
Optimized Distributed
Implementations of Timed
Component-based Systems

Ahlem Triki, Jacques Combaz, Saddek Bensalem

Verimag Research Report no

TR-2015-7

August 10, 2015

Reports are downloadable at the following address
http://www-verimag.imag.fr

Unité Mixte de Recherche 5104 CNRS - Grenoble INP - UJF
Centre Équation
2, avenue de VIGNATE
F-38610 GIERES
tel : +33 456 52 03 40
fax : +33 456 52 03 50
http://www-verimag.imag.fr

http://www-verimag.imag.fr

Optimized Distributed Implementations of Timed Component-based
Systems

AUTEURS = Ahlem Triki, Jacques Combaz, Saddek Bensalem

August 10, 2015

Abstract

Distributed implementation of real-time systems has always been a challenging
task. The coordination of components executing on a distributed platform has to
be ensured by complex communication protocols taking into account their timing
constraints. We propose a novel method for distributed implementation of the ap-
plication software formally expressed in Behavior, Interaction, Priority (BIP). A
BIP model consists of a set of components, subject to timing constraints, and syn-
chronizing through multiparty interactions. The proposed method transforms BIP
models into Send/Receive BIP models that operate using asynchronous message
passing. Send/Receive BIP models include additional components called sched-
ulers that observe atomic components states. Based on these observations, the
schedulers are required to plan as soon as possible the execution of interactions.
We propose a method that optimizes the number of observed components, and thus
reduces the number of exchanged messages.

Keywords: Component-based modeling, BIP, Distributed real-time systems, Source-to-source transfor-
mations.

Reviewers:

How to cite this report:

@techreport {TR-2015-7,
title = {Optimized Distributed Implementations of Timed Component-based Systems},
author = { Ahlem Triki, Jacques Combaz, Saddek Bensalem },
institution = {{Verimag} Research Report},
number = {TR-2015-7},
year = {}
}

Ahlem Triki, Jacques Combaz, Saddek Bensalem

1 Introduction
Correct design and implementation of distributed systems has always been a challenging task. The com-
plexity of such systems comes from multiple factors such as non-determinism, race conditions and asyn-
chronous communication. Considering real-time systems is even more challenging in distributed context.
Indeed, meeting timing constraints may fail while executing on a distributed platform since communica-
tions may take much more time than it is allowed by the timing constraints.

Model-based design is a promising approach that is based on a chain of steps starting from a model
(specification) and ending up with an implementation on a given platform. In this paper, we focus on mod-
els defined using BIP framework [1]. BIP is a component-based framework for building real-time systems
based on a rigorous formal semantics. A BIP component is essentially described by a timed automaton [2]
whose transitions are labeled by ports. BIP encompasses multiparty interactions for synchronizing com-
ponents and dynamic priorities for scheduling between interactions. An interaction is a synchronization
(rendez-vous) between a subset of ports. Currently, BIP models are executed using centralized schedulers
that implement the semantics of BIP by executing interactions either in a sequential [3] or parallel [4] way.

In this paper, we are interested in concurrent execution of BIP models, where interactions are scheduled
concurrently. When two interactions share a component, we say that they are conflicting. We show that
scheduling an interaction safely requires observing components participating in conflicting interactions.
We provide a method for optimizing the number of observed components. In fact, we define for each
interaction a predicate on global states that characterizes components that could not be observed by the
interaction. The satisfiability of this predicate is checked using static analysis techniques. In particular, we
are interested in the method presented in [5] for compositional verification of BIP models.

We present a method for distributed implementation of BIP models. Our method is based on source-to-
source transformations of BIP models into Send/Receive BIP models in which components communicate
through asynchronous message passing. Send/Receive BIP models consist on transforming components
of BIP models into Send/Receive components that communicate with additional components called sched-
ulers responsible for scheduling interactions. In case of conflicting interactions, additional component
called reservation protocol is refereed to resolve such conflict. A second transformation concerns generat-
ing C++ executable code for each component of the Send/Receive models.

We conduct experiments on an application consisting on simulation of a set of collaborating robots
implemented using our transformation method. We use our method for optimizing observed components
and we show net improvement of the application’s performance in terms of exchanged messages number.

The rest of the paper is structured as follows. In Section 2 we present the basic semantics model of
BIP. In section 3, we provide safety condition for scheduling interactions concurrently. The method for
optimizing observed components is described in section 4. We describe the transformation of BIP models
into Send/Receive BIP models in Section 5. Experimental results are presented in Section 6. Related work
is discussed in Section 7. Finally, we conclude in Section 8.

2 Basic Semantic Model of BIP
In this section, we present the operational global state semantics of BIP [1]. BIP is a component framework
for constructing systems by superposing three layers of modeling: Behavior, Interaction, and Priority. In
this paper we do not consider priorities.

2.1 Atomic Components
An atomic component is essentially a timed automaton [2] labeled by ports used for communication among
different components.

DEFINITION 1 An atomic component B is defined by the tuple B = (L, P , C, T , tpc) where L is a finite
set of locations, P is a finite set of ports, C is a set of local clocks, and T ⊆ L×(P×G(C)×2C)×L is a set
of transitions labeled with a port, a timing constraint and a subset of clocks to be reset. tpc : L −→ G(C)
assigns to each location ` ∈ L a time progress condition tpc` ∈ G(C). G(C) is the set of timing constraints

Verimag Research Report no TR-2015-7 1/18

Ahlem Triki, Jacques Combaz, Saddek Bensalem

that are defined according to the following grammar: tc := true | false | c ∼ k | tc ∧ tc, with c ∈ C,
k ∈ Z≥0 and ∼ ∈ {≤,=,≥}. Time progress conditions are timing constraints where ∼ is restricted to
{≤}.

Notice that any timing constraint tc can be put into a conjunction of the form:

tc =
∧
c∈C

lc ≤ c ≤ uc, (1)

such that for all c ∈ C, lc ∈ Z≥0 and uc ∈ Z≥0 ∪ {+∞}. We denote by L[tc](c) = lc and U [tc](c) = uc
the lower bound and the upper bound of timing constraint tc over clock c respectively.

In practice, an atomic component can be extended with variables which are used to store (private) local
data. Variables can be exported through ports allowing exchange of data among components. Moreover,
each component transition can be associated with a boolean condition specifying for which values of the
local variables it is enabled, and an (internal) update function triggered along with transition execution
which modifies values of variables.

Before recalling the semantics of an atomic component, we first fix some notations. Given a set of
clocks C, a valuation t : C → R≥0 is a function associating with each clock c its value t(c) ∈ R≥0.
We denote by T (C) the set of valuations of clocks in C. Given a subset of clocks C′ ⊆ C and a clock
value l ∈ R≥0, we denote by t[C′ 7→ l] the valuation that coincides with t for all clocks c ∈ C \ C′,
and that associates l to all clocks c ∈ C′. The notation t + δ represents a new valuation t′ defined by
(t+ δ)(c) = t(c) + δ for any c ∈ C.

DEFINITION 2 The semantics of an atomic component B = (L, P , C, T, tpc) is defined as the labeled
transition system (QB , P∪R≥0,−→), whereQB = L×T (C) is the set of states,−→⊆ QB×(P∪R≥0)×QB
is the set of labeled transitions satisfying the following rules:

• (`, t)
p−→ (`′, t[r 7→ 0]) if ∃ τ = (`, p, tc, r, `′) ∈ T ∧ tc(t) (jump step).

• (`, t)
δ−→ (`, t+ δ) if tpc`(t+ δ)(delay step).

