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Abstract

This paper addresses the monitoring of user-provided properties on multi-threaded
component-based systems. We consider intrinsically independent components that
can be executed concurrently with a centralized coordination for multiparty inter-
actions. In this context, the problem that arises is that a global state of the system
is not available to the monitor. A naive solution to this problem would be to plug
a monitor which would force the system to synchronize in order to obtain the se-
quence of global states at runtime. Such solution would defeat the whole purpose
of having concurrent components. Instead, we reconstruct on-the-fly the global
states by accumulating the partial states traversed by the system at runtime. We
define transformations of components that preserve the semantics and the concur-
rency and, at the same time, allow to monitor global-state properties. Moreover, we
present RVMT-BIP, a prototype tool implementing the transformations for moni-
toring multi-threaded systems described in the BIP (Behavior, Interaction, Priority)
framework, an expressive framework for the formal construction of heterogeneous
systems. Our experiments on several multi-threaded BIP systems show that RVMT-
BIP induces a cheap runtime overhead.
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1 Introduction

Component-based design is the process leading from given requirements and a set of predefined com-
ponents to a system meeting the requirements. Building systems from components is essential in any
engineering discipline. Components are abstract building blocks encapsulating behaviour. They can be
composed in order to build composite components. Their composition should be rigorously defined so that
it is possible to infer the behaviour of composite components from the behaviour of their constituents as
well as global properties from the properties of individual components.

The problem of building component-based systems (CBSs) can be defined as follows. Given a set of
components {B1, . . . , Bn} and a property of their product state space ϕ, find multiparty interactions γ (i.e.,
“glue" code) s.t. the coordinated behaviour γ(B1, . . . , Bn) meets the property ϕ. It is however generally
not possible to ensure or verify the desired property ϕ using static verification techniques, either because
of the state-explosion problem or because ϕ can only be decided with runtime information. In this paper,
we are interested in complementary verification techniques for CBSs such as runtime verification. In [8],
we introduce runtime verification of sequential CBSs against properties referring to the global states of
the system, which, in particular, implies that properties can not be “projected" and checked on individual
components. From an input composite system γ (B1, . . . , Bn) and a regular property, a component monitor
M and a new set of interactions γ′ are synthesised to build a new composite system γ′ (B1, . . . , Bn,M)
where the property is checked at runtime.

The underlying model of CBSs rely on multiparty interactions which consist of actions that are jointly
executed by certain components, either sequentially or concurrently. In the sequential setting, components
are coordinated by a single centralized controller and joint actions are atomic. Components notify the
controller of their current states. Then, the controller computes the possible interactions, selects one, and
then sequentially executes the actions of each component involved in the interaction. When components
finish their executions, they notify the controller of their new states, and the aforementioned steps are
repeated. For performance reasons, it is desirable to parallelize the execution of components. In the
multi-threaded setting, each component executes on a thread and a controller is in charge of coordination.
Parallelizing the execution of γ (B1, . . . , Bn) yields a bisimilar component ([1]) where each synchronized
action a occurring on Bi is broken down into βi and a′ where βi represents an internal computation of
Bi and a′ is a synchronization action. Between βi and a′, a new busy location is added. Consequently,
the components can perform their interaction independently after synchronization, and the joint actions
become non atomic. After starting an interaction, and before this interaction completes (meaning that
certain components are still performing internal computations), the controller can start another interaction
between ready components.

The problem that arises in the multi-threaded setting is that a global steady state of the system (where
all components are ready to perform an interaction) may never exist at runtime. Note that we do not target
distributed but multi-threaded systems in which components execute with a centralized controller, there is a
global clock and communication is instantaneous and atomic. We define a method to monitor CBSs against
properties referring to global states that preserves the concurrency and semantics of the monitored system.
Our method transforms the system so that global states can be reconstructed by accumulating partial states
at runtime. The execution trace of a multi-threaded CBS is a sequence of partial states. For an execution
trace of a multi-threaded CBS, we define the notion of witness trace, which is intuitively the unique trace
of global states corresponding to the trace of the multi-threaded CBS if this CBS was executed on a single
thread. For this purpose, we define transformations allowing to add a new component building the witness
trace.

We prove that the transformed and initial systems are bisimilar: the obtained reconstructed sequence of
global states from a parallel execution is as the sequence of global states obtained when the multi-threaded
CBS is executed with a single thread. We introduce RVMT-BIP, a tool integrated in the BIP tool suite.1

BIP (Behavior, Interaction, Priority) framework is a powerful and expressive component framework for
the formal construction of heterogeneous systems. RVMT-BIP takes as input a BIP CBS and a monitor
description which expresses a property ϕ, and outputs a new BIP system whose behavior is monitored
against ϕ while running concurrently. Figure 1 overviews our approach. According to [1], a BIP system

1RVMT-BIP is available for download at [11].
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Figure 1: Approach overview

with global-state semantics Sg (sequential model), is (weakly) bisimilar [9] with the corresponding partial-
state model Sp (concurrent model) noted Sg ∼ Sp. Moreover, Sp generally runs faster than Sg because
of its parallelism. Thus, if a trace of Sg , i.e., σg , satisfies ϕ, then the corresponding trace of Sp, i.e., σp,
satisfies ϕ as well. Naive solutions to monitor Sp would be i) to monitor Sg with the technique in [8] and
run Sp, which ends up with delays in detecting verdicts or ii) to plug the monitor proposed in [8] in Sp,
which forces the components to synchronize for the monitor to take a snapshot of the global state of the
system. Such approaches would completely defeat the purpose of using multi-threaded models. Instead,
we propose a transformation technique to build another system Spg out of Sp such that i) Spg and Sp are
bisimillar (hence Sg and Spg are bisimilar), ii) Spg is as concurrent as Sp and preserves the performance
gained from multi-threaded execution and iii) Spg produces a witness trace, that is the trace that allows to
check the property ϕ. Our method does not introduce any delay in the detection of verdicts since it always
reconstructs the maximal (information-wise) prefix of the witness trace (Theorem 1). Moreover, we show
that our method is correct in that it always produces the correct witness trace (Theorem 2).

Running example. We use a task system, called Task, to illustrate our approach throughout the paper.
The system consists of a task generator (Generator) along with 3 task executors (Workers) that can run
in parallel. Each newly generated task is handled whenever two cooperating workers are available. A
desirable property of system Task is the homogeneous distribution of the tasks among the workers.

Outline. The remainder of this paper is organized as follows. Section 2 introduces some preliminary
concepts. Section 3 overviews CBS design and semantics. In Section 4, we define a theoretical framework
for the monitoring of multi-threaded CBSs. In Section 5, we present the transformations of multi-threaded
CBS model for introducing monitors. Section 6 describes RVMT-BIP, an implementation of the approach
and its evaluation on several examples. Section 7 presents related work. Section 8 concludes and presents
future work. Complete poofs related to definitions and propositions in Section 5 are given in Appendix A.

2 Preliminaries and Notations
Functions. For two domains of elements E and F , we note [E → F ] the set of functions from E to
F . For two functions v ∈ [X → Y ] and v′ ∈ [X ′ → Y ′], the substitution function noted v/v′, where
v/v′ ∈ [X ∪X ′ → Y ∪ Y ′], is defined as follows:

v/v′(x) =

{
v′(x) if x ∈ X ′,
v(x) otherwise.

Sequences. Given a set of elements E, e1 · e2 · · · en is a sequence or a list of length n over E, where
∀i ∈ [1, n] : ei ∈ E. Sequences of assignments are delimited by square brackets for clarity. The empty
sequence is noted ε or [ ], depending on context. The set of (finite) sequences over E is noted E∗. E+ is
defined as E∗ \ {ε}. The length of a sequence s is noted length(s). We define s(i) as the ith element of s
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Figure 2: Atomic components of system Task

and s(i · · · j) as the factor of s from the ith to the jth element. We also note pref(s), the set of prefixes of s
such that pref(s) = {s(1 · · · k) | k ≤ length(s)}. Operator pref is naturally extended to sets of sequences.
Function max� (resp. min�) returns the maximal (resp. minimal) sequence w.r.t. prefix ordering of a set
of sequences. We define function last : E+ → E such that last(e1 · e2 · · · en) = en.

Map operator: applying a function to a sequence. For a sequence e = e1 · e2 · · · en of elements over
E of some length n ∈ N, and a function f : E → F , map f e is the sequence of elements of F defined as
f(e1) · f(e2) · · · f(en) where ∀i ∈ [1, n] : f(ei) ∈ F .

3 Component-Based Systems with Multiparty Interactions
An action of a CBS is an interaction i.e., a coordinated operation between certain atomic components.
Atomic components are transition systems with a set of ports labeling individual transitions. Ports are
used by components to communicate. Composite components are obtained from atomic components by
specifying interactions.

Atomic Components: An atomic component is endowed with a finite set of local variables X taking
values in a domain Data. Atomic components synchronize and exchange data with other components
through ports.

Definition 1 (Port) A port p[xp], where xp ⊆ X , is defined by a port identifier p and some data variables
in a set xp.

Definition 2 (Atomic component) An atomic component is defined as a tuple (P,L, T, X) where P is the
set of ports, L is the set of (control) locations, T ⊆ L× P × G(X)×F∗(X)× L is the set of transitions,
and X is the set of variables. G(X) denotes the set of Boolean expressions over X and F(X) the set of
assignments of expressions over X to variables in X . For each transition τ = (l, p, gτ , fτ , l

′) ∈ T , gτ
is a Boolean expression over X (the guard of τ ), fτ ∈ {x := fx(X) | x ∈ X ∧ fx ∈ F∗(X)}∗: the
computation step of τ , a sequence of assignments to variables.

The semantics of the atomic component is an LTS (Q,P,→) where Q = L× [X → Data] is the set of
states, and→= {((l, v), p(vp), (l′, v′)) ∈ Q×P×Q | ∃τ = (l, p, gτ , fτ , l

′) ∈ T : gτ (v)∧v′ = fτ (v/vp)}
is the transition relation.

A state is a pair (l, v) ∈ Q, where l ∈ L, v ∈ [X → Data] is a valuation of the variables in X . The

evolution of states (l′, v′)
p(vp)−→ (l, v), where vp is a valuation of the variables xp attached to port p, is

possible if there exists a transition (l′, p[xp], gτ , fτ , l), such that gτ (v′) = true. As a result, the valuation
v′ of variables is modified to v = fτ (v

′/vp).
We use the dot notation to denote the elements of atomic components. e.g., for an atomic component

B, B.P denotes the set of ports of the atomic component B, B.L denotes its set of locations, etc.

