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Abstract

Correct implementation of concurrent real-time systems has always been a tedious
task due to their inherent complex structure; concurrency introduces a great deal of
non-determinism, which can potentially conflict with meeting timing constraints.
In this paper, we focus on model-based concurrent implementation of timed mod-
els. Our abstract models consist of a set of components interacting with each other
using multi-party interactions. Each component is internally subject to a set of tim-
ing constraints. We propose a chain of transformations that starts with an abstract
model as input and generates correct-by-construction executable code as output.
We show that all transformed models are observationally equivalent to the abstract
model through bisimulation proofs and, hence, all functional properties of the ab-
stract model are preserved. To facilitate developing the proofs of correctness, each
transformation obtains a model by incorporating a subset of physical constraints
(e.g., type of communication and global clock synchronization). Our method is
fully implemented and validated on a real-time multi-sensor image reconstruction
system outperforms the corresponding concurrent implementation managed by a
centralized scheduler.
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1 Introduction
Although concurrent computing is widely used nowadays, especially due to the recent advances in the
multi-core and GPU technologies, implementation and deployment of correct concurrent applications are
still time-consuming, error-prone, and hardly predictable tasks. This problem becomes even more challeng-
ing when the concurrent application is required to meet a set of timing constraints as well, for instance, in
computation-intensive real-time embedded systems. This is due to the fact that the developer of a real-time
concurrent application not only has to consider typical problems in concurrency (e.g., deadlock/livelock
freedom, race conditions, etc), but also should ensure that all subtle interleavings of the application meet
the timing constraints.

Model-based software development is a promising approach, where a chain of steps starting from a
specification leads to an implementation on a given execution platform. It involves the use of transformation
methods and tools for progressively deriving the implementation by making adequate design choices. Such
transformations ensure functional correctness, software line productivity, and incorporate extra-functional
properties such as timing constraints. Although there have recently been plausible efforts in model-based
automated implementation of distributed (e.g., [7, 13]) and real-time (e.g., [1, 11]) systems, we currently
lack techniques that obtain executable real-time concurrent code from an abstract model of a system. This
problem is particularly challenging, as one has to develop transformations for different levels of abstrac-
tions, each taking into account certain physical constraints (e.g., time, communication, synchronization,
etc), and each transformation should add minimal overhead while maintaining a high level of parallelism.
With this motivation, in this paper, we propose an automated method for producing efficient and correct-by-
construction multi-threaded real-time implementation from an abstract component-based timed model. Our
abstract models are expressed in the timed BIP (Behavior, Interaction, Priority) formalism [5]. BIP is a
well-founded
component-based framework, where the behavior of each component (similar to timed automata [2]) is
a Petri net or transition system subject to local timing constraints expressed by Boolean expressions over
logical dense-time clock variables. A BIP model encompasses high-level multi-party interactions for syn-
chronizing components (e.g., rendezvous and broadcast) and dynamic priorities for scheduling between
interactions.

Our method consists of successive transformations that starts with a timed BIP model and terminates
with an implementation. Intermediate transformation steps augment the output model with communication
constraints and a physical time watching mechanism, such that each step results in a model closer to an
actual implementation. These transformations are described as follows:

Decentralization In the abstract model, each component may depend upon global synchronization with
other components to execute a local step. Indeed, executing a component transition is possible only when
an interaction involving that transition is executed. To decide whether an interaction can be executed, one
has to consider all participating components. In a concurrent setting, however, each component can only
rely on its local knowledge to decide whether to execute a transition. Thus, our first transformation builds a
model where additional components are responsible for scheduling interactions, based on the information
received from the input model’s components. Our transformation creates conflict-free schedulers, where
schedulers do not need to interact with each other in order to resolve distributed conflicts. A distributed
conflict refers to the situation where two or more interactions are enabled in the distributed implementation,
but the abstract model semantics allows execution of only one.

Logical clock removal This transformation step builds a model that is robust to execution delay. This
is done through decoupling logical and physical time. At this step, the two of them are assumed to be
identical; i.e., communication occurs instantaneously (no delay) and component clocks are perfect (no
drifts). This is the main reason that our target concurrent execution platform is multi-process applications,
where all processes reside in the same machine and share a single clock. Unlike the logical clocks, the
single clock introduced in this step is never reset and measures the absolute real time elapsed since the
system starts executing. This transformation step is parametrized by a set of (observable) interactions
whose constraints have to be met. We show that the model obtained in this step is observationally equivalent
to the input abstract model through a bisimulation proof and, hence, all functional properties of the abstract
model are preserved.
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Implementation This transformation creates a set of independent executables that communicate through
asynchronous message passing and may read the value of the single global hardware clock of the platform.

Our method is fully implemented and we show that the automatically generated concurrent code for a
real-time multi-sensor image reconstruction system outperforms the corresponding concurrent implemen-
tation managed by a centralized scheduler.

The rest of this paper is structured as follows. In Section 2, we present the preliminary concepts on
timed BIP models. Section 3 formalizes the point-to-point communication physical constraints. Our step-
wise transformations are formally described in Sections 4 and 6. Implemetation and experimental results
are described in Section 7. Related work is discussed in Section 8. Finally, we make concluding remarks
in Section 9. .

2 Basic Semantic Model of BIP
In this section, we present the operational global state semantics of BIP [4]. BIP is a component framework
for constructing systems by superposing three layers of modeling: Behavior, Interaction, and Priority. In
this paper we do not consider priorities. In Subsection 2.2, we formally define atomic components. The
notion of composite components is presented in Subsection 2.3.

2.1 Notations
Given a variable x, the domain of x is the set D(x) of all values possibly taken by x. Given a set of
variables X , a valuation of X is a function v : X →

⋃
x∈X D(x) assigning a value to each variable of X ,

that is, such that for all x v(x) ∈ D(x). We denote by V(X) the set of all possible valuations of X . The
restriction of v ∈ V(X) to a subset of variables X ′ ⊆ X is the valuation v|X′ ∈ V(X ′) that coincides with
v on X ′, that is, v|X′(x) = v(x) for all x ∈ X ′. When it is not ambiguous, we write v also for v|X′ .

Given valuations v ∈ V(X) and v′ ∈ V(X ′) of variables X and X ′ such that X ′ ⊆ X , we denote by
v[X ′ ← v′] the valuation of X that coincides with v′ for all variables of X ′, and with v for all variables of
X \X ′. It is defined by:

v[X ′ ← v′](x) =

{
v′(x) if x ∈ X ′
v(x) otherwise.

When all variables in X have the same domain D, and given value k ∈ D, we also denote by k the
constant valuation assigning k to all variables of X .

A guard is a predicate on a set of variables X . Given a guard g on X and a valuation v ∈ V(X), we
denote by g(v) ∈ {false,true} the evaluation of g for v. An update function f : V(X) → V(X) for
variables X is used to assign new values f(v) to variables in X from their current values v. It extends to
any larger set of variablesX ′ ⊇ X considering that extra variablesX ′\X are unchanged, i.e., f transforms
v ∈ V(X ′) into v[X ← f(v)].

