
PDDL+ Planning with Hybrid Automata:
Foundations of Translating Must Behavior

(Technical Report)

Sergiy Bogomolov
IST Austria, Austria

University of Freiburg, Germany
sergiy.bogomolov@ist.ac.at

Daniele Magazzeni
King’s College London

United Kingdom
daniele.magazzeni@kcl.ac.uk

Stefano Minopoli
UJF - Lab. VERIMAG

Grenoble - France
stefano.minopoli@imag.fr

Martin Wehrle
University of Basel

Switzerland
martin.wehrle@unibas.ch

This technical report contains the proof of Theorem 1 of
the paper “PDDL+ Planning with Hybrid Automata: Foun-
dations of Translating Must Behavior” (Bogomolov et al.
2015), using the same notation and terminology.

Lemma 1. For a hybrid automaton (either LHA or AHA)
HM = (Loc, X,Edg ,Flow , Inv , Init) with must transi-
tions featuring closed guards, there exists a hybrid automa-
ton Hm = (Loc′, X ′,Edg ′,Flow ′, Inv ′, Init ′) with may
transitions and a location set Locε ⊂ Loc′ such that

CReach(HM ) ⊆ Reach(Hm)�Loc′\Locε,X .

Proof. We first show that the lemma is valid when the au-
tomata HM and Hm, resp., are those shown in (Bogomolov
et al. 2015) that only consist of a single transition. In this
case, the set Locε consists of the locations l̆i. Moreover, the
considered valuations are those reachable in Loc′ but not in
Locε. Then, the result is extended for a general must au-
tomatonHM .

Let v be a reachable valuation in the automaton HM , i. e.
v ∈ CReach(HM ). Hence by definition there exists a state
s′M = 〈loc′, v〉 ∈ Reach(HM ), where loc′ ∈ {l, l′}. By
definition of reachable sets there exists an initial state sM =
〈loc, u〉 ∈ Init , where loc ∈ {l, l′}, such that there exists a
run leading from sM to s′M . Depending on loc and loc′, we
distinguish three cases.

The first case is when loc = loc′ = l. Clearly since
source and target locations coincide, the run could be only
a single timed transition. Hence there exists an admissi-
ble activity f ∈ Adm(sM ) and a time δ ≥ 0, such that

sM
δ,f−−→ s′M . Due to the must semantics, for all 0 ≤ δ′ < δ

it holds that f(δ′) ∈ G, and f(δ) belongs either to G
or to G. Notice that, from f(δ′) ∈ G and Lemma 1 of
(Benerecetti, Faella, and Minopoli 2013) there exists a se-
quence of convex components Q̂1, . . ., Q̂n ∈ [[G]], and times
0 = δ0 < δ1 < . . . < δn = δ such that, for any 0 ≤ i < n

and δ′ ∈ (δi, δi+1) we have that f(δ′) ∈ Q̂i. This means
that the system, by following the activity f , remains always
inside the single convex component Q̂i ∈ [[G]] along all

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the open time interval (δi, δi+1), while lies on the bound-
ary bndry(Q̂i, Q̂i+1) at time δi, i. e. for each 1 ≤ i < n

we have that f(δi) ∈ bndry(Q̂i, Q̂i+1). Now, by construc-
tion of Init ′ and by recalling that f(0) ∈ Q̂1, then the state
sm = 〈l1, ue〉, where u = ue �X , is an initial state of Hm
(i. e. sm ∈ Init ′). From the state sm, by construction, there
exists the activity fe that is f with the additional flow con-
dition for the extra variable (clock) t ∈ X ′. By following
fe, the system jumps among locations l1, l12, l2, . . ., ln, ac-
cording to their invariants. This is possible because, by con-
struction ofHm, locations of the form li are associated with
the invariant Q̂i, while locations of the form li,i+1 are asso-
ciated with an invariant containing bndry(Q̂i, Q̂i+1). Now,
if f(δ) also belongs to [[G]], we conclude that from the state
sm and by following the activity fe, the system can reach
the state s′m = 〈ln, ve〉, where ve is the same as v (ex-
cept for the clock variable t). Hence, v = ve �X , and we
conclude that v ∈ Reach(Hm) �Loc′\Locε,X . Otherwise
f(δ) ∈ G and then the system cannot remain in location ln
because its invariant Q̂n is such that G ∩ Q̂n = ∅. Hence,
the system is constrained to jump to location l̆n. This jump
is allowed because satisfies the invariant of location l̆n (i. e.
the topological closure of Q̂n intersected with the condition
t ≤ ε). The automaton Hm may jump to location l̆n when
the current valuation is fe(δ − ε). According to the invari-
ant of l̆n on the clock t, the valuation ve = fe(δ) can be
reached after time ε. At that time the jump to location lu
is allowed, and when this happens the state s′m = 〈lu, ve〉
is reached. Clearly, v = ve �X and we conclude that
v ∈ Reach(Hm)�Loc′\Locε,X .