Example 1 (Atomic component) Figure 2 shows the atomic components of system Task.
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Figure 3: Composite component of system Task

• Figure 2a depicts a model of component Generator 2 defined as Generator .P = {deliver [∅],
newtask [∅]}, Generator .L = {hold , delivered}, Generator .T = {(hold , deliver , true, [ ],
delivered), (delivered ,newtask , true, [ ], hold)}, Generator .X = ∅.

• Figure 2b depicts a model of worker. Component Worker is defined as Worker .P = {exec[∅],
finish[∅], reset [∅]}, Worker .L = {free, done}, Worker .T = {(free, exec, true, [x := x +
1], done), (done,finish, (x 6 10), [ ], free), (done, reset , (x > 10), [x := 0], free)}, Worker .X
= {x}.

Definition 3 (Interaction) An interaction a is a tuple (Pa, Fa), where Pa = {pi[xi] | pi ∈ Bi.P}i∈I is
the set of ports such that ∀i ∈ I : Pa ∩ Bi.P = {pi} and Fa is a sequence of assignment to the variables
in ∪i∈Ixi.

Variables attached to ports are purposed to transfer values between interacting components. When clear
from context, in the following examples, an interaction ({p[xp]}, Fa) consisting of only one port p is noted
p.

Definition 4 (Composite component) A composite component γ(B1, . . . , Bn) is defined from a set of
atomic components {Bi}ni=1 and a set of interactions γ.

A state q of a composite component γ(B1, . . . , Bn) is an n-tuple q = (q1, . . . , qn), where qi = (li, vi)
is a state of atomic componentBi. The semantics of the composite component is an LTS (Q, γ,−→), where
Q = B1.Q× . . .×Bn.Q is the set of states, γ is the set of all possible interactions and −→ is the least set
of transitions satisfying the following rule:

a = ({pi[xi]}i∈I , Fa) ∈ γ ∀i ∈ I : qi
pi(vi)−→ i q

′
i ∧ vi = Fai(v(X)) ∀i 6∈ I : qi = q′i

(q1, . . . , qn)
a−→ (q′1, . . . , q

′
n)

X is the set of variables attached to the ports of a, v is the global valuation, and Fai is the restriction of F
to the variables of pi.

A trace is a sequence of states and interactions (q0 · a1 · q1 · · · as · qs) such that: q0 = Init ∧ (∀i ∈ [1, s] :

qi ∈ Q ∧ ai ∈ γ : qi−1
ai−→ qi), where Init ∈ Q is the initial state. The sequence of interactions in a trace

(q0 · a1 · q1 · · · as · qs) is defined as interactions(q0 · a1 · q1 · · · as · qs) = a1 · · · as. The set of traces of
composite component B is denoted by Tr(B).

Example 2 (Interaction, composite component) Figure 3 depicts the composite component γ(Worker1,
Worker2, Worker3, Generator) of system Task, where each Worker i is identical to the component in
Fig. 2b and Generator is the component depicted in Fig. 2a. The set of interactions is γ = {ex 12, ex 13,
ex 23, r1, r2, r3, f1, f2, f3, nt}. We have ex 12 = ({deliver , exec1, exec2}, [ ]) , ex 23 = ({deliver ,
exec2, exec3}, [ ]), ex 13 = ({deliver , exec1, exec3}, [ ]), r1 = ({reset1}, [ ]), r2 = ({reset2}, [ ]), r3 =
({reset3}, [ ]), f1 = ({finish1}, [ ]), f2 = ({finish2}, [ ]), f3 = ({finish3}, [ ]), and nt = ({newtask}, [ ]).

2For the sake of simpler notation, the variables attached to the ports are not shown.
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Figure 4: Atomic components of system Task with partial-states

One of the possible traces3 of system Task is: (free, free, free, hold) · ex 12 ·(done, done, free,
delivered) · nt · (done, done, free, hold) such that from the initial state (free, free, free, hold), where
workers are at location free and task generator is ready to deliver a task, interaction ex 12 is fired and
Worker1 and Worker2 move to location done and Generator moves to location delivered . Then, a new
task is generated by the execution of interaction nt so that Generator moves to location hold .

4 Monitoring Multi-Threaded CBSs with Partial-State Semantics
The general semantics defined in the previous section is referred to as the global-state semantics of CBSs
because each state of the system is defined in terms of the local states of components, and, all local states
are defined. In this section, we consider what we refer to as the partial-state semantics where the states of
a system may contain undefined local states because of the concurrent execution of components.

4.1 Partial-State Semantics
To model concurrent behavior, we associate a partial state model to each atomic component. In global-state
semantics, one does not distinguish the beginning of an interaction (or a transition) from its completion.
That is, the interactions and transitions of a system execute atomically and sequentially. Partial states and
the corresponding internal transitions are needed for modeling non-atomic executions. Atomic components
with partial states behave as atomic components except that each transition is decomposed into a sequence
of two transitions: a visible transition followed by an internal β-labeled transitions (aka busy transition).
Between these two transitions, a so-called busy location is added. Below, we define the transformation
of a component with global-state semantics to a component with partial-state semantics (extending the
definition in [1] with variables, guards, and computation steps on transitions).

Definition 5 (Atomic component with partial states) The partial-state version of atomic componentB =
(P,L, T,X) is B⊥ = (P ∪ {β}, L ∪ L⊥, T⊥, X), where β /∈ P is a special port, L⊥ = {l⊥t |
t ∈ T} (resp. L) is the set of busy locations (resp. ready locations) such that L⊥ ∩ L = ∅, T⊥ =
{(l, p, gτ , [ ], l⊥τ ), (l⊥τ , β, true, fτ , l′) | ∃τ = (l, p, gτ , fτ , l

′) ∈ T} is a set of transitions.

Assuming some available atomic components with partial states B⊥1 , . . . , B
⊥
n , we construct a composite

component with partial states.

Definition 6 (Composite component with partial states) B⊥ = γ⊥(B⊥1 , ..., B
⊥
n ) is a composite compo-

nent where γ⊥ = γ ∪ {{βi}}ni=1, and {{βi}}ni=1 is the set of busy interactions.

The notions and notation related to traces are lifted to components with partial states in the natural way. We
extend the definition of interactions to traces in partial-state semantics such that β interactions are filtered
out.

Example 3 (Composite component with partial states) The corresponding composite component of sys-
tem Task with partial-state semantics is γ⊥(Worker⊥1 , Worker⊥2 , Worker⊥3 , Generator⊥), where each

3For the sake of simpler notation, we represent a state by its location.
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Figure 5: Witness trace built using weak bisimulation (R)

Worker⊥i for i ∈ [1, 3] is identical to the component in Fig. 4b and Generator⊥ is the component in
Fig. 4a. To simplify the depiction of these components, we represent each busy location l⊥ as ⊥. The set
of interactions is γ⊥ = {ex12 , ex13 , ex23 , r1 , r2 , r3 , f1 , f2 , f3 , nt} ∪ {{β1}, {β2}, {β3}, {β4}}. One
possible trace of system Task with partial-state semantics is: (free, free, free, hold) · ex12 · (⊥, ⊥, free,
⊥) · β4 · (⊥, ⊥, free, delivered) · nt · (⊥, ⊥, free, ⊥).

It is possible to show that the partial-state system is a correct implementation of the global-state system,
that is, the two systems are (weakly) bisimilar (cf. [1], Theorem 1). Weak bisimulation relationR is defined
between the set of states of the model in global-state semantics (i.e., Q) and the set of states of its partial-

state model (i.e., Q⊥), s.t. R = {(q, r) ∈ Q ×Q⊥ | r β∗−→ q}. Any global state in partial-state semantics
model is equivalent to the corresponding global state in global-state semantics model, and any partial state
in partial-state semantics model is equivalent to the successor global state obtained after stabilizing the
system by executing busy interactions.

In the sequel, we consider a CBS with global-state semantics B and its partial-states semantics version
B⊥. Intuitively, from any trace of B⊥, we want to reconstruct on-the-fly the corresponding trace in B and
evaluate a property which is defined over global states of B.

4.2 Witness Relation and Witness Trace
We define the notion of witness relation between traces in global-state semantics and traces in partial-state
semantics, based on the bisimulation between B and B⊥. Any trace of B⊥ is related to a trace of B, i.e.,
its witness. The witness trace allows to monitor the system in partial-state semantics (thus benefiting from
the parallelism) against properties referring to the global behavior of the system.

Definition 7 (Witness relation) Given the bisimulation R between B and B⊥, the witness relation W ⊆
Tr(B)× Tr(B⊥) is the smallest set that contains (Init , Init) and satisfies the following rules:

• For (σ1, σ2) ∈W,

– (σ1 · a · q1, σ2 · a · q2) ∈W, if a ∈ γ and (q1, q2) ∈ R;
– (σ1, σ2 · β · q2) ∈W, if (last(σ1), q2) ∈ R.

If (σ1, σ2) ∈W, we say that σ1 is a witness of σ2.

Suppose that the witness relation relates a trace in partial-state semantics σ2 to a trace in global-state
semantics σ1. The states obtained after executing the same interaction in the two systems are bisimilar.
Moreover, any move through a busy interaction in B⊥ preserves the bisimulation between the state of σ2
followed by the busy interaction in B⊥ and the last state of σ1 in B

Example 4 (Witness relation) Figure 5 illustrates the witness relation. State q0 is the initial state ofB and
B⊥. In the trace of B⊥, gray circles after each interaction represent partial states which are bisimilar to
the global state that comes after the corresponding trace of B.

6/29 Verimag Research Report no TR-2015-5
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Figure 6: An example of witness trace in system Task

Example 5 (Witness trace) Let us consider σ2 as a trace of system Task with partial-state semantics de-
picted in Fig. 6 where σ2 = (free, free, free, hold)·ex 12 ·(⊥,⊥, free,⊥)·β4·(⊥,⊥, free, delivered)·nt·(⊥,
⊥, free, ⊥). The witness trace corresponding to trace σ2 is (free, free, free, hold) · ex12 · (done , done ,
free, delivered) · nt · (done , done , free, hold).

The following property states that any trace in partial-state semantics and its witness trace have the same
sequence of interactions. The proof of this property can be found in Appendix A.1.

Property 1 ∀(σ1, σ2) ∈W, interactions(σ1) = interactions(σ2).

The next property also states that any trace in the partial-state semantics has a unique witness trace in the
global-state semantics.

Property 2 ∀σ2 ∈ Tr(B⊥),∃!σ1 ∈ Tr(B), (σ1, σ2) ∈W.

We note W(σ2) = σ1 when (σ1, σ2) ∈W. The proof of this property is given in Appendix A.2.
Note that, when running a system in partial-state semantics, the global state of the witness trace after

an interaction a is not known until all the components involved in a have reached their ready locations after
the execution of a. Nevertheless, even in non-deterministic systems, this global state is uniquely defined
and consequently there is always a unique witness trace (that is, non-determinism is resolved at runtime).

