PDDL+ Planning with Hybrid Automata:
Foundations of Translating Must Behavior
(Technical Report)

Sergiy Bogomolov
IST Austria, Austria

University of Freiburg, Germany

sergiy.bogomolov @ist.ac.at

Daniele Magazzeni
King’s College London
United Kingdom

This technical report contains the proof of Theorem 1 of
the paper “PDDL+ Planning with Hybrid Automata: Foun-
dations of Translating Must Behavior” (Bogomolov et al.
2015), using the same notation and terminology.

Lemma 1. For a hybrid automaton (either LHA or AHA)
Hy = (Loc, X, Edg, Flow, Inv, Init) with must transi-
tions featuring closed guards, there exists a hybrid automa-
ton H,, = (Loc', X', Edg', Flow', Inv’, Init") with may
transitions and a location set Loc. C Loc’ such that

C’Reach(’HM) - RBQCh(Hm,) uLoc’\Locg,X .

Proof. We first show that the lemma is valid when the au-
tomata H s and H,,, resp., are those shown in (Bogomolov
et al. 2015) that only consist of a single transition. In this
case, the set Loc. consists of the locations ZVL Moreover, the
considered valuations are those reachable in Loc¢’ but not in
Loce. Then, the result is extended for a general must au-
tomaton H ;.

Let v be a reachable valuation in the automaton H,;, i. e.
v € CReach(H). Hence by definition there exists a state
shy = (loc’,v) € Reach(Har), where loc’ € {l,I'}. By
definition of reachable sets there exists an initial state sp; =
(loc,u) € Init, where loc € {I,1'}, such that there exists a
run leading from s/ to ;. Depending on loc and loc’, we
distinguish three cases.

The first case is when loc = loc’ = [. Clearly since
source and target locations coincide, the run could be only
a single timed transition. Hence there exists an admissi-
ble activity f € Adm(sps) and a time 6 > 0, such that

Sy 21, sh;. Due to the must semantics, for all 0 < §’ < 6
it holds that f(6') € G, and f(J) belongs either to G
or to G. Notice that, from f(¢') € G and Lemma 1 of
(Benerecetti, Faella, and Minopoli 2013) there exists a se-
quence of convex components @1, e @n € [G], and times
0=09 <1 <...< 6, =0suchthat, forany0 <i <n
and &' € (0;,8;+1) we have that f(§') € Q;. This means
that the system, by following the activitAy f, remains always

inside the single convex component); € [G] along all

Copyright (© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

daniele.magazzeni @kcl.ac.uk

Stefano Minopoli Martin Wehrle
UJF - Lab. VERIMAG University of Basel
Grenoble - France Switzerland

stefano.minopoli @imag.fr martin.wehrle @unibas.ch

the open time interval (J;,d;11), while lies on the bound-
ary bndry(Q;, Q;+1) at time 0;, i.e. foreach 1 < i < n
we have that f(J;) € bndry(@i,@iﬂ). Now, by construc-
tion of Init’ and by recalling that f(0) € Q1, then the state
Sm = {l1,ue), where u = u, |x, is an initial state of H.,
(i.e. sy, € Init’). From the state s,,, by construction, there
exists the activity f, that is f with the additional flow con-
dition for the extra variable (clock) ¢ € X’. By following
fe, the system jumps among locations [y, l12, ls, . . ., 1, ac-
cording to their invariants. This is possible because, by con-
struction of ’HAm, locations of the form [; are associated with
the invariant ();, while locations of the form /; ;; are asso-

ciated with an invariant containing bndry(@, @Hl)- Now,
if £(J) also belongs to [G], we conclude that from the state
sm and by following the activity f., the system can reach
the state s, = (l,,v.), where v, is the same as v (ex-
cept for the clock variable t). Hence, v = v, |x, and we
conclude that v € Reach(Hm) U Loc\Loc.,x- Otherwise
f(6) € G and then the system cannot remain in location I,
because its invariant (), is such that G N Q,, = 0. Hence,
the system is constrained to jump to location [,. This jump
is allowed because satisfies the invariant of location I, (i.e.
the topological closure of @), intersected with the condition
t < ¢). The automaton H,,, may jump to location an when
the current valuation is f.(6 —). According to the invari-
ant of I,, on the clock ¢, the valuation v, = f.(§) can be
reached after time . At that time the jump to location [,
is allowed, and when this happens the state s, = (I,,,v.)
is reached. Clearly, v = v. |x and we conclude that
v e ReaCh(Hm) uLoc’\Locg,X-

The second case is when loc = [and loc’ = I’. We follow
a similar argumentation of the first case for the subcase with
f(0) € G. Indeed, due to the must semantics, when the
current valuation satisfies the guard G, i.e.v = f(J) € G,
the automaton # ; must jump to the location I’ by reaching
the state s, = (I, v). On the other hand, when #,,, reaches
the state s, = (I, ve) it is enforced to immediately leave
this location due to the location invariant ¢ = 0. Hence the
transition to location !’ must be taken, by reaching the state
sy, = (I',ve). Therefore, v € Reach(Hm) |l Loc'\ Loc.,x
and this concludes the second case.

