algorithm to be executed. At time 2 for job J4
Rule (1c) will be false, but Rule (1a) will become true, so we will continue execute it until time 3. At time
3 J4 will terminate, so J1 will be enabled by Rule (1b) until time 5 and by Rule (1a) from 5 on. So J1 will
continue its execution till time 6, when J2 arrives. J2 is enabled by Rule (1c), and it has higher priority
than J1, so it will be executed until time 7. At this instant Rule (1c) becomes false for J2, disabling it. So
we execute J1. At time 8 J1 terminates and J2 is enabled by Rule (1c). At time 9 Rule (1c) is false for J2,
while Rule (1a) becomes true. So J2 continues its execution until time 11, when it terminates.

It is easy to verify the correctness of TT scheduling that uses LO and HI* as tables. In fact in table LO
all the jobs meet the deadline. When there is a switch, at time t, from LO to HI*, all HI job Jj must have
from time t a quantity of time reserved for them in HI* equal to Cj(HI) − TLOj (t). In our example, if
there is a switch in the LO table at time 2, caused by job J4, then J1, J4 and J2 will have enough remaining
time reserved in HI* (respectively 4 = C1(HI)−TLO1 (2) = 5− 1, 1 = C4(HI)− 1 and 4 = C2(HI)− 0),
and will terminate before their deadlines. In this case we will drop job J3, since we do not care about LO
jobs when in HI mode. Similarly, in the case of a switch at time 4, caused by J1, then J1 and J2 will have
respectively 3 = C1(HI) − 2 and 4 = C2(HI) − 0. Note that in this case J1 will have one time unit more
then it actually needs. Finally, if there will be a switch at time 9, caused by job J2, this job will have 2
other time units, terminating at time 11, meeting its deadline.

We have the following result, which shows that the first requirement of STTM correctness is always
satisfied by our transformation rules.

Lemma 3.1. If at any time we switch from LO to HI*, then all the unterminated jobs will have enough
time reserved in HI* to terminate their work.

First, let us comment that, according to our rules to construct HI*, no HI jobs get disabled forever
because eventually Rule (1a) becomes true, since all LO jobs eventually terminate. Thus, all HI jobs get a
total time C(HI) reserved in HI*. Consequently, if a job switches at time t, then this and any other job is
guaranteed to get C(HI)− THI∗j (t) , but needs to get at least C(HI)− TLOj (t).

Therefore the lemma can be equivalently stated as follows:
no non-switched HI job makes more progress in HI* than in LO.
Formally:

∀t , TLOj (t) < Cj(LO)⇒ TLOj (t) ≥ THI∗j (t)

Proof of Lemma 3.1. At time t = 0 the lemma thesis is obviously true, and with progress of time it can be
invalidated only during the time when a job is scheduled in HI*. However, as long as TLOj (t) < Cj(LO)

job Jj can only be scheduled when either (1b) or (1c) is true, but they both imply that we have TLOj (t) ≥
THI∗j (t).

Also, for single processor, the transformation algorithm is optimal:

Theorem 3.2 (Transformation Correctness). For a given single-processor problem instance if the basis
policy ALG is correct and reasonable then the policy T (ALG) is also correct.

6/31 Verimag Research Report no TR-2015-8

Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

1

0

 0 2 4 6 8 10 12 14 16 18

P
ro

ce
ss

o
rs

time

table LO

J3 J2 J6 J7 J6

J5 J1 J5 J4

1

0

 0 2 4 6 8 10 12 14 16 18

P
ro

ce
ss

o
rs

time

Table HI*

J3 J7

J5 J1 J5

Figure 2: TT tables for Example 3.2

For proof, see Appendix A. There we also give a proof to another important property for single-
processor scheduling, which states that also the reverse result is true in some quite general case.

Theorem 3.3 (Reverse Correctness). For a given single-processor problem instance, under the assumption
that the basis policy ALG is reasonable, we have that if the policy T (ALG) is correct then policy ALG is
correct as well.

Corollary 3.4 (Testing Correctness based on two Tables). For single-processor problem instances and
reasonable work-conserving policy ALG a necessary and sufficient correctness test is testing that both
scheduling tables, LO and HI*, obtained from T (ALG) meet their deadlines.

Note that testing over only two tables may show a potential computational improvement over the cor-
rectness test proposed in Theorem 2.2, which tests the scheduling policy over H + 1 ‘tables’, where H is
the number of HI jobs in the problem instance.

Unfortunately these correctness results do not extend to multiple processors. Nevertheless, from our
experiments – see Section 5 – we observe that the ‘direct’ correctness result holds almost always for FPM
policies. Only for very high-load problem instances there are rare cases that FPM meets the deadlines
whereas the transformation algorithm does not. Below we give an example of a successful transformation
for two processors:

Example 3.2. Consider the following instance:

Job A D χ C(LO) C(HI)
1 2 9 HI 2 5
2 0 10 LO 6 6
3 0 16 HI 4 12
4 4 17 LO 7 7
5 0 18 HI 6 12
6 8 19 LO 6 6
7 12 20 HI 1 5

and the following FPM priority assignment:

PTLO = J1 � J3 � J5 � J7 � J2 � J5 � J6
PTHI = J1 � J3 � J5 � J7

Fig. 2 presents the tables LO and HI* obtained from T (FPM) for this instance on two processors,
using similar reasoning as in the previous example.

Verimag Research Report no TR-2015-8 7/31

Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

4 List Scheduling Transformation

4.1 Extending the Scope for Applying Transformations
In the previous section we formulated correctness theorems of the transformation algorithm for the case
with the following assumptions: (1) only a single processor is available; (2) there are, implicitly, no task-
graph dependencies between the jobs; (3) EDF scheduling policy is applied in the HI mode; (4) preemption
support is provided by the platform. Nevertheless, our algorithm is applicable in practice also when the
restrictions (1-3) are alleviated, though one has to check the correctness of the result even when the basis
policy is correct.

As for restriction (4), in the revised version of the report we insist in keeping this restriction for the
transformation into STTM. This is because we recently discovered that our previous tentative to avoid this
restriction in STTM was not successful as preemption may still be required at mode switch. Therefore, for
now we keep transformation of non-preemptive algorithms for future work. The non-preemption results
that we still keep for legacy reasons do not concern the transformation.

In this section we describe a basis policy that works in practice beyond the restrictions (1-3). Thus, we
abandon the usual assumption of previous works on mixed-critical translation of event-triggered to time-
triggered table [4, 7, 8] which study only the cases where correctness of transformation can be proved by
construction. Instead, we test the correctness after the translation. Our experiments in Section 5 show that
even for hard scheduling problem instances the proposed approach results in a correct transformation in a
grand majority of problem instances.

A classical scheduling policy that supports task graph dependencies and (optional) non-preemption is
so-called list scheduling, denoted LS-SC. List scheduling policy is more general than fixed priority and
EDF, as it admits a priority table PT and behaves in exactly the same way as fixed priority policy if the set
of task-graph dependencies is empty. Similar to fixed priority, this policy is also memoryless, which makes
it another valid input to our transformation algorithm. In this section we will describe the implementation
of LS-SC and T (LS-SC), the transformed list scheduling for generating the HI* table.

4.2 Extended Problem Formulation
Formally, a task graph T as an MC-scheduling problem instance is a directed acyclic graph (J,→) whose
set of nodes J consists of k jobs defined in Section 2.1 and whose set of arcs defines execution-order
dependency relation→⊂ J× J, also called precedence relation.

If J1 → J2 then J2 may not start until J1 signals its termination. Formally, we say that J2 is not ready
until J1 terminates. In fact, we modify the definition of job Jj readiness at time t by not only requiring that
the job has arrived by time t (Aj ≤ t) but also that each task-graph predecessor has terminated by time t.
This extra requirement is referred to as precedence constraint or task-graph dependency. When both the
job Jj and its predecessor Ji are HI jobs then Ji → Jj a referred to as a ‘HI precedence (dependency)’,
when, on the contrary, at least one of these jobs is a LO job then we talk of a ‘LO precedence (dependency)’.

Next to the conditions defined in Section 2, a feasible schedule should satisfy two additional conditions:

Condition 3. When the system is in LO mode, all precedence constraints must be respected.

Condition 4. When the system is in HI mode, HI precedence constraints must be respected whereas LO
precedence constraints may be ignored.

4.3 List Scheduling
For a given task graph J, a number of processors m, and a priority table PT the list scheduling consists
of simulating the fixed-priority (FP) policy at a single mode of criticality χ′, being either LO or HI4, while
taking into account that a job can become ready only after the termination of its predecessors that should be
respected at a given level of criticality. The pseudo-code of the classical list scheduling algorithm adapted
for this purpose is given in Figure 3. For the set jobs we specify an array of arrival times A[∗], deadlines

4 The algorithm can also be adapted for simulating the FPM policy, in a given mode switching scenario.

8/31 Verimag Research Report no TR-2015-8

Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

D[∗], and WCET times C[∗][LO..HI]. We use the ‘[∗]’ to explicitly denote an array dimension of some
range that can be deduced from the context. In the particular case considered now, the range is the set of
jobs, whereas in the second dimension of the array C specifies the WCET criticality level.

The output of the algorithm is a schedule S, which is defined by two arrays: S.start and S.end.
Position S.start[J] (resp. S.end[J]) specifies for job J the list of start (end) times of all timing intervals
in which job J executes. The algorithm keeps track of job progress prgs, an array that for each job specifies
for how long it has executed so far. Set Jarr specifies the jobs that have arrived so far. Two arrays, processor
status pstat and job status jstat, specify for each processor a job that runs there and vice versa, for each
job the processor where the job runs. Note that for efficiency, also for the priority table PT , which for each
priority specifies the corresponding job, we need a reverse array, that for each job specifies its priority, we
denote this array PT−1.