4.3 Construction of the Witness Trace
Given a trace in partial-state semantics, the witness trace is computed using function RGT (Reconstructor
of Global Trace). The global states (of the trace in the global-state semantics) are reconstructed out of
partial states. define a function to reconstruct global states out of a partial states.

Definition 8 (Function RGT) Function RGT : Tr(B⊥) −→ pref(Tr(B)) is defined as RGT(σ) =
discriminant(acc(σ)), where:

– acc : Tr(B⊥) −→ Q · (γ ·Q)∗ · (γ · (Q⊥\Q))∗ is defined as:

• acc(Init) = Init ,

• acc(σ · a · q) = acc(σ) · a · q for a ∈ γ,
• acc(σ · β · q) = map [x 7→ upd(q, x)] (acc(σ)) for β ∈ {{βi}}ni=1;

– discriminant : Q · (γ ·Q)∗ · (γ · (Q⊥\Q))∗ −→ pref(Tr(B)) is defined as:

discriminant(σ) = max�({σ′ ∈ pref(σ) | last(σ′) ∈ Q})

with upd : Q⊥ × (Q⊥ ∪ γ) −→ Q⊥ ∪ γ defined as:

– upd((q1, . . . , qn), a) = a, for a ∈ γ,

– upd
(
(q1, . . . , qn), (q

′
1, . . . , q

′
n)
)
= (q′′1 , . . . , q

′′
n),

where ∀k ∈ [1, n], q′′k =

{
qk if (qk /∈ Q⊥k ) ∧ (q′k ∈ Q⊥k )
q′k otherwise.
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Table 1: Values of function RGT for a sample input

Step
Input trace in partial semantics

σ
Intermediate step

acc(σ)
Output trace in global semantics

RGT(σ)
0 (free, free, free, hold) (free, free, free, hold) (free, free, free, hold)

1
(free, free, free, hold) · ex 12 ·

(⊥,⊥, free,⊥)
(free, free, free, hold) · ex 12 ·

(⊥,⊥, free,⊥) (free, free, free, hold) · ex 12

2
(free, free, free, hold) · ex 12 ·

(⊥,⊥, free,⊥) · β4·
(⊥,⊥, free, delivered)

(free, free, free, hold) · ex 12 ·
(⊥,⊥, free, delivered)

(free, free, free, hold) · ex 12

3

(free, free, free, hold) · ex 12 ·
(⊥,⊥, free,⊥) · β4·

(⊥,⊥, free, delivered) · nt·
(⊥,⊥, free,⊥)

(free, free, free, hold) · ex 12 ·
(⊥,⊥, free, delivered) · nt·

(⊥,⊥, free,⊥)
(free, free, free, hold) · ex 12

4

(free, free, free, hold) · ex 12 ·
(⊥,⊥, free,⊥) · β4·

(⊥,⊥, free, delivered) · nt·
(⊥,⊥, free,⊥) · β2·
(⊥, done, free,⊥)

(free, free, free, hold) · ex 12 ·
(⊥, done, free, delivered) · nt·

(⊥, done, free,⊥)
(free, free, free, hold) · ex 12

5

(free, free, free, hold) · ex 12 ·
(⊥,⊥, free,⊥) · β4·

(⊥,⊥, free, delivered) · nt·
(⊥,⊥, free,⊥) · β2·

(⊥, done, free,⊥) · β1·
(done, done, free,⊥)

(free, free, free, hold) · ex 12 ·
(done, done, free, delivered) · nt·

(done, done, free,⊥)

(free, free, free, hold) · ex 12 ·
(done, done, free, delivered) · nt

Function RGT uses sub-functions acc and discriminant. First, acc takes as input a trace in partial-state
semantics σ, removes β interactions and the partial states after β. Function acc uses the (information
in the) partial state after β interactions in order to update the partial states using function upd. Then,
function discriminant returns the longest prefix of the result of acc corresponding to a trace in global-state
semantics.

Note that, because of the inductive definition of function acc, the input trace can be processed step by
step by function RGT and allows to generate the witness incrementally. Moreover, such definition allows
to apply the function RGT to a running system by monitoring execution of interactions and partial states
of components. Such an online computation is illustrated in the following example.

Example 6 (Applying function RGT) Table 1 illustrates Definition 8 on one trace of system Task with
initial state (free, free, free, hold) followed by interactions ex 12, β4, nt, β2, and β1. We comment on
certain steps illustrated in Table 1. At step 0, the outputs of functions acc and discriminant are equal to the
initial state. At step 1, the execution of interaction ex 12 adds two elements ex 12 ·(⊥,⊥, free,⊥) to traces
σ and acc(σ). At step 2, the state after β4 has fresh information on component Generator which is used to
update the existing partial states, so that (⊥,⊥, free,⊥) is updated to (⊥,⊥, free, delivered). At step 5,
Worker1 becomes ready after β1, and the partial state (⊥, done, free, delivered) in the intermediate step
is updated to the global state (done, done, free, delivered), therefore it appears in the output trace.

The following proposition states that applying function RGT on a trace in partial-state semantics produces
the longest possible prefix of the corresponding witness trace with respect to the current trace of the partial-
state semantics model.

Theorem 1 (Computation of the witness with RGT) ∀σ ∈ Tr(B⊥) :

last(σ) ∈ Q =⇒ RGT(σ) = W(σ)
∧ last(σ) /∈ Q =⇒ RGT(σ) = W(σ′) · a,with

σ′ = min�{σp ∈ Tr(B⊥) | ∃a ∈ γ,∃σ′′ ∈ Tr(B⊥) : σ = σp · a · σ′′ ∧ ∃i ∈ [1, n] :
(Bi.P ∩ a 6= ∅) ∧ (∀j ∈ [1, length(σ′′)] : βi 6= σ′′(j))}

The proof is given in Appendix A.4. Theorem 1 distinguishes two cases:
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Figure 7: Model transformation

• When the last state of a system is a global state (last(σ) ∈ Q), none of the components are in a busy
location. Moreover, function RGT has sufficient information to build the corresponding witness
trace (RGT(σ) = W(σ)).

• When the last state of a system is a partial state, at least one component is in a busy location and
function RGT can not build a complete witness trace because it lacks information on the current
state of such components. It is possible to decompose the input sequence σ into two parts σ′ and σ′′

separated by an interaction a. The separation is made on the interaction a occurring in trace σ such
that, for the interactions occurring after a (i.e., in σ′′), at least one component involved in a has not
executed any β transition (which means that this component is still in a busy location). Note that it
may be possible to split σ in several manners with the above description. In such a case, function
RGT computes the witness for the smallest sequence σ′ (w.r.t. prefix ordering) as above because it is
the only sequence for which it has information regarding global states. Note also that such splitting
of σ is always possible as last(σ) /∈ Q implies that σ is not empty, and σ′ can be chosen to be ε.

In both cases, RGT returns the maximal prefix of the corresponding witness trace that can be built with the
information contained in the partial states observed so far.

5 Model Transformation
We propose a model transformation of a composite component B⊥ = γ⊥(B⊥1 , . . . , B

⊥
n ) such that it can

produce the witness trace on-the-fly. The transformed system can be plugged to a runtime monitor as de-
scribed in [8]. Our model transformation consists of three steps: 1) instrumentation of atomic components
(Sec. 5.1), 2) construction of a new component (RGT) which implements Definition 8 (Sec. 5.2), 3) mod-
ification of interactions in γ⊥ such that (i) component RGT can interact with the other components in the
system and (ii) new interactions connect RGT to a runtime monitor (Sec. 5.3).

5.1 Instrumentation of Atomic Components
Given an atomic component with partial-state semantics as per Definition 5, we instrument this atomic
component such that it is able to transfer its state through port β. The state of an instrumented component
is delivered each time the component moves out from a busy location. In the following instrumentation,
the state of a component is represented by the values of variables and the current location.

Definition 9 (Instrumenting an atomic component) Given an atomic component in partial-state seman-
tics B⊥ = (P ∪ {β}, L ∪ L⊥, T⊥, X) with initial location l0 ∈ L, we define a new component
Br = (P r, L ∪ L⊥, T r, Xr) where:

• Xr = X ∪ {loc}, loc is initialized to l0;

• P r = P ∪ {βr}, with βr = β[Xr];

• T r = {(l, p, gτ , [ ], l⊥τ ), (l⊥τ , β, true, fτ ; [loc := l′], l′) | (l, p, gτ , [ ], l⊥τ ), (l⊥τ , β, true, fτ , l′) ∈
T⊥}.
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Figure 8: Instrumented atomic components of system Task

In Xr, loc is a variable containing the current location. Xr is exported through port β. An assignment is
added to the computation step of each transition to record the location.

Example 7 (Instrumenting an atomic component) Figure 8 shows the instrumented version of atomic com-
ponents in system Task (depicted in Figure 4).

• Figure 8a depicts component task generator, where Generatorr.P r = {deliver [∅],newtask [∅],
β[{loc}]}, Generatorr.T r={(hold , deliver , true, [ ],⊥), (⊥, β, true, [loc :=delivered ], delivered),
(delivered ,newtask , true, [ ],⊥), (⊥, β, true, [loc := hold ], hold)}, Generatorr.Xr = {loc}.

• Figure 8b depicts a worker component, where Workerr.P r={exec[∅],finish[∅], reset [∅], β[{x, loc}]},
Workerr.T r = {(free, exec, true, [ ],⊥), (⊥, β, true, [x := x + 1; loc := done], done), (done,
finish, (x 6 10), [ ],⊥), (⊥, β, true, loc := free], free), (done, reset , (x > 10), [ ],⊥), (⊥, β, true,
[x := 0; loc := free], free)}, Worker⊥.Xr = {x, loc}.

5.2 Creating a New Atomic Component to Reconstruct Global States
Let us consider a composite component B⊥ = γ⊥(B⊥1 , . . . , B

⊥
n ) with partial-state semantics, such that:

• γ is the set of interactions in the corresponding composite component with global-state semantics
with γ = γ⊥ \ {{βi}}ni=1, and

• the corresponding instrumented atomic components Br1 , . . . , B
r
n have been obtained through Defini-

tion 9 such that Bri is the instrumented version of B⊥i .

We define a new atomic component, called RGT, which is in charge of accumulating the global states
of the system B⊥. Component RGT is an operational implementation as a component of function RGT
(Definition 8). At runtime, we represent a global state as a tuple consisting of the valuation of variables
and the location for each atomic component. After a new interaction gets fired, component RGT builds a
new tuple using the current states of components. Component RGT builds a sequence with the generated
tuples. The stored tuples are updated each time the state of a component is updated. Following Definition 9,
atomic components transfer their states through port β each time they move from a busy location to a ready
location. RGT reconstructs global states from these received partial states and delivers them through the
dedicated ports.