An atomic component B can execute a transition τ = (`, p, tc, r, `′) from a state (`, t) if its timing con-
straint is met by the valuation t. The execution of τ corresponds to moving from control location ` to `′, and
reseting clocks of r. From state (`, t), B can also wait for δ > 0 time units if the time progress condition
tpc` stays true. Waiting for δ time units increases all the clock values by δ. Notice that the execution of
transitions is instantaneous and time elapses only on states.

The semantics of timed automata presented here is slightly different from the one found in [2], as we
consider time progress conditions instead of invariants. In contrast to invariant, an atomic component B
may reach a state (`, t) violating the corresponding time progress condition tpc`. In this caseB cannot wait
and is forced to execute a transition from (`, t). In the following we consider systems that cannot reach
states violating time progress conditions. A state (`, t) from which B can neither execute a transition nor
wait is a timelock [6]. In the following, we also consider systems that cannot reach timelocks.

EXAMPLE 1 Figure 1 shows an atomic component B corresponding to a task that is processing items
cyclically. It takes a new item to process via port take, and give it back after processing via port give.
Transition τ1 = (`1, take, c = P, {c}, `2) executes when clock c reaches P and, resets c so as to measure
the time it takes to give back an item after taking it. We assume that B takes exactly E time unit to process
an item once it is taken. We also assume that once an item is processed, it can be kept by B for at most K
time units before giving it back. For instance, B is a machine that is processing items at room temperature
and they need to be kept cold or hot. This is represented by timing constraint E ≤ c ≤ D for transition
τ2 = (`2, give, E ≤ c ≤ D, {c}, `1), where D = E +K. To enforce the execution of τ2 before c reaches
D, we also consider the time progress condition tpc`2 = c ≤ D for `2.

2/18 Verimag Research Report no TR-2015-7

Ahlem Triki, Jacques Combaz, Saddek Bensalem

`1

`2 c ≤ D

give

B

E ≤ c ≤ D
c = P

c ≤ P

c := 0

take

c := 0

takegive

Figure 1: An atomic component.

DEFINITION 3 Let B = (L, P , C, T, tpc) an atomic component with semantics (QB , P ∪ R≥0,−→). We

say thatB has non-decreasing deadlines if for each state (`, t) inQB , for each transition τ = (`, p, tc, r, `′)
in T such that tc(t) is true and for each δ ∈ R≥0 we have:

(`, t)
δ−→ (`, t+ δ)⇒ (`, t)

p−→ (`′, t′)
δ−→ (`′, t′ + δ)

The following proposition gives syntactic conditions on time progress conditions and timing constraints
that ensure satisfaction of the non-decreasing deadlines property.

PROPOSITION 1 An atomic componentB = (L, P , C, T , tpc) such that all its transitions τ = (`, p, tc, r, `′) ∈

T satisfy the following syntactic conditions
{
U [tpc`](c) ≤ U [tpc`′](c) if c 6∈ r
U [tpc`](c) ≤ U [tpc`′](c) + L[tc](c) if c ∈ r has non-

decreasing deadlines.

Proof 1 We have τ = (`, p, tc, r, `′) and (`, t)
p−→ (`′, t′), we need to prove that ∀ c ∈ C we have

t′(c) + δ ≤ U [tpc`′](c). That is, δ is enabled from state (`′, t′).
First, as tc(t) is true then we have:

∀c ∈ C, t(c) ≥ L[tc](c) (2)

Moreover, as (`, t) δ−→ (`, t+ δ) then we have:

∀c ∈ C, L[tc](c) ≤ t(c) + δ ≤ U [tpc`](c) (3)

• if c 6∈ r we have t′(c) = t(c). According to the syntactic conditions of Proposition 1 and inequation
(3), we have t′(c) ≤ U [tpc`′](c)

• if c ∈ r we have t′(c) = 0. According to the syntactic conditions of Proposition 1 and inequations
(2) and (3), we have δ ≤ U [tpc`′](c).

.
In this paper we consider atomic components that satisfy the non-decreasing deadlines property.

2.2 BIP models
A BIP model is built from a set of n atomic components {Bi = (Li, Pi, Ci, Ti, tpci)}ni=1, such that their
respective sets of ports and clocks are pairwise disjoint; i.e., for any two i 6= j from {1, . . . , n}, we have
Pi ∩ Pj = ∅ and Ci ∩ Cj = ∅.

DEFINITION 4 An interaction between atomic components {Bi}ni=1 is a subset of ports a ⊆ P , such that
it contains at most one port of every component, that is, |a ∩ Pi| ≤ 1 for all i ∈ {1, . . . , n}.

Since an interaction a uses at most one port of every component, we simply denote a = {pi}i∈I , where
I ⊆ {1, . . . , n} and pi ∈ Pi for all i ∈ I . A component Bi is participating in a if i ∈ I . We denote by
part(a) = {Bi | i ∈ I} the set of components participating in a.

Verimag Research Report no TR-2015-7 3/18

Ahlem Triki, Jacques Combaz, Saddek Bensalem

DEFINITION 5 We denote by B
def
= γ(B1, . . . , Bn) the BIP model obtained by applying a set of inter-

actions γ to the set of atomic components {Bi = (Li, Pi, Ci, Ti, tpci)}ni=1. It is defined by the atomic
component B = (L, γ, C, Tγ , tpc), where L = L1 × . . . × Ln, C =

⋃n
i=1 Ci, tpc(`)=

∧
i∈n tpc`i , A

transition τ = (`, a, tc, r, `′) from ` = (`1, . . . , `n) to `′ = (`′1, . . . , `
′
n) is in Tγ iff (1) a = {pi}i∈I ∈ γ,

(2) for all i /∈ I `′i = `i and (3) and there exist transitions τi = (`i, pi, tci, ri, `′i) of Bi, i ∈ I , such that
tc =

∧
i∈I

tci, r =
⋃
i∈I

ri.

free
`31

free
B3

take1

B2

c1 := 0
c1 = 5

give2

give1
`11

new2

`51

new2

B1

B5

`41

`42
B4

c2 := 0

take2

take2
g2

g1

t1

t2

`22

c2 = 8

3 ≤ c1 ≤ 5

give2
6 ≤ c2 ≤ 8

c2 ≤ 8

c1 ≤ 5

new1

`21

new1

c1 ≤ 5

c2 ≤ 8

take1give1

c2 := 0

c1 := 0

Figure 2: Example of a BIP model.

EXAMPLE 2 Figure 2 illustrates a BIP model γ(B1, B2, B3, B4, B5). Components B2 and B4 are in-
stances of component B of Figure 1 with E=3, D=P=5 for B2 and E=6, D=P=8 for B4. The set of
interactions γ is {t1, t2, g1, g2}, where t1 = {new1, take1}, t2 = {new2, take2}, g1 = {give1, free} and
g2 = {give2, free}. Note that all components B1, . . . , B5 have non-decreasing deadlines since they satisfy
the syntactic conditions given in Proposition 1.

Initially, the system is at state (`, 0) where ` = (`11, `
2
1, `

3
1, `

4
1, `

5
1). At this state, the time progress

condition and the timing constraint in B1 impose that t1 executes after a delay of 5 time units. Then due to
the time progress condition and the timing constraint in B2, t2 executes after a delay of 3 time units. Then,
g1 executes after a delay δ1 ∈ [0, 2], then g2 after a delay δ2 such that δ1 + δ2 ∈ [6, 8].

3 Safety Condition for Scheduling Interactions
Since we target distributed settings, we assume concurrent execution of interactions. However, if two
interactions are simultaneously enabled, they cannot always run in parallel without breaking semantics of
the global state model. Consider two interactions a and b that involve non disjoint sets of components
(i.e. part(a) ∩ part(b) 6= ∅). Clearly, a and b cannot execute in parallel because they share at least one
component. Such a situation is called a conflict.