Timing Constraints and Time Progress Conditions. In order to measure time progress, we use clocks
that are variables advancing with the same rate [2] and ranging over real numbers. We denote by R≥0 the
set of non-negative reals, and by Z≥0 the set of non-negative integers.

Timing constraints are used to specify when actions of a system are enabled. Given a set of clocks
C, we consider atomic constraints c ∼ k where c ∈ C, k ∈ Z≥0, and ∼ is a comparison operator such
that ∼ ∈ {≤,=,≥}. They are used to build timing constraints defined by the following grammar: tc :=
true | false | c ∼ k | tc ∧ tc. Notice that any timing constraint tc can be put into a conjunction of the
form: tc =

∧
c∈C

lc ≤ c ≤ uc, (1)

such that for all c ∈ C, lc ∈ Z≥0 and uc ∈ Z≥0 ∪ {+∞}. The evaluation of a timing constraint tc for a
valuation t ∈ V(C) of clocks C is the Boolean value tc(t) obtained by replacing in tc each clock c by its
value t(c).

Time progress conditions are used to specify whether time can progress at a given state of the system.
They correspond to a special case of timing constraint in which atomic constraints are restricted to the form
c ≤ k. Notice that a time progress condition put in the form of (1) is such that for all c ∈ C, lc = 0.

2.2 Atomic Components
An atomic component is described as a 1-Safe Petri net extended with local variables and clocks, consisting
of a set of places and a set of transitions. Each transition is labeled by a port, a guard on local variables
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Figure 1: A simple Petri net
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Figure 2: An atomic component.

combined with a timing constraint on clocks, and an update function. Ports are used for communication
among different components. Each port exports a subset of variables of the component.

Definition 1 A Petri net is defined by a triple S = (L,P, T ), where L is a set of places, P is a set of ports,
and T ⊆ 2L × P × 2L is a set of transitions. A transition τ is a triple (•τ, p, τ•), where •τ is the set of
input places of τ and τ• is the set of output places of τ .

A Petri net is often modeled as a directed bipartite graph G = (L ∪ T,E). Places are represented by
circular vertices and transitions are represented by rectangular vertices (see Figure 1). The set of directed
edges E is the union of the sets {(`, τ) ∈ L × T | ` ∈ •τ} and {(τ, `) ∈ T × L | ` ∈ τ•}. We depict
the state of a Petri net by marking its places with tokens [12]. We say that a place is marked if it contains
a token. A transition τ is enabled at a state if all its input places •τ are marked. Upon the execution of τ ,
tokens of input places •τ are removed and tokens in output places in τ• are added.

Given an initial state m0 ⊆ L, a Petri net (L,P, T ) is 1-Safe if for any execution from m0, output
places of enabled transitions are never marked. The behavior of a 1-Safe Petri net (L,P, T ) is defined
as a finite labeled transition system (2L, P,→), where 2L is the set of states, P is the set of labels, and
→⊆ 2L×P×2L is the set of transitions defined as follows. We have (m, p,m′) ∈→, denoted bym

p→ m′,
if there exists τ = (•τ, p, τ•) ∈ T such that •τ ⊆ m and m′ = (m\•τ) ∪ τ•. In this case, we say that p
is enabled at m. We say that the Petri net (L,P, T ) is deterministic, if for any execution from m0 any two
transitions τ1 6= τ2 labeled by same port p are not simultaneously enabled at any state.

An atomic component is essentially a timed automaton [2] labeled by ports and extended with variables,
whose states and transitions are given by the behavior of a deterministic 1-Safe Petri net.

Definition 2 (Atomic Component) An atomic componentB is defined byB = (L, P , T , C,X , {Xp}p∈P ,
{gτ}τ∈T , {tcτ}τ∈T , {fτ}τ∈T , {tpc`}`∈L ) where:

• (L,P, T ) is a deterministic 1-Safe Petri net.

• C is a set of clocks.

• X is a set of discrete variables.

• For each port p ∈ P , Xp ⊆ X is the set of variables exported by p (i.e., variables visible from
outside the component through port p).

• For each transition τ ∈ T , gτ is a guard on X , tcτ is a timing constraint over C, and fτ : V(X) ×
V(C) → V(X) × V(C) is a function that updates the set of variables X and may reset a subset of
clocks Rτ ⊆ C.

• For each place l ∈ L, tpcl is a time progress condition.

Example 1 Figure 2 shows an atomic component. The set of clocks is {c1}. The set of places is {`1, `2}
where `1 has time progress condition c1 ≤ 20. The set of ports is {p, sync} and there is no discrete
variable. There are two transitions: τ1 = (`1, sync, `2) and τ2 = (`2, p, `1). The transition τ1 resets clock
c1 and the transition τ2 is guarded by a timing constraint on clock c1.

Definition 3 (Atomic Component Semantics) The semantics of an atomic component B = (L, P , T ,
C, X , {Xp}p∈P , {gτ}τ∈T , {tcτ}τ∈T , {fτ}τ∈T , {tpcl}l∈L) is defined as the labeled transition system
(QB , PB ,−→

B
), where

• QB = 2L × V(X)× V(C) is the set of states.

• PB = P ∪ R≥0 is set of labels: ports or time values.
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• −→
B
⊆ QB×PB×QB is the set of labeled transitions defined as follows. Let (m, v, t) and (m′, v′, t′)

be two states, p ∈ P , and δ ∈ R≥0 be a delay.

Jump transitions. We have (m, v, t)
p−→
B

(m′, v′, t′), iff transition τ = (•τ, p, τ•) is enabled at m in

the Petri net (L,P, T ) and gτ (v) ∧ tcτ (t) is true. In this case, we say that p is enabled from
(m, v, t). Notice that t′ satisfies t′ = t[Rτ ← 0], where Rτ is the set of clocks reset by τ .

Delay transitions. We have (m, v, t)
δ−→
B

(m, v, t+ δ) if we have
∧
`∈m tpc`(t+ δ) is true, where

t+ δ is the usual notation for the valuation defined by (t+ δ)(c) = t(c) + δ for any c ∈ C.

An atomic component B can execute a transition τ = (•τ, p, τ•) from a state (m, v, t) if its guard is met
by the valuation v and its timing constraint is met by the valuation t. From state (m, v, t), B can also wait
for δ > 0 time units if

∧
`∈m tpc`(t + δ) stays true. Waiting for δ time units increases all the clock

values by δ. Notice that the execution of a jump transition is instantaneous and time elapses only on states.
The semantics presented here is slightly different from the one found in [2], as we consider time progress
conditions instead of invariants. Unlike invariants, an atomic component B may reach a state (m, v, t)
violating the corresponding time progress condition

∧
`∈m tpc`. In this case B cannot wait and is forced to

execute a transition from (m, v, t). In the following, we consider systems that cannot reach states violating
time progress conditions.