Definition 10 (RGT atom) Component RGT is defined as (P , L, T , X) where:

– X =
⋃
i∈[1,n]{Bri .Xr}

⋃
i∈[1,n]{Bri .Xr

c } ∪ {gsa | a ∈ γ} ∪ {(z1, . . . , zn)} ∪ {V, v,m}, where
Bri .X

r
c is a set containing a copy of the variables in Bri .X

r.

– P =
⋃
i∈[1,n]{βi[Bri .Xr]} ∪ {pa[∅] | a ∈ γ} ∪ {p′a[

⋃
i∈[1,n]{Bri .Xc}] | a ∈ γ}.

– L = {l} is a set with one control location.
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– T = Tnew ∪ Tupd ∪ Tout, where:

– Tnew = {(l, pa, true, new(a), l) | a ∈ γ},
– Tupd = {(l, βi,

∧
a∈γ(¬gsa), upd(i), l) | i ∈ [1, n]},

– Tout = {(l, p′a, gsa, get, l) | a ∈ γ}.

X is a set of variables that contains the following variables:

• the variables in Bri .X
r for each instrumented atomic component Bri ;

• a boolean variable gsa that holds true whenever a global state corresponding to interaction a is
reconstructed;

• a tuple (z1, . . . , zn) of boolean variables initialized to false;

• an (n+ 1)-tuple v = (v1, . . . , vn, vn+1).

For each i ∈ [1, n], zi is true when component i is in a busy location and false otherwise. For i ∈ [1, n],
vi is a state of Bri and vn+1 ∈ γ. V is a sequence of (n + 1)-tuples initialized to null. m is an integer
variable initialized to 1.

P is a set of ports.

• For each atomic component Bri for i ∈ [1, n], RGT has a corresponding port βi. States of compo-
nents are exported to RGT through this port.

• For each interaction a ∈ γ, RGT has two corresponding ports pa and p′a. Port pa is added to
interaction a (later in Definition 11) in order to notify RGT when a new interaction is fired. A
reconstructed global state which is related to the execution of interaction a, is exported to a runtime
monitor through port p′a.

RGT has three types of transitions:

• The transitions labeled by port pa, for a ∈ γ, are in Tnew. The guard of these transitions always
holds true and the transitions occur when the corresponding interaction a is fired.

• The transitions labeled by port βi, for i ∈ [1, n], are in Tupd. When no reconstructed global state can
be delivered to obtain the state of component B⊥i , these transitions occur at the same time transition
β occurs in component B⊥i .

• The transition labeled by port p′a for a ∈ γ are in Tget. If RGT has a reconstructed global state
corresponding to the global state of the system after executing interaction a ∈ γ, these transitions
deliver the reconstructed global state to a runtime monitor.

RGT uses three algorithms.
Algorithm new (see Algorithm 1) implements the case of function acc which corresponds to the occur-

rence of a new interaction a ∈ γ (Definition 8). It takes a ∈ γ as input and then: 1) sets zi to true if
component i is involved in interaction a, for i ∈ [1, n]; 2) fills the elements of the (n+ 1)-tuple v with the
states of components after the execution of the new interaction a in such a way that the ith element of v
corresponds to the state of componentB⊥i . Moreover, the state of busy components is null. The (n+ 1)th

element of v is dedicated to interaction a, as a record specifying that tuple v is related to the execution of
a; 3) appends v to V .
Algorithm upd (see Algorithm 2) implements the case of function acc which corresponds to the occurrence
of transition β of atomic component B⊥i for i ∈ [1, n]. According to Definition 9, the current state of the
instrumented atomic component Bri for i ∈ [1, n] is exported through port β of Bri . Algorithm upd takes
the current state of Bri and looks into each element of V and replaces null values which correspond to Bri
with the current state of Bri . Then, if the mth tuple of V , associated to a ∈ γ, becomes a global state and
has no null element, then the corresponding variable gsa is set to true.
Algorithm get (see Algorithm 4) is called whenever component RGT has a reconstructed global state to

Verimag Research Report no TR-2015-5 11/29



Monitoring Multi-Threaded Component-Based Systems

Algorithm 1 new(a)

1: for i = 1→ n do
2: if Bi.P ∩ a 6= ∅ then . Checks if component Bi is involved in interaction a.
3: zi := true . In case component Bi is busy, zi is true.
4: vi := null . The ith element of tuple v is represented by vi.
5: else
6: vi := Bri .X

r . vi receives the state of Bri .
7: end if
8: end for
9: vn+1 := a . Last element of v receives interaction a.

10: V := V · v . v is added to V .

Algorithm 2 upd(i)

1: zi := false

2: for j = 1→ length(V ) do
3: if V (j)i == null then . The ith element of the jth tuple in V is represented by V (j)i.
4: V (j)i := Bri .X

r . Updates the null states.
5: end if
6: end for
7: check . Checks if the mth tuple of sequence V is a global state.(Algorithm. 3)

Algorithm 3 check

1: Btmp := true . Makes a temporary boolean variable initialized to true.
2: for i = 1→ n do
3: Btmp := Btmp ∧ (V (m)i 6= null) . Btmp remains true until a null is found in the mth tuple of V .
4: end for
5: gs(V (m)n+1) := Btmp . Updates the corresponding gsa.

Algorithm 4 get

1: for i = 1→ n do
2: Bri .X

r
c := V (m)i . Copies the mth tuple of V .

3: end for
4: gs(V (m)n+1) := false . Resets the corresponding gsa of the V (m).
5: m := m+ 1 . Increment m.
6: check . Checks if the mth tuple of sequence V is a global state. (Algorithm 3)
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Figure 9: Component RGT for system Task

deliver. Algorithm get takes the mth tuple in V and copies its values into {Bri .Xr
c }ni=1 and then incre-

ments m and also checks for the existence of any reconstructed global state and updates gsa for a ∈ γ.
Note, to facilitate the presentation of proofs in Section A, component RGT is defined in such a way that
component RGT does not discard the reconstructed global states of the system after delivering them to the
monitor. In our actual implementation of RGT, these states are discarded because they are not useful after
being delivered to the monitor.

Example 8 Figure 9 depicts the component RGT for system Task. For space reasons, only one instance of
each type of transitions is shown.

5.3 Connections

After building component RGT (see Definition 10), and instrumenting atomic components (see Defini-
tion 9), we modify all interactions and define new interactions to build a new transformed composite com-
ponent. To let RGT accumulate states of the system, first we transform all the existing interactions by
adding a new port to communicate with component RGT, then we create new interactions that allow RGT
to deliver the reconstructed global states of the system to a runtime monitor.

Given a composite component B⊥ = γ⊥(B⊥1 , . . . , B
⊥
n ) with corresponding component RGT and

instrumented components Br = (P ∪ {βr}, L ∪ L⊥, T r, Xr) such that Br = Bri ∈ {Br1 , · · · , Brn}, we
define a new composite component.

Definition 11 (Composite component transformation) For a composite component B⊥ = γ⊥(B⊥1 , . . . ,
B⊥n ), we introduce a corresponding transformed component Br = γr(Br1 , . . . , B

r
n, RGT ) such that γr =

arγ ∪ arβ ∪ am where:

• arγ and arβ are the sets of transformed interactions such that:

∀a ∈ γ⊥, ar =

{
a ∪ {RGT.pa} if a ∈ γ
a ∪ {RGT.βi} otherwise (a ∈ {{βi}}i∈[1,n])

arγ = {ar | a ∈ γ}, arβ = {ar | a ∈ {{βi}}i∈[1,n]}

• am is a set of new interactions such that:

am = {a′ | a ∈ γ} where ∀a ∈ γ, a′ = {RGT.p′a} is a corresponding unary interaction.

For each interaction a ∈ γ⊥, we associate a transformed interaction ar which is the modified version of
interaction a such that a corresponding port of component RGT is added to a. Instrumenting interaction
a ∈ γ does not modify sequence of assignment Fa, whereas instrumenting busy interactions a ∈ {{βi}}ni=1

adds assignments to transfer attached variables of port βi to the component RGT. The transformed inter-
actions belong to two subsets, arγ and arβ . The set am is the set of all unary interactions a′ associated to
each existing interaction a ∈ γ in the system.
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Figure 10: Transformed composite component of system Task

Example 9 (Transformed composite component) Figure 10 shows the transformed composite component
of system Task. The goal of building a′ for each interaction a is to enable RGT to connect to a runtime
monitor. Upon the reconstruction of a global state corresponding to interaction a ∈ γ, the corresponding
interaction a′ delivers the reconstructed global state to a runtime monitor.

5.4 Correctness of the Transformations and Monitoring

Combined together, the transformations preserve the semantics of the initial model as stated by the follow-
ing propositions.

Intuitively, the component RGT defined in Definition 10 implements function RGT defined in Def-
inition 8. Reconstructed global states are transferable through the ports p′a∈γ . If interaction a happens
before interaction b, then in component RGT, port p′a which contains the reconstructed global state after
executing a will be enabled before port p′b. In other words, the total order between executed interactions is
preserved.

Proposition 1 (Correctness of component RGT) For any execution, at any time, variable RGT .V en-
codes the witness trace of the current execution: RGT .V is a sequence of tuples where each tuple consists
of the state and the interaction that led to this state, in the same order as they appear on the witness trace.

The proposition is formalized in Appendix A.6.
Proof: The proof is done in Appendix A.6.

For each trace resulting from an execution with partial-state semantics, component RGT produces a
trace of global states which is the witness of this trace in the initial model, as stated by the following
theorem.

Theorem 2 (Transformation Correctness ) γ⊥(B⊥1 , . . . , B⊥n ) ∼ γr(Br1 , . . . , Brn, RGT ).

Proof: The proof is done in Appendix A.7
Consequently, we can substantiate our claims stated in the introduction about the transformations:

instrumenting atomic components and adding component RGT i) preserves the semantics and concurrency
of the initial model, and ii) verdicts are sound and complete.

Connecting a monitor. As it is shown in Figure 11, one can reuse the results in [8] to monitor a system
with partial-state semantics. One just has to transform this system with the previous transformations and
plug a monitor for a property on the global-states of the system to component RGT through the dedicated
ports. At runtime, such monitor will i) receive the sequence of reconstructed global states corresponding to
the witness trace, ii) preserve the concurrency of the system, and iii) state verdicts on the witness trace.
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Figure 11: Abstract presentation of runtime monitoring of centralized CBSs
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Figure 12: Monitored version of system Task

Example 10 (Monitoring system Task) Figure 12 depicts the transformed system Task with a monitor (for
the homogeneous distribution of the tasks among the workers) where e1, e2 and e3 are events related to
the pairwise comparison of the number of executed tasks by Workers. Component Monitor evaluates
(e1 ∧ e2 ∧ e3) upon the reception of a new global state from RGT and emits the associated verdict until
reaching bad state ⊥.