The pseudo-code in Figure 4 gives the two basic operations that the algorithm uses to start and finish
an interval of job execution, manipulating the schedule, the job status, and the processor status. The
SchedStop operation contains a check to avoid empty schedule intervals.

The algorithm keeps two priority-queue data structures: QP , QE . A priority queue [11] is a collection
that remembers the elements with their ‘keys’ and supports such operations as providing the highest-key
element (called the ‘front’ of the queue), eliminating the front element (‘pop’), and adding a new element
with a key (‘push’). We use queue QP to keep the ready not (yet) running jobs at the order of decreasing
priority, highest-priority job being at the front of the queue. Priority queueQE is used to keep the simulated
schedule events at their time-stamp order, the earliest event being at the front. An event is identified by pair
[J, LBL] where LBL is a label indicating the event type, such as ‘arrival’ (LBL-ARR), ‘getting ready’
(LBL-READY), and ‘termination’ (LBL-TERM).

Further, the algorithm keeps an array that for job J gives the count termPredecessors[J] of prede-
cessors of job J that have terminated. Finally, the algorithm keeps some simple variables, not explicitly
listed in the header, such as the time-stamps of current and last event.

When the algorithm starts, we first filter the set of jobs and dependencies from those that have criticality
level smaller than χ′, as they do not need to be taken into account in the mode χ′. In dual-critical scheduling
this means filtering away the LO jobs and LO dependencies if the requested mode has criticality HI. Then
we add the arrival events into priority queue QE for the remaining ‘effective’ set of jobs.

The main loop runs until the event queue is empty. The earliest event [J, LBL] is first popped from
the queue together with its time-stamp. The progress prgs of all running jobs (i.e., all non-empty entries
pstat[1..m].job) is incremented by the delay since the last event (lastT ime− time). Then the algorithm
handles different types of events (see the switch-case operators).

Observation 4.1 (Ordering of List-schedule Events). We implicitly assume that events with same time-
stamp and different type are popped with the preference to the event types that are first mentioned in the
switch case of the algorithm, in particular that events labeled as ‘LBL-TERM’ are always popped first
if there are any for the current time stamp. This is needed to prevent that a job may terminate and get
preempted at the same time.

When a job terminates the processor is freed by SchedStop operation and for all successors the coun-
ters termPredecessors are incremented. If the current job is the last predecessor to terminate for some
successors and the successors have already arrived then their ‘getting ready’ events are enqueued for pro-
cessing. Note that we do not put the ready successors directly into the ready-job queue QP , because the
basic convention of our list-schedule implementation is that per iteration of the main while loop at most
one job may change its ‘readiness’ status either from ready to non-ready or vice versa. Therefore, making
the successors ready is postponed to the future iterations.

When a job arrives it is registered in the set of arrived jobs. If by that time all the predecessors have
terminated then the job is directly enqueued into the ready-job queue QP , without unnecessary passing
through the event queue with an LBL-READY event, as we are allowed to change the status of a single job.
Note that another important invariant of our algorithm is that a ready job is either waiting in the ready-job
queue QP or is registered as a ‘running’ job through the jstat and pstat data structures. A ready job can
move between the ‘waiting’ and ‘running’ states a few times if the preemption is allowed. Finally, upon
its termination the job goes from ‘running’ to ‘terminated’ state, which is ensured in the pseudo-code by a
SchedStop operation that is not followed by a push to QP .

Verimag Research Report no TR-2015-8 9/31

Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

Algorithm: SimulateListSchedule
Input: Boolean preemAllowed integer m define k = size(J)
Input: criticality χ′ task graph T(J(A[∗], D[∗], χ[∗], C[∗][LO..HI]),→LO..HI) priority table PT
Output: schedule S
Local: array [1..k] of time-type prgs set of jobs Jarr set of jobs JEFF dependencies→EFF

Local: array [1..m] of processor status pstat array [1..k] of job status jstat
Local: priority queue QE , QP array [1..k] of integer termPredecessors

1: JEFF ← { J ∈ J | χ[J] ≥ χ′ }
2: →EFF← {→χ′′ | χ′′ ≥ χ′ }
3: PQueuePushSet(QE , [JEFF, ‘LBL-ARR’], A[∗])
4: lastT ime← 0
5: while QE 6= ∅ do
6: ([J,LBL], time) ← PQueuePop(QE)
7: UpdateProgress(lastT ime, time, prgs, pstat)

8: switch LBL do
9: case ‘LBL-TERM’

10: SchedStop(J, time, S, jstat, pstat)
11: for J ′ ∈ Successors(J,→EFF) do
12: termPredecessors[J ′]← termPredecessors[J ′] + 1
13: if termPredecessors[J ′] = PredecessorCount(J ′,→EFF) ∧ J ′ ∈ Jarr then
14: PQueuePush(QE , [J ′, ‘LBL-READY’], time)
15: end if
16: end for
17: case ‘LBL-ARR’
18: SetAdd(Jarr, J)
19: if termPredecessors[J] = PredecessorCount(J,→EFF) then
20: PQueuePush(QP , J, PT

−1[J])
21: end if
22: case ‘LBL-READY’
23: PQueuePush(QP , J, PT

−1[J])

24: if QP 6= ∅ then
25: J ← PQueueFront(QP).value
26: if AllProcessorsBusy(pstat) then
27: J ′ ← LeastPrioPreemptableJob(PT, pstat, preemAllowed, prgs)
28: if J ′ 6= ∅ ∧ J �PT J ′ then
29: proc′ ← jobstat[J ′].proc
30: SchedStop(J ′, time, S, jstat, pstat)
31: PQueuePush(QP , J

′, PT−1[J ′])
32: SchedRun(J, time, proc′, S, jstat, pstat)
33: PQueuePop(QP)
34: end if
35: else
36: proc← GetAvailableProcessor(pstat)
37: SchedRun(J, time, proc, S, jstat, pstat)
38: PQueuePop(QP)
39: end if
40: end if

41: (J, terminationT ime)← EarliestTerminatingJob(pstat, prgs, C[∗][χ′])
42: if J 6= ∅ ∧ (terminationT ime ≤ PQueueFront(QE).key ∨QE = ∅) then
43: PQueuePush(QE , [J, ‘LBL-TERM’], terminationT ime)
44: end if
45: lastT ime← time
46: end while

Figure 3: The List Scheduling Algorithm, ‘LS-SC’

10/31 Verimag Research Report no TR-2015-8

Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

Algorithm: SchedRun
Input: job-id J
Input: time-type time
Input: processor-id p
In/out: schedule S
In/out: array [1..k] of job status jstat
In/out: array [1..m] of processor status pstat

1: ListAppend(S.start[J], time)
2: pstat[p].job← J
3: jstat[J].proc← p

Algorithm: SchedStop
Input: job-id J
Input: time-type time
In/out: schedule S
In/out: array [1..k] of job status jstat
In/out: array [1..m] of processor status pstat

1: if time = ListTail(S.start[J]) then ListEraseTail(S.start[J])
2: else ListAppend(S.end[J], time)
3: p← jstat[J].proc
4: pstat[p].job← ∅
5: jstat[J].proc← ∅

Figure 4: Primitive Schedule Operations

After processing the events the algorithm picks the highest-priority job from the job-ready queue QP
and tries to schedule it on a processor. Note that due to the fact that at most one job changes its status per
iteration we know that also at most one highest-priority job needs to be scheduled. If all processors are
busy then adding a job into the schedule is possible only if at least one running job is ‘preemptable’. If pre-
emption is allowed then all jobs are preemptable. Otherwise only those jobs are considered ‘preemptable’
that have not really run yet, i.e., those having zero progress. In the latter case no preemption is done in the
usual sense, but instead the algorithm ‘changes its mind’ and undoes its scheduling decision in favor of a
higher-priority job. In any case, if there are preemptable jobs we assign the least-priority one to J ′. If the
top-priority job J has a higher priority then it replaces job J ′ on its processor. This operation ensures that
when all processors are busy then the m jobs that are running are either the highest-priority ready jobs or
non-preemptable jobs that have started before the higher-priority waiting jobs got ready. In the case when
job J replaces job J ′ the latter goes back to the waiting queue (PQueuePush), whereas its processor is
taken by the highest-priority job J , which is popped from the waiting queue. In another case, when there
is an available processor there is no need to check job priorities and the highest-priority job occupies an
available idle processor.

Finally, the algorithm checks all running jobs to find the one that would be the earliest to terminate if
not preempted. If there are no events in the event queue before the termination time of that job then the
termination event is enqueued in the event queue, as no job can possibly preempt the given job before its
termination.

Lemma 4.2 (Complexity of List Scheduling). With k the number of jobs, E the number of dependencies
and m the number of processors, the complexity of the offline list scheduling is:

O(k(log k +m) + E)

Proof. The initial forming of the arrival-event priority queue of size k costs O(k log k) time5. There
are O(k) number of events, and hence O(k) main-loop iterations of the list scheduler. Except for vis-

5 This can be also seen as the time necessary for an efficient sorting of the jobs by their arrival time

Verimag Research Report no TR-2015-8 11/31

Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

iting the successors of the job, in every iteration we have either O(1) operations (e.g., a schedule oper-
ation), or O(log k) operations (priority queue and set operations), or operations with complexity O(m),
whose scope is the set of currently running jobs, in particular: UpdateProgress, AllProcessorsBusy,
LeastPrioPreemptableJob, GetAvailableProcessor, and EarliestTerminatingJob. Finally, the to-
tal number of all termPredecessors-update operations during the whole run of the algorithm is O(E).
This reasoning yields the result stated in the lemma.