DEFINITION 6 Let γ(B1, . . . , Bn) be a BIP model. We say that two interactions a and b of γ are in conflict
denoted by a#b, iff there exists an atomic component Bi ∈ part(a) ∩ part(b) that has two transitions
τ1 = (`, p1, tc1, r1, `′1) and τ2 = (`, p2, tc2, r2, `′2) from the same control location ` such that p1 ∈ a and
p2 ∈ b.

Note that conflicts as defined in Definition 6 are an over approximation of conflicts since some conflicts
may not be reachable due to system dynamics. A special case of conflict is when two interactions a and b
share a common port, that is, a ∩ b 6= ∅. Consider again the example from Figure 2. The interactions t1
and t2 are not conflicting with g1 and g2. However, g1 and g2 are conflicting because they share port free
of component B3.

Let a be an interaction. When a is scheduled, scheduling any interaction b that is conflicting with a (i.e.,
b#a) needs to be blocked until a executes. If a is scheduled to execute in δa time units, any component

4/18 Verimag Research Report no TR-2015-7

Ahlem Triki, Jacques Combaz, Saddek Bensalem

Bi ∈ part(a) can only participate to a and is forced to wait for δa time units, which needs to be allowed
by its corresponding time progress condition. Moreover, any component Bj ∈ part(b) may participate to
any interaction other than b. However, when the only enabled interaction is b, Bj is forced to wait for δa.
In this case and if the time progress condition of Bj does not allow to wait for δa time units, scheduling
a in δa introduces a timelock in Bj . That is, Bj cannot execute during δa time units but at the same time
cannot wait for δa time units.

Problem Formulation

We denote by Lpi the set of locations of component Bi enabling port pi, defined as follows: Lpi = {`i |
∧τi = (`i, pi, `

′
i) ∈ Ti}. Let a = {pi}i∈I be an interaction. We denote by La the set of locations configu-

rations enabling interaction a defined as follows: La =
⊗

pi∈a Lpi . We define the predicate sched-tca[`a]
characterizing clocks valuations for which a could be scheduled from the configuration `a ∈ La. It is
defined as follows:

sched-tca[`a] =
∧

{`i∈`a|τi=(`i,pi,tci,ri,`′i)∈Ti∧pi∈a}

tcτi ∧ tpc`i .

In order to safely schedule a from the configuration `a in δa time units, we need to verify that each
component Bj participating in a conflicting interaction b is allowed to wait for δa. As we consider compo-
nents that satisfy the non-decreasing deadline property, we need only to check the time progress condition
of the current state of Bj : if Bj can wait for δa from the current state, it will be able to do so even if it
changes its state by executing other interactions.

We call observed components of an interaction a, denoted by obs(a), the components that are not
participating in a but that need to be observed in order to safely schedule a. It is defined as follows:

obs(a) =
⋃
a#b

part(b) \ part(a).

We denote by safe-tca[`a] the predicate characterizing the valuations of clocks for which a could be
safely scheduled from the configuration `a. It is defined as follows:

safe-tca[`a] = sched-tca[`a]
∧

Bj∈obs(a)

tpc`j .

In order to safely schedule interaction a in δa from a state (`, t) where the location ` enables a from
configuration `a, we have to check that safe-tca[`a](t+ δa) evaluates to true.

4 Observed Components Number Reduction
In this section, we propose to use static analysis techniques in order to reduce, for each interaction a, the
number of observed components. Intuitively, a component Bj could be reduced from the set obs(a) if for
each configuration `a from which a is enabled, each valuation of clocks that satisfies sched-tca[`a] satisfies
also the time progress condition of locations enabling a port pj of Bj participating in each interaction b
that is conflicting with a, i.e. b#a. This could be expressed in terms of predicate on states enabling both a
and each port pj ∈ b, whose satisfiability allows reducing Bj from the set obs(a). To this end, we define
the predicate reducea(Bj) indicating whether the component Bj could not be observed by a, and thus be
reduced from obs(a). We denote by confintera(Bj) the set of interactions that are conflicting with a and
involving component Bj , defined as follows: confintera(Bj) = {b ∈ γ | b#a ∧ Bj ∈ part(b)}. In the
following, we define the predicate reducea(Bj).

DEFINITION 7 Let γ(B1, . . . , Bn) be a BIP model. We denote by C be the set of clocks in the BIP model.
Consider an interaction a in γ and an observed component Bj in obs(a). We define reducea(Bj) the
predicate indicating whether Bj could be reduced from obs(a) as follows:

reducea(Bj)

Verimag Research Report no TR-2015-7 5/18

Ahlem Triki, Jacques Combaz, Saddek Bensalem

≡

∀ `a ∈ La,∀`j ∈ Lpj | pj ∈ b ∧ b ∈ confintera(Bj)

∀t ∈ T (C), ∀δ > 0

sched-tca[`a](t+ δ)⇒ tpc`j (t+ δ)

According to Definition 7, interaction a reduces the observation of component Bj , if for each configu-
ration of locations `a ∈ La enabling interaction a, for each location `j of component Bj enabling port pj
involved in interaction b such that b#a, for each clocks valuation t ∈ T (C) and for each time step δ > 0,
we have sched-tca(`a)(t + δ) ⇒ tpc`j (t + δ). The latter implication specifies that there is no clocks
valuation t ∈ T (C) that satisfies sched-tca[`a] and not tpc`j .

The predicate reducea(Bj) involves a non-constant variable δ and the clocks valuation t. Thus, static
analysis techniques cannot be used at this step.

In order to obtain a static expression of reducea(Bj), we use explicit expressions of sched-tca[`a]
and tpc`j to rewrite reducea(Bj).

Using (1), sched-tca[`a] can be written into the following form: sched-tca[`a] =
∧
ca∈Ca

l`aca ≤ ca ≤
u`aca , where Ca is the set of all clocks involved in sched-tca[`a], and l`aca (resp. u`aca) is the lower (resp.
upper) bound value involving clock ca in sched-tca[`a]. Similarly, tpc`j can be written in the following

form: tpc`j =
∧
cj∈Cj

cj ≤ d
`j
cj , where Cj is the set of clocks of component Bj .

PROPOSITION 2 Given an interaction a and a component Bj ∈ obs(a), the predicate reducea(Bj) can
be rewritten in the following form:

reducea(Bj)

≡

∀ `a ∈ La,∀`j ∈ Lpj | pj ∈ b ∧ b ∈ confintera(Bj)∧
cj∈Cj

∨
ca∈Ca

cj − ca ≤ d`jcj − u
`a
ca

∨
ca∈Ca

∨
c′a∈Ca

ca − c′a < l`aca − u
`a
c′a

Proof 2 We have to prove that:
∀t ∈ T (C),∀δ > 0

sched-tca(`a)(t+ δ)⇒ tpc`j (t+ δ)

⇔∧
cj∈Cj

∨
ca∈Ca

cj − ca ≤ d`jcj − u
`a
ca

∨
ca∈Ca

∨
c′a∈Ca

ca − c′a < l`aca − uc′a

sched-tca[`a](t+ δ)⇒ tpc`j (t+ δ)

⇔ tpc`j (t+ δ) ∨ ¬sched-tca(`a)(t+ δ)

⇔
[∧

cj∈Cj
t(cj) ≤ d

`j
cj − δ

]
∨
[∨

ca∈Ca
t(ca) > l`aca − δ

]
∨
[∨

ca∈Ca
t(ca) > u`aca − δ

]
⇔

[∧
cj∈Cj

t(cj) ≤ d
`j
cj−δ

∨
ca∈Ca

t(ca) > u`aca−δ
]
∨
[∨

ca∈Ca
t(ca) < l`aca−δ

∨
ca∈Ca

t(ca) > u`aca−δ
]

⇔
[∧

cj∈Cj

∨
ca∈Ca

t(cj)−t(ca) ≤ d
`j
cj−u`aca−δ

]
∨
[∨

ca∈Ca

∨
c′a∈Ca

t(ca) < l`aca−δ∨t(c
′
a) > uc′a−δ

]
⇔

[∧
cj∈Cj

∨
ca∈Ca

t(cj)−t(ca) ≤ d
`j
cj−u`aca−δ

]
∨
[∨

ca∈Ca

∨
c′a∈Ca

¬[t(ca) ≥ l`aca−δ∧t(c
′
a) ≤ uc′a−δ]

]
⇔

[∧
cj∈Cj

∨
ca∈Ca

t(cj)− t(ca) ≤ d
`j
cj − u`aca − δ

]
∨
[∨

ca∈Ca

∨
c′a∈Ca

¬[t(ca)− t(c′a) ≥ l`aca − u
ella
c′a

]
]

⇔
[∧

cj∈Cj

∨
ca∈Ca

cj − tca ≤ d
`j
cj − u`aca − δ

]
∨
[∨

ca∈Ca

∨
c′a∈Ca

¬[ca − c′a ≥ l`aca − uc′a]
]
.