2.3 Composite Components
A composite component is built from a set of n atomic components {Bi = (Li, Pi, Ti, Ci, Xi, {Xp}p∈Pi

,
{gτ}τ∈Ti , {tcτ}τ∈Ti , {fτ}τ∈Ti ,{tpc`}`∈Li)}ni=1, such that their respective sets of places, ports, clocks,
and discrete variables are pairwise disjoint; i.e., for any two i 6= j from {1, . . . , n}, we have Li ∩ Lj = ∅,
Pi ∩ Pj = ∅, Ci ∩ Cj = ∅, and Xi ∩ Xj = ∅. We denote P =

⋃n
i=1 Pi the set of all the ports in

the composite component, L =
⋃n
i=1 Li the set of all places, C =

⋃n
i=1 Ci the set of all clocks, and

X =
⋃n
i=1Xi the set of all variables.

Definition 4 (Interaction) An interaction a between atomic components {Bi}ni=1 is a subset of ports a ⊆
P , such that it contains at most one port of every component, that is, |a ∩ Pi| ≤ 1 for all i ∈ {1, . . . , n}.

The set Xa of variables available to an interaction a is given by Xa =
⋃
p∈aXp. We associate to a its

guard Ga and its update function Fa over Xa.

Since an interaction a uses at most one port of every component, we denote a = {pi}i∈I , where
I ⊆ {1, . . . , n}. A component Bi is involved in a if i ∈ I .

Definition 5 (Composite Component) We denote by

B
def
= γ(B1, . . . , Bn) the composite component obtained by applying a set of interactions γ to the set

of atomic components {Bi}ni=1. It is defined by the atomic component B = (L, γ, T , C, X , {Xa}a∈γ ,
{gτ}τ∈T , {tcτ}τ∈T , {fτ}τ∈T ,{tpc`}`∈L) as follows.

• Given an interaction a = {pi}i∈I of γ, a transition τ = (`, a, `′) is in T if its projection τi =
(`i, pi, `

′
i) = (` ∩ Li, a ∩ Pi, `′ ∩ Li) on Bi is a transition of Bi (i.e. τi ∈ Ti), for all i ∈ I .

• The guard gτ of transition τ is gτ = Ga ∧
∧
i∈I

gτi .

• The timing constraint tcτ of τ is tcτ =
∧
i∈I

tcτi .

• We have fτ (v, t) = (fτ1 ◦ · · · ◦ fτn)(Fa(v), t), where fτi is the identity function, for i /∈ I . Notice
that functions fτi modify disjoint sets of variables and clocks and, hence, can be composed in any
order.

• For a control location ` = (`1, . . . , `n) ∈ L, the time progress condition tpc` is tpc` =
∧

i∈{1..n}
tpc`i .
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A composite component B = γ(B1, . . . , Bn) can execute an interaction a = {pi}i∈I ∈ γ from a
state (m, v, t) iff (1) for each port pi, the corresponding atomic component Bi can execute a transition
labeled by pi from the projection (mi, vi, ti) = (m ∩ Li, v|Xi

, t|Ci
) of (m, v, t) on Bi, and (2) the guard

Ga of the interaction evaluates to true on the variables exported by the ports participating in interaction
a. Execution of interaction a triggers the function Fa which modifies the variables of the components
exported by ports pi. The new values obtained are then processed by the components’ transitions. Note
that the components also reset clocks according to the update function associated to their transition. The
states of components that do not participate in the interaction remain unchanged. We say that an interaction
a ∈ γ is enabled at state q ∈ QB of B, if there exists state q′ ∈ QB such that q a−→

B
q′.

ℓ11

ℓ21

sync1
c1 := 0

p
[10≤c1≤20]

sync1 p

c1≤20B1

ℓ12

ℓ22

sync2
ℓ32

r

q

err

q

sync2q r

B2

ℓ13

ℓ23

sync3
c3 := 0

s
[c3 = 5]

s sync3

c3≤5B3

a1

a2 a3

Figure 3: Example of BIP composite component.

Example 2 Figure 3 illustrates a composite component
γ(B1, B2, B3). The set γ of interactions is {a1, a2, a3} with no guards nor update functions. Initially,
the system is in state (`11, `

1
2, `

1
3), where c1 and c3 are set to 0. The only enabled interaction is a1. Since

time progress condition at this state is true, any delay δ ∈ R≥0 can be taken. If interaction a1 is executed,
the next state is (`21, `

2
2, `

2
3) and clocks c1 and c3 are reset. At this state, the time progress condition and

the timing constraint in B3 impose that a3 has to be executed after a delay of δ = 5 time units. Once a3
is executed, a2 can execute after a delay of δ ∈ [5, 15] time units according to the time progress condition
and the timing constraint in B1.

3 Target Architecture
In this section, we describe the overall architecture of the source-to-source transformation of BIP models.
Since we target concurrent execution of interactions, if two interactions are simultaneously enabled, they
can be executed in parallel only if the semantics of the initial global state model is met. That is, if they
involved disjoint sets of components. This leads to the notion of conflict between interactions. Two in-
teractions are conflicting if they involve a shared component and they are potentially enabled at the same
time.

Definition 6 Let γ(B1, . . . , Bn) be a BIP model. We say that two interactions a and b of γ are in structural
conflict iff there exists an atomic component Bi that has two transitions τ1 = (•τ1, p1, τ•1 ) and τ2 =
(•τ2, p2, τ•2 ) such that (1) p1 ∈ a and p2 ∈ b, and (2) there exists a reachable state in the Petri net
(Li, Pi, Ti) of Bi at which both τ1 and τ2 are enabled.

Note that structural conflicts as defined in Definition 6 are an over-approximation of conflicts, since
some structural conflicts may not be reachable due to guards and timing constraints. A special case of con-
flict is when two interactions a and b share a common port, that is, a∩b 6= ∅. As already discussed, handling
conflicting interactions in a BIP model executed by a centralized Engine is quite straightforward [4, 15].
However, in a concurrent setting, detecting and avoiding conflicts is not trivial [7].

Consider a composite component B = γ(B1 · · ·Bn) in the BIP model and a partition of the set of
interactions {γj}mj=1 (i.e., m classes of interactions γj are disjoint and cover all the interactions of γ). In
our target concurrent model, atomic components Bi are transformed into atomic components BSRi . We
also add Interaction Protocol components to implement interactions, such that each class of interaction γj
is handled by a single Interaction Protocol component IPj . The partition {γj}mj=1 allows the designer to
enforce load-balancing and to improve the performance of the given model when running in a concurrent
fashion. It also determines whether or not a conflict between interactions can be resolved locally. Consider
conflicting interactions a ∈ γj and b ∈ γk. We distinguish between two types of conflict for a and
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Figure 5: Transformation of the atomic component in
Figure 2.

b, according to the partition {γj}mj=1. A conflict is internal if a and b belong to the same class of the
partition, i.e., j = k. In this case, it can be resolved by the Interaction Protocol component IPi responsible
for a and b. A conflict is external if a and b belong to the different classes of the partition, i.e., j 6=
k. External conflicts cannot be resolved by a single Interaction Protocol component IPj , and requires
additional synchronizations and components [7]. This is beyond the scope of this paper.