4.4 Transformed List Scheduling
Recall that the goal of transformation is to generate the HI* table based on the LO table. If the basis
algorithm is FPM-based list scheduling then one could consider to generate the two tables running the list
scheduler twice: the first time in the LO mode with PTLO priorities to obtain LO and then in the HI mode
with PTHI priorities to obtain HI*. However, as explained earlier, in general such a naı̈ve approach does not
ensure that that it will be always safe to switch from LO to HI*, in the sense that all running safety-critical
jobs will always have enough processor-time reservation to execute up to their Cj(HI) execution times.

Therefore, to ensure safety, in the HI mode we transform the basis policy – the list scheduler in the case
considered here – according to the three rules formulated in Section 3. These three rules take the LO table
as input and temporarily disable the jobs whose execution progress in the HI* risks to exceed the one in
the LO table. The disabling is effective until the time when the jobs (re-)appear in the LO table. Executing
the transformed policy with a task graph annotated by HI-WCET job execution times and containing HI
job dependencies would yield a safe policy. In the end, one also has to check the satisfaction of deadlines,
as in the case of multiple processors6 the correctness of transformation is not guaranteed by construction
even for a correct basis policy.

In this section we apply the transformation to the variant of the list scheduling algorithm introduced
in the previous section. One of the peculiarities of the transformed algorithm is that at a given level of
criticality it needs to know the schedule generated for the previous level of criticality. In dual-criticality
problems the algorithm takes as input the schedule SLO, representing the LO table and the task graph that
represents the jobs and dependencies in the HI mode, as defined below.

Recall that in the transformed version of the algorithm we by default assume that preemption is allowed,
as transformation of non-preemptive scheduling policies is postponed to future work.

Definition 4.3 (HI-criticality graph). The HI-criticality graph characterizing an MC scheduling problem
instance T(J,→) is a directed graph THI(JHI,→HI), where the JHI is the subset of J that contains only HI
jobs, and→HI is the subset of→ that contains only the dependencies of HI criticality level.

The pseudo-code of the transformed list scheduling algorithm is given in Fig. 5.
As mentioned before, to construct SHI, representing the HI* table, the algorithm needs the SLO table

at the input, which can, for example be obtained from the list scheduling in the LO mode or from any
other valid algorithm. It is assumed that SLO is correct, in particular that the jobs execute with LO-WCET
execution times on m processors.

Though the schedule SLO is constructed for all jobs and must respect all dependencies, the transformed
algorithm ‘cares’ only about the HI jobs and dependencies. However, to ensure safety and to implement
the Rules (1a, 1b, 1c) the algorithm keeps track of the progress of jobs not only in the HI mode, but also in
the LO table. Therefore the job progress array ‘prgs’ is now two-dimensional, adding another dimension
to take the LO mode into account. To facilitate the calculation of progress in the LO mode the algorithm
also constructs on-the-fly a new copy of schedule SLO and adds a second dimension also to the arrays of
job and processor status: jstat and pstat. The algorithm also keeps track of the jobs terminated in the LO
mode – variable JLO-term – and the set of disabled jobs – Jdis. For the rest, the transformed list scheduler
has the same set of variables as the non-transformed one.

Similarly to the list scheduler, the algorithm starts by filtering the jobs and dependencies by their level
of criticality and then pushes the arrival-time events of the filtered job set into the event queue. However,

6 According to our preliminary results only the presence of multiple processors is important, whereas the other factor – the presence
of dependencies still preserves the transformation correctness for preemptive scheduling on single processor. We will present the proof
in future work. Note that for the transformed algorithm we do not support yet another factor that impacts correctness, namely the
possible absence of preemption support, as we leave time-triggered variant of non-preemptive scheduling for future work.

12/31 Verimag Research Report no TR-2015-8

Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

Algorithm: SimulateTranformedListSchedule
Input: integer m define k = size(J)
Input: task graph T(J(A[∗], D[∗], χ[∗], C[∗][LO..HI]),→LO..HI) priority table PTHI schedule SLO

Output: schedule SHI

Local: array [1..k][LO..HI] of time-type prgs set of jobs Jarr set of jobs JHI dependencies→HI

Local: set of jobs Jdis schedule ScopyLO

Local: array [1..m][LO..HI] of processor status pstat
Local: array [1..k][LO..HI] of job status jstat
Local: priority queue QE , QP array [1..k] of integer termPredecessors

1: JHI ← { J ∈ J | χ[J] = HI }
2: →HI← {→χ′′ | χ′′ = HI }
3: PQueuePushSet(QE , [JHI, ‘LBL-ARR’], A[∗])
4: PQueuePushScheduleEvents(QE , SLO, JHI, ‘LBL-LO-RUN’, ‘LBL-LO-STOP’)
5: lastT ime← 0
6: while QE 6= ∅ do
7: ([J,LBL], time)← PQueuePop(QE)
8: UpdateProgress(lastT ime, time, prgs[∗][LO], pstat[∗][LO])
9: UpdateProgress(lastT ime, time, prgs[∗][HI], pstat[∗][HI])

10: switch LBL do
11: case ‘LBL-LO-LAG’
12: SchedStop(J, time, SHI, jstat[∗][HI], pstat[∗][HI])
13: SetAdd(Jdis, J)

14: case ‘LBL-LO-STOP’
15: SchedStop(J, time, ScopyLO , jstat[∗][LO], pstat[∗][LO])
16: if prgs[J][LO] = C[J][LO] then
17: SetAdd(JLO-term, J)
18: end if
19: case ‘LBL-LO-RUN’
20: proc← GetAvailableProcessor(pstat[∗][LO])
21: SchedRun(J, time, proc, ScopyLO , jstat[∗][LO], pstat[∗][LO])
22: if J ∈ Jdis then
23: SetRemove(Jdis, J)
24: PQueuePush(QP , J, PT

−1
HI [J])

25: end if
26: HandleListSchedEvents(J, LBL, time, QE , QP , PTHI,J

arr,→HI, termPredecessors)

27: ScheduleHighestPriorirityJob(SHI, QP , pstat[∗][HI], jstat[∗][HI], prgs[∗][HI])
28: define lag(J) = (prgs[J][LO]− prgs[J][HI])
29: (minLag, J) = min(lag(J) |J ∈ Running(pstat[∗][HI])\JLO-term ∧jstat[J][LO].proc = ∅)
30: if J 6= ∅ ∧ (time+minLag ≤ PQueueFront(QE).key ∨ QE = ∅) then
31: PQueuePush(QE , [J, ‘LBL-LO-LAG’], time+minLag)
32: end if

33: EnqueueTermination(QE , prgs[∗][HI], pstat[∗][HI], C[∗][HI])
34: lastT ime← time
35: end while

Figure 5: The Transformed List Scheduling for Generating HI* Table, ‘T (LS-SC)’

Verimag Research Report no TR-2015-8 13/31

Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

in addition, it takes the execution intervals of the HI jobs in the SLO table and pushes their begin and end
bounds as events labeled as ‘LBL-LO-RUN’ and ‘LBL-LO-STOP’, respectively.

The main loop of the algorithm extends that of the list scheduler by also following the progress in a
non-principal mode – LO – and handling certain events of that mode. The HI-mode events are handled
by the regular list-scheduler event-label switch-case, after the LO events. For brevity, the regular event
handling is represented by a call to subroutine ‘HandleListSchedEvents’. The presented switch-case
operators handle the LO events.

First of all, ‘LBL-LO-LAG’ events are handled. The latter are added on-the-fly at the time-stamps
where a HI-mode running job which is not running in the LO mode is going to reach the same progress as
in the LO mode, whereupon it should be disabled due to invalidating Rule (1b). The so-called ‘lag’ time,
defined as difference between the LO and the HI progress indicates the time interval during which the HI
job may continue to run without running in the LO table while still not exceeding the LO-mode progress
(see the lag calculation rule after the switch-case).

The ‘LBL-LO-RUN’ and ‘LBL-LO-STOP’ events indicate the execution intervals of jobs in the LO
table. They are used to update the LO-mode job and processor status as well as to enable the HI jobs at
least during the time intervals when they are running in the LO table.

When a LO-mode-running (and, hence, enabled) job stops in the LO mode, which is indicated by event
‘LBL-LO-STOP’, and when the reason for the stop is that the job terminates in the LO mode (see the
if-statement in the corresponding switch case) this means that for the HI mode it gets enabled permanently,
according to Rule (1a). To register this change, the job is added into ‘LO-mode terminated set’, which
eliminates the possibility of disabling the given job later on.

When a disabled job starts a new interval of execution in the LO mode, indicated by a ‘LBL-LO-RUN’
event, then it should be enabled (see the if-statement in the ‘LBL-LO-RUN’ case). The point is that a job
can only get disabled when its HI-mode progress reaches exactly the level of its LO-mode progress, so
the progress in the two modes is equal. Therefore, when the job starts running in the LO mode again then
Rules (1a) and (1c) ensure that the job is enabled at least as long as it is running in the LO mode.

The jobs which have not yet terminated and are idle in the LO mode should eventually get disabled for
running in the HI mode. Therefore, after the switch-cases for the event processing, the algorithm checks
the lag time of such jobs and picks the one with the smallest lag. If this job will continue running it will
be the first to ‘exhaust’ its execution-time safety reserve. If this happens before any other event in the
event queue the algorithm ‘knows for sure’ that no earlier change in the schedule will prevent this from
happening and enqueues a ‘LBL-LO-LAG’ event. Note that jobs running on other processors may also
‘run out of their lag’ at exactly the same time, but then they will be detected in the future iterations of the
algorithm one-by-one.