6/18 Verimag Research Report no TR-2015-7

Ahlem Triki, Jacques Combaz, Saddek Bensalem

We use static analysis techniques to check the satisfiability of reducea(Bi) as defined in Proposition 2,
for each interaction a and for each for each component Bj ∈ obs(a). In particular, we focus on the
method presented in [5], for compositional verification of BIP models. This method relies on invariants
computation. These invariants characterize an over-approximation of reachable states of BIP models. We
do not detail here how to compute these invariants, interested readers may refer to [5] for more details.

Let J be the global invariant characterizing an over-approximation of reachable states of a BIP model.
Verifying that reducea(Bj) holds is done by checking that J ∧ ¬reducea(Bj) is not satisfiable. It means
that the intersection between the states violating the property reducea(Bj) and the states satisfying the
invariant is empty. Thus, reducea(Bj) holds for all reachables states, since they all satisfy the global
invariant J .

5 From BIP Models to Send/Receive BIP models
In this section, we explain our method for automated transformation of BIP models with multiparty interac-
tions into Send/Receive BIP models involving only binary (Send/Receive) interactions that can be directly
mapped on a distributed platform.

5.1 Send/Receive BIP model Architecture
In a Send/Receive BIP model, interactions are implemented by a protocol between the atomic components
and a set of new components acting as schedulers, each one being responsible for a subset of interactions.

Intuitively, a Send/Receive BIP model is a set of independent components communicating through
asynchronous message passing. It is formally defined as follows.

DEFINITION 8 We say that BSR = γSR(BSR1 , ..., BSRn) is a send/Receive BIP Model iff we can partition
the set of ports in BSR into three sets Ps, Pr and Pu that are respectively the set of send − ports,
receive− ports and unary − ports, such that:

• Each interaction a ∈ γSR, is either (1) a Send/Receive interaction with a = (s, r1, r2, . . . , rk), s ∈
Ps,
r1, . . . , rk ∈ Pr or, (2) a unary interaction a = {p} with p ∈ Pu.

• If s is a port in Ps, then there exists one and only one Send/Receive interaction a ∈ γSR with
a = (s, r1, r2, . . . , rk) and all ports r1, . . . , rk are receive-ports. We say that r1, r2, . . . , rk are the
receive-ports associated to s.

• If a = (s, r1, . . . , rk) is a Send/Receive interaction in γSR and s is enabled at some global state of
BSR, then all its associated receive-ports r1, . . . , rk are also enabled at that state.

In a Send/Receive BIP model, messages are sent through send-ports to receive-ports. A send-port has
an associated set of receive-ports. Moreover, receive-ports must be ready to receive any message sent by
the corresponding send-port.

LetB = γ(B1, . . . , Bn) be an input BIP model of the proposed transformation. The Send/Receive BIP
model corresponding to B is based on a hierarchical architecture of three layers. Figure 3 represents the
Send/Receive BIP model of the BIP model given in Figure 2.

• The Atomic Component Layer consists of a transformation of atomic components Bi into Send/Re-
ceive atomic component BSRi . Components BSRi send asynchronously request messages to notify
the scheduler layer about their current states. The bottom layer of Figure 3 includes Send/Receive
atomic components BSR1 , . . . , BSR5 .

• The Scheduler Layer deals with scheduling interactions. This layer consists of a set of scheduler
components, each one hosting a subset of interactions. Based on requests sent by atomic components,
a scheduler may decide the execution of an interaction at a given time and send back acknowledge
messages to participating components specifying which transition has to be executed and when. In
Figure 3, the scheduler layer consists of components S1 and S2.

Verimag Research Report no TR-2015-7 7/18

Ahlem Triki, Jacques Combaz, Saddek Bensalem

• The Reservation Protocol Layer resolves conflict between schedulers. A conflict occurs when two
different schedulers try to schedule two conflicting interactions. In Figure 3, The reservation protocol
layer consists of component RP .

req4 res4res3req3res1req1 req5

S1{t1, g1} S2{t2, g2}

res5

BSR
1 BSR

2 BSR
3 BSR

4 BSR
5

okg2
rg1

rg1

rg2

rg2 okg2 failg2

failg2

failg1okg1

okg1

res2req2

res 2req
1

res 1 req
4

res 3req
3

req
2 req

5
res 5res 4req

4
res 3req

3req
2

failg1

RP

Figure 3: Send/Receive BIP Model of Figure 2.

In the Send/Receive BIP model, components rely on a common base for measuring time. We assume
that they all have access to the absolute time elapsed since the system started executing. In the Send/Receive
BIP model, this is represented by a single clock g shared among atomic components and schedulers. The
clock g is initialized to 0 and is never reset. In the real system, g is implemented by different clocks that
need to be synchronized to avoid drifts, e.g. using the Time Precision Protocol (PTP) [7]. Hence, the
assumption of a single clock is valid if the difference between two clocks is always kept smaller than the
precision used for representing time in the system.

The clock g is used when atomic components inform the schedulers about their timing constraints.
To this end, we follow the approach of [3]: for each clock c of an atomic component B we introduce a
variable ρc that stores the absolute time of the last reset c. If the clock c is reset by a transition of B
at global time t(g), we assign t(g) to ρc. Notice that the value of c can be computed from the current
value of g and ρc by using the equality c = g − ρc. This allows to entirely get rid of clocks of each
component B, keeping only the clock g and variables ρc, c ∈ C. Any timing constraints tc involved in
a component Bi can be expressed using the clock g instead of clocks C. Using (1), we transform tc as
follows: tc =

∧
c∈C lc ≤ c ≤ uc =

∧
c∈C lc + ρc ≤ g ≤ uc + ρc. That is, tc is an interval constraint on g

of the form:
tc = max{lc + ρc}c∈C ≤ g ≤ min{uc + ρc}c∈C. (4)

5.2 Transformation of Atomic Components
We transform an atomic component B into a Send/Receive atomic component BSR that is capable of
communicating with scheduler components. To communicate, BSR sends requests to the schedulers
that are acknowledged by responses. A request is sent from each location ` reached by BSR. The
request contains, for each port p, the timing constraint variable tcp set to the timing constraint of p if
the corresponding port is enabled at the current location `, and set to false otherwise, the time progress
condition variable tpcB set to the time progress condition of ` and the participation number variable n
which counts the number of interactions in which the component BSR has participated. The value of n
is used by the reservation protocol to resolve conflicts between interactions. The variables included in the
request are updated whenever the component BSR reaches a new state.

When the scheduler selects an interaction involving BSR for execution, it notifies the component by a
response containing the chosen port pex and the execution date tex.

