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ABSTRACT
We consider the problem of translating a deterministic sim-
ulation model (like Matlab-Simunk, Modelica or Ptolemy
models) into a verification model expressed by a network of
hybrid automata. The goal is to verify safety using reacha-
bility analysis on the verification model. Simulation models
typically use transitions with urgent semantics, which must
be taken as soon as possible. Urgent transitions also make
it possible to decompose systems that would otherwise need
to be modeled with a monolithic hybrid automaton. In this
paper, we include urgent transitions in our verification mod-
els and propose a suitable adaptation of our reachability
algorithm. However, the simulation model, due to its im-
perfections, may be unsafe even though the corresponding
hybrid automata are safe. Conversely, set-based reachabil-
ity may not be able to show safety of an ideal formal model,
since complex dynamics necessarily entail overapproxima-
tions. Taken as a whole, the formal modeling and verifica-
tion process can both falsely claim safety and fail to show
safety of the concrete system.
We address this inconsistency by relaxing the model as

follows. The standard semantics of hybrid automata is a
mathematical idealization, where reactions are considered to
be instantaneous and physical measurements infinitely pre-
cise. We propose semantics that relax these assumptions,
where guard conditions are sampled in discrete time and
admit measurement errors. The relaxed semantics can be
translated to an equivalent relaxed model in standard se-
mantics. The relaxed model is realistic in the sense that it
can be implemented on hardware fast and precise enough,
and in a way that safety is preserved. Finally, we show that
overapproximative reachability analysis can show safety of
relaxed models, which is not the case in general.

1. INTRODUCTION
A hybrid system describes the interaction of both discrete

and continuous components over time. This combination
can quickly lead to complex behaviors that are difficult to
predict and control. The model based design of hybrid sys-
tems is commonly based on simulation models for tools like
Matlab/Simulink [16], Modelica [17], Ptolemy [5], and many
more. It is very hard to exhaustively test models using nu-
merical simulation, so critical behaviors may go undetected.
Set-based verification methods, on the other hand, can cover
all possible behaviors in a single analysis. But they require a
verification model, typically in the form of a Hybrid Automa-
ton (HA) [12]. Hybrid Automata extend traditional state
machines with continuous variables, governed by differential

equations for modeling the continuous evolution of physical
activities. We assume that verification models are used to
verify safety or bounded liveness properties using approxi-
mative, set-based reachability algorithms, which are applica-
ble to systems with piecewise-affine dynamics and hundreds
of continuous variables [8, 7]. In this paper, we propose a re-
laxation of hybrid automata such that they are conservative
abstractions of simulation models, and show how standard
reachability techniques can be applied without necessarily
compromising the computational cost of the analysis.

In the standard semantics of hybrid automata, transitions
are nondeterministic: The system may take a transition
when it satisfies the guard condition of a transition or remain
in the same discrete state as long as the invariant (staying
condition) holds. Simulation models are typically determin-
istic, since the simulator needs to be able to compute what
happens in the next step. Simulation models therefore use
urgent semantics, where a transition is taken as soon as the
guard condition is satisfied. Urgent transitions make it pos-
sible to decompose systems that would otherwise need to be
modeled with a monolithic hybrid automaton. This greatly
facilitates the translation from deterministic models to hy-
brid automata, since it can be done component-wise. This is
important in practice, since the structure of the model has a
profound impact on several aspects of safety-critical model
development, see [23]. Urgent semantics are not covered by
standard reachability algorithms, since the computation of
the states reachable by time elapse is more complex. We
fill this gap by generalizing the urgent time elapse operator
in [19] from piecewise constant dynamics to piecewise affine
dynamics. We show that the time elapse computation with
urgency can be reduced to time elapse with a nonconvex
invariant. Since the standard reachability algorithms work
on convex invariants, we propose a a time elapse operator
for nonconvex invariants. The idea is to consider a coverage
of the invariant, where the elements are convex and closed.
Then the standard time elapse is applied recursively on each
of the elements.

The introduction of urgency in hybrid automata allows
us a relatively straightforward translation from simulation
models. But the obtained hybrid automata are a mathe-
matical idealization, where reactions (the effects of discrete
events) are considered to be instantaneous and the variables
have infinite precision. Clearly this is not the case for simu-
lation, which computes an approximation of the state while
taking discrete time steps. When the safety of a verification
model relies on the assumption of instantaneous reaction, it
can not be always implemented by a simulation model. In



other words, the safety of the ideal hybrid automaton does
not prove the safety of the corresponding simulation model.
This should not be simply dismissed as a defect of the sim-
ulation model. In industrial practice, simulation models are
developed over years and finely tuned up to the point that
the simulator output is considered a faithful reflection of re-
ality [9]. Furthermore, if the system can not be simulated
numerically, it stands to reason that it can also not be im-
plemented on a digital controller.
We illustrate the point with a variation of a DC-to-DC