Consider again the example from Figure 3. Interaction a1 is conflicting with neither a2 nor a3. How-
ever, a2 and a3 are conflicting because port q involved in a2 and port r involved in a3 are both enabled
from place `22. Partition γ1 = {a1} and γ2 = {a2, a3} is such that all conflicts between interactions are
internal. The overall architecture of the concurrent model built for this partition is given in Figure 4. Notice
that IP1 and IP2 share BSR2 , as the later is involved in both a1 ∈ γ1 and a2 ∈ γ2. However, this is not a
problem since a1 and a2 are never enabled at the same time.

From now on, we consider partitions {γj}mj=1 of interactions γ such that conflicts are always inter-
nal, that is, if two interactions a, b ∈ γ are conflicting, then they belong to the same class γj . We also
target Send/Receive BIP models. Intuitively, a Send/Receive model is a set of independent components
communicating through asynchronous message passing defined next.

Definition 7 We say that BSR = γSR(BSR
1 , . . . , BSR

n ) is a Send/Receive BIP composite component iff
we can partition the set of ports of BSR into three sets Ps, Pr, and Pu that are respectively the set of
send-ports, receive-ports, and unary interaction ports, such that:

• Each interaction a ∈ γSR, is either (1) a Send/Receive interaction with a = (s, r1, r2, . . . , rk), s ∈
Ps,
r1, . . . , rk ∈ Pr, Ga = true and Fa copies the variables exported by port s to the variables
exported by ports r1, r2, . . . , rk, or, (2) a unary interaction a = {p} with p ∈ Pu, Ga = true, Fa
is the identity function.

• If s is a port in Ps, then there exists one and only one Send/Receive interaction a ∈ γSR with
a = (s, r1, r2, . . . , rk) and all ports r1, . . . , rk are receive-ports. We say that r1, r2, . . . , rk are the
receive-ports associated to s.

• If a = (s, r1, . . . , rk) is a Send/Receive interaction in γSR and s is enabled at some global state of
BSR, then all its associated receive-ports r1, . . . , rk are also enabled at that state.

Definition 7 defines a class of BIP models for concurrent implementation based on asynchronous mes-
sage passing. In such systems, communication is sender-triggered, where a message is emitted by the
sender, regardless of the availability of receivers. The third property of the definition, requires that all re-
ceivers are ready to receive whenever the sender may send a message. This ensures that the sender is never
blocked and triggers the Send/Receive interaction.

Intuitively, a model that meets properties of Definition 7 can be seen as a set of independent process,
communicating through asynchronous message passing. However, execution of this model according to
the BIP semantics assumes that clocks of these components advance at the same rate and communication
is instantaneous.
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4 Step 1: BIP to Send/Receive-BIP
In this section, we describe a method for automated transformation of a timed BIP modelB = γ(B1, . . . , Bn)
into a timed Send/Receive-BIP model BSR = γSR(BSR

1 , . . . , BSR
m ) that meets restrictions of Definition 7.

Correctness of this transformation is established in Section 5.

4.1 Atomic Components
For the sake of simplicity and clarity, we present the transformation for an atomic component such that
its Petri net is an automaton, that is, each of its transitions has a single source and single target place, and
its initial state consists in a single place. Notice that the behavior of a 1-Safe Petri net defines a finite
automaton, allowing us to apply the following transformation to any arbitrary atomic component.

We transform an atomic component B of a BIP model into a Send/Receive atomic component BSR

that is capable of communicating with the Interaction Protocol component(s). To communicate, BSR

sends offers to the Interaction Protocol that are acknowledged by a response. An offer includes necessary
information for computing enabled interactions from the current state of BSR, i.e., values of variables
exported by the ports, timing constraints of transitions, and resets of clocks. When the interaction protocol
selects an interaction involving BSR for execution, BSR is notified by a response sent on the chosen port.

Since each notification from the Interaction Protocol triggers an internal computation in a component,
following [4], we split each place ` into two places, namely, ` itself and a busy place ⊥`. Intuitively,
reaching ⊥` marks the beginning of an unobservable internal computation. We are now ready to define the
transformation from B into BSR.

Definition 8 Let B = (L, P , T , C, X , {Xp}p∈P , {gτ}τ∈T , {tcτ}τ∈T , {fτ}τ∈T , {tpc`}`∈L) be an atomic
component. The corresponding Send/Receive atomic component is BSR = (LSR, PSR, TSR, ∅, XSR,
{XSR

p }p∈P , {gτ}τ∈T SR , ∅ , {fτ}τ∈T SR , ∅), such that:

• LSR = L ∪ L⊥, where L⊥ = {⊥`| ` ∈ L}.

• XSR = X ∪ {tcp}p∈P ∪ {tpcBSR} ∪ {rc}c∈C, where rc are Boolean variables, tcp are timing
constraint variables and tpcBSR is time progress condition variable.

• PSR = P ∪ {o}, where the offer port o exports the variables XSR
o =

⋃
p∈P Xp ∪ {tcp}p∈P ∪

{rc}c∈C. For all other ports p ∈ P , we define XSR
p = Xp.

• For each place ` ∈ L, we include an intermediate place ⊥` and an offer transition τ` = (⊥`, o, `) in
TSR. The time progress condition tpcτ` is false, both the guard gτ` and the timing constraint tcτ`
are true, and the update function fτ` is the identity function.

• For each transition τ = (`, p, `′) ∈ T , we include a response transition τp = (`, p,⊥`′) in TSR with
no guard and timing constraint.

The function fτp first applies function fτ of τ , and then sets time progress condition variable to the
time progress condition of next location (i.e. tpcB := tpc`′) and updates the timing constraint and

reset variables: ∀p′ ∈ P tcp′ :=

{
tcτ ′ if gτ ′ ∧ τ ′ = (`′, p′, `′′) ∈ T
false otherwise.

∀c ∈ C rc :=

{
true if fτ resets c
false otherwise.

In the above definition, the execution of a transition τ = (`, p, `′) of a component B corresponds to the
following two execution steps in BSR. Firstly, an offer transition τ` = (⊥`, o, `) transmits for each port
p′ ∈ P the current values of its variables Xp′ , the timing constraint tcp′ corresponding to the enabledness
of p′ at `, as well as the time progress condition tpc`. These are used by the Interaction Protocol for
computing guards and timing constraints of interactions involving BSR. The transition τ` also transmits
for each clock c ∈ C the value of its reset variable rc, such that rc = true, if c has been reset by
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the previous transition execution. Variables rc are used to reset clocks in the Interaction Protocol before
computing timing constraints of interactions.

Secondly, a response transition τp = (`, p,⊥`′) is executed once the Interaction Protocol decides to
execute an interaction involving port p. Similar to τ in B, τp updates values of variables X according to
fτ . It also updates variables tpcBSR , tcp′ and rc to set up-to-date values for the next offer (i.e. starting
from `′). Since (L,P, T ) is a deterministic 1-Safe Petri net, a port p′ ∈ P enables at most one transition at
`′. If no transition labeled by p′ is enabled at `′, or if the guard gτ ′ of the transition τ ′ enabled by p′ at `′

evaluates to false, tcp′ is set to false to disable interactions involving p′. Otherwise, tcp′ is set to the
timing constraint tcτ ′ of transition τ ′ enabled by p′ at `′.