The second case is when loc = l and loc′ = l′. We follow
a similar argumentation of the first case for the subcase with
f(δ) ∈ G. Indeed, due to the must semantics, when the
current valuation satisfies the guard G, i. e. v = f(δ) ∈ G,
the automatonHM must jump to the location l′ by reaching
the state s′M = 〈l′, v〉. On the other hand, whenHm reaches
the state s′m = 〈lu, ve〉 it is enforced to immediately leave
this location due to the location invariant t = 0. Hence the
transition to location l′ must be taken, by reaching the state
s′m = 〈l′, ve〉. Therefore, v ∈ Reach(Hm) �Loc′\Locε,X

and this concludes the second case.
The last case is when loc = loc′ = l′. In this case, the



run that leads from sM to s′M consists of the timed transi-

tion sM = 〈l′, u〉 δ,f−−→ s′M = 〈l′, v〉, for some admissible
activity f ∈ Adm(sM ) and time δ ≥ 0. By construc-
tion, the location l′ of Hm is associated with same invari-
ant and flow of location l′ of HM (except the extra con-
ditions on the clock t that do not affect the timed step),
and then trivially the automaton Hm may reach the state
s′m = 〈ve, l′〉, where v = ve �X . Hence, we can write
v ∈ Reach(Hm)�Loc′\Locε,X , by concluding the proof for
the automataHM andHm that only consist of a single must
transition.

The result can be easily extended to a general automaton
HM . Indeed it is enough to apply our technique (described
in the main paper) to each source location l of a must tran-
sition. If the location has several outgoing transitions, then
the construction is applied by considering the guard G as
the union of the individual guards of the transitions. Finally,
every may transition from a location l to a location l′′ is en-
coded by a may transition from the locations induced by l
to the location l′′ (with the same flow and invariant as l′′ of
HM ).

Lemma 2. For a linear hybrid automaton (LHA) HM =
(Loc, X,Edg ,Flow , Inv , Init) with must transitions fea-
turing closed guards, there exists a hybrid automaton
Hm = (Loc′, X ′,Edg ′,Flow ′, Inv ′, Init ′) with may tran-
sitions and a location set Locε ⊂ Loc′ such that

Reach(Hm)�Loc′\Locε,X⊆ CReach(HM ).

Proof. Similarly to Lemma 1, we first show the lemma for
the automataHM andHm that only consist of a single must
transition, and then we extend the result to general linear
hybrid automata.

Let v be a valuation such that v ∈
Reach(Hm) �Loc′\Locε,X . By definition of projec-
tion, there exists a state s′m = 〈ve, loc′〉 ∈ Reach(Hm)
such that v = ve �X and loc′ ∈ Loc′. By definition of reach-
able sets, there exists an initial state sm = 〈loc, ue〉 ∈ Init ′

and a run from sm to s′m. By definition of Init ′, location
loc could be location l′, location lu or one of the locations
of the form li, while by definition of projection, location
loc′ could be location l′, location lu or one of the locations
of the form li or lij . By combining the conditions above,
we can distinguish several cases.

Consider the case when both loc and loc′ are in the form
li (for example loc = l1 and loc′ = ln). By using a sim-
ilar argumentation of the first case in the proof of Lemma
1, there exists an admissible activity fe ∈ Adm(sm) and
a sequence of times 0 = δ0 < δ1 < . . . < δn = δ such
that in the automatonHm it is possible, starting from sm, to
reach the state s′m by jumping among locations l1, l12, l2,
. . ., ln. During this run, the invariants Q̂1, bndry(Q̂1, Q̂2),
Q̂2, . . ., Q̂n ∈ [[G]] are constantly satisfied. From sm =
〈l1, ue〉 ∈ Init ′ by construction ofHm there exists an initial
state sM = 〈l, u〉 ∈ Init such that u = ue �X and u ∈ Q̂1.
Again by construction of Hm, it is easy to show that there
exists an activity f ∈ Adm(〈l, u〉), where f is defined like

fe except for the condition on the extra variable t, and a time

δ ≥ 0, such that there exists a timed step sM
f,δ−−→ s′M and

s′M = 〈l, f(δ)〉. Hence, s′M ∈ Reach(HM ) and clearly the
valuation v = f(δ) ∈ CReach(HM ). The case with loc of
the form li and loc′ of the form lij can be easily proven by
following the same way of the previous case.

For the case when loc = l1 (just an example for a loca-
tion of the form li) and loc′ = lu, we can partially follow
the procedure described for the first case. We need to con-
sider that now ve = f(δ) ∈ G because of the invariant of
lu, and that δn < δ (otherwise, f(δn) ∈ G). This means
that in order to reach s′m = 〈lu, ve〉 from the initial state
sm = 〈l1, ue〉 the system must first pass through locations
l1, l12, l2, . . ., ln and make a jump from ln to l̆n. When
the valuation ve is reached in l̆n the system jumps to lu by
reaching the state s′m = 〈lu, fe(δ)〉. To conclude this case,
we need to analyze the jumps among locations ln, l̆n and lu
in more detail. When the transition from ln to l̆n is taken,
the clock t is reset and the invariant of l̆n imposes that the
system must jump to lu after spending at most ε time units
in this location. This means that in location l̆n and by fol-
lowing the activity fe for a time 0 < ε′ ≤ ε, the valuation ve
will be reached (i. e. fe(δn+ε′) = fe(δ) = ve). Notice that,
if the flow allows non-monotonic dynamics on the variables
belonging to X , it could exists another time ε′ < ε′′ ≤ ε
such that fe(δn + ε′′) = fe(δ) = ve. Consider first the case
when this does not happen. It is easy to show that there ex-