6 Implementation and Evaluation

We present RVMT-BIP 4, a prototype tool integrated in the BIP tool suite (Section 6.1). BIP (Behavior,
Interaction, Priority) framework is a powerful and expressive framework for the formal construction of
heterogeneous systems [2]. In Section 6.2 we present the systems of our case studies. We experiment
RVMT-BIP on Demosaicing system, Reader-Writer system and system Task. Each system is monitored
against several properties. In Section 6.3, we present the experimental results and discuss the performance
of RVMT-BIP. In Section 6.4, we discuss the evaluation of the functional correctness of RVMT-BIP.

4RVMT-BIP is available for download at [11].
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6.1 RVMT-BIP: a Tool for Runtime Monitoring of Multi-Threaded Component-
based Systems

RVMT-BIP (Runtime Verification of Multi-Threaded BIP) is a Java implementation (∼ 2,200 LOC) of
the transformation described in Section 4, and, is part of BIP distribution. RVMT-BIP takes as input
a BIP system and a monitor description (an XML file), and outputs a new BIP system whose behavior
is monitored while running with a multi-threaded centralized controller. RVMT-BIP uses the following
modules (see Figure 13):

• Atomic Transformation: this module instruments the atomic components. It takes as input a BIP file
containing the original BIP system and returns a transformed atomic component.

• Building RGT: this module takes as input the original BIP system and outputs the corresponding
atomic components RGT.

• Building Monitor: this module takes as input a BIP file containing the original BIP system and a
monitor description and then outputs the atomic component implementing the monitor (following [7,
8]).

• Connections: this module constructs the new composite and monitored component. The module
takes as input the output from the Atomic Transformation, Building RGT and Building Monitor mod-
ules and then outputs a new composite component with new connections as described in Section 5.3.

6.2 Case Studies
We present some case studies on executable BIP systems conducted with RVMT-BIP. Executing these
systems with a multi-threaded controller results in a faster run since the systems benefit from the parallel
threads. However, these systems can also execute with a single-threaded controller which force them to
run sequentially.

6.2.1 Demosaicing

Demosaicing is an algorithm5 for digital image processing used to reconstruct a full color image from the
incomplete color samples output from an image sensor. Demosaicing works on 5×5 matrices. The resulting
pixels are the resulting averages of centered points of each matrix, which results to the loss of four lines
and four columns of the initial image. Figure 14 shows a simplified version of the the processing network
of Demosaicing. Demosaicing contains a Splitter and a Joiner process, a pre-demosaicing (Demopre)
and a post-demosaicing (Demopost) process and three internal demosaicing Demo processes that run in
parallel. The real model contains ca. 1,000 lines of code, consists of 26 atomic components interacting
through 35 interactions.

5Demosaicing has been used in [16] for implementing multi-threaded timed CBSs.
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Figure 14: Processing network of system Demosaicing
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Figure 15: Automata of properties of demosaicing

Specifying process completion. We consider two properties for the demosaicing system related to pro-
cess completion.

1. It is necessary that all the internal demosaicing units finish their process before post-demosaicing
unit start processing. Post-demosaicing unit receives the output results of internal demosaicing units
through port getimg . We add variable port to record the last executed port. Each demosaicing unit
has a boolean variable done which is set to true whenever demosaicing process completes. This
requirement is formalized as property ϕ1 defined by the automaton depicted in Figure 15a where the
events are e1 : Demopost .port == getimg and e2 : (Demo1 .done∧Demo2 .done∧Demo3 .done).
From the initial state s1, the automaton moves to state s2 when all the internal demosaicing units
finish their process. Receiving the processed images by post-demosaicing causes a move from state
s2 to s1.

2. Moreover, internal demosaicing units (Demo1 , Demo2 , Demo3 ) should not start demosaicing pro-
cess until pre-demosaicing unit finishes its process. Pre-demosaicing unit sends its output to the
internal demosaicing units through port transmit and each internal demosaicing unit starts the de-
mosaicing process by executing a transition labeled by port start . This requirement is formalized as
property ϕ2 which is defined by the automaton depicted in Figure 15b where e1 : Demopre.port ==
transmit , e2 : Demo1 .port == start , e3 : Demo2 .port == start and e4 : Demo3 .port == start .
From the initial state s1, whenever the pre-demosaicing unit transmits its processed output to the in-
ternal demosaicing units, the automaton moves to state s2. Internal demosaicing units can start in
different order. Moreover, all demosaicing units must eventually start their internal process and the
automaton reaches state s12. From state s12, the automaton moves back to state s2 whenever the
pre-demosaicing unit sends the next processed data to the internal demosaicing units.

6.2.2 Reader-Writer

The Reader-Writer system consists of four components: a Reader , a Writer , a Clock and a Poster .
Reader and Writer communicate with each other through the Poster . The data generated by Writer is
written in a Poster that can be accessed by Reader . The Reader-Writer model is presented in Figure 16.

Specification of data freshness. It is necessary that the data is up-to-date: the data read by component
Reader must be fresh enough compared to the moment it has been written by Writer . If t1 and t2 are
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Figure 16: Model of system Reader-Writer

the moments of reading and writing actions respectively, then the difference between t2 and t1 must be
less than a specific duration δ, i.e., (t2 − t1) ≤ δ. In the model, the time counter is implemented by a
component Clock , and the tick transition occurs every second. This requirement is formalized as property
ϕ3 which is defined by the automaton depicted in Figure 17a, where δ = 2, e1 : Writer .port == write ,
e2 : Clock .port == tick and e3 : Reader .port == read . Whenever Writer writes into Poster , the
automaton moves from the initial state s1 to s2. When Reader reads Poster , the automaton moves from
s2 to s1. Reader is allowed to read Poster after one tick transition. In this case, the automaton moves
from s2 to s3 after the tick , and then moves from s3 to s1 after reading Poster . ϕ3 also allows to read
Poster after two tick transitions. In this case, the automaton moves from s2 to s4 after the first tick , then
moves from s4 to s3 on the second tick , and finally moves from s3 to s1 after reading Poster .

Specification of the execution order. A more complex specification on the execution order involves
several writers. The writers should periodically write data to a poster in a specific order. The specification
concerns 3 writers: Writer1 , Writer2 and Writer3 . During each period , the writing order must be as
follows: Writer1 writes to the poster first, then Writer2 can write only when Writer1 finishes writing
to the poster, Writer3 can write only when Writer2 finishes writing to the poster, and the same goes on
for the next periods. To do so, each writer is assigned a unique id that is passed to the poster when it
starts using the poster. This id is then used to determine the last writer that used the poster. For example,
when Writer2 wants to access the poster, it has to check whether the id stored in the poster corresponds to
Writer1 or not.

This requirement is formalized as property ϕ4 which is defined by the automaton depicted in Figure 17b
where:

• e1 : (Writer1 .port == write ∧ Poster .port == write ∧ Clock .port == getTime),

• e2 : (Writer2 .port == write ∧ Poster .port == write ∧ Clock .port == getTime),

• e3 : (Writer3 .port == write ∧ Poster .port == write ∧ Clock .port == getTime).

When Writer1 writes to the poster, the automaton moves from initial state s1 to state s2. From state s2,
the automaton moves to state s3 when Writer2 writes to the poster. From state s3, the automaton moves
to the initial state s1 when Writer3 writes to the poster. This writing order must always be followed.

6.2.3 Task Management

We consider our running example system Task. We consider a specification that states the homogeneous
distribution of the generated tasks among the workers. The satisfaction of this specification depends on the
execution time of each worker. Different tasks may have different execution times for different workers.
Obviously, the faster a worker completes each task, the higher is the number of its accomplished tasks.

18/29 Verimag Research Report no TR-2015-5



Monitoring Multi-Threaded Component-Based Systems

s1start

s2

s3

s4
e1

e3

e3

e2

e2e3

(a) ϕ3

s1start

s2

s3

e1

e2

e3

¬e1 ∧ ¬e2 ∧ ¬e3

¬e1 ∧ ¬e2 ∧ ¬e3

¬e1 ∧ ¬e2 ∧ ¬e3

(b) ϕ4

Figure 17: Automata of the properties of system Reader-Writer
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Figure 18: Automaton of the property of system Task

After executing a task, the value of the variable x of a worker is increased by one. Moreover, the abso-
lute difference between the values of variable x of any two workers must always be less than a specific
integer value (which is 3 for this case study). This requirement is formalized as property ϕ5 which is de-
fined by the automaton depicted in Figure 18 where e1 : |worker1 .x − worker2 .x |< 3 , e2 : |worker2 .x
−worker3 .x |< 3 and e3 : |worker1 .x −worker3 .x |< 3 . The property holds as long as e1, e2 and e3 hold.

6.3 Evaluating the Performance
6.3.1 Evaluation Principles

Following the work-flow depicted presented in Section 6.1 and depicted in Figure 13, for each system, and
all its properties, we synthesize a BIP monitor following [8] and combine it with the CBS output from
RVMT-BIP. We obtain a new CBS with corresponding RGT and monitor components. We run each system
by using various number of threads and observe the execution time. Executing these systems with a multi-
threaded controller results in a faster run because the systems benefit from the parallel threads. Additional
steps are introduced in the concurrent transitions of the system. Note, these are asynchronous with the
existing interactions and can be executed in parallel. These systems can also execute with a single-threaded
controller which force them to run sequentially. Varying the number of threads allows us to assess the
performance of the (monitored) system under different degrees of parallelism. In particular, we expected
the induced overhead to be insensitive to the degree of parallelism. For instance, an undesirable behavior
would have been to observe a performance degradation (and an overhead increase) which would mean
either that the monitor sequentializes the execution or that the monitoring infrastructure is not suitable
for multi-threaded systems. We also extensively tested the functional correctness of RVMT-BIP, that is
whether the verdicts of the monitors are sound and complete.

6.3.2 Results (cf. Table 2)

Table 2 reports results on checking complete process property of Demosaicing system, data freshness and
execution ordering property of the Reader-Writer system and task distribution property of system Task.
Each time measurement is an average value obtained over 100 executions of these systems. In Table 2, the
columns have the following meanings:

• Column # interactions shows the number of functional steps of system.

• Columns no monitor report the execution time of the systems without monitors when varying the
number of threads.