switched-mode power converter from [21], implemented in
Simulink/Stateflow. The state variables are currents and
voltages whose continuous dynamics are specified by switched
linear ordinary differential equations. We add an urgent
transition to change the dynamics when the voltage reaches
the value x = 15 exactly. In the Simulink output shown
in Fig. 1(a), the simulator does not detect any of the three
crossings of x = 15. This could be considered a bug in the
model, since we could have used one of Simulink’s special
blocks for detecting zero crossings. It could also point to
a bug in the controller design, since an implementation of
the system with a digital controller may miss the crossing
just like the simulator. Either way, one should hope to de-
tect this behavior using formal verification. We convert the
simulink model to a hybrid automaton using the translator
SL2SX [18], and run the verification tool SpaceEx [8]. In
the hybrid automaton model, the urgent transition is always
and instantaneously fired when the guard x = 15 is satisfied,
as shown in Fig. 1(b). As a consequence, the reachability
set is different and can not be used to prove safety of the
simulation model. In the following we propose a relaxed hy-
brid automaton, which is an abstraction of the simulation
model and therefore contains both behaviors, as shown in in
Fig. 1(c).
In this paper, we propose to relax the semantics of the

hybrid automaton to capture that the simulated system

(i) may check guard conditions at discrete time points,
assuming a bound ∆ ≥ 0 on the time step, and

(ii) may check guard conditions with a precision error ϵ.

Point (i) is the relaxation of the instantaneous reaction as-
sumption and point (ii) is the relaxation of the infinite pre-
cision assumption. For ∆ = 0 and ε = 0, we obtain the
standard semantics. We show that the behaviors generated
by relaxed semantics are equivalent to a relaxed model with
standard semantics. The relaxation consists of enlarging
the guards and shrinking urgent guard conditions accord-
ingly. Our reachability algorithm can then be applied on
the relaxed model.
The relaxed semantics with urgency have additional in-

teresting properties, some of them similar to almost asap
semantics from [24]. First, fast is better, meaning that if
the relaxed model with sampling time ∆ and precision error
ϵ is safe, then it is also safe for any smaller sampling time
∆′ using the same precision error ϵ. Second, precision is
a quality, meaning that if the relaxed model with sampling
time ∆ and error ϵ is safe, then it is also safe for ∆ and any
smaller precision error ϵ′. Third, relaxed models are realistic
in the sense that they can be implemented on hardware fast
and precise enough, and in a way that safety is preserved.
Finally, we show that overapproximative reachability analy-
sis can show safety of relaxed models, which is not the case
in general.

(a) Simulink (b) ideal HA (c) relaxed HA

Figure 1: The simulation model may differ from an
idealized hybrid automata model; a relaxed hybrid
automaton can capture all cases

Related Work.
Time-elapse computations for nonconvex invariants have

already been tackled for hybrid automata with piecewise
constant dynamics (LHA). The technique proposed by [14,
4] consist of modeling the nonconvex invariant by splitting
locations, each one with a single convex component of the
invariant. The technique in [19] is similar, but skips the
construction of auxiliary locations by iterating over a con-
vex cover of the invariant. It also resolves technicalities aris-
ing from strict inequalities. We follows this last approach,
extending the results to piecewise affine dynamics.

A detailed and formal discussion of urgency can be found
in [10] and the references therein. A general class of hy-
brid automata with urgency conditions is described in [22].
Urgency conditions are also part of the Computational In-
terchange Format for Hybrid Systems (CIF) [3], and a re-
stricted class of urgent guard conditions can be handled by
the classic reachability tool HyTech [13]. Computing the
reachable states for the general case of urgency is not triv-
ial. An algorithm for an effective computation of the time-
elapse for HA with urgency was proposed for linear hybrid
automata (LHA) in [19]. This time elapse computation with
urgency is reduced to time-elapse with nonconvex invariants.
We follows a similar approach, extending the algorithm to
piecewise affine dynamics.

Our timed relaxation is closely related to [24], which in-
troduces a parametric semantics for timed controllers called
Almost ASAP semantics (AASAP). These semantics relax
the assumption of instantaneous reaction by imposing the
controller to react within ∆ time units when an urgent ac-
tion takes place. Similar to our case, the AASAP semantics
is such that faster is better and such that any controller
proven to be correct for some ∆ > 0 can be implemented.
Our semantics can be seen as an extension of the this seman-
tics from timed to hybrid automata with finite precision on
the measurements.

The formalism of Lazy Hybrid Automata [2, 1, 15] also re-
laxes the ideal assumptions. It refers to HA whose dynam-
ics is governed by a vector of constants rates, and where the
plant state evolves continuously while the controller samples
the plant state and changes the control state discretely at
specific sampling times Ti. The relaxation of the instanta-
neous reaction hypothesis is done by distinguishing the de-
lays δh on sensors and δg on actuators, while the finite preci-
sion is modeled by considering neighborhood of the guards.
Transition may be fired when guards are satisfied at least one
time in intervals, next to sampling points, of length δh. This
does not ensure that transitions are fired also with smaller
sensors delay (i.e. by setting δ′h < δh) and then the property
faster is better is not valid for lazy HA. The analysis of the



behavior of lazy HA is based on state discretization, which
may compromise scalability.