Finally, the algorithm executes the regular list-schedule check for the earliest terminating, see the last
‘if’ statement of the regular list-schedule pseudo-code. For brevity, in Fig. 5 it is represented as a call to
EnqueueTermination subroutine. Note that the termination events are planned after the lag events to
prevent the situation where a disabled job would be wrongly considered terminated.

Observation 4.4 (Ordering of the LO Events). We assume a similar restriction for the handling the LO
events as for the regular list scheduling. The simultaneous events at the front of the queue should be popped
in a particular order which coincides with the order of cases in the switch operator. In particular, events
‘LBL-LO-LAG’ should be popped first, to prevent that the job would be disabled immediately after being
by a ‘LBL-LO-RUN’ event. Also ‘LBL-LO-STOP’ should precede ‘LBL-LO-RUN’ to ensure that the latter
will always find an available processor to reconstruct the copy of the LO table. For the given time-stamp
LO-events should be given preference to the regular events, to prevent that a job may get disabled and
preempted at the same time.

The evolution of a ready job in the transformed list scheduling is more complex than in the case of
regular list scheduling. When a job gets ready it is pushed in the waiting queueQP and then its is eventually
scheduled on a processor. Then it may be, either immediately or later on, stopped from execution and put
either into disabled set Jdis if it is disabled or to the waiting-job queue QP if it is preempted. Upon being
enabled a job goes into the waiting queue QP .

14/31 Verimag Research Report no TR-2015-8

Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

Experiment 1 Experiment 2
m δ jobs arcs jobs arcs
1 0.005 not simulated not simulated
2 0.01 30 0 30 20
4 0.02 60 0 60 40
8 0.05 120 0 120 80

Table 1: Experiments’ parameters

Lemma 4.5 (Complexity of Transformed List Scheduling). If the LO-mode schedule at the input of the
algorithm was generated by a LO-mode list scheduling (or, equivalently, a fixed-priority policy) then the
transformed list scheduling has the same algorithmic complexity as the non-transformed one, as was de-
fined in Lemma 4.2:

O(k(log k +m) + E)

Proof. The ‘start’ and ‘stop’ LO-mode events have count O(k) as they result from LO jobs getting ready,
preempted, and terminated, whereas the number of preemptions in fixed-priority scheduling is O(k). For
the same reason, the number of the ‘lag’ events is alsoO(k), so the number of main-loop iterations remains
to be O(k). The new operations added by transformations are also either O(log k) operations (priority-
queue and set operations with Jdis and JLO-term) or O(m) operations, such as finding the minimum-lag
running job. Finally, the total number of all termPredecessors-update operations during the whole run
of the algorithm is O(E) like in the previous case.

5 Experiments

In Appendix A we give a correctness result for the single-processor case without dependencies. To estimate
the probability of getting a feasible solution in the multiprocessor case or with dependencies, we performed
measurements for randomly generated problem instances and using an implementation of MCPI and
T (MCPI), described in Appendix B.

The random job generation algorithm was the same as in [6]. The instances were scaled to obtain
a target ‘Stress’ parameter [6], a processor resource utilization metric. For schedulability, the stress is
bounded by m. For mixed-criticality problems, it is calculated separately for the LO and HI modes [6].
In our experiments the stress in the two modes was set to be equal to a target value S. For each instance,
we first applied the MCPI algorithm [6]. If this did not produce a feasible schedule we canceled and
restarted the experiment. In the case of a feasible schedule we applied the transformation algorithm to the
result and checked if the experiment was a ‘success’, i.e., whether a feasible STTM schedule was obtained.
We performed two experiments, to test the effectiveness of the algorithm under different assumptions. In
Table 5 the parameters used for each experiment are reported. It shows for each number of processors
m the maximum allowed error δ on the Stress value and for each experiment the number of job and the
number of precedence edges (i.e., dependency arcs between jobs in the task graph). For each point, 1000
MCPI-schedulable instance were generated, in order to get a representative sample.

Experiment 1 shows the performance of the algorithm with no dependencies. Fig. 6 shows a plot of the
success rate at different values of the normalized stress parameter S/m for 2, 4 and 8 processor problems.
Also the theoretical success rate of 1 for single processor case is shown (confirmed by the experiments).
We were not able to measure the success rate for S/m closely approaching to 1 due to the difficulty of
finding high-stress problem instances that would be schedulable by MCPI.

The experiments show that the success rate is quite high, though it decreases with the stress and the
processor count.

Fig. 7 shows the results of Experiment 2, where we added dependencies. From the graph we can see
that there are no big difference in the case of task graph.

The curves are limited on the x axis because finding feasible schedule for randomly generated instances
is computationally intractable for values of stress close to 1.

Verimag Research Report no TR-2015-8 15/31

Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

S
u
cc

e
ss

 r
a
ti

o

Normalized Stress

m = 1
m = 2
m = 4
m = 8

Figure 6: Experiment 1 - Without dependencies

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

S
u
cc

e
ss

 r
a
ti

o

Normalized Stress

m = 1
m = 2
m = 4
m = 8

Figure 7: Experiment 2 - With dependencies

16/31 Verimag Research Report no TR-2015-8

Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

6 Conclusions and Future Work
In this paper we proposed a method to transform any memoryless scheduling policy into a time triggered
(TT) one, which is not trivial in mixed-criticality problems if one wants to economize the processor re-
sources, as this requires mode switching in order to give highly-critical jobs the exceptionally high level of
resources required by certification only in the case of emergencies (i.e., exceptional processor overloads).

For a single processor case our method was proven to work for any correct basis scheduling policy. For
the multiprocessor case the same can be asserted in the grand majority of cases even the ones with large
processor resource utilization, as confirmed by our experiments. In future, we plan to extend these results
to more than two levels of criticality, bus and cache interference analysis, and pipelining.

References
[1] D. Socci, P. Poplavko, S. Bensalem, and M. Bozga, “Time-triggered mixed-critical scheduler on

single and multi-processor platforms (invited paper),” in Int. Conf. High Performance Computing and
Communications, HPCC’15, IEEE, 2015. 2

[2] S. Vestal, “Preemptive scheduling of multi-criticality systems with varying degrees of execution time
assurance,” in Real-Time Systems Symposium, RTSS’07, pp. 239–243, IEEE, 2007. 1

[3] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela, N. Megow, and L. Stougie,
“Scheduling real-time mixed-criticality jobs,” IEEE Trans. Comput., vol. 61, pp. 1140 –1152, aug.
2012. 1, 2.1, 2.2

[4] S. Baruah and G. Fohler, “Certification-cognizant time-triggered scheduling of mixed-criticality sys-
tems,” in Real-Time Systems Symposium (RTSS), 2011 IEEE 32nd, pp. 3–12, 2011. 1, 2.4, 4.1

[5] P. Ekberg and W. Yi, “Bounding and shaping the demand of mixed-criticality sporadic tasks,” in
ECRTS, pp. 145–154, IEEE, 2012. 1

[6] D. Socci, P. Poplavko, S. Bensalem, and M. Bozga, “Multiprocessor scheduling of precedence-
constrained mixed-critical jobs,” in ISORC 2015, IEEE, 2015. 1, 2.3, 2.1, 5, B.4

[7] S. Baruah, “Semantics-preserving implementation of multirate mixed-criticality synchronous pro-
grams,” in RTNS, pp. 11–19, ACM, 2012. 1, 4.1

[8] S. Baruah, “Implementing mixed-criticality synchronous reactive systems upon multiprocessor plat-
forms.” 1, 4.1

[9] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in a hard-real-time envi-
ronment,” J. ACM, vol. 20, pp. 46–61, 1973. 2.3

[10] R. Ha and J. W. S. Liu, “Validating timing constraints in multiprocessor and distributed real-time
systems,” in Proc. Int. Conf. Distributed Computing Systems, pp. 162–171, Jun 1994. 2.3

[11] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction to Algorithms. McGraw-Hill
Higher Education, 2nd ed., 2001. 4.3, B.2

[12] D. Socci, P. Poplavko, S. Bensalem, and M. Bozga, “Multiprocessor scheduling of precedence-
constrained mixed-critical jobs,” technical report TR-2014-11, Verimag, 2014. B, B.1, B.2, B.6,
B.4

[13] R. I. Davis and A. Burns, “A survey of hard real-time scheduling for multiprocessor systems,” ACM
Comput. Surv., vol. 43, Oct. 2011. B.1

[14] T. Park and S. Kim, “Dynamic scheduling algorithm and its schedulability analysis for certifiable
dual-criticality systems,” in Intern. Conf. on Embedded software, EMSOFT ’11, pp. 253–262, ACM,
2011. B.1

Verimag Research Report no TR-2015-8 17/31

Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

[15] D. Socci, P. Poplavko, S. Bensalem, and M. Bozga, “Mixed critical earliest deadline first,” technical
report TR-2012-22, Verimag, 2012. B.1

[16] P. Poplavko, D. Socci, S. Paraskevas Bourgos, and M. B. Bensalem, “Models for deterministic exe-
cution of real-time multiprocessor applications,” in DATE’15, 2015. B.4

[17] D. Socci, P. Poplavko, S. Bensalem, and M. Bozga, “Mixed critical earliest deadline first,” in Euromi-
cro Conf. on Real-Time Systems, ECRTS’13, pp. 93–102, IEEE, 2013. B.4

18/31 Verimag Research Report no TR-2015-8

Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

Appendices
A Proofs of Correctness for Single-processor Instances
In this section we always assume single-processor problem instances with preemption enabled and without
task-graph dependencies. We give proofs for the theorems formulated in Section 3.

A.1 Direct Correctness
Below we recall the ‘direct correctness result’ for the transformation algorithm.