• Columns with monitor report the execution time of the systems with monitors when varying the num-
ber of threads, the number of additional interactions and overhead induced by monitoring. Column
events indicates the number of reconstructed global states (events sent to the associated monitor).
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Table 2: Results of monitoring with RVMT-BIP

system # interactions no monitor with monitor

Demosaicing 8,400

thread time (s) specification # extra interactions events thread time (s) overhead (%)

1 67.97

Process
completion

ϕ1 6,800 4,399
1 68.706 1.07
3 41.245 1.53

3 40.62 10 29.521 1.24

ϕ2 2,200 1,599
1 69.116 1.67

10 29.15 3 41.235 1.51
10 29.251 0.31

Reader-Writer 120,000 1 613.78 Data
freshness ϕ3 120,000 39,999 1 617.59 0.62

3 204.96 3 207.79 1.37

Reader-Writer
(3 writer) 40,000

1 154.07 Execution
ordering ϕ4 130,000 39,999

1 157.22 2.04
2 102.9 2 105.64 2.66
3 57.05 3 57.99 1.63

Task
(100,000 tasks) 399,999 1 117.96 Task

distribution ϕ5 200,198 100,197 1 121.12 2.67
2 72.32 2 72.85 0.73

Table 3: Results of monitoring with RV-BIP

system # interactions no monitor with monitor

Demosaicing 8,400
thread time (s) specification # extra interactions thread time (s) overhead (%)

1 67.97 Process
completion ϕ2 3,202 1 175.83 158.6

10 29.15 10 172.31 491.1
Task

(100,000 tasks) 399,999 1 117.96 Task
distribution ϕ5 177,611 1 126.11 6.91

2 72.32 2 105.66 46.1

As shown in Table 2, using more threads reduces significantly the execution time in both the initial and
transformed systems. Comparing the overheads according to the number of threads shows that the proposed
monitoring technique i) does not restrict the performance of parallel execution and ii) scales up well with
the number of threads.

RV-BIP vs. RVMT-BIP. To illustrate the advantages of monitoring multi-threaded systems with RVMT-
BIP , we made a comparison between our new monitoring technique and RV-BIP proposed in [8]. Table 3
shows the results of a performance evaluation of monitoring Demosaicing and Task with RV-BIP. RV-BIP
induces a cheap overhead of 6.91% with one thread and a huge overhead of 46.1% (which is mainly caused
by globally-synchronous extra interactions introduced by RV-BIP) with two threads, whereas according
to Table 2, the overhead induced by RVMT-BIP with two threads is 0.73%. The induced overhead is
even better than the overhead induced when monitoring the single-threaded version of the system which is
2.67%. As can be seen in Table 3, RVMT-BIP outperforms RV-BIP when monitoring Demosaicing. The
latter does not take any advantage of the parallel execution. This clearly demonstrates the advantages of
our monitoring approach over [8].

6.4 Evaluating Functional Correctness

In this section we check the functional correctness of our tools, that is whether the verdicts of the monitors
inserted by RVMT-BIP are sound and complete. Each of the system initially presented in this section is
correct by design, and we run monitored versions of these for several hours without any error reported. To
assess the error detection of the monitor, we built mutated versions of the systems eventually leading to a vi-
olation of the properties6. We built one mutant per pair of system and properties. Our monitors were able to
detect and kill all the mutant. We also evaluated RVMT-BIP on several systems in the BIP distribution, and
in particular non-deterministic models such as the dining philosopher model against deadlock-freedom.

6We do not report on the performance on monitoring mutated versions of the systems as, even if the systems produced an error
eventually, the occurrence time of the error was non-deterministic
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7 Related Work
Several approaches are related to the one in this paper, as they either target CBSs or address the problem
of concurrently runtime verifying systems.

7.1 Runtime Verification of Single-threaded CBSs
In [7, 8], we proposed a first approach for the runtime verification of CBSs. The approach in [7, 8] takes
a CBS and a regular property as input and generates a monitor implemented as a component. Then, the
monitor component is integrated within an existing CBS. At runtime, the monitor consumes the global
trace (i.e., sequence of global states) of the system and yields verdicts regarding property satisfaction. The
technique in [7, 8] only efficiently handles CBSs with sequential executions: if applied to a multi-threaded
CBS, the monitor would sequentialize completely the execution. Hence, the approach proposed in this
paper can be used in conjunction with the approach in [7, 8] when dealing with multi-threaded CBSs: a
monitor as synthesized in [7, 8] can be plugged to the component reconstructing the global states of the
system proposed in this paper.

7.2 Decentralized Runtime Verification
The approaches in [3, 6] decentralize monitors for linear-time specifications on a system made of syn-
chronous black-box components that cannot be executed concurrently. Moreover, monitors only observe
the outside visible behavior of components to evaluate the formulas at hand. The decentralized monitor
evaluates the global trace by considering the locally-observed traces obtained by local monitors. To locally
detect global violations and satisfactions, local monitors need to communicate, because their trace are only
partial w.r.t. the global behavior of the system.

7.3 Monitoring Safety Properties in Concurrent Systems
The approach in [14] addresses the monitoring of asynchronous multi-threaded systems against temporal
logic formulas expressed in MTTL. MTTL augments LTL with modalities related to the distributed/multi-
threaded nature of the system. The monitoring procedure in [14] takes as input a safety formula and
a partially-ordered execution of a parallel asynchronous system, and then predicts a potential property
violation on one of the causally-consistent interleavings of the observed execution. Our approach mainly
differs from [14] in that we target CBSs. Moreover, we assume a central scheduler and we only need to
monitor the unique causally-consistent global trace with the observed partial trace. Also, we do not place
any expressiveness restriction on the formalism used to express properties.

7.4 Parallel Runtime Verification of Monolithic Sequential Programs
Berkovich et al. [4] introduce parallel algorithms for the runtime verification of sequential programs against
LTL formulas using a graphics processing unit (GPU). Monitoring threads are added to the program and
directly execute on the GPU. Our approach differs from [4] in that we do not target monolithic sequential
programs but concurrent and multi-threaded CBSs. Moreover, as shown by our experiments, our approach
mostly preserves the performance of the monitored system, while [4] adds significant computing power
to the system to handle the monitoring overhead. Finally, as explained in the previous subsection, our
approach is not bound to any particular logic, and allows for Turing-complete monitors.

8 Conclusions and Future Work

8.1 Conclusions
This paper introduces runtime verification for component-based systems that execute concurrently on sev-
eral threads. Our approach considers an input system with partial-state semantics and transforms it to
integrate a global-state reconstructor, i.e., a component that produces the witness trace at runtime. The
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witness trace is the sequence of global states that could be observed if the system was not multi-threaded
and which contain the global information gathered from the partial-states actually traversed by the system
at runtime. A runtime monitor can be then plugged to the global state reconstructor to monitor the system
against properties referring to the global state of the system, while preserving the performance and benefits
from concurrency. We implemented the model transformation in a prototype tool RVMT-BIP. We evaluated
the performance and functional correctness of RVMT-BIP against three case studies and our running exam-
ples/ Our experimental results show the effectiveness of our approach and that monitoring with RVMT-BIP
induces a cheap overhead at runtime.

Note, to simplify the presentation of the approach, we assumed that the initial system is deterministic.
Considering non-deterministic systems as input does not fundamentally modify the results of this paper.
It involves to adapt the notion of witness trace and its computation with component RGT. If the initial
system is non-deterministic, by observing a trace in partial-state semantics, one should compute the set of
witnesses traces compatible with the observed trace. Such computation can be done using the model of the
system described in global-state semantics.

8.2 Future Work
Several research perspectives can be considered. A first direction is to consider monitoring for fully decen-
tralized and completely distributed models where a central controller does not exist. For this purpose, we
intend to make controllers collaborating in order to resolve conflicts in a distributed fashion. This setting
should rely on the distributed semantics of CBSs as presented in [5]. Many work has been done in order
to monitor properties on a distributed (monolithic) systems; e.g., [13] for online monitoring of CTL prop-
erties, [10] for online monitoring of LTL properties, [12] for offline monitoring of properties expressed in
a variant of CTL, and [15] for online monitoring of global-state predicates. In the future, we plan to adapt
these approaches to the context of CBSs.

Another possible direction is to extend the proposed framework for timed components and timed spec-
ifications as presented in [2].
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A Correctness Proof of the Approach
Before tacking the proof of correctness of our approach, we provide an intuitive description of the proof
content. The correctness of our approach relies on three results.

The first one concerns the witness trace. Given a CBS B which semantics is described as per Section 3,
that is the general semantics of CBS. One can build B⊥, a transformed version of B that can execute
concurrently and which is bi-similar to B. B⊥ executes following the partial-state semantics described in
Section 4.1. Any trace of an execution of B⊥ can be related to the trace of a unique execution of B, i.e., its
witness. Property 1 states that any witness trace corresponds to the execution in global-state semantics that
has the same sequence of interaction executions, i.e., that the witness relation captures the above mentioned
relation between a system in global-state semantics and the corresponding system in partial-state semantics.
Property 2 that from any execution in partial-state semantics, the witness exists and is unique.

The second one states specifies a function for building the witness trace from a trace in partial-state
semantics in an online fashion. Theorem 1 states the correctness of this function.

The third one states that the transformed components, the synthesized components, and their connection
are correct. That is, the obtained system i) computes the witness and implements the above function
(Proposition 1), and ii) is bisimilar to the initial system (Theorem 2).
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Proof outline. The following proofs are organized as follows. The proof of Property 1 is inSection A.1.
The proof of Property 2 is in Section A.2. Some intermediate lemmas with their proofs are introduced in
Section A.3 in order to prove Theorem 1 in Section A.4. Some intermediate definitions and lemmas with
their proofs are given in Section A.5 in order to prove Theorem 2 in Section A.7.

A.1 Proof of Property 1
We shall prove that:

∀(σ1, σ2) ∈W, interactions(σ1) = interactions(σ2),

whereW is the witness relation defined in Definition 7, and interactions(σ) is the sequence of interactions
of trace σ.
Proof: The proof is done by induction on the length of the sequence of interactions.

• Base case. By definition of W , (Init , Init) ∈ W and interactions(Init) = ε. The property holds
vacuously.

• Induction case. Let us consider (σ1, σ2) ∈W and suppose that interactions(σ1) = interactions(σ2).
According to the definition of the witness relation, from (σ1, σ2) ∈W , the only possible way to add
an interaction to σ1 and σ2 and obtain sequences related by the witness relation is to apply the first
rule. Moreover, the first rule adds the same interaction to both sequences.