The last case is when loc = loc¢’ = [’. In this case, the

run that leads from s, to s}, consists of the timed transi-

. 4, .
tion sy = (I, u) LER shy = (I',v), for some admissible

activity f € Adm(sys) and time 6 > 0. By construc-
tion, the location !’ of H,, is associated with same invari-
ant and flow of location !’ of H s (except the extra con-
ditions on the clock ¢ that do not affect the timed step),
and then trivially the automaton H,, may reach the state
st = (ve,l’), where v = v, |x. Hence, we can write
v € Reach(Hm) |l Loc!\ Loc.,x» bY concluding the proof for
the automata H 5, and H,,, that only consist of a single must
transition.

The result can be easily extended to a general automaton
Hps. Indeed it is enough to apply our technique (described
in the main paper) to each source location ! of a must tran-
sition. If the location has several outgoing transitions, then
the construction is applied by considering the guard G as
the union of the individual guards of the transitions. Finally,
every may transition from a location [to a location [is en-
coded by a may transition from the locations induced by [
to the location !” (with the same flow and invariant as " of
Hr). O

Lemma 2. For a linear hybrid automaton (LHA) Hyr =
(Loc, X, Edg, Flow, Inv, Init) with must transitions fea-
turing closed guards, there exists a hybrid automaton
Hy = (Loc', X', Edg’, Flow', Inv', Init') with may tran-
sitions and a location set Loc. C Loc’ such that

ReGCh(Hm) uLoc’\LocE,Xg CReGCh(HM)

Proof. Similarly to Lemma 1, we first show the lemma for
the automata H 5, and H,, that only consist of a single must
transition, and then we extend the result to general linear
hybrid automata.

Let v be a valuation such that o S
Reach(Hm) |lroc'\Loc.,x- By definition of projec-
tion, there exists a state s, = (ve,loc’) € Reach(H,)
such that v = v, | x and loc’ € Loc’. By definition of reach-
able sets, there exists an initial state s,, = (loc,u.) € Init’
and a run from s,, to s,,. By definition of Init’, location
loc could be location !/, location [,, or one of the locations
of the form [;, while by definition of projection, location
loc’ could be location {’, location [,, or one of the locations
of the form I; or l;;. By combining the conditions above,
we can distinguish several cases.

Consider the case when both loc and loc’ are in the form
I; (for example loc = Iy and loc’ = ;). By using a sim-
ilar argumentation of the first case in the proof of Lemma
1, there exists an admissible activity fe € Adm(s,,) and
a sequence of times 0 = §p < 01 < ... < &, = § such
that in the automaton #,, it is possible, starting from s,,, to
reach the state s/, by jumping among locations [y, l12, l2,

.+, . During this run, the invariants @1, bndry(@l, @2)

@2, el @n € [[é]] are constantly satisfied. From s,, =
(I1,ue¢) € Init’ by construction of H,, there exists an initial
state spr = (I, u) € Init such that u = u. | x and u € @1.
Again by construction of H,,, it is easy to show that there
exists an activity f € Adm((l,u)), where f is defined like

fe except for the condition on the extra variable ¢, and a time

& > 0, such that there exists a timed step s,y ﬁ) sﬁw and
shy = (I, f(9)). Hence, s, € Reach(Has) and clearly the
valuation v = f(8) € CReach(H). The case with loc of
the form /; and loc” of the form /;; can be easily proven by
following the same way of the previous case.

For the case when loc = [; (just an example for a loca-
tion of the form [;) and loc’ = [, we can partially follow
the procedure described for the first case. We need to con-
sider that now v. = f(J) € G because of the invariant of
lu, and that §,, < ¢ (otherwise, f(0,) € G). This means
that in order to reach s/, = (l,,,v.) from the initial state
$m = (l1,u.) the system must first pass through locations

l1, l12, la, ..., I, and make a jump from [,, to [,L. When

the valuation v, is reached in [,, the system jumps to [,, by
reaching the state s/, = (l,,, f.(4)). To conclude this case,
we need to analyze the jumps among locations /,,, [, and [,
in more detail. When the transition fr0131 l, to Zn is taken,
the clock ¢ is reset and the invariant of /,, imposes that the
system must jump to [,, after spending at most ¢ time units
in this location. This means that in location fn and by fol-
lowing the activity f, for atime 0 < &’ < ¢, the valuation v,
will be reached (i. e. fe (0, +¢") = fe(d) = v.). Notice that,
if the flow allows non-monotonic dynamics on the variables
belonging to X, it could exists another time ¢/ < ¢” < ¢
such that f.(0,, +&”) = f.(0) = ve. Consider first the case
when this does not happen. It is easy to show that there ex-