Theorem 3.2 (Transformation Correctness). For a given single-processor problem instance if the basis
policy ALG is correct and reasonable then the policy T (ALG) is also correct.

Let TTHI(LO|HI-J
′)

J be the termination time of J in HI* (respectively, LO, HI-J’).

Theorem A.1. Let J least be the least priority HI job after a switch to HI mode. (Note that in the reasonable
policy this is always a latest-deadline HI job). Then

∃J ′ : TTHI∗Jleast ≤ TTHI-J
′

Jleast

Let us first give some definitions and support lemmas.

Definition A.2. A busy interval in some table (be it LO, HI-J or HI* table) is a maximal continuous
interval of time where some jobs are enabled for execution.

For table HI* we apply special rules defined earlier which can disable a job temporarily. When such
rules are not applied, the busy intervals are obviously open intervals, because they are composed of union
of (intersecting) open intervals between arrival and termination of different jobs. We state without proof
that even with the extra rules we defined earlier for HI*, the busy intervals remain to be open intervals.

For convenience, we use the term ‘busy interval’ also for the set of jobs that are enabled at least once
inside the busy interval, and denote it BI , e.g., BIHI∗ for busy intervals in HI*. Note that for this table,
unlike the other tables, it is not always so that the total interval duration is exactly equal to the total work
of jobs in BI , because there are rules that can temporarily disable a job after its arrival and before its
termination. Therefore, the total work of jobs in BIHI∗ can exceed the length of the busy interval. This
also means that a job may belong to several busy intervals of HI*.

In between BI , there are closed, sometimes single-point, idle intervals. For HI*, we would like to
distinguish an idle interval as a hole if inside this interval there are HI jobs that have arrived and not yet
terminated, and are disabled because neither of the rules (1a), (1b), (1c) is true. The idle intervals that are
not holes, are called empty intervals, i.e., those where the job queue is empty.

For instance in Figure 1 in HI* there are two busy intervals: (0,8) and (8,11), thus we have a hole of
size 0 at time 8. This happens because we have that immediately before time 8 J1 is enabled by Rule (1a)
while J2 is disabled. On the other hand, at time 8 J1 is disabled (because it terminates) while J2 is enabled
by Rule (1c).

The following proposition is well-known for fixed-priority policies, but needs to be re-established be-
cause we added the rules that can disable jobs.

Lemma A.3. If J least is the least priority (i.e., the latest-deadline) HI job, then it terminates at the end of
some busy interval BIHI∗.

Proof. Let us assume by contradiction that J least terminates inside a busy interval at time t. This means
that at time t there is another enabled job (by definition of busy interval). If that is so, then J least, having
the least priority, should not be running at time t.

Lemma A.4. Let BIHI∗ = (a, b) be a busy interval in HI*. At time a, the set of non-terminated HI jobs is
the same in tables LO and HI*, and for all of them holds that at time a the cumulative execution progress
in LO is the same as in HI*.

Verimag Research Report no TR-2015-8 19/31

Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

Proof. Consider time a. The lemma thesis is obvious for any job that did not arrive yet, so in the sequel
we consider only those jobs that have arrived.

If a job J is non-terminated in LO then it is non-terminated in HI* as well by Lemma 3.1. In addition,
by the same lemma we have:

THI∗J (a) ≤ TLOJ (a) (2)

On the other hand, if job J is non-terminated in HI* then the fact that it is not enabled at time a
(by lemma condition) implies that Rule (1a) is false and hence the job is non-terminated in LO as well.
Combined with the earlier observations, we conclude that the sets of non-terminated jobs at time a in these
two tables are equal. In addition, also Rule (1b) is false, which means:

THI∗J (a) ≥ TLOJ (a) (3)

Combining (2) and (3) we have the equality of the cumulative times.

Corollary A.5. Let BIHI∗ = (a, b) be a busy interval in which some job switches. Let Js be the first such
job, and let ts be the time at which the switch occurs.

Then during the interval (a, ts) tables HI*, HI-Js and LO are identical

Proof. Notice that HI-Js and LO are equal by construction in (0, ts) and hence in (a, ts) as well. Let us
compare LO and HI*. At time a the set of non terminated jobs in these two tables are equal. In interval
(a, ts) no job switched yet, therefore all the jobs that run in HI* should satisfy Rule (1c), which is due to
the fact that the other two rules require a switch to have occurred. As long as Rule (1c) holds, the HI* table
replicates the LO table, and because it fills time interval (a, ts) continuously, as ts ∈ BIHI∗, we have
proved our thesis.

Proof of Theorem A.1. LetBIHI∗ = (a, b) be the busy interval in which J least terminates. By Lemma A.3,
TTHI∗Jleast = b. By Lemma A.4, job J least is not yet switched at start of this interval, and since this job
terminates at the end of BIHI∗, we know also that it switches inside this interval as well, so Corollary A.5
applies for this interval.

Let us assume thatBIHI∗ = (a, b) is followed by an empty interval, i.e., an idle interval which appears
due to termination of all HI jobs that have arrived so far. Because in this case all the jobs of BIHI∗ have
terminated by time b, we have:

b = a+
∑

j∈BIHI∗

(
Cj(HI)− THI∗j (a)

)
Let Js be the first job to switch in BIHI∗, at time ts. By Lemma A.4 and Corollary A.5, we have that
the same jobs, with the same remaining execution time as in HI* will run from time a in HI-Js before the
switch and, by construction after the switch as well. Therefore BIHI∗ = BIHI-Js and J least, being the
least-priority job, will terminate at time b in both tables.

Let us now examine the other case, in whichBIHI∗ = (a, b), the busy interval where J least terminates,
is followed by a hole, i.e., the idle interval which appears because at time b the rules for table HI* have
disabled the non-terminated jobs. Also in this case J least by our hypothesis and Lemma A.3 will terminate
at time b, but in this case by construction not all jobs of BIHI∗ terminate by time b:

b < a+
∑

j∈BIHI∗

(
Cj(HI)− THI∗j (a)

)
(4)

Let Js be the first job to switch in BIHI∗, at time ts. Again by Lemma A.4 and Corollary A.5 we observe
the same initial state and subsequent behavior in tables HI* and HI-Js of all non-terminated HI jobs during
the time interval (a, ts]. So we conclude that all jobs of BIHI∗ run in HI-Js after time a continuously, at
time a their total remaining work is equal to:∑

j∈BIHI∗

(
Cj(HI)− THI∗j (a)

)

20/31 Verimag Research Report no TR-2015-8

Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

In line with equation (4), in order to complete this workload, table HI-Js has to continue execution after
time b. New jobs may arrive before the termination of the busy interval BIHI-Js . this busy interval
executes all these jobs, J least being the last one to terminate. So we have:

BIHI∗ ⊆ BIHI-Js

and
TTHI-Js

Jleast ≥ a+
∑

j∈BIHI∗

(
Cj(HI)− THI∗j (a)

)
(5)

Combining (4) and (5), and observing that TTHI∗Jleast = b, we have that also in this case in HI-Js the
least-priority job terminates no earlier than in HI*. This completes the proof of Theorem A.1.

Proof of Theorem 3.2. From Lemma 3.1 we know that in any possible scenario all the HI jobs will have
enough processor resource to terminate. The termination time of J least is guaranteed to meet the deadline
due to the hypothesis that it meets deadline in the FPM policy and Theorem A.1. Now let us prove that also
the HI jobs with higher priority in the EDF table PTHI meet their deadlines. Let J least be the next least
priority HI job after J least in the PTHI table. Let J be the currently examined problem instance and let J
be the instance obtained from J by reducing the criticality of J least to LO. It is easy to show that the HI-
mode table HI∗ obtained for this new instance coincides with HI* except that the intervals where J least

is running are idled. So, J least will terminate in HI* at the same time as in HI∗, where by Theorem A.1
applied to instance J it will terminate no later than the latest termination under FPM policy. Obviously,
also the latest termination of the FPM policy for job J least is the same for both J and J. Because by
our hypothesis this policy is feasible we conclude that J least meets its deadline. Iterating this reasoning
recursively, we argue that all HI jobs meet their deadline in HI*, and thus we have our thesis.

A.2 Reverse Correctness
In this section we prove the reverse correctness of transformation according to Theorem 3.3, i.e., that for a
reasonable basis policy ALG we have that T (ALG) can succeed only if the basis policy ALG succeeds.
Similarly to the previous section, we first give some supplementary definitions and lemmas (in addition to
those presented so far), and then we use them to establish a proof of the main theorem in the end of the
section.

The total remaining workload when policy ALG executes basic scenario sc at time t is defined as:

WLsc(t) =
∑
j∈J

(
Cj(χ

sc
j)− T scj (t)

)
where χscj is the criticality behavior shown by Jj in scenario sc. Similarly the total remaining HI-job
workload is given as:

WLsc
HI
(t) =

∑
j∈J:χj=HI

(
Cj(χ

sc
j)− T scj (t)

)
For table HI* we have:

WLHI∗(t) =WLHI∗
HI

(t) =
∑

j∈J:χj=HI

(
Cj(HI)− THI∗j (t)

)
Lemma A.6. Given a reasonable basis policy, we have that:

∀sc, t WLHI∗(t) ≥WLsc
HI
(t)

Proof. Before the mode switch, for any HI job j that did not terminate at time t in sc, we have that
Cj(χ

sc
j) ≤ Cj(HI) by construction and T scj (t) ≥ THI∗j (t) by Lemma 3.1. On the other hand, for a

HI job that has terminated we have that Cj(χscj) − T scj (t) = 0. Thus we have Cj(HI) − THI∗j (t) ≥
Cj(χ

sc
j)− T scj (t) for all HI jobs j.