A.2 Proof of Property 2
We shall prove that:

∀σ2 ∈ Tr(B⊥),∃!σ1 ∈ Tr(B), (σ1, σ2) ∈W,

where B is a component-based system (with set of traces Tr(B)) and B⊥ is the corresponding component-
based system with partial-state semantics (with set of traces Tr(B⊥)).
Proof: From the weak bi-simulation of a global-state semantics model with its corresponding partial-state
semantics model [2], we can conclude that, for any trace in the partial-state semantics model, there exists
a corresponding trace in the global-state semantics model. We prove that the witness trace is unique by
contradiction. Let us assume that for a trace in partial-state semantics σ2 ∈ Tr(B⊥), there exist two witness
traces σ′1, σ1 ∈ Tr(B) such that (σ1, σ2), (σ′1, σ2) ∈ W and σ1 6= σ′1. From Property 1, the sequences of
interactions of σ1 and σ′1 are both equal to the sequence of interactions of σ2. Therefore, the sequences of
interactions of σ1 and σ′1 are equal. From the sequence of interaction, using the determinism of the system,
we can relate the sequence of interactions to a unique trace, from a unique initial state.

A.3 Intermediate Lemmas
We give some intermediate lemmas that are needed to prove Theorem 1.

Lemma 1 ∀(σ1, σ2) ∈ W : |acc(σ2)|= |σ1|= 2s + 1, where s = |interactions(σ1), where acc is the
accumulator used in the definition of function RGT (Definition 8), and function interactions (defined in
Section 4.1) returns the sequence of interactions in a trace (removing β).

Lemma 1 states that, for a given trace in partial-state semantics σ2, the length of acc(σ2) is equal to the
length of the witness of σ2 (i.e., σ1).
Proof: The proof is done by induction on the length of the trace in partial-state semantics, i.e., σ2.

• Base case: According to the definition of function acc (see Definition 8), Lemma 1 holds for the
initial state of the systems. In this case, σ1 = σ2 = acc(σ2) = Init and |acc(σ2)|= |σ1|= 1.

• Induction case: Let us consider (σ1, σ2) ∈W and let us suppose that Lemma 1 holds for some trace
σ2 such that interactions(σ2) = s. According to the definition of function acc, only the execution
of a new interaction a ∈ γ can increase in the length of acc(σ2). After a, two elements are added to
acc(σ2): the first is the interaction a and the second is the partial state obtained after a. Since σ1 is
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the witness of σ2, executing a in the partial-state model implies that a is executed in the global-state
model. In the global-state model, after the execution of a, the length of σ1 is also increased by two,
such that interaction a along with a global state obtained after a are added to σ1.

Lemma 2 ∀σ ∈ Tr(B⊥), let acc(σ) = (q0 · a1 · q1 · · · as · qs) in

∃k ∈ [1, s] : qk ∈ Q =⇒ ∀z ∈ [1, k] : qz ∈ Q , qz−1
az−→ qz .

Lemma 2 states that, for a given trace in partial-state semantics σ, if there exists a global state qk ∈ Q, k ∈
[1, s] in sequence acc(σ), then all the states occurring before qk in acc(σ) are global states. Moreover, the
sequence of global states produced by function acc follows the global-state semantics.
Proof: According to Lemma 1 and the definition of function acc (see Definition 8), a state is generated
and added to sequence acc(σ) just after the execution of an interaction a ∈ γ. This state is obtained
from the last state in acc(σ), say q, such that the new state has state information about less components
than q because the states of all components involved in a are undetermined and the states of all other
components are identical. Since after any busy transition, function upd (see Definition 8) updates all the
generated partial states that do not have the state information regarding the components that performed
a busy transition, the completion of each partial state guarantees the completion of previously generated
states. Therefore, if there exists a global state (possibly completed through function upd) in trace acc(σ),
then all the previously generated states are global states.

Moreover, the sequence of reconstructed global states follow the global-state semantics. This results
stems from two facts. First, according to the definition of function upd, whenever function upd completes
a partial state in the trace by adding the state of a component for which the last state in the trace is un-
determined, it uses the next state reached by this component according to partial-state semantics. Second,
according to Definition 5, the transformation of a component to make it compatible with partial-state se-
mantics is such that an intermediate busy state, say ⊥, is added between the starting state q and arriving
state q′ of any transition (q, p, q′). Moreover, the transitions (q, p,⊥) and (⊥, β, q′) in the partial-state
semantics replace the previous transition (q, p, q′) in the global-state semantics. Hence, whenever a com-
ponent in partial-state semantics is in a busy state ⊥, the next state that it reaches is necessarily the same
state as the one it would have reached in the global-state semantics.

Lemma 3 ∀σ ∈ Tr(B⊥),

|discriminant(acc(σ))|≤ |acc(σ)|
∧discriminant(acc(σ)) = q0 · a1 · q1 · · · ad · qd =⇒ ∀i ∈ [1, d] : qi−1

ai−→ qi,

where acc is the accumulator function and discriminant is the discriminant function used in the definition
of function RGT (Definition 8) such that RGT(σ) = discriminant(acc(σ)).

Proof: According to the definition of function discriminant, discriminant(acc(σ)) is the longest pre-
fix of acc(σ) such that the last state of discriminant(acc(σ)) is a global state. Thus, the length of
discriminant(acc(σ)) is always lesser than or equal to the length of acc(σ). Moreover, according to
Lemma 2, all the states of discriminant(acc(σ)) are global states and follow the global-state semantics.

Lemma 4 ∀σ ∈ Tr(B⊥) : last(acc(σ)) = last(σ).

Proof: The proof is done by induction on the length of the trace in partial-state semantics, i.e., σ.

• Base case: The property holds for the initial state. Indeed, in this case σ = Init and according to the
definition of function acc (see Definition 8) last(acc(Init)) = Init .

• Induction case: Let us assume that σ = q0 ·a1 · q1 · · · am · qm is a trace in partial-state semantics and
acc(σ) = q′0 · a′1 · q′1 · · · a′s · q′s such that qm = q′s. We have two cases according to whether the next
move of the partial-state semantics model is an interaction or a busy transition:

– If am+1 ∈ γ, then according to the definition of the function acc, we have: last(acc(σ · am+1 ·
qm+1)) = qm+1.
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– If am+1 ∈ {βi}ni=1, then according to the definition of function acc, we have: last(acc(σ ·
am+1·qm+1)) = upd(qm+1, q

′
s). From the induction hypothesis: upd(qm+1, q

′
s) = upd(qm+1,

qm) and from the fact that the only difference between state qm and state qm+1 is that in state qm
the state of the component which executed am+1 is a busy state, while in state qm+1 it is not a
busy state. From the definition of function upd, we can conclude that upd(qm+1, qm) = qm+1.

In both cases last(acc(σ)) = last(σ).

Lemma 5 ∀σ ∈ Tr(B⊥) : interactions(acc(σ)) = interactions(σ).

Proof: By an easy induction on the length of σ and case analysis on the definition of function acc (Defin-
tion 8).

A.4 Proof of Theorem 1
We shall prove that, for a given CBS B = γ(B1, . . . , Bn) with set of traces Tr(B) and B⊥, the following
holds on the set of traces Tr(B⊥) of the corresponding CBS with partial-state semantics:

∀σ ∈ Tr(B⊥) :
last(σ) ∈ Q =⇒ RGT(σ) =W (σ)

∧ last(σ) /∈ Q =⇒ RGT(σ) =W (σ′) · a,with
σ′ = min�{σp ∈ Tr(B⊥) | ∃a ∈ γ,∃σ′′ ∈ Tr(B⊥) : σ = σp · a · σ′′

∧∃i ∈ [1, n] : (Bi.P ∩ a 6= ∅) ∧ (∀j ∈ [1, length(σ′′)] : βi 6= σ′′(j))}

where function RGT is defined in Definition 8 and W is the witness relation defined in Definition 7.
Proof: For any trace in partial-state semantics σ, we consider two cases depending on whether the last
element of σ belongs to Q:

• If last(σ) ∈ Q, according to Lemma 4, last(acc(σ)) ∈ Q and thus RGT(σ) = discriminant(acc(σ))
= acc(σ). Let us assume that acc(σ) = q0 · a1 · q1 · · · as · qs, with q0 = Init . According to
Lemma 2, ∀k ∈ [1, s] : qk−1

ak−→ qk =⇒ acc(σ) ∈ Tr(B). Moreover, according to Lemma 5,
interactions(acc(σ)) = interactions(σ). Furthermore, according to definition of the witness re-
lation (Definition 7), from the unique initial state, since acc(σ) and σ have the same sequence of
interactions, (acc(σ), σ) ∈W . Therefore, acc(σ) = RGT(σ) =W (σ).

• If last(σ) /∈ Q, we treat this case by induction on the length of σ. Let us assume that the proposition
holds for some σ ∈ Tr(B⊥) (induction hypothesis). Let us consider σ = σ′ ·a′1 ·q′1 ·a′2 ·q′2 · · · a′k ·q′k,
with q > 0. Let us assume that the splitting of σ is σ′ · a′1 · σ′′, where σ′ is the minimal sequence
such that there exists at least one component involved in interaction a′1 ∈ γ is still busy. Let i be the
identifier of this component and a′1 be sth interaction in trace σ such that a′1 = interactions(σ)(s).
Let us consider σ · a′k+1 · q′k+1, the trace extending σ by one interaction a′k+1. We distinguish again
two subcases depending on whether a′k+1 ∈ γ or not.

– Case a′k+1 ∈ γ. We have last(σ) /∈ Q and then last(σ · a′k+1 · q′k+1) /∈ Q (because a′k+1 ∈ γ,
i.e., the system performs an interaction, and the state following an interaction is necessarily a
partial state). Moreover, RGT(σ) = RGT(σ · a′k+1 · q′k+1), i.e., the reconstructed global state
does not change. Hence, the components which are busy after a′1 are still busy. Consequently,
the splitting of σ and σ ·a′k+1 ·q′k+1 are the same. Following the induction hypothesis, σ ·a′k+1 ·
q′k+1 has the expected property.

– Case a′k+1 = βj , for some j ∈ [1, n]. We distinguish again two subcases.

∗ If i = j, that is the busy interaction βj concerns the component(s) for which infor-
mation was missing in σ′′ (component i). If component i is the only component in-
volved in interaction a′1 for which information is missing in q′1 · · · q′k, the reconstruc-
tion of the global state corresponding to the execution of a′1 can be done just after re-
ceiving the state information of component i. After receiving q′k+1, which contains the
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state information of component i, the partial states of acc(σ) are updated with func-
tion upd. That is, RGT(σ · a′k+1 · q′k+1) = RGT(σ) · q′′0 · a′′1 · q′′1 · · · q′′m−1 · a′′m,
where m > 0, q′′0 is the reconstructed global state associated with interaction a′1, and
a′′m = interactions(σ)(s + m) is the first interaction executed after σ for which there
exists at least one involved component which is still busy. Indeed, some interactions af-
ter a′1 in trace σ (i.e., a′′p = interactions(σ)(s + p) for m > p > 0) may exist and
be such that component i is the only component involved in them for which information
is missing to reconstruct the associated global states. In this case, updating the partial
states of acc(σ) with the state information of component i yields several global states i.e.,
q′′1 · · · q′′m−1. Then, the splitting of σ changes as follows: σ = σ′′ · a′′m · · · a′k+1 · q′k+1,
where σ′′ = σ′ · a′1 · q′1 · a′2 · q′2 · · · q′t and q′t is the system state before interaction a′′m.
Therefore, RGT(σ · a′k+1 · q′k+1) =W (σ′′) · a′′m and the property holds again.