Notice that time progress conditions and timing constraints of BSR do not involve clocks C. Thus,
according to [9] clocks are no longer active and can be removed from BSR. Original time progress condi-
tions and timing constraints ofB are stored in variables ofBSR, and transmitted to the Interaction Protocol
which is responsible for enforcing timeliness in interactions execution. Figure 5 illustrates the transforma-
tion of the component B1 of Figure 2 into its corresponding Send/Receive component BSR1 .

4.2 Interaction Protocol Layer
The Petri net that defines the behavior of an Interaction Protocol component IP j handling a class γj of
interactions is constructed as follows. Figure 6 illustrates the construction of the Petri net of component
IP2 handling interaction a2 and a3 in example of Figure 4.
Variables and Clocks. For each component Bi, we include a time progress condition variable tpcBi

. For
each port p involved in interactions γj , we include a timing constraint variable tcp and a local copy of the
variables Xp exported by p. We also include for each clock a Boolean variable rc that indicates whether
clock c has to be reset.

The set of clocks of IP j contains all the clocks defined initially in componentsBi involved in γj before
being transformed into BSRi .
Places. The Petri net has two types of places:

• For each componentBi involved in interactions of γj , we include waiting and received placeswi and
rcv i, respectively. Place rcv i has a time progress condition defined by the variable tpcBi

. Initially
the IP j remains in a waiting place until it receives an offer from the corresponding component.
When an offer from component BSRi is received, IP j moves from wi to rcv i.

• For each port p involved in interactions of γj , we include a sending place sp. The time progress
condition of sp is false. The response to an offer of a component BSRi is sent from this place to
port p of BSRi .

Ports.
The set of ports of IP j is the following:

• For each component Bi, we include a receive-port oi, to receive offers. Each port oi is associated to
the variables tcp, and Xp associated to each port p of Bi, the variables rc for each clock c of Bi as
well as the variable tpcBi

of Bi. These variables are updated whenever an offer from Bi is received.

• For each port p involved in interactions γj , we include a send-port p, which exports the set of vari-
ables Xp.

• We include a unary port for each interaction a ∈ γj .

Transitions. IP j receives offers from SR components and responds to them. The following set of
transitions of IP j performs these two tasks:

• In order to receive offers from a component Bi, we include transition (wi, oi, rcv i). We also include
a transition (rcv i, oi, rcv i) to receive new offers when Bi takes part in an external interaction. This
transition resets all clocks c such that rc is true.

• For each interaction a = {pi}i∈I in γj , we include the transition ({rcv i}i∈I , a, {spi}i∈I). This
transition is guarded by the predicate Ga, has the timing constraint

∧
i∈I tcpi and moves the tokens

from receiving to sending places. This transition triggers function Fa.

8



w1 w2 w3

rcv1 rcv2 rcv3

if rc1
c1 := 0

o1
o2 if rc3

c3 := 0

o3

tpcB1
tpcB2

tpcB3o1
if rc1

c1 := 0

o2
o3

if rc3
c3 := 0

spfalse sqfalse sr false ss false

[tcp ∧ tcq ] [tcr ∧ tcs]

a2 a3

p q r s

w1 w2 w3

Figure 6: Component IP2 handling interactions a2 and a3 from Figure 3.

• Finally, for each port p involved in interactions γj , we include a transition (sp, p, wi). This transition
notifies the corresponding component to execute the transition labeled p.

Note that in Interaction Protocol components, time progress conditions, timing constraints and resets
of clocks depend on variables, which are not permitted by Definition 2. However, there is only a finite
number of configurations for the values of these variables, as the number of transitions and states in atomic
components Bi is finite. In IP j , we could include multiple transitions for offers oi and interactions a to
encode all possible combinations of these configurations. In this case, an atomic component BSRi would
send offers indicating in which configuration are its reset, time progress conditions and timing constraints
variables, and appropriate guards in IP j would enable the corresponding transitions.

4.3 Send/Receive Interactions
In this subsection, we define the interactions between the components defined thus far. Following Def-
inition 7, we introduce Send/Receive interactions by specifying only the sender. Given a BIP model
γ(B1 · · ·Bn), a partition γ1 · · · γm of γ, the transformation gives a Send/Receive BIP model BSR =
γSR(BSR1 , . . . , BSRn , IP1, . . . , IPm). We define the Send/Receive interactions of γSR as follows:

• For each component BSRi , let IP j1 , . . . , IP jl be the Interaction Protocol components handling in-
teractions involving BSRi . We include in γSR the offer interaction (BSRi .o, IP j1 .oi, . . . , IP jl .oi).

• For each port p in component BSRi and for each Interaction Protocol component IP j handling an
interaction involving p, we include in γSR the response interaction (IP j .p, B

SR
i .p).

• For each interaction a ∈ γ, we add the unary interaction (IP j .a) to γSR, where IP j is the Interaction
Protocol component handling the interaction a.

The concurrent version obtained from the model depicted in Figure 3 is shown in Figure 4. The trans-
formation is parametrized by the partition of the interaction γ1 = {a1} and γ2 = {a2, a3}, yielding two
interaction protocol components.

Theorem 1 Given a timed BIP model B, we have BSR ∼ B, where∼ denotes observational equivalence.

5 Correctness of Step 1
In Subsection 5.1, we show that our transformations indeed result in a well-formed model as defined in
Section 3. Then, in Subsection 5.2, we prove that the initial high-level timed BIP model is observationally
equivalent to the timed SR-BIP model obtained by the transformation of Section 4.

5.1 Compliance with the Send-Receive Model
We need to show that when a receive-port of BSR is enabled, the corresponding send-port is also enabled.
This holds since communications between atomic components and interaction protocol components follow
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a request/acknowledgement pattern. Whenever an atomic component sends an offer, it enables the receive-
port to receive a response and no new offer is sent until the first one is acknowledged.

Lemma 1 Given a BIP model B, the model BSR obtained by transformation of Section 4 meets the prop-
erties of Definition 7.

Proof: The first two constraints of Definition 7 are trivially met by construction. This is because (1) each
interaction has only one send-port and multiple receive-ports, and (2) each send-port is associated with one
and only SR interaction.

We now prove that the third constraint also holds; i.e, whenever a send-port is enabled, all its associated
receive-ports are enabled as well. Between components and Interaction Protocol layer, for all interactions
involving a component Bi, we distinguish between 3 classes of global states:

• The first class contains all states where all the places wi and rcv i in all interaction protocol compo-
nents contain a token, and BSR

i is in a busy place ⊥`. This class contains the initial state. From that
class, the only enabled send-port involved in an interaction with BSR

i is the port oi. By definition
of the class, all associated receive-ports are also enabled, and the Send/Receive interaction can take
place to reach a state of the second class.