As explained in Subsection 5.1, Send/Receive atomic component BSR relies on single clock g to ex-
press timing constraints. Therefore, we include in BSR a reset variable ρc for each clock c ∈ C. Variable
ρc is updated to tex whenever the corresponding transition of B resets clock c.

8/18 Verimag Research Report no TR-2015-7

Ahlem Triki, Jacques Combaz, Saddek Bensalem

Since each request sent by a component is acknowledged by a response from the scheduler, we include
transitions for sending requests and transitions for receiving responses. To this end, for each place ` we
include two places namely⊥req

` and⊥res
` . We are now ready to define the transformation from B into BSR

DEFINITION 9 Let B = (L, P , C, T , tpc) be an atomic component. The corresponding Send/Receive
atomic component is BSR = (LSR, PSR, TSR, CSR, tpcSR) such that:

• LSR = Lreq ∪ Lres ∪ L, where Lreq = {⊥req
` | ` ∈ L} and Lres = {⊥res

` | ` ∈ L}.

• PSR = P ∪ {req} ∪ {res} where req is a send-port and res is a receive-port. The set of
variables Xreq = {tcp}p∈P ∪ {tpcB} ∪ {n} is associated to request port req. The set of variable
Xres = {pex} ∪ {tex} is associated to response port res.

• CSR = {g}.

• For each place ` ∈ L, TSR includes a request transition τ req
` = (⊥req

` , req,true, ∅, `) and a
response transition τ res

` = (`, res,true, ∅,⊥res
`).

• For each transition τ = (`, p, tc, r, `′) ∈ T , TSR includes an execution transition τp = (⊥res
` , p, g =

tex, ∅,⊥req
`′). In addition to timing constraint g = tex, τp is guarded by a guard on pex variable,

pex = p. Finally, this transition has the following update function:

∀c ∈ r, ρc = tex,

tcp′ =

{
tc′ if (`′, p′, tc′, r′, `′′) ∈ T
false otherwise

tpcB:= tpc`′ ,
n := n+ 1.

We recall that tcp′ and tpcB are expressed using clock g and are computed using ρc as shown in (4).

• tpcSR is a function defined as follows:

tpcSR(`) =

{
tpc` if ` ∈ L ∪ Lreq

g ≤ tex if ` ∈ Lres.

In the above definition, the execution of a transition τ = (`, p, tc, r, `′) of a component B corresponds
to the following three steps in BSR. Firstly, a request transition τ req

` transmits necessary information used
by the scheduler for computing enabled interactions involving BSR. Secondly, a response transition τ res

`

is executed once the scheduler decides to execute an interaction involving BSR. The response contains the
selected port pex and the chosen execution date tex. Finally, the execution transition τp executes the port p
corresponding to pex at the chosen date tex.

Note that inBSR, we put at locations⊥req
` and ` the time progress condition tpc` of location ` originally

defined in the atomic component B. This is to ensure that BSR sends its request to the scheduler and
receives the response before the time progress condition tpc` becomes false. The time progress condition
g ≤ tex of location ⊥res

` with the timing constraint g = tex of port p ensures the execution of p at the
chosen date tex.

Figure 4 illustrates the transformation of the component B in Figure 1 into its corresponding Send/Re-
ceive component BSR. The dashed locations represent the intermediate locations. The update functions
fgive and ftake are defined as follows:

fgive =

ρc := tex

tctake := g = P + ρc
tcgive := false
tpcB := g ≤ P + ρc
n := n+ 1

ftake =

ρc := tex

tctake := false
tcgive := E + ρc ≤ g ≤ D + ρc
tpcB := g ≤ D + ρc
n := n+ 1

Verimag Research Report no TR-2015-7 9/18

Ahlem Triki, Jacques Combaz, Saddek Bensalem

g = tex

pex = take

g ≤ tex

g ≤ tex

pex = give
g = tex

req

resreq

BSR

tpc`1

give

tpc`2

⊥res
`1

⊥req
`2

⊥res
`2

`1

`2
tpc`2

take

req res

res

⊥req
`1

tpc`1

ftakefgive

Figure 4: Transformation of atomic component of Figure 1.

5.3 Building Distributed Scheduler
In this subsection, we describe how to build a distributed scheduler component. Consider a BIP model
γ(B1 · · ·Bn) and a partition of the set of interactions {γj}mj=1 (classes of interactions γj are disjoint and
cover all the interactions of γ). Each class of interaction γj is handled by a single scheduler component
Sj . The partition {γj}mj=1 is a parameter of our method that can be used to optimize the generated im-
plementations. It also determines whether or not a conflict between interactions can be resolved locally.
Consider conflicting interactions a ∈ γj and b ∈ γk. We distinguish between two types of conflict for a
and b, according to the partition {γj}mj=1.

• A conflict is internal if a and b belong to the same class of the partition, i.e. j = k. In this case, it
can be resolved by the scheduler component Sj responsible for a and b.

• A conflict is external if a and b belong to different classes of the partition, i.e. j 6= k. External
conflicts cannot be resolved by schedulers alone, and are referred to the reservation protocol layer.
The scheduler Sj sends a request to the reservation protocol to reserve an interaction and receives a
response by either ok if the reservation succeeds or fail if the reservation cannot be granted.

The scheduler component Sj receives request messages sent by the Send/Receive atomic components.
Based on the request message received, Sj component calculates the set of enabled interactions and their
timing constraints and selects one of them for execution (either locally or by means of the reservation
protocol layer). It chooses also a date for the execution of the selected interaction. Then, it sends a
response to each component participating in the chosen interaction. The response contains the port and the
date for the execution. We define scheduler components using Petri nets as they provide a compact format
for the description of the behavior of concurrent systems.

DEFINITION 10 A Petri net is defined by a triple S = (L,P, T), where L is a set of places, P is a set of
ports, and T ⊆ 2L×P × 2L is a set of transitions. A transition τ is a triple (•τ, p, τ•), where •τ is the set
of input places of τ and τ• is the set of output places of τ .

A Petri net is often modeled as a directed bipartite graph G = (L ∪ T,E). Places are represented by
circular vertices and transitions are represented by rectangular vertices (see Figure 5). The set of directed
edges E is the union of the sets {(`, τ) ∈ L × T | ` ∈ •τ} and {(τ, `) ∈ T × L | ` ∈ τ•}. We depict
the state of a Petri net by marking its places with tokens [8]. We say that a place is marked if it contains
a token. A transition τ is enabled at a state if all its input places •τ are marked. Upon the execution of τ ,
tokens of input places •τ are removed and tokens in output places in τ• are added.

Given an initial state m0 ⊆ L, a Petri net (L,P, T) is 1-Safe if for any execution from m0 output
places of enabled transitions are never marked. The behavior of a 1-Safe Petri net (L,P, T) is defined
as a finite labeled transition system (2L, P,→), where 2L is the set of states, P is the set of labels, and
→⊆ 2L×P×2L is the set of transitions defined as follows. We have (m, p,m′) ∈→, denoted bym

p→ m′,
if there exists τ = (•τ, p, τ•) ∈ T such that •τ ⊆ m and m′ = (m\•τ) ∪ τ•. In this case, we say that

10/18 Verimag Research Report no TR-2015-7

Ahlem Triki, Jacques Combaz, Saddek Bensalem

ℓ1

ℓ2

ℓ4

ℓ3

ℓ5
p1

p2

p3

ℓ1

ℓ2

ℓ4

ℓ3

ℓ5
p1

p2

p3

Figure 5: A simple Petri net

p is enabled at m. We say that the Petri net (L,P, T) is deterministic if for any execution from m0 two
transitions τ1 6= τ2 labeled by same port p are not enabled at the state.