ists a time step sy = (I,) Oty (1, f(6n +£")). Recalling
that f (0, + ¢’) = v € G, then the must semantics is such
that it constraints a jump from [to {’, by reaching the state
shy = (ly,v), and we can write that v € CReach(Has).
Now consider the case when #,, jumps to /,, after the time
€. This seems to be not allowed in the automaton H ;.
Indeed because of the must semantics, the jump happens
exactly when the system, by following f, reaches a valua-
tion satisfying G (i.e. at time €’), and hence &’ would not
exists. But according to a fundamental property of LHA’s
(Alur, Henzinger, and Ho 1996), if the activity f. leads to
the valuation f,(d,, + "), then there always exists a linear
activity f* that does the same. As a consequence, even if
‘H,, jumps at time £” (and hence after having satisfied G
for some time by then), the automaton #j; is also able to
reach the corresponding valuation by following a straight-
line, i.e. by touching GG only one time. Hence, we can write
that v € CReach(Hr).

Note that the case when loc = [and loc’ = I’ can be
handled similarly to the previous one. Indeed, once entered
location [,,, the system must immediately jump to I’ (because
of the invariant ¢ = 0). The same thing happens in H s
because of the must semantics.

The case when loc = [,, can be accompanied only with
lo¢’ = I’ and can be easily derived from the case before.
Finally, the case when loc = loc’ = [is trivially valid by
construction of H,,,.

To extend the result to general automata, it is enough to
follow the same procedure described for the extension of
Lemma 1. O

Lemma 3. For an affine hybrid automaton Hp; =
(Loc, X, Edg, Flow, Inv, Init) with must transitions fea-
turing closed guards, there exists a hybrid automaton
Hy = (Loc', X', Edg’, Flow', Inv', Init") with may tran-
sitions and a location set Loc. C Loc’ such that

CReach(Har) € Reach(Hm) Il Loe\ Loc. , x

and the approximation can be made arbitrarily precise.

Proof. Lemma 1 already states that CReach(Hu) C
Reach(Hm) U Lo\ Loc., x - Informally, to show
that the approximation can be made arbitrarily pre-
cise, we need to identify those elements that belong
to Reach(Hm) Il Loc\Loc.,x but do not belong to
CReach(Hs) (ie. the set D = Reach(Hm) || Lo\ Loc., x
\ CReach(Hyr)). Then, we need to show that it is possible
to systematically reduce the set D.

According to the proof of Lemma 2, the only valuations
that could be in D are those on the form f(d,, + ¢”). In-
deed, because the considered automaton H s belongs to the
class of affine automata, we cannot use the above mentioned
property to replace an activity f by a linear activity.

However, it is easy to argue that by choosing a smaller ¢,
we can arbitrarily reduce the cardinality of the set D. For
example, consider the case when ., touches G at the time
moment £’ and then at the time moment ”. By setting & <
¢, we prevent the system touching G a second time and thus
reduce the cardinality of the set D. O

To prove Theorem 1, we apply Lemma 1, 2 and 3. To
be more precise, we show the LHA case with Lemma 1
and Lemma 2. To prove the theorem for affine HA, we use
Lemma 1 and 3.

Acknowledgments

This work was partly supported by the German Research
Foundation (DFG) as part of the Transregional Collabo-
rative Research Center “Automatic Verification and Anal-
ysis of Complex Systems” (SFB/TR 14 AVACS, http:
//www.avacs.org/), by the European Research Coun-
cil (ERC) under grant 267989 (QUAREM), by the Austrian
Science Fund (FWF) under grants S11402-N23 (RiSE) and
Z211-N23 (Wittgenstein Award), and by the Swiss National
Science Foundation (SNSF) as part of the project “Auto-
mated Reformulation and Pruning in Factored State Spaces
(ARAP)”.

References

Alur, R.; Henzinger, T.; and Ho, P.-H. 1996. Automatic
symbolic verification of embedded systems. Software En-
gineering, IEEE Transactions on 22(3):181-201.

Benerecetti, M.; Faella, M.; and Minopoli, S. 2013. Au-
tomatic synthesis of switching controllers for linear hybrid
systems: Safety control. Theor. Comput. Sci. 493:116—-138.
Bogomolov, S.; Magazzeni, D.; Minopoli, S.; and Wehrle,
M. 2015. PDDL+ planning with hybrid automata: Foun-
dations of translating must behavior. In Proceedings of the

Twenty-Fifth International Conference on Automated Plan-
ning and Scheduling (ICAPS 2015), 42-46.