• In the second class, the componentBSR
i is in a place ` that is not a busy place, and in each interaction

protocol component the rcvi place contains a token. Two distinct interaction protocol components
handle interactions involving distinct set of ports fromBi, otherwise their interaction would be exter-
nally conflicting. Furthermore, only one interaction protocol component handles ports from Bi with
timing constraints that are not false in the last offer from BSR

i , for the same reason. From that
configuration, there is no enabled send-port involved in an interaction with BSR

i . The next class of
states is reached when the interaction protocol that handles Bi ports with not false timing constraints
executes a transition corresponding to an interaction involving Bi.

• In the last class of state, the component BSR
i is not in a busy place, in all interaction protocol

components except one, the place rcvi is active. In the remaining one, there is a token in a place sp
with p a port of Bi. The port p of this interaction protocol component is enabled. By construction,
the component BSR

i sends an offer from ⊥` with a not false timing constraint for port p only if the
receive port p is enabled from place ` in BSR

i . Thus the Send/Receive interaction can take place to
reach back the first class of states considered. �

The proof of Lemma 1 ensures that any component ready to perform a transition labeled by a send-
port will not be blocked by waiting for the corresponding receive-ports. In other terms, it proves that any
Send/Receive interaction is initiated by the sender.

5.2 Observational Equivalence between Original and Transformed BIP Models
We recall the definition of observational equivalence of two transition systems A = (QA, P ∪ {β},→A)
and B = (QB , P ∪ {β},→B). It is based on the usual definition of weak bisimilarity [?], where β-
transitions are considered unobservable. The same definition is trivially extended for atomic and composite
BIP components.

Definition 9 (Weak Simulation) A weak simulation from A to B, denoted A ⊂ B, is a relation R ⊆
QA × QB , such that ∀(q, r) ∈ R, a ∈ P : q

a→A q′ =⇒ ∃r′ : (q′, r′) ∈ R ∧ r β∗aβ∗→ B r′ and

∀(q, r) ∈ R : q
β→A q

′ =⇒ ∃r′ : (q′, r′) ∈ R ∧ r β
∗
→B r′

A weak bisimulation over A and B is a relation R such that R and R−1 are both weak simulations.
We say that A and B are observationally equivalent and we write A ∼ B if for each state of A there is
a weakly bisimilar state of B and conversely. In this subsection, our goal is to show that B and BSR are
observationally equivalent. We consider the correspondence between actions of B and BSR as follows. To
each jump transition a ∈ γ of B, we associate the unary interaction a of BSR. To each delay transition
δ ∈ R≥0 of B, we associate the same delay transition δ of BSR. All other interactions of BSR (i.e., offer
and response) are unobservable and denoted by β.

10



We proceed as follows to complete the proof of observational equivalence. We denote by qSR a state
of BSR and q a state of B. A state of BSR from where no β action is possible is called a stable state, in
the sense that any β action from this state does not change the state of the atomic components layer.

Lemma 2 From any state qSR, there exists a unique stable state [qSR] such that qSR
β∗−→ [qSR].

Proof: The state [qSR] exists since each Send/Receive component BSR
i can do at most two β transitions:

receive a response and send an offer. Since two β transitions involving two different components are
independent (i.e. do not change the same variable or the same place), the same final state is reached
independently of the order of execution of β actions. Thus [qSR] is unique. �

The above lemma proves the existence of a well-defined stable state for any of the transient states
reachable by the SR modelBSR. This stable state will be used later to define our observational equivalence.
Furthermore, combining this lemma with Lemma 1, we obtain the following property:

Lemma 3 At a stable state [qSR], the Send/Receive model verifies the following properties:

• All atomic components are in a non busy place `.

• All tokens in interaction protocol components are in receive places rcv i.

• Clocks and variables in the atomic components have the same value than their copies in the interac-
tion protocol components.

Proof: The two first points comes from the Lemma 1 that guarantees possible execution of a Send/Receive
interaction if its send-port is enabled. Therefore no place sp in interaction protocol components (respec-
tively⊥` in atomic components) can be active at [qSR], otherwise the answer p (respectively the offer from
⊥`)) could occur. Furthermore, since all offers have been sent, no token can be in a wi state.

To prove the last point, first we claim that no delay transition are allowed from a non stable state.
Indeed, at such a state a β transition is enabled. By construction, All time progress conditions of places
enabling β transitions (offer and response) are false, which forbids delaying these transitions. Now,
whenever a clock is reset or a variable is updated in an atomic component, the immediately following offer
propagates the values of the variables to the interaction protocol components. If some clocks were reset,
the offer transition in the atomic components resets it as well (because of the rx boolean), and no delay
transition occurred between these two resets. �

We are now ready to state and prove our central result.

Theorem 1 BSR ∼ B.

Proof: We define a relation between the set of statesQSR ofBSR and the set of statesQ ofB as follows.
For each state qSR ∈ QSR, we build an equivalent state equ(qSR) by

1. considering the unique stable state [qSR] reachable by doing β transitions.

2. taking the control state ` of BSR
i as control state for Bi in equ(qSR). Lemma 3 ensures that it is a

valid control state for Bi.

3. taking the valuation vi = vSRi |Xi as data and clocks state for Bi in equ(qSR).

We then define the equivalence R by taking:

R = {(qSR, q) ∈ QSR ×Q | q = equ(qSR)}

The three next assertions prove that R is a weak bisimulation:

(i) If (qSR, q) ∈ R and qSR
β−→ rSR then (rSR, q) ∈ R.

(ii) If (qSR, q) ∈ R and qSR a−→ rSR then ∃r ∈ Q : q
a−→ r and (rSR, r) ∈ R.

(iii) If (qSR, q) ∈ R and q a−→ r then ∃rSR ∈ QSR : qSR
β∗a−→ rSR and (rSR, r) ∈ R.
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(i) If qSR
β−→ rSR, then [qSR] = [rSR], and we have by definition equ(qSR) = equ(rSR).

(ii) The action a in BSR is either a jump transition a or a delay transition δ.
If a is a jump transition, it corresponds to executing a transition labeled by a unary port a in one of the

interaction protocol components. By construction of the interaction protocol component, this transition has
the conjunction of timing constraints tcp sent by the atomic components for each port p ∈ a. Similarly,
the guard of this transition is the guard of a evaluated on the same values. By Lemma 3, these values
are the same in atomic components, and by extension in q = equ(qSR). Thus the guard of a evaluates to
true at q. By construction of the atomic components, the timing constraints sent from ⊥` in BSR

i are the
timing constraints at state ` in Bi. Therefore, the timing constraints of a are met at state q. Thus we have
q

a−→ r. Finally, executing a in BSR triggers the execution of the data transfer function Fa, followed by
the computation in atomic component upon reception of the response. Thus at [rSR] the values in atomic
components are the same as in r, which yields (rSR, r) ∈ R.

If a is a delay transition δ, it can occur only from a stable state. By Lemma 3, all rcv i places have a
token. Therefore any transition a can execute if the time progress conditions tpcBi

are met. In particular,
there is no time progress condition tpcBi

that is false, otherwise the δ delay transition would not be allowed.
The same reasoning as in the previous case applies to state that in the equivalent state equ(qSR) the time
progress conditions are the same. Therefore q δ−→ r. Executing δ has the same effect on the clocks in both
models, therefore (rSR, r) ∈ R.