Consider a scheduler Sj handling the subset of interactions γj . Let a = {pi | i ∈ I} be an interaction
belonging to γj . Scheduling a needs receiving requests from components Bi participating in a in (i.e.
Bi ∈ part(a) and components Bj oberved by a (i.e. Bj ∈ obs(a)). Only requests from the participants
need to be acknowledged by a response whenever the interaction a is cheduled. Regarding requests from
observed components, they are used to compute a safe date for scheduling a. Note that only time progress
conditions are used from requests received from observed components.

In order to choose a safe date, Sj computes the safe timing constraint safe-tca of a that corresponds to
the conjunction of timing constraints and time progress conditions of components participating in a with
the time progress conditions of components observed by a:

safe-tca =
∧

Bi∈part(a)

[tcpi ∧ tpcBi
]

∧
Bj∈obs(a)

tpcBj
(5)

Given a scheduling policy P , the safe timing constraint safe-tca and the actual valuation of clock g, Sj
computes the set of safe dates P(t(g), safe-tca) and schedules interaction a only if this set is not empty.
In fact, it chooses a date from this set and sends it to the participating components. In the case where inter-
action a is externally conflict, the scheduler starts the reservation mechanism if the set P(t(g), safe-tca)
is not empty. If the reservation protocol responds by ok, the scheduler checks again the non-emptiness
of P(t(g), safe-tca) to ensure finding a safe date for scheduling interaction a. In the case where the set
P(t(g), safe-tca) is not empty, the scheduler proceeds to schedule interaction a. In the other case, we
propose to report an error and stop the execution as this situation is inconsistent in the system (reservation
protocol confirms the execution of a, whereas the scheduler is not able to execute it). In practice, this
situation can occur when the communication delays between the reservation protocol and the scheduler are
too long, which may invalidate the timing constraint of a. A solution this problem could be to integrate a
cancel mechanism between the scheduler and the reservation protocol. In fact, the scheduler may send a
cancel request to the reservation protocol so as to inform it that the interaction a will not be executed. In
this paper, we do not detail this mechanism.

The Petri net that defines the behavior of scheduler Sj handling the subset of interaction γj is con-
structed as follows.

Variables. The set of variables is the following.

• We include variables updated whenever a request from component Bi participating in or observed
by an interaction of γj is received. They consist of the timing constraint variable tcp for each port
p of Bi, the time progress condition variable tpcBi

and the participation number variable ni. Recall
that for observed components Bi, only variable tpcBi

is used by the scheduler.

• We include also variables updated whenever interaction a ∈ γj is scheduled. They consist of the
execution date variable texa , the port execution variable pexi and the execution date variable texi for
each component Bi participating in a.

Clocks. The set of clocks contains the clock g.
Places. The set of places is the following.

• For each component Bi participating in an interaction of γj , we include waiting, received and
sending places wi, ri and si respectively. Place wi has time progress condition defined by tpcBi

.
Place si has the time pogress condition g ≤ texi .

Verimag Research Report no TR-2015-7 11/18

Ahlem Triki, Jacques Combaz, Saddek Bensalem

• For each interaction a ∈ γj that is in external conflict, we include an engaged place ea. This place
has the time progress condition defined by

∧
Bi∈part(a) tpcBi

.

Ports. The set of ports is the following.

• For each component Bi, we include a request port reqi and a response port resi.

• For each interaction a ∈ γj that is not in external conflict, we include a unary port scheda.

• For each interaction a ∈ γj that is in external conflict, we include reservation ports ra, oka and faila.
We associate to port ra the set of variables {ni}Bi∈part(a).

Transitions. The set of transitions is the following.

• In order to receive requests from a component BSRi , we include a request transition (wi, reqi, ri).
We include for each externally conflicting interaction a transition (ri, reqi, ri) and (ea, reqi, ea),
where i is the index of component Bi involved in a, to receive new requests when Bi takes part in
other conflicting interaction.

• In order to send response to component Bi, we include transition (si, resi, wi).

• In order to schedule an interaction a = {pi}i∈I ∈ γj that is not in external conflict, we include tran-
sition τscheda

= ({ri | Bi ∈ part(a) ∪ obs(a)}, scheda, {si | Bi ∈ part(a)} ∪ {ri | Bi ∈ obs(a)})
guarded by P(t(g), safe-tca) 6= ∅. This transition selects a safe date texa ∈ P(t(g), safe-tca) and
updates variables pexi to pi and variables texi to texa .

• In order to request reservation of an interaction a = {pi}i∈I ∈ γj that is in external conflict, we
include a requesting reservation transition τ ra = ({ri | Bi ∈ part(a) ∪ obs(a)}, ra, {ea} ∪ {ri |
Bi ∈ obs(a)}) guarded by P(t(g), safe-tca) 6= ∅.

• For the case where the reservation protocol responds positively, we include the transition τ oka
=

({ea}, oka, {si | Bi ∈ part(a)}) guarded P(t(g), safe-tca) 6= ∅. This transition selects a safe date
texa ∈ P(t(g), safe-tca) and updates variables pexi to pi and variables texi to texa .

• For the case where the reservation protocol responds negatively, we include the transition τ faila =
({ea}, faila, {ri | Bi ∈ part(a)}).

Note that the time progress condition of received place ri corresponding to component Bi is defined
by tpcBi

variable which contains the current time progress condition of component Bi. This time progress
condition enforces the scheduler to schedule an interaction involving component Bi before that its current
time progress condition becomes false. The time progress condition of place ea, where a is an externally
conflicting interaction, is defined by

∧
Bi∈part(a) tpcBi

. This time progress condition enforces receiving a
response from the reservation protocol before that one of time progress conditions of components partici-
pating in a becomes false. Finally, the time progress condition of place si corresponding to component Bi
is defined by g ≤ texi , where texi is the date at which the component Bi should execute. This time progress
condition ensures that the response is sent before texi .

Figure 6 shows the scheduler component S1 of Figure 3. For sake of readability, all time progress
conditions, guards and update functions are not shown in the figure. S1 handles interactions t1 and g1.
As t1 is not conflicting with any other interaction, it is handled locally in S1. However, g1 is in external
conflict with g2. Its scheduling requires requesting reservation from the reservation protocol layer through
port rg1 . Moreover, to compute interaction g1, S1 has to receive requests from participating components
B2 and B3 as well as requests from observed component B4. Only participating components B2 and B3

are notified for the execution of g1.

12/18 Verimag Research Report no TR-2015-7

Ahlem Triki, Jacques Combaz, Saddek Bensalem

res3

w3

r4

w4w2w1

w2

res1 res2

r1

req1 res1 req2 res2 res3req3

schedt1

r2

erd

r3

okg1

failg1

req4

req2

req3

rg1

r3
req4

req3req1 req4

okg1 rg1failg1

req3

s3
s2

s1

w1 w3

Figure 6: Decentralized Scheduler S2 of Figure 3.

5.4 Reservation Protocol
The reservation protocol layer implements an algorithm that solves the committee coordination problem.
The adopted algorithm is based on the idea of message-count technique presented in [9]. This technique
is based on counting the number of times that a component participates in an interaction. Conflicts are
resolved by ensuring that each participation number is used only once. In order to implement the algorithm,
the reservation protocol keeps variables Ni which store the last value of the participation number of each
component Bi. Whenever a reserve request ra for interaction a is received, the message provides the set of
participation numbers {ni}Bi∈part(a). If for each componentBi the participation number ni is greater than
Ni, then the reservation protocol acknowledges successful through port oka and updatesNi to the values of
ni. On the contrary, if there exists a component Bi whose participation number ni is less or equal to what
the reservation protocol has recorded, then the corresponding component has already participated in an
interaction with this participation number and the reservation protocol replies failure via port faila. In this
paper, we consider a centralized implementation of the reservation protocol. In this implementation, there
is one centralized component that implements the protocol described above, and constructed as follows
(see Figure 7).