After the switch in sc, a reasonable policy will always execute a HI job when it can do so (i.e., because
the EDF policy is work-conserving and HI jobs have the highest priority). Thus, after the switchWLHI∗(t)
decreases at most as fast as WLsc

HI
(t).

Verimag Research Report no TR-2015-8 21/31

Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

Recall that a reasonable policy after the mode switch becomes priority-based and schedules HI jobs
using the EDF priority table of HI jobs. Therefore, in this table we can identify the least priority job Jleast.

Theorem A.7 (Worst Case Scenario). Let us consider a reasonable basis policy. Then, for all scenarios
sc′ and for the least priority job Jleast we have:

TTHI-Jsleast ≥ TT
sc′

least

where Js is the first job to switch in the busy interval in HI* where Jleast terminates.
In other words, HI-Js is the worst-case scenario for Jleast.

Proof. In this proof we will use two observations:

1. after the switch we have WLsc
HI

=WLsc.

2. consider to HI-job specific scenarios sc and sc′ and some time instant t at or after the switching
time of both scenarios; if at time t Jleast did not yet terminate in neither of the two scenarios and
WLsc(t) ≥ WLsc

′
(t), then TT scleast ≥ TT sc

′

least; (this is so because after the switch a reasonable
policy applies EDF, and for a fixed-priority policy the remaining workload has a monotonic impact
on the termination time of the least priority job).

Let ts be the time when Js switches in HI*. We know by Corollary A.5 thatWLHI∗(ts) =WLHI-Js
HI

(ts).
Then, by Lemma A.6:

∀sc′ WLHI-Js
HI

(ts) ≥WLsc
′
(ts) (6)

i.e., no scenario has more workload at time ts than the scenario HI-Js.
In the rest of the proof we assume that ts′ is the switch time of another HI-job specific basic scenario

sc′ = HI-Js′ and we compare that scenario to sc = HI-Js.
For the scenarios where ts′ ≤ ts the statement of the theorem is proved by the above stated Obser-

vation 2 and (6), as we have established the workload inequality for a time, ts, that is at or later than the
switch in the both scenarios.

Let us consider the other case, ts′ > ts. Let us denote by tleast the time at which Jleast terminates in
the LO scenario (and, consequently, switches in the HI-Jleast scenario). Note that we can ignore the case
tleast < ts′ , as in this case Jleast would terminate in LO mode, and the LO basic scenario cannot be the
unique worst case, as it is not worse than the scenario HI-Jleast. So, we can assume ts′ ≤ tleast. Due
to this assumption, we also have: ts′ ≤ TTHI∗least and ts′ ≤ TTHI-Jsleast . Therefore, ts′ falls inside the busy
interval where Jleast terminates in the end, both for HI* and HI-Js.

By construction, ts and TTHI∗least belong to the same busy interval BIHI∗, thus WLHI∗ will constantly
decrease in this interval. At time ts′ , we will have WLHI∗(ts′) = WLHI∗(ts)− | (ts, ts′) |. By a similar
reasoning on the busy interval BIHI-Js , we have WLHI-Js(ts′) =WLHI-Js(ts)− | (ts, ts′) |.

Thus, using equality WLHI∗(ts) =WLHI-Js
HI

(ts), which we established earlier, we have:

WLHI-Js(ts′) =WLHI-Js(ts)− | (ts, ts′) |
=WLHI∗(ts)− | (ts, ts′) |
=WLHI∗(ts′)

Therefore, for time ts′ we can repeat the same reasoning as we did for time ts, which concludes the proof.

Theorem 3.3. For a given single-processor problem instance, under the assumption that the basis policy
ALG is reasonable, we have that if the policy T (ALG) is correct then policy ALG is correct as well.

Proof. Our thesis can be rewritten as:

(∀j TTHI∗j ≤ Dj) ⇒ (∀sc,∀i TT sci ≤ Di)

We prove the theorem for Ji = Jleast and then extend this argument from Jleast to other jobs Ji by
induction, in the same way as we did in the proof of Theorem 3.2 in the end of previous section.

22/31 Verimag Research Report no TR-2015-8

Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

Suppose by contradiction that Jleast misses its deadline in ALG while all jobs meet their deadlines in
T (ALG). We have:

TTHI∗least ≤ Dleast < TTHI-Jsleast (7)

where HI-Js is the worst case scenario for Jleast according to Theorem A.7. We distinguish two cases:

1. Jleast terminates before an “empty interval”.
By the reasoning of the proof of Theorem A.1, we have:

TTHI∗least = TTHI-Jsleast

which contradicts (7).

2. Jleast terminates before a “hole”. Considering BIHI∗ = (a, b), as in the proof of Theorem A.1,
and observing that, by Lemma A.4, THI-Jsj (a) = THI∗j (a) we have that:

TTHI-Jsleast = a+
∑

j∈BIHI-Js

(
Cj(HI)− THI∗j (a)

)
(8)

Let Je be the last job to terminate in HI*. For this job, by construction:

TTHI∗e ≥ a+
∑
j∈J

(
Cj(HI)− THI∗j (a)

)
(9)

The right side of Equation (9) is no less than the right side of Equation (8). Therefore, TTHI∗e ≥
TTHI-Js . Also, in EDF: Dleast ≥ De. From these observation and (7), we have:

TTHI∗e ≥ TTHI-Jsleast > Dleast ≥ De

thus Je will miss its deadline in HI*, which contradicts the theorem assumptions.

B MCPI as Basis Algorithm
We describe in this appendix MCPI because by default it is used as the ‘basis’ algorithm ALG to serve
as input for translation T (ALG) into time-triggered tables. MCPI stands for Mixed Criticality Prior-
ity Improvement. We give here only the information necessary to implement MCPI, whereas for a more
complete description the reader is addressed to [12]. The presentation of the algorithm here is slightly
adapted compared to [12]. It adds a few small generalisations necessary to extend MCPI for the support
of non-preemptive scheduling, whereas by default the algorithm assumes preemptive scheduling.

B.1 MCPI Preliminaries
MCPI is an algorithm to compute job priorities offline. Consistently with the TT translation implementation
described in Section 4, MCPI algorithm supports task-graph dependencies (precedence constraints) by
building on top of classical list scheduling. The use of list scheduling makes it also more straightforward to
present the extension of this algorithm to support non-preemptive scheduling. In fact, in the HI mode MCPI
fully relies on classical list scheduling without any modification. Therefore, to obtain from MCPI algorithm
the time-triggered variant T (MCPI) we just use MCPI as is to generate the LO table and then derive from
it the HI table by running the T (LS-SC) described in Section 4. As the list scheduling algorithm itself, we
allow job migration (i.e., execution of different segments of a single job on different processors), but by
construction it cannot occur in the non-preemption extension of the algorithm.

Fig. 8 shows an overview of MCPI. The algorithm takes as input the task graph T, the number of
processorsm and an initial priority table PT. The latter may be generated by any known global fixed-priority
algorithm for multiprocessors. We call this algorithm support algorithm and the initial table support table.
By default we assume that the support algorithm is EDF with modified deadlines and density threshold,
with two-step modification of deadlines for LO-mode table PTLO [12]:

Verimag Research Report no TR-2015-8 23/31

Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

Figure 8: FPM algorithm MCPI (Basis algorithm ALG for TT translation T (ALG)).

1. Subtract execution time uncertainty from the deadlines:

Dmix
j = Dj − (Cj(HI)− Cj(LO))

2. For task graph dependencies recursively propagate the deadlines from the graph sinks to sources:

D∗j (LO) = min
i

(Dmix
j , D∗i (LO)− Ci(LO) | Ji are LO-mode task-graph successors of Jj)

whereas for the HI-mode table PTHI we only apply the propagation of deadlines:

D∗j (HI) = min
i

(Dj , D
∗
i (HI)− Ci(HI) | Ji are HI-mode task-graph successors of Jj)

In table PTχ the priorities are assigned in the EDF way if the job density δj(χ) is smaller than (ex-
perimentally determined) threshold thr = 0.85 and if δ(χ) > thr then the jobs get the highest prior-
ity unconditionally. Here the job density is execution time - relative deadline ratio of the job: δj(χ) =
C(χ)/(D∗j (χ)−Aj). Giving the highest priority to high-density jobs is a necessary technique to overcome
the so-called Dhall effect that adversely impacts the EDF-based tables on multiple processors [13].

Deadlines Dmix are referred to as mix-mode deadlines because they are applied to the LO mode while
taking into account the HI mode execution time. It is straightforward to show [14] that if a job misses in the
LO mode its Dmix deadline then if it switches to the HI mode it will also miss the real deadline, therefore
meeting this deadline is a necessary condition in the LO mode.

Our “priority improvement” algorithm MCPI tries to improve the priority table generated by the support
algorithm so that the response times of HI jobs can be improved and thus the mixed-critical schedulability
criteria can be met for a larger set of problem instances. The algorithm is based on the concept of Pri-
ority Direct Acyclic Graph(P-DAG), which defines a partial order on the jobs showing sufficient priority
constraints needed to obtain a certain schedule. We build such a structure by adding, at each step, jobs
from support priority table PT, starting from the one with the highest priority. Each time we add a HI
(i.e., safety-critical) job, we apply a modification to the priority order given by table PT, to increase the
schedulability of safety-critical scenarios. The modification is done in a ‘bubble-sort’ way, i.e., we fist put
the job at the least priority position and then try raise its priority by swapping it with the job at the previous
position. We only swap a HI job with a LO job (never with another HI job) and we accept the swap only
if LO job and the other jobs with less priority do not start missing their deadlines. Note that we do not do
a usual ‘bubble-sort’ on a total (linear) order (the priority table), as such a naı̈ve approach may encounter
some artificial hazards [15]. Instead, we move the HI jobs along a partial (tree-like) order defined by the
P-DAG. When all jobs have been added to the P-DAG (with an improvement attempt for each HI job), a
priority table PTLO is obtained by topological sort of the P-DAG.