(iii) If a can be executed inB at state q, then from an equivalent state qSR, one can reach the state [qSR]
where the state, data and clocks of atomic components coincide with those of q. By Lemma 3, clocks, port,
timing constraints and data values are the same in components of B and interaction protocols components
in BSR. Furthermore, all rcvi places are active. As previously, we distinguish the cases where a is a jump
transition a or a delay transition δ.

If a is a jump transition, the corresponding transition in the interaction protocol can be executed as the
guard and timing constraints of a are also true. As previously, the execution of a in both model leads to

equivalent states. Thus we have qSR
β∗−→ [qSR]

a−→ rSR with (rSR, r) ∈ R.
If a is a delay transition δ, then no interaction a is urgent at q. Similarly, no unary transition a is urgent

in interaction protocol components at [qSR], and no β transition is possible. After waiting δ in both model,

clocks are updated identically. Thus we have qSR
β∗−→ [qSR]

δ−→ rSR with (rSR, r) ∈ R. �

6 Step 2: Use of a Single Clock
In this section, we explain how we refine Send/Receive-BIP models presented in Section 4 into Single-
Clock Send/Receive-BIP. In a Single-Clock Send/Receive-BIP, all the time progress conditions and timing
constraints of the model are expressed based on a single global clock g that is never reset. This clock
measures the absolute time elapsed since the system starts executing.

The transformation from a Send/Receive model to a Single-Clock Send/Receive-BIP model involves
the following steps:

1. We add the global clock g to each component.

2. For each clock c of a component B, we introduce a real variable ρc in order to store the absolute
time of the last reset of the clock c with respect to the clock g. Whenever the clock c is reset by a
transition of B, we assign to ρc the current value of g, denoted by ρc := t(g), where t(g) represents
the valuation of the clock g at the current state of the system. Notice that the value of c can be
computed from the current value of g and ρc by using the equality c = g − ρc.

3. We express any timing constraints tc using the clock g instead of clocks C. Using (1) we rewrite tc
as follows: tc =

∧
c∈Ci

lc + ρc ≤ g ≤ uc + ρc. That is, tc is an interval constraint on g of the form:
tc = max{lc + ρc}c∈Ci

≤ g ≤ min{uc + ρc}c∈Ci
.

4. Due to the previous transformation, local clocks C are no longer used by timing constraints, that is,
they are not active [9]. Thus, we keep only the global clock g and the variables ρc.

Notice that steps 2, 3, and 4 apply only to Interaction Protocol components, since distributed atomic
components have no clock.
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Algorithm 1: Code generated for SR-BIP components.
1 Initialize() // initialize the Petri net and connections
2 G:= 0 // initialize logical time
3 g := 0 // reset real-time clock
4 while true do
5 while Ps ∩ enabled 6= ∅ do // send messages
6 choose p ∈ Ps ∩ enabled
7 send(p)
8 s:=NextState()

9 D :=nextDeadline(s)
10 G := g
11 ifG > D then exit(DEADLINE_MISS)
12 N :=nextEnabled(Pu, G)
13 ifN > G then
14 wait newMessage() ∨ g ≥ min(N,D)
15 if newMessage() then // received message
16 recv(message())
17 s:=NextState()
18 continue
19 if g ≥ N ∧D ≥ g then
20 G:= N
21 choose p ∈ Pu such that nextEnabled(p,G) = G
22 DoInternalComputation(p) // internal transition
23 s:=NextState()
24
25 if g > D then exit(DEADLINE_MISS)

Single-Clock Send/Receive-BIP models are easier to map on a platform than Send/Receive-BIP, as
they require a single real-time clock to be implemented. However, they are based on the fact that atomic
components respond instantaneously to notification of Interaction Protocol components by sending offers.
This assumption cannot be met in practice since execution of transitions as well as transmission of messages
may take significant time.

7 Implementation and Experimental Results

7.1 Enforcing Robustness
Before generating code from components of a Single-Clock Send/Receive-BIP model, we transform the
model to make it robust to execution time of transitions and communication primitives. To this end, we use
the notion of logical time, which is the theoretical time instant at which transitions must be executed in the
model. Logical time and actual time must coincide only for timing constraints of the initial model, that is,
for transitions corresponding to interactions in the Interaction Protocol.

We transform Single-Clock Send/Receive-BIP as follows. In any Interaction Protocol component IP j ,
we use a real variable G that stores the logical time of the last interaction execution. Initially, we set G
to 0. Unary transitions in IP j components update the current value of the logical time using G := t(g).
Moreover, when IP j notifies a component Bi for executing a port p, it also sends the current value of the
logical timeG. Boolean reset variables rc of atomic componentsBSRi are replaced by real valued variables
ρc. BSRi keeps track of the last reset time of a clock c by executing ρc := G instead of rc := true,
whenever c is reset. When Interaction Protocol component IP j receives offers from a component BSRi ,
they update their local copy of variables ρc based on the values received in the offers.

In such a model, components can let time progress before sending messages, which may violate time
progress conditions of states reached by components. Before executing an interaction a in IP j at the current
time t(g) we check before updating the logical time G that the value t(g) is allowed by the semantics, that
is, no time progress condition is evaluated to false at t(g). If this condition is violated, we say that a
deadline has been missed and the platform was not fast enough to execute the model.

7.2 Code Generation
The C++ code generated from a componentBi is shown in Algorithm 1. It uses the clock g giving access to
the current value of the global time, and maintains the logical time in variableG. The function NextState()
updates the state of the component upon execution of a transition. We denote by enabled the set of ports
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enabled at the current state. Given a port p , nextEnabled(p,G) denotes the next global time value from G
at which p is enabled. This value is computed from the timing constraint tcp of p using nextEnabled(p,G)
= min {t ≥ G | tcp(t)} ∪ {+∞}. This notion is extended to sets of ports by taking the minimal value.
Given a state s, nextDeadline(s,G) denotes the maximal global time value until which the component is
allowed to stay at s. This value is computed from time progress conditions tpc` of `, where ` is a place
belonging to state s, as following: nextDeadline(s,G) = max {t ≥ G |

∧
`∈s tpc`(t)} ∪ {G}.

First the component is initialized (Lines 1 to 3). Then, the main loop then starts by sending as soon
as possible messages corresponding to all enabled send-ports (Lines 5 to 8). Unary ports Pu may have
timing constraints, and have to be executed in real-time. We update the logical time along with checking
for violations of deadlines at Lines 9 to 11. We stop if a deadline is missed, i.e. if there is a time progress
condition that is evaluated to false at the new value of logical time provided by g. If no unary transition
can be executed at the current value of the logical time (i.e. N = nextEnabled(Pu, G) > G), we wait for
a unary transition to be enabled (i.e. g reaches N ), for the deadline to expire(i.e. g reaches D) or for a
message to be received (Line 14). In the later case, we execute the corresponding port to take the message
into account (Lines 15 to 18). If no message has been received untilN (i.e g ≥ N ) and the deadline did not
expire (g ≤ D), we execute a unary transition enabled at logical time G = N (Lines 20 to 23). Otherwise,
we report a deadline miss if g > D (Line 25). Notice that unary transitions can only be found in Interaction
Protocol components IP j and correspond to interactions. An Interaction Protocol component computes the
deadlines according to the pending offers it received and schedules an enabled interaction ASAP. In atomic
components, Lines 15 to 18 cannot be reached as N and D are always +∞.