• For each component Bi, we include variable Ni and for each interaction a we include variable nai .

• For each interaction a handled by the reservation protocol, we include two places wa and ra, three
ports ra, oka and faila, and three transitions τra = (wa, ra, ra), τoka

= (ra, oka, wa) and τfaila =
(ra, faila, wa). The receive-port ra receives reservation requests containing fresh values of variables
nai . The send-ports oka and faila accept or reject the latest reservation request, and Ni variables are
updated in case of positive response.

okg1
failg1rg1

wg1

failg1rg1

rg1

n
g1
2 ≤ N2

N3 := n
g1
3

N2 := n
g1
2

okg1

∧ng1
3 > N3

n
g1
2 > N2

∨ng1
3 ≤ N3

Figure 7: Fragment of the centralized reservation protocol RP of Figure 3 handling interaction g1.

Two other implementations of the reservation protocol are presented in [10], namely token ring based
implementation, and dining philosophers based implementation. These implementations are more dis-
tributed as they consider one reservation protocol component per externally conflicting interaction. These
implementations are also considered by our method, but not presented in this paper.

Verimag Research Report no TR-2015-7 13/18

Ahlem Triki, Jacques Combaz, Saddek Bensalem

5.5 Send/Receive Interactions
In this subsection, we define the Send/Receive interactions between the components defined thus far. Given
a BIP model B = γ(B1, ..., Bn) and a partition {γj}mj=1, we obtain a Send/Receive BIP model BSRCP =

γSR(BSR1 , ..., BSRn , S1, ..., Sm, RP). The set of Send/Receive interactions γSR is constructed as follows:

• For each component BSRi , let Sj1 , ..., Sjl be the scheduler components handling interactions involv-
ing BSRi . We include in γSR the request interaction (BSRi .req, Sj1 .reqi, ..., Sjl .reqi).

• For each scheduler component Sj and for each component BSRi participating in an interaction han-
dled by Sj , we include in γSR the response interaction (Sj .resi, BSRi .resi).

• For each externally conflicting interaction a handled by Sj , we add in γSR the interaction (Sj .ra, RP.ra).
Likewise, we include interactions (RP.oka, Sj .oka) and (RP.faila, Sj .faila).

LEMMA 1 The Send/Receive model BSRCP meets the properties of Definition 8.

Proof 3 The first two constraints of Definition 8 are trivially met by construction. We now prove that
the third constraint also holds; i.e, whenever a send-port is enabled, all its associated receive-ports are
enabled as well.

• Between a Send/Receive component BSRi and a scheduler Sj , we consider the places wi, ri and si.
If there is no token in si place, then, it is easy to see that from this configuration, only interactions
reqi is enabled. If there is a token at place si, it results from the execution of transition scheda or
oka in the scheduler. In the first case, a is internally or not conflicting interaction. In this case, there
is no other interaction than a that could be scheduled and could activate place si. In the second
case, the interaction a is externally conflicting and is refereed to the reservation protocol. The latter
uses the current participation number ofBi for the execution of a and no other interaction is granted
using the same participation number. Thus, in both cases, si is the only active place from which a
notification could be sent.

• Between the scheduler Sj and the reservation protocol, we consider the places ea in the scheduler
Sj , wa and ra in the reservation protocol. If ea is empty, and wa is active, only reservation request
through port ra is enabled. When the ra request is sent, the place ea and ra become active. From
this configuration, only send ports oka and faila are enabled in the conflict resolution protocol, and
the associated ports are also enabled in the scheduler.

6 Experimental Results
In this section, we present the results of our experiments. Our implementation automatically generates
C++ code from the Send/Receive BIP model developed in Section 5, where Send/Receive interactions are
implemented by TCP sockets primitives. Code generation involves generating stand-alone executables for
each component in each layer of the Send/Receive BIP model. The code of each component simulates its
automaton or Petri net using the technique presented in [11]. During the execution, the components send,
receive messages, or do internal computations. Note that the execution stops if the time progress condi-
tions of atomic components are not met. This can occur when the platform, on which the Send/Receive
BIP model is implemented, is not fast enough to meet the time progress conditions. To check the imple-
mentability of the system on a given platform along with its timing constraints, one may derive a physical
model from the Send/Receive BIP model by introducing time delays of transitions [3]. In this paper, we do
not discuss this transformation.

We conduct experiments on an application consisting on a simulation of a set of robots collaborating
to perform a given task. The scenario is described as follows. Initially, the robots are randomly distributed
over an arena. They start by exploring the arena in order to find each others. When 3 robots become
sufficiently close, they group themselves and go towards an object and push it.

Figure 8 shows the model of a single robot. We use timing constraints and time progress conditions to
express a periodic sensors reading (P=200ms). Notice that such a component has non-decreasing deadlines

14/18 Verimag Research Report no TR-2015-7

Ahlem Triki, Jacques Combaz, Saddek Bensalem

c ≤ P

c ≤ P

∃ obstacle

c := 0
c = P

sense

∃ 2 close robots
∧ 6 ∃ obstacle

∧ 6 ∃ 2 close robots
6 ∃ obstacle

sense

group&push

continue

turn

group&push

turncontinue

Figure 8: Model of a single robot.

since it satisfies the conditions of Proposition 1. Note that transitions turn, continue and group&push have
mutually exclusive guards (they cannot be enabled at the same time).

The BIP model of the application consists of N robots. The ”group&push” action is modeled by an
interaction that synchronizes group&push transitions of any 3 robots, enabled only if there are 3 robots
which are sufficiently close to each others. We denote by gk the ”group&push” interaction between 3
robots where k is the robots group identifier. These interactions are pairwise conflicting as for any two
interactions there is at least one shared ports. Note that for each robot, there are 3 unary interactions which
are sensei, continuei and turni.

Using the transformations described in Section 5, we transform the BIP model of our application into
Send/Receive BIP model where all unary interactions of robot Ri are handled by a single scheduler Si and
each gk interaction of group k is handled by a single scheduler Sk.

In our example, each two interactions gk and gk′ are in conflict. Therefore, each gk interaction involves
its participant components and observes all remaining components. The scheduler Sk is then required to
receive requests from all robots: 3 robots participating in the interaction and N − 3 other observed.

Our method to optimize the number of observed components, described in Section 4, allows remov-
ing all observed components for each gk interaction, as the predicate reducegk(Rj) holds or each Rj ∈
obs(gk). This could be explained as follows. In the BIP model, all the robots have the same behavior and
the same period for sensing which makes them having the same deadlines when searching for each others.
Thus, when 3 robots try to group themselves, they have to do it before the expiration of their periods of
sensing, which are the same for the other (observed) robots. Therefore, none of the observed components
will be blocked if any 3 robots group themselves.

40000

36000

32000

28000

24000

8000

4000

4 10

Opt

No opt

12000

16000

20000

Number of robots

N
u

m
b

er
 o

f
ex

ch
an

g
ed

 m
es

sa
g

es

Figure 9: Number of exchanged messages needed for the execution of the application during 10s.

We measure the number of exchanged messages needed or the execution of the application during 10s.
Figure 9 shows the number of exchanged messages needed or the execution of the application with 4
and 10 robots. We remark that the performances are improved in the optimized version especially for the
application with 10 robots. This is because in the unoptimized version with 10 robots, the scheduler Sk

Verimag Research Report no TR-2015-7 15/18

Ahlem Triki, Jacques Combaz, Saddek Bensalem

handling gk interaction has to receive messages from all robots: 3 participating in the interaction and 7
other observed. In the optimized version, Sk receives only messages from the participant robots, which
reduces drastically the number of exchanged messages compared to the unoptimized version.