∗ If i 6= j, we have RGT(σ) = RGT(σ · a′k+1 · q′k+1). Hence, the splitting of σ and
σ · a′k+1 · q′k+1 are the same. Following the induction hypothesis, σ · a′k+1 · q′k+1 has the
expected property.

A.5 Intermediate Definitions and Lemmas
In the following proofs, we will consider several mathematical objects in order to prove the correctness of
our framework:

• a composite component with partial-state semantics B⊥ = γ⊥(B⊥1 , . . . , B
⊥
n ) of behavior (Q⊥, γ⊥,

−→);

• the transformed composite component Br = γr(Br1 , . . . , B
r
n, RGT ) of behavior (Qr, γr,−→r).

Br is obtained from B⊥ by following the transformations described in Section 5.

Definition 12 (State stability) State q ∈ RGT.Q is said to be stable when all Boolean variables in set
{RGT.gsa | a ∈ γ} evaluate to false in state q.

In other words, the current state of component RGT is stable when it has no reconstructed global states to
deliver. We say that the composite component Br is stable when its associated component RGT is stable.

The following lemma states that any state of component RGT can be stabilized by executing busy
interactions in β ∈ am.

Lemma 6 ∀q, q′ ∈ Qr : q α∗−→ q′ ∧ α ∈ am =⇒ stable(q′).

Proof: Let us consider a non-stable state q ∈ RGT.Q. Interactions in am involve to execute ports in
{p′a | a ∈ γ} and transitions in Tout. Since q is a non-stable state, one of the variables in {gsa | a ∈ γ}
evaluates to true in q. Such transitions entail to execute algorithm get (Algorithm 4). Algorithm get

sets the value of the corresponding variable to false. It then call algorithm check which may set another
variable gsa′ associated to another interaction a′ ∈ am to false. After executing get, component RGT
returns to a situation where again algorithm get can execute if another variable has been set to true by
algorithm check. The above process executes until all variables {gsa | a ∈ γ} are set to false by get and
algorithm check does not set any of these variables to true. Finally, component RGT reaches a stable state.

Definition 13 (Equivalent states) Let qr = (qr1, · · · , qrn, qrn+1) ∈ Qr be a state in transformed model
where qrn+1 is the state of component RGT, function equ : Qr −→ Q⊥ is defined as follows: equ(qr) = q,
where q = (q1, · · · , qn), (∀i ∈ [1, n] : qri = qi) ∧ qrn+1is stable.

A state in the initial model is said to be equivalent to a state in the transformed model if the state of each
component in the initial model is equal to the state of the corresponding component in transformed model
and the state of component RGT is stable.

The following lemma is a direct consequence of Definition 13.
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Lemma 7 Let us consider two states: q of the initial model and qr its corresponding state in the trans-
formed model such that equ(qr) = q. There exists an enabled interaction in the initial model (a ∈ γ⊥) at
state q ∈ Q⊥, if and only if the corresponding interaction in the transformed model (ar ∈ γr) is enabled
at state qr.

Proof: According to the definitions of interaction transformation and atom RGT (Definition 10), ports
RGT .pa, for a ∈ γ, are always enabled. Since for a given interaction a, ar and a differ only by port
RGT.pa, we can conclude that ar ∈ arγ is enabled if and only if a ∈ γ⊥ is enabled.

Below we define the notion of equivalence between a (n+1)-tuple and a state of the system. The notion
of equivalence is used to relate the tuples constructed by component RGT to the states of the system.

Definition 14 (Equivalence of a state and a (n+ 1)-tuple) A state q = (q1, . . . , qn) is equivalent to a
(n+ 1)-tuple v = (v1, . . . , vn, vn+1) if:

∀i ∈ [1, n]

{
vi = qi if qi ∈ Qi,
vi = null otherwise.

We note v ∼= q.

A state (q1, . . . , qn) and a tuple (v1, . . . , vn, vn+1) are equivalent if vi = qi for each position i where
the state qi of component i is also a state of the initial model, and vi = null otherwise. The notion of
equivalence is extended to traces and sequences of (n + 1)-tuples. A trace σ = q′0.a1.q

′
1 . . . ak.q

′
k and a

sequence of (n + 1)-tuples V = v(0) · v(1) . . . v(k) are equivalent, noted σ ∼= V , if qj is equivalent to
v(j), for all j ∈ [0, k].

A.6 Proof of Proposition 1
Given a CBS B = γ(B1, . . . , Bn) with corresponding partial-state semantics model B⊥ = γ⊥(B⊥1 , . . . ,
B⊥n ) and the transformed composite component Br = γr(Br1 , . . . , B

r
n, RGT ) obtained as per Defi-

nition 11, we shall prove that for any execution of the system with partial-state semantics with trace
σ ∈ Tr(B⊥), component RGT (Definition 10) implements function RGT (Definition 8), that is ∀σ ∈
Tr(B⊥),RGT .V ∼= acc(σ).
Proof: The proof is done by induction on the length of σ ∈ Tr(B⊥), i.e., the trace of the system in
partial-state semantics.

• Base case. By definition of function RGT, at the initial state acc(Init) = Init . By definition of
component RGT, V is initialized as a tuple representing the initial state of the system. Therefore,
RGT .V ∼= acc(Init).

• Induction case. Let us suppose that the proposition holds for a trace σ ∈ Tr(B⊥), that is RGT .V ∼=
acc(σ). According to the definition of function RGT, RGT(σ) = discriminant(acc(σ)). Con-
sequently, there exists σ′ ∈ Tr(B⊥) of the form σ′ = q′0 · a′1 · q′1 · · · q′k, with k > 0, such that
acc(σ) = RGT(σ) · σ′. We distinguish two cases depending on the action of the system executed
after σ:

– The first case occurs when the action is the execution of an interaction a′k+1, followed by a
partial state q′k+1. On the one hand, we have acc(σ · a′k+1 · q′k+1) = acc(σ) · a′k+1 · q′k+1.
On the other hand, in component RGT, according to Algorithm 1 (line 6), the corresponding
transition τ ∈ Tnew extends the sequence of tuples V by a new (n+ 1)-tuple v which consists
of the current partial state of the system such that V = V · v and v ∼= q′k+1. Therefore, we have
RGT .V ∼= acc(σ) as expected.

– The second case occurs when the next action is the execution of a busy transition. On the one
hand, function RGT updates all the partial states q′0, . . . , q

′
k. On the other hand, according to

Algorithm 2 (lines), in component RGT, the corresponding transition τ ∈ Tupd updates the
sequence of tuples V such that RGT .V ∼= acc(σ) hold.
Moreover, function RGT and component RGT similarly create new global states from the
partial states whenever new global states are computed. On the one hand, after any update of
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partial states, through function discriminant, function RGT outputs the longest prefix of the
generated trace which corresponds to the witness trace. On the other hand, after any update of
the sequence of tuples V , component RGT checks for the existence of fully completed tuples
in V to deliver them to through the dedicated ports to the runtime monitor.

A.7 Proof of Theorem 2
Proof: We shall prove the existence of a bi-simulation between initial and transformed model, that is

relation R = {(q, qr) | qr β∗−→r z
r : equ(zr) = q} satisfies the following properties for any q ∈ Q and

qr ∈ Qr:

(i)
(
(q, qr) ∈ R ∧ ∃α ∈ am,∃zr ∈ Qr : qr α−→r z

r
)

=⇒ (q, zr) ∈ R

(ii)
(
(q, qr) ∈ R ∧ ∃zr ∈ Qr,∃ar ∈ (arγ ∪ arβ) : qr

ar−→r z
r
)

=⇒ ∃z ∈ Q,
(
q
a−→ z ∧ (z, zr) ∈ R

)
.

(iii)
(
(q, qr) ∈ R ∧ ∃a ∈ γ⊥ : q

a−→ z
)

=⇒ ∃zr ∈ Qr,∃α ∈ am :
(
qr

ar.β∗−−−→r z
r ∧ (z, zr) ∈ R

)
.

Proof of (i):
Let us consider qr = (qr1, · · · , qrn, qrn+1), z

r = (zr1 , · · · , zrn, zrn+1), and q = (q1, · · · , qn) such that (q, qr) ∈
R. After executing interaction α, none of the local states qri , for i ∈ [1, n], changes. Therefore, according
to Lemma 6, we can conclude that (q, zr) ∈ R.

Proof of (ii):
Let us consider qr = (qr1, · · · , qrn, qrn+1), z

r = (zr1 , · · · , zrn, zrn+1), q = (q1, · · · , qn) and z = (z1, · · · , zn).
When ar ∈ (arγ∪arβ) is enabled, from the definition of semantics of transformed composite component, we
can deduce that corresponding interaction a ∈ γ⊥ is enabled. Executing the corresponding interactions a
and ar changes the local states qri and qi, for i ∈ [1, n], to zri and zi for i ∈ [1, n] respectively, in such a way
that zri = zi, for i ∈ [1, n] because the transformations do not modify the transitions of the components of
the initial model. After ar, we have two cases depending on whether zrn+1 is stable or not.

• If zrn+1 is stable, from the definition of relation R, we have (z, zr) ∈ R.

• If zrn+1 is not stable, then ∃α ∈ am : zrn+1
α∗−→ stable(zrn+1). Therefore, (z, zr) ∈ R.

Proof of (iii):
Let qr = (qr1, · · · , qrn, qrn+1) and zr = (zr1 , · · · , zrn, zrn+1). When a ∈ γ⊥ is enabled in the initial model, we
can consider two cases depending on whether the corresponding interaction ar in the transformed model is
enabled or not.

• If ar is enabled, we have two cases for the next state of component RGT:

– if ar ∈ arγ , according to the definition of atom RGT, zrn+1 is stable and (z, zr) ∈ R.

– if ar ∈ arβ , we have two cases:

∗ If RGT has some global states to deliver, then according to Lemma 6 RGT will be stable
after some β ∈ am so (z, zr) ∈ R.
∗ If RGT has no global state, atom RGT is stable and (z, zr) ∈ R.

• If ar is not enabled, according to the definition of atom RGT, we can conclude that RGT has
some global states to deliver. Consequently, ar is necessarily enabled after the execution of some
interaction α ∈ am.
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