ists a time step sM = 〈l, u〉 δn,f−−−→ 〈l, f(δn + ε′)〉. Recalling
that f(δn + ε′) = v ∈ G, then the must semantics is such
that it constraints a jump from l to l′, by reaching the state
s′M = 〈lu, v〉, and we can write that v ∈ CReach(HM ).
Now consider the case when Hm jumps to lu after the time
ε′′. This seems to be not allowed in the automaton HM .
Indeed because of the must semantics, the jump happens
exactly when the system, by following f , reaches a valua-
tion satisfying G (i. e. at time ε′), and hence ε′′ would not
exists. But according to a fundamental property of LHA’s
(Alur, Henzinger, and Ho 1996), if the activity fe leads to
the valuation fe(δn + ε′′), then there always exists a linear
activity f∗ that does the same. As a consequence, even if
Hm jumps at time ε′′ (and hence after having satisfied G
for some time by then), the automaton HM is also able to
reach the corresponding valuation by following a straight-
line, i.e. by touching G only one time. Hence, we can write
that v ∈ CReach(HM ).

Note that the case when loc = l1 and loc′ = l′ can be
handled similarly to the previous one. Indeed, once entered
location lu, the system must immediately jump to l′ (because
of the invariant t = 0). The same thing happens in HM
because of the must semantics.

The case when loc = lu can be accompanied only with
loc′ = l′ and can be easily derived from the case before.
Finally, the case when loc = loc′ = l′ is trivially valid by
construction ofHm.

To extend the result to general automata, it is enough to
follow the same procedure described for the extension of
Lemma 1.



Lemma 3. For an affine hybrid automaton HM =
(Loc, X,Edg ,Flow , Inv , Init) with must transitions fea-
turing closed guards, there exists a hybrid automaton
Hm = (Loc′, X ′,Edg ′,Flow ′, Inv ′, Init ′) with may tran-
sitions and a location set Locε ⊂ Loc′ such that

CReach(HM ) ⊆ Reach(Hm)�Loc′\Locε,X

and the approximation can be made arbitrarily precise.

Proof. Lemma 1 already states that CReach(HM ) ⊆
Reach(Hm) �Loc′\Locε,X . Informally, to show
that the approximation can be made arbitrarily pre-
cise, we need to identify those elements that belong
to Reach(Hm) �Loc′\Locε,X but do not belong to
CReach(HM ) (i.e. the set D = Reach(Hm)�Loc′\Locε,X

\CReach(HM )). Then, we need to show that it is possible
to systematically reduce the set D.

According to the proof of Lemma 2, the only valuations
that could be in D are those on the form f(δn + ε′′). In-
deed, because the considered automatonHM belongs to the
class of affine automata, we cannot use the above mentioned
property to replace an activity f by a linear activity.

However, it is easy to argue that by choosing a smaller ε,
we can arbitrarily reduce the cardinality of the set D. For
example, consider the case when Hm touches G at the time
moment ε′ and then at the time moment ε′′. By setting ε <
ε′′, we prevent the system touchingG a second time and thus
reduce the cardinality of the set D.

To prove Theorem 1, we apply Lemma 1, 2 and 3. To
be more precise, we show the LHA case with Lemma 1
and Lemma 2. To prove the theorem for affine HA, we use
Lemma 1 and 3.

Acknowledgments
This work was partly supported by the German Research
Foundation (DFG) as part of the Transregional Collabo-
rative Research Center “Automatic Verification and Anal-
ysis of Complex Systems” (SFB/TR 14 AVACS, http:
//www.avacs.org/), by the European Research Coun-
cil (ERC) under grant 267989 (QUAREM), by the Austrian
Science Fund (FWF) under grants S11402-N23 (RiSE) and
Z211-N23 (Wittgenstein Award), and by the Swiss National
Science Foundation (SNSF) as part of the project “Auto-
mated Reformulation and Pruning in Factored State Spaces
(ARAP)”.

References
Alur, R.; Henzinger, T.; and Ho, P.-H. 1996. Automatic
symbolic verification of embedded systems. Software En-
gineering, IEEE Transactions on 22(3):181–201.
Benerecetti, M.; Faella, M.; and Minopoli, S. 2013. Au-
tomatic synthesis of switching controllers for linear hybrid
systems: Safety control. Theor. Comput. Sci. 493:116–138.
Bogomolov, S.; Magazzeni, D.; Minopoli, S.; and Wehrle,
M. 2015. PDDL+ planning with hybrid automata: Foun-
dations of translating must behavior. In Proceedings of the

Twenty-Fifth International Conference on Automated Plan-
ning and Scheduling (ICAPS 2015), 42–46.