7 Related Work

LOTOS [12] is a specification language based on process algebra, that encompasses multiparty interactions.
In [13], the authors describe a method of executing a LOTOS specification in a distributed fashion. This
implementation is obtained by constructing a tree at runtime. The root is the main connector of the LOTOS
specification and its children are the subprocesses that are connected. A synchronization between two
processes is handled by their common ancestor. Another framework that offers automatic distributed code
generation is described in [14]. The input model consists of composition of I/O automata, from which a
Java implementation using MPI for communication is generated. The model, as well as the implementation,
can interact with the environment. However, connections between I/O automata (binary synchronization)
are less expressive than BIP interactions, as proved in [15]. Finally, the framework in [14] requires the
designer to specify low-level elements of a distributed system such as channels and schedulers.

OASIS-D [16] is an extension of OASIS approach towards distributed architectures. An OASIS appli-
cation is composed of a set of real-time tasks called agents communicating through temporal variables and
messages exchange. Unlike BIP approach, OASIS relies on fully deterministic behavior of the application.
OASIS-D provides tool chain that (1) computes network feasibility of the application and (2) generates
run-time network including the structure of the application as well as a deterministic TDMA scheduler for
the network access. Our method is more general compared to OASIS-D as we generate schedulers that
allow non-determinism.

PTIDES [17] is a data-flow approach for modeling event-triggered distributed real-time systems. The
timed semantics of PTIDES specifies the interaction between the program and the environment based on
two main assumptions which are bounded clock synchronization and bounded latencies for networks. In
[17] the authors describe analysis techniques that check system implementations for satisfaction of PTIDES
temporal semantics. Our framework is more expressive compared to PTIDES as we support multi-party
interactions.

The closest works to this paper are the approaches in [4] and [18]. The technique in [4] transforms
a BIP model into a parallel time-aware code. The main difference is unlike our approach, the method
in [4] augments the code with only one centralized scheduler. Such a scheduler can potentially become a
bottleneck and consequently make the generated code inefficient. The solution presented in [18] proposes
to decentralize the scheduler by building a set of conflict-free schedulers. Such a solution is not the optimal
choice, since one may end up with a centralized scheduler if the BIP model has a chain of conflicting
interactions. Our method is more a general since it is parametrized by a conflict resolution protocol.

8 Conclusion

We presented a fully automated method for distributed implementation of BIP models consisting of a
set of atomic components communicating through multiparty interactions. Each atomic component is
constrained by a set of local timing constraints. We considered models that have non-decreasing deadlines
that is, executing transitions cannot decrease the actual deadline of a component. Based on this property,
we provide safe condition for scheduling interactions concurrently. We show that scheduling an interaction
safely requires observing additional components in addition to the ones participating in the interaction. We
provided a method for optimizing the number of observed components based on the use of static analysis
techniques and verification methods.

Our method for automatically generating distributed implementation of BIP models consists of two
transformations. The first transformation takes a BIP model as input and generates a Send/Receive BIP
model in which components communicate through asynchronous message passing. The Send/Receive BIP
model is composed of Send/Receive components, scheduler components, each one being responsible for

16/18 Verimag Research Report no TR-2015-7

Ahlem Triki, Jacques Combaz, Saddek Bensalem

scheduling a subset of interactions, and a reservation protocol component that resolves conflict between
schedulers.

We conducted experiments on an application consisting on a simulation of a set of collaborating robots
implemented using our transformation method. We used our method for optimizing observed components
and we show net improvement of the application for the optimized version in terms of number of exchanged
messages.

For future work, we plan to pursue several directions. First, we are working on extending our method
by considering more general models where deadlines may decrease when executing transitions. An other
important research direction is to handle clocks drift issues in distributed real-time systems where clocks
synchronization can not be assumed.

References
[1] Basu, A., Bidinger, P., Bozga, M., Sifakis, J.: Distributed semantics and implementation for systems

with interaction and priority. In: FORTE. (2008) 116–133 1, 2

[2] Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126(2) (1994) 183–235
1, 2.1, 2.1

[3] Abdellatif, T., Combaz, J., Sifakis, J.: Model-based implementation of real-time applications. In
Carloni, L.P., Tripakis, S., eds.: EMSOFT, ACM (2010) 229–238 1, 5.1, 6

[4] Triki, A., Combaz, J., Bensalem, S., Sifakis, J.: Model-based implementation of parallel real-time
systems. In: FASE. (2013) 235–249 1, 7

[5] Astefanoaei, L., Rayana, S.B., Bensalem, S., Bozga, M., Combaz, J.: Compositional invariant gener-
ation for timed systems. In: TACAS. (2014) 263–278 1, 4

[6] Tripakis, S.: Verifying progress in timed systems. In Katoen, J.P., ed.: ARTS. Volume 1601 of
Lecture Notes in Computer Science., Springer (1999) 299–314 2.1

[7] Eidson, J.C.: Measurement, Control and Communication Using IEEE 1588. Springer (2006) 5.1

[8] Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the IEEE 77(4) (apr
1989) 541 –580 5.3

[9] Bagrodia, R., ed.: Process synchronization: design and performance evaluation of distributed algo-
rithms. In Bagrodia, R., ed.: TSE, IEEE (1989) 5.4

[10] Bonakdarpour, B., Bozga, M., Jaber, M., Quilbeuf, J., Sifakis, J.: From high-level component-based
models to distributed implementations. In: EMSOFT. (2010) 209–218 5.4

[11] Triki, A., Bonakdarpoor, B., Combaz, J., Bensalem, S.: Automated conflict-free concurrent imple-
mentation of timed component-based models. Technical report, Verimag Research Report 6

[12] ISO/IEC: Information Processing Systems – Open Systems Interconnection: LOTOS, A Formal
Description Technique Based on the Temporal Ordering of Observational Behavior. (1989) 7

[13] von Bochmann, G., Gao, Q., Wu, C.: On the distributed implementation of lotos. In: FORTE. (1989)
133–146 7

[14] Tauber, J.A., Lynch, N.A., Tsai, M.J.: Compiling IOA without global synchronization. In: Sympo-
sium on Network Computing and Applications (NCA). (2004) 121–130 7

[15] Bliudze, S., Sifakis, J.: A notion of glue expressiveness for component-based systems. In: Concur-
rency Theory (CONCUR). (2008) 508–522 7

Verimag Research Report no TR-2015-7 17/18

Ahlem Triki, Jacques Combaz, Saddek Bensalem

[16] Faucou, S., Burns, A., 0001, L.G., eds.: Scheduling safety-critical real-time bus accesses using
Time-Constrained Automata. In Faucou, S., Burns, A., 0001, L.G., eds.: RTNS. (2011) 7

[17] Eidson, J., Lee, E.A., Matic, S., Seshia, S.A., Zou, J.: Distributed real-time software for cyber-
physical systems. Proceedings of the IEEE 100 (2012) 45 – 59 7

[18] Triki, A., Bonakdarpour, B., Combaz, J., Bensalem, S.: Automated conflict-free concurrent im-
plementation of timed component-based models. In: NASA Formal Methods - 7th International
Symposium, NFM 2015, Pasadena, CA, USA, April 27-29, 2015, Proceedings. (2015) 359–374 7

18/18 Verimag Research Report no TR-2015-7

	Introduction
	Basic Semantic Model of BIP
	Atomic Components
	BIP models

	 Safety Condition for Scheduling Interactions
	 Observed Components Number Reduction
	From BIP Models to Send/Receive BIP models
	Send/Receive BIP model Architecture
	Transformation of Atomic Components
	Building Distributed Scheduler
	Reservation Protocol
	Send/Receive Interactions

	Experimental Results
	Related Work
	Conclusion