The algorithm improves the support priority table only for the LO-mode table, whereas it keeps the HI
mode table intact. Therefore, the main goal of the algorithm to compute and validate the PTLO, which
we will simply denote as PT in the sequel. To construct the PT , MCPI takes the priority table generated
by the support algorithm and tries to improve the HI scenarios schedulability by ‘bubble-sorting’ strategy
mentioned above which increases the priorities of HI jobs as much as possible without undermining the
LO-mode schedulability. When the table the ready, the algorithm also tests the schedulability in HI-mode
scenarios.

Before specifying the algorithm itself, we give some definitions and propositions.

24/31 Verimag Research Report no TR-2015-8

Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

Definition B.1 (Blocking Relation ‘`’ between Jobs). Given two jobs J1 and J2 and priority table PT ,
we say that a higher-priority job J1 blocks a lower-priority job J2 (J1 `PT J2) if there is a point in time t
the list scheduler has to select a job to execute on one of m processors from a list of ready jobs where both
J1 and J2 are present and it selects J1 (due to its higher priority) whereas J2 is not selected because J1
and, possibly, other higher-priority jobs have occupied all the processors that become available at time t.

Observation B.2 (Non-preemption Support and Blocking). It is mainly in this definition of the block-
ing relation (which is fundamental for MCPI) that we generalize MCPI to also support non-preemptive
scheduling. For the preemptive case, this definition is equivalent to the one given in [12], it but it preserves
all the useful properties of the blocking relation also for the non-preemptive case as their proofs from [12]
remain valid.

Note that by definition, we should have:

J1 ` J2 =⇒ J1 � J2 (10)

It should be also noted that the blocking relation may only exist between two jobs that do not have a directed
task graph path (i.e., a dependency) between them, as task-graph predecessors and successors may never
appear at the same time in the list of ready jobs of the list scheduling algorithm.

Definition B.3 (Potential Interference Relation). Given task graph T(J,→), number of processors m and

a subset J′ ⊆ J, we say that an equivalence relation J′∼ on set J′ is a ‘potential interference’ relation if it
has the following property:

∀J1, J2 ∈ J′. ∃PT : J1 `PT J2 ⇒ J1
J′∼ J2

whereby we consider LO-mode m-processor list schedules on maximal task subgraph with nodes J′.

In general, there exist multiple potential interference relations, as joining two equivalence classes would
lead to a new potential interference relation. Therefore, the (unique) maximal such relation is the total
equivalence. The (unique) minimal potential interference relation can be obtained by union of blocking
relations under all possible PT ’s, followed by transitive and reflexive closure, however it is a costly com-
putation due to exponential number of PT ’s. Instead of computing this minimum, we over-approximate it
by exploiting the following theorem (given without proof).

Theorem B.4 (Single-Processor Interference). In list scheduling (both the preemptive and non-preemptive
one), a potential interference relation for a single processor is also a potential interference relation for m
processors.

The intuitive meaning of this theorem is that when only one processor is available the ‘competition’
between the jobs for a processor is strictly larger than when m > 1 processors are available.

As it turns out, calculating the minimal potential interference on a single processor can be done by a
fast (almost linear) algorithm - the ‘makespan’. This algorithm simulates a single-processor list schedule
of the task graph where instead of selecting the highest-priority ready job arbitrary ready job is selected
to execute next. The goal is to obtain the list of busy intervals (see Definition A.2). MCPI assumes that

J1
J′∼ J2 only if in the makespan simulation of job set J′ the two jobs belong to the same busy interval.

B.2 MCPI Algorithm Specification
The pseudocode of the algorithm is given in Fig. 9. The algorithm takes as inputs the support priority table
SPT and the task graph T. We require the total order defined by SPT to be compliant with task-graph
dependency partial order ‘→’:

J1 →∗ J2 =⇒ J1 � J2 (11)

We require this property from SPT and ensure that it is preserved in the improved priority tables as well.
Among other, this is needed to ensure that the jobs are handled by the algorithm in topological order: from

Verimag Research Report no TR-2015-8 25/31

Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

Algorithm: MCPI
Input: task graph T
Input: priority table SPT
Output: priority table PT

1: SPT ← DependencyComplianceTransform(SPT ,T)
2: CheckLOscenarioSchedulability(T,SPT)
3: G← MCPI PDAG(T, SPT, ∅)
4: PT ← TopologicalSort(G)
5: if anyScenarioFailure(PT,T) then
6: return (FAIL)
7: end if

Figure 9: The MCPI algorithm

task-graph sources to task-graph sinks. To ensure the compliance to the task graph, the algorithm calls
the DependencyComplianceTransform algorithm, which produces a new SPT table by sorting the
jobs such that, firstly, the requirement above is satisfied if there is a directed path between the jobs, and,
secondly, the original SPT ordering is preserved otherwise.

We then check LO scenario schedulability, by running the list scheduler with priorities SPT in the
LO mode. If the schedulability holds, it will be kept as an invariant during the execution, otherwise
the algorithm terminates with a failure (not shown in the pseudocode). Subroutine MCPI PDAG gen-
erates a (directed-forest shaped) P-DAG, based on the support priority table SPT and bubble-sort-like
priority improvements for the HI jobs. Then we obtain a priority table from G by using the well-known
TopologicalSort procedure (see e.g., [11]), which traverses the trees in G from the leafs to the roots while
adding the visited nodes to PT . Finally, the subroutine anyScenarioFailure checks the schedulability in
any possible switch to the HI mode. The check is done by a simulation over the set of all job-specific
scenarios HI-Jh as explained in Section 2.7

In Fig. 10 subroutine MCPI PDAG is shown. It takes as inputs the task graph T, the support priority
table SPT , and the graph G generated so far (that will be empty at the beginning). In every iteration, the
algorithm handles Jcurr, the highest-priority job of table SPT which is not yet in G and eventually adds
that job to G. The algorithm terminates when all jobs have been added to G.

First, the current job is added to a priority table to a position inferior to all jobs handled in the previ-
ous iterations, using priority-table concatenation operator ‘a’. List-schedule simulation is carried out to
discover which of the previous jobs would block the current job when that job has the least priority. We
say that the blocking relation ` is thus calculated. We also estimate the potential interference relation, for
which we currently use the makespan algorithm to derive the single-processor busy intervals as explained
earlier, though better approximations of potential interference are to be investigated in future work to take
into account the number of available processors. After that:

if the current job criticality is LO we add an arc to Jcurr from all the roots of the trees ST present in G
where ∃ J ′ : J ′ ` Jcurr. This makes Jcurr the new root of ST . This is needed to ensure that the
priorities derived from G are compliant to Equation (10). In addition we do the same for the subtrees
containing task-graph predecessors of Jcurr, to ensure compliance to Equation (11).

if the current job criticality is HI we do similar actions as in the case of LO job, but instead of using
the blocking relation we use the potential interference relation. The reason for this difference is that
for HI jobs the final priority of Jcurr is not known apriori as for such jobs ‘bubble-sort’ priority
improvements are applied.

The priority improvements for the HI jobs are done by subroutine PullUp. This subroutine is the core
of the algorithm. It modifies the P-DAG generated so far, trying to improve the HI schedulability of the

7Note that the list scheduling itself does not satisfy the definition of ‘predictable policy’, thus being unsuitable as an online policy
and failing to satisfy the precondition of Theorem 2.2. Nevertheless, there exist other policies, which are on the one hand predictable
and on the other hand are equivalent to the list scheduling for the basic scenarios, which justifies the applicability of MCPI in practice.
However, in this work we do not need such policies as we use instead the STTM policy online.

26/31 Verimag Research Report no TR-2015-8

Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

Algorithm: MCPI PDAG
Input: task graph T(J,→)
Input: priority table SPT
In/out: forest P-DAG G(J′,B)

1: while G.J′ 6= T.J do
2: Jcurr ← SelectHighestPriorityJob(T.J \G.J′, SPT)
3: J′′ ← G.J′ ∪ {Jcurr}
4: PT ′′ ← (TopologicalSort(G) a Jcurr)
5: T′′ ←MaximalSubgraph(T,J′′)
6: ` ← SimulateListSchedule(LO, T′′, PT ′′)

7:
J′′∼ ← EstimateInterference(LO, T′′)

8: G.J′ ← J′′

9: for all trees ST ∈ G do
10: if χ(Jcurr) = LO then
11: if ∃ J ′ ∈ ST : J ′ ` J curr ∨ J ′ → Jcurr then
12: ConnectAsRoot(ST, Jcurr)
13: end if
14: else
15: if ∃ J ′ ∈ ST : J ′

J′∼ J curr ∨ J ′ → Jcurr then
16: ConnectAsRoot(ST, Jcurr)
17: end if
18: end if
19: end for
20: if χ(Jcurr) = HI then PullUp(Jcurr, G,T, SPT)
21: end while

Figure 10: The algorithm for computing priority tree in MCPI

initial priority order. Note that if this subroutine were not called, the algorithm would just generate a P-
DAG that would correspond to the initial priority table SPT , thus not bringing any improvement on the
results of the support algorithm.

Procedure PullUp is described in the pseudocode in Fig. 11. The idea behind this subroutine is to try
to improve the schedulability of HI scenarios by raising the priorities of HI jobs, “swapping” their position
in the graph with LO jobs while keeping the LO scenario schedulability an invariant.