7.3 Demosaicing Algorithm

Our case study to evaluate our framework is a real-time image reconstruction system. A demosaicing
algorithm transforms the raw data from a camera sensor into an actual image. A camera sensor is an array
of light sensors, each of them outputting a single value. A color filter placed over the sensor array ensures
that each sensor receives either red, green, or blue light. The filtering is done according to the pattern
presented on the left of Figure 7. The obtained raw image contains a single color component for each pixel.
Demosaicing yields an RGB image by interpolating for each pixel the missing color components from the
values of the neighbor pixels. In Figure 7, the neighborhood contains only adjacent pixels. Depending
upon the interpolation algorithm used, this neighborhood may change. In our case, we use a neighborhood
of size 5× 5, centered on the interpolated pixel. We do not detail here the interpolation function used.

R G R G R

G B G B G

R G R G R

G B G B G

R G R G R

Raw image:
1 color component
per pixel

Interpolation

RGB image:
3 color components
per pixel

Figure 7: Demosaicing raw data to RGB
image.

Figure 8 shows the BIP model of demosaicing for 4 par-
allel blocks. Initially, the image is loaded by the compo-
nent I , which trigger a global_start interaction (not shown
on the Figure) between components Dij , Ji, I and O. These
components reset their respective clocks upon execution of
global_start.

This algorithm is parallelized by cutting the raw image
into blocks, each being demosaiced concurrently. The im-
age is first split into lines by the interaction named split,
then each line i is split into blocks by the interaction named
split_line_i. The detailed behavior of components Dij and
Cij is depicted in Figure 9.

Component Dij performs actual demosaicing of the image block located at i, j, whenever it receives
an image block through its port get_block. Component Cij controls timing of the component Dij . We use
timing constraints and time progress conditions to enforce delivery of a RGB image within a given amount
of time after the raw image has been provided. The parameter k allows to control the time to demosaice
a block. When Dij finishes the demosacing of a block, if less time than k elapsed since the last global
start, Cij allows interaction trans_ij that transmits the demosaiced block to Ji. Otherwise, the block is not
transmitted, Cij declares a timeout through unary interaction timeout and returns with Dij to the initial
state through interaction cancel. The component Ji joins blocks to form the line i and transmits it through
trans_i. Its transition from the receiving state to the transmitting state is triggered if all blocks are received
or if too much time elapsed since global_start.

Finally, component O merges received lines and outputs the image. The image is outputted either if
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Figure 11: Time needed to process a 6MP image.

all lines are received or if too much time elapsed since global_start. If some blocks or lines were not
transmitted, the outputted image is incorrect on the corresponding blocks.

We consider two different partitions for generating the distributed model. The first one is centralized
partition and puts all interactions in the same Interaction Protocol component. The second one is conflict-
free partition, and is such that:

• Interaction split, start and all interactions split_line_i define the first class of the partition.

• For each i, the interactions trans_ij are grouped in the same class, together with reset interactions.

• The interactions trans_i form the last class.

7.4 Experimental Results
We demosaice raw images of size 25 × 106 pixels and 6 × 106 pixels. The BIP model splits each image
into 9 blocks, that are demosaiced concurrently. We generate distributed code for both the centralized
and the conflict-free versions. We run the code on a UltraSparc T1 that allows parallel execution of 24
processes. The parameter k in the component Cij controls the amount of time after which the image must
be outputted.

Figures 10 and 11 show the number of blocks processed depending on the amount of time allowed
k, respectively for 25M pixels and 6M pixels raw images, for both centralized and conflict-free partition.
The conflict-free partition exhibits a speedup ranging between 1.5 to 2 comparatively to the centralized
partition. The conflict-free partition allows more parallelism between interactions, for instance, interactions
split_line_i can be executed in parallel, where the centralized does not. Since demosaicing components
run concurrently in both implementations, the speedup stems solely from the possible parallelism between
interactions.

8 Related Work
LOTOS [10] is a specification language based on process algebra, that encompasses multiparty interactions.
In [16], the authors describe a method of executing a LOTOS specification in a distributed fashion. This
implementation is obtained by constructing a tree at runtime. The root is the main connector of the LOTOS
specification and its children are the subprocesses that are connected. A synchronization between two
processes is handled by their common ancestor. Another framework that offers automatic distributed code
generation is described in [13]. The input model consists of composition of I/O automata, from which a
Java implementation using MPI for communication is generated. The model, as well as the implementation,
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can interact with the environment. However, connections between I/O automata (binary synchronization)
are less expressive than BIP interactions, as proved in [6]. Finally, the framework in [13] requires the
designer to specify low-level elements of a distributed system such as channels and schedulers.

In the context of the framework, automated implementation of distributed applications from BIP mod-
els has been addressed in [7, 8]. The authors propose a 3-layer architecture or, where the first layer is
concerned with behavior of components, the second layer handles execution of interactions, and the third
layer resolves distributed conflicts. However, this line of work is not concerned with notion of time and
timing constraints. On the timed models side, in [1], the authors study the problem of model-based imple-
mentation of sequential timed BIP models. The closest work to this paper is the approach in [15]. This
technique transforms a timed BIP model into a parallel time-aware code. The main difference is unlike
our approach, the method in [15] augments the code with only one centralized engine. Such an engine can
potentially become a bottleneck and consequently make the generated code inefficient.

Finally, TIMES is a tool for modelling and schedulability analysis of embedded real-time systems [3].
The tool is featured with a code generator for sequential C-code synthesis on LegoOS platform from the
input model. Unlike our approach in this paper, TIMES is not able to generate concurrent code.

9 Conclusion
Concurrent real-time systems have numerous applications in today’s embedded computing systems. How-
ever, correct development of such systems is known to be a notoriously difficult problem. In this paper,
we focused on model-based automated and correct-by-construction development of multi-process appli-
cations that are subject to timing constraints. We proposed a chain of transformations that starts from an
abstract model of the application expressed in terms of a set of interacting components. Each component
is constrained by a set of local logical timing requirements. In each step, a transformation obtains a model
that encompasses platform constraints, such as point-point communication and physical real time. Each
transformation ensures that all functional properties of the input model are preserved. Our transformations
are fully implemented and validated on a framework for real-time image reconstruction system.

For future work, there are several research directions. An important extension of this work is to design
transformations, in which schedulers are not necessarily conflict-free. Such schedulers potentially result
in better levels of parallelism. A more challenging (but highly needed) research direction is model-based
development of distributed real-time applications, where a global perfect clock cannot be assumed.
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