Procedure LOpredecessors(J,G) returns for node J the set of its direct P-DAG predecessors8 of LO
criticality: {Js | Js B J, χs = LO}. At each step in Fig. 11 we pick the least priority predecessor from
the working set LOpredecessors(J,G) \ DONE, where DONE is a set that keeps track of the job we
already tried to swap. Then subroutine CanSwap checks if J and J ′ can swap priorities. If so, we apply
the actual swapping transformation to graph G, otherwise the job J ′ will remain P-DAG predecessor of J
but we will not try to swap J with that job again. The subroutine proceeds until we have tried to swap for
all LO P-DAG predecessors of job J .

As shown in Figure 12, subroutine CanSwap uses a private copy of graph G to perform a tentative
swap modification and then evaluates its impact on the whole original job instance. To do so, it constructs a
complete priority table by concatenating the one obtained from graph G with the trailer of SPT table that
contains jobs that were not yet handled. Note that the latter jobs are identified by having less SPT -priority
than the current HI job J , therefore we denote the ‘trailer’ part as (SPT |≺ J). Note that thus we check
the whole job set of the problem instance and not only the jobs whose priorities have been changed. This
is required on a multi-processor because, unlike in single-processor case, changing the priorities of a pair
of jobs may impact the schedulability of not only these jobs but of all jobs that have less priority. We
accept the swapping only if it does not lead to a deadline miss for any job. This way, we maintain the
schedulability in LO mode as an invariant of the algorithm. Note that CanSwap immediately rejects to
swap J and J ′ if J ′ →∗ J , to maintain the precedence compliance of priorities.

Subroutine TreeSwap(JHI, JLO, G) performs the following ‘swap’ transformation on graph G, defined
as follows:

8they are also tree-children of node J , as in a P-DAG forest the edges are directed from children to parents

Verimag Research Report no TR-2015-8 27/31

Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

Algorithm: PullUp
Input: job J
In/out: forest P-DAG G
Input: task graph T(J,→)
Input: priority table SPT

1: DONE = ∅
2: while LOpredecessors(J,G) 6= DONE do
3: J ′ ← SelectLeastPriorityJob((LOpredecessors(J,G) \ DONE), SPT)
4: DONE ← DONE ∪ {J ′}
5: if CanSwap(J, J ′, G) then
6: TreeSwap(J, J ′, G)
7: DONE ← DONE ∩ LOpredecessors(J,G)
8: end if
9: end while

Figure 11: The pull-up subroutine

Algorithm: CanSwap
Input: HI job J
Input: LO job J ′
Input: forest P-DAG G
Input: task graph T(J,→)
Input: priority table SPT

1: if J ′ →∗ J then
2: return False
3: end if
4: TreeSwap(J, J ′, G)
5: PT ← (TopologicalSort(G) a (SPT |≺ J))
6: allDeadlinesMet ← SimulateListSchedule(LO, T, PT)
7: return allDeadlinesMet

Figure 12: The subroutine for checking the feasibility of a priority swap

28/31 Verimag Research Report no TR-2015-8

Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

J'

J

P1' P2'

J'

J

P1'

P2'P1

P1

P2 P2

S S

Figure 13: The effect of a Swap.

Figure 14: The graph of an airplane localization system illustrating LO→HI dependencies.

Definition B.5 (Swap). Let G(J′,B) be a forest P-DAG, let JLO B JHI and let J′′ represent the subset of
jobs whose priorities can be potentially higher than or equal to JHI after the swap is performed:

J′′ = {JHI} ∪ {J ′ | J ′ B∗ JHI} \ {JLO}

Subroutine TreeSwap(JHI, JLO, G) performs the following ‘swap’ transformation on graph G:
1. JLO B JHI is transformed into JHI B JLO

2. ∀ tree ST such that: root(ST) B JHI ∨ root(ST) B JLO

(a) if ∃J ′ ∈ ST : J ′
J′′∼ JHI ∨ J ′ → JHI

then in the new G: root(ST) B JHI

(b) else in the new G: root(ST) B JLO

3. if ∃Js : JHI B Js then JHI B Js is transformed into JLO B Js

The swap is illustrated in Fig. 13 for JHI = J and JLO = J ′. In this example the red triangle marked
with S represent the successors of J , while the triangles marked with P1, P2 and P ′1, P

′
2 are, respectively

the predecessors of J and J ′. More specifically, we assume in the figure for P1 and P ′1 are subtrees where
the condition ‘contains a job that is either potentially interferes with J or is a predecessor of J’ is true, is
true, while it is false for P2 and P ′2.

When the swap is done, the PullUp subroutine updates the set DONE and reiterates.

B.3 MCPI Example
Let us first consider a realistic example and apply MCPI to it. This example also argues of practical
rationale for supporting task-graph dependencies from LO jobs to HI jobs. The task graph is shown Fig. 14.

There we have a task graph of the ‘localization system of an airplane’, composed of four sensors (jobs
s1-s4) and the job L, which computes the position. Data coming from sensor s4 is necessary and sufficient

Verimag Research Report no TR-2015-8 29/31

Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

Figure 15: The LO-mode schedule from support table SPT .

Figure 16: The effect of subroutine PullUp on job s4.

to compute the plane position with a safe precision, thus only s4 and L are marked as HI-critical. On the
other hand, data from s1, s2 and s3 may improve the precision of the computed position, thus granting the
possibility of saving fuel by a better computation of the plane’s route. So we do want job L to wait for
all the sensors during normal execution, but when the systems switches to HI mode we only wait for data
coming from s4.

Let us now assume that we have two processors (m = 2) and that the support table SPT is an EDF
table:

PT = {s1 � s2 � s3 � s4 � L}
and that the nodes of this task graph are defined as follows:

Job A D χ C(LO) C(HI)
s1 0 3 LO 1 1
s2 0 3 LO 1 1
s3 0 3 LO 1 1
s4 0 4 HI 1 3
L 0 6 HI 1 3

Let us apply MCPI to this example. The table SPT is already precedence compliant, so the dependency
compliance subroutine will not modify it. Then we check LO schedulability, by simulation. The result of
the simulation of the LO scenario is the Gantt chart of Fig. B.3, where it is easy to check that no jobs miss
its deadline.

Then we apply subroutine MCPI PDAG. In the first iteration we add s1 to G. It is not blocked by any
other job, so we proceed with the second iteration. s2 is added to G, again we do not have any blocking.
Next we add job s3, and we have the following blocking relations: s1 ` s3 and s2 ` s3. Thus we add the
following edges to G: s1 B s3 and s2 B s3. Then we add s4. Since it is a HI job and s4, we add the edge
s3 B s4, since s3 is the root of the only tree of G.

Since s4 is a HI job, we run PullUp on it. First we swap it with s3, after checking that after this
operation the jobs will still meet their deadlines. Then we swap it also with s1 and s2. The result of PullUp
subroutine is shown in Fig. 16. Finally we add job L to the graph and the edge s3 B L. Since s3→ L, we
may not swap further, thus obtaining the following P-DAG:

30/31 Verimag Research Report no TR-2015-8

Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

Figure 17: The schedule obtained by MCPI in the running example.

From topological sort we obtain the priority table PT = {s4 � s1 � s2 � s3 � L}. The priority
table thus obtained leads to the schedule of Fig. B.3.

The reader may easily verify that using the initial priority assignment, whose LO-mode table is shown
in Fig. B.3, will fail if instead of following the LO scenario job s4 will continue execution for C(HI) = 3
time units(which, in fact, results in scenario HI-s4). At the same time, using the table generated by MCPI ,
which results in the LO-mode behavior shown in Fig. B.3 s4, having the highest priority, starts earlier and
would meet its deadline even in this scenario.

B.4 MCPI Overhead and Performance
Theorem B.6 (MCPI Algorithmic Complexity). [12] Let k be the number of jobs in ‘J’, E the number of
precedence edges in ‘→’ and m the number of processors. The computational complexity of MCPI is

O(Ek2 + k3(log k +m))

Proof. (sketch) This result follows from the list scheduling complexity O(E+k(log k+m)) and from the
fact that the algorithm construct the priority table in a bubble-sort manner and runs a list scheduler at each
swapping of two jobs in the table, whereas the number of bubble-sort swappings is O(k2).

The complexity is dominated by the time do repetitive simulations in order to evaluate the blocking
relation and the swapping. This time can be considerably optimized to be much smaller than the worst case
by economizing in simulations e.g., by not simulating the jobs that (according to busy intervals) cannot
interfere with the jobs being tested in the given simulation. Currently our implementation for MCPI is not
yet optimized with that respect and it took 2 minutes handle the flight management system use case with
812 jobs and almost 2000 task graph arcs which we presented in [16]. On the other hand, the previous
algorithm MCEDF (for single-processor scheduling) [17], whose implementation is much better optimized,
can handle this example in less than a second. Therefore we believe that in the near future we can achieve
better MCPI performance even for such examples. Note that such large examples are not uncommon if we
obtain them from a hyperperiod of a multi-periodic system.

In [6, 12] we show 15%-30% improvement in schedulability of MCPI compared to its default support
algorithm for the problem instances whose sum of loads in two modes (LO and HI) is larger than the
maximal load the system could possibly have in a single mode.

Verimag Research Report no TR-2015-8 31/31

	Introduction
	Background
	Problem Definition
	Correctness and Predictability
	Priority-based Scheduling
	Time Triggered Scheduling

	Transformation Rules
	List Scheduling Transformation
	Extending the Scope for Applying Transformations
	Extended Problem Formulation
	List Scheduling
	Transformed List Scheduling

	Experiments
	Conclusions and Future Work
	Appendices
	Proofs of Correctness for Single-processor Instances
	Direct Correctness
	Reverse Correctness

	MCPI as Basis Algorithm
	MCPI Preliminaries
	MCPI Algorithm Specification
	MCPI Example
	MCPI Overhead and Performance