2. REACHABILITY FOR HYBRID
AUTOMATA WITH URGENCY

In this section, we give our definition of Hybrid Automata
(HA) with urgency. They include in each location an ur-
gency condition represented by a nonconvex polyhedron. As
in [19], we also include non-convex invariants.

2.1 Hybrid Automata with Urgency
We first need to define some notation. A convex polyhe-

dron is a subset of Rn that is the intersection of a finite
number of strict and non-strict affine half-spaces. A polyhe-
dron is a subset of Rn that is the union of a finite number
of convex polyhedra. For clarity, we write P̂ if P is con-
vex. For a general (i.e., not necessarily convex) polyhedron

G ⊆ Rn, we denote by [[G]] ⊆ 2R
n

its representation as a
(minimal) finite union of convex polyhedra. The topolog-
ical closure of P is denoted by cl(P ). Given an ordered
set X = {x1, . . . , xn} of variables, a valuation is a function
v : X → R. Let Val(X) denote the set of valuations over
X. There is an obvious bijection between Val(X) and Rn,
allowing us to extend the notion of (convex) polyhedron to
sets of valuations. We denote by CPoly(X) (resp., Poly(X))
the set of convex polyhedra (resp., polyhedra) on X. More-
over, we denote by SPoly(X) the subset of RX that can be
obtained by finite disjunction of closed convex polyhedra.
We use Ẋ to denote the set {ẋ1, . . . , ẋn} of dotted vari-

ables, used to represent the first derivatives, and X ′ to de-
note the set {x′

1, . . . , x
′
n} of primed variables, used to rep-

resent the new values of variables after a discrete transi-
tion. Arithmetic operations on valuations are defined in
the straightforward way. An activity over X is a function
f : R≥0 → Val(X) that is continuous on its domain and
differentiable except for a finite set of points. Let Acts(X)

denote the set of activities over X. The derivative ḟ of an
activity f is defined in the standard way and it is a partial
function ḟ : R≥0 → Val(Ẋ).
Formally, a hybrid automaton

H = (Loc, X,Lab, Inv ,Urg ,Flow ,Trans, Init)

consists of the following components:

• a finite set Loc of locations;

• a finite set X = {x1, . . . , xn} of real-valued variables.
A state is a pair ⟨ℓ, v⟩ of a location ℓ and a valuation
v ∈ Val(X);

• a finite set of labels Lab;

• a set Inv ⊆ Loc×Rn, called the invariant. The system
may only remain in a location ℓ as long as the state is
inside its invariant Inv(ℓ).

• a set Urg ⊆ Loc × Rn, called the urgency condition.
The urgency condition impedes time elapse, i.e., no
continuous activities in a location ℓ continue from a
valuation that satisfies the condition Urg(ℓ);

• a set Flow ⊆ Loc × Rn × Rn, defined over the first
derivative of the variables, which determines how vari-
ables can change over time.

`1 `2
x ≤ 1

x ≥ 5

ASAP

ASAP

(a) ASAP transitions explic-
itly modeled

`1 `2
x ≤ 1

x ≥ 5
Urg :

x ≤ 1 ∨
x ≥ 5

(b) ASAP transitions mod-
eled by urgent condition

Figure 2: ASAP transitions modeled by urgent

• a finite set Trans of discrete transitions that describes
instantaneous changes of locations, in the course of
which variables may change their value. Each tran-
sition (ℓ, α,G, Asgn, ℓ′) ∈ Trans consists of a source
location ℓ, a target location ℓ′, a label α ∈ Lab, a guard
G ⊆ Rn and an assignment Asgn : Rn → 2R

n

. A state
⟨ℓ, v⟩ can jump to ⟨ℓ′, v′⟩ if v ∈ G and v′ ∈ Asgn(v).

• a set Init ⊆ Loc×Rn, contained in the invariant, defin-
ing the initial states of the automaton. All behavior
originates from these states.

The set of states of H is S = Loc × Val(X). Given a set of
states A and a location ℓ, we denote by A �ℓ the projection
of A on ℓ, i.e. A�ℓ= {v ∈ Val(X) | ⟨ℓ, v⟩ ∈ A}.

The kind of dynamics modeled by the component Flow
determines the special class of Hybrid Automata. When
Flow is expressed by polyhedral inclusion, i.e. Flow : Loc →
CPoly(Ẋ), we are talking about the subclass of Linear Hy-
brid Automata. Otherwise, the subclass of Affine Hybrid
Automata is defined by affine continuous dynamics with un-
certain inputs of the form

ẋ(t) = Ax(t) + u(t), u ∈ U ,

where x(t) ∈ Rn, A is a real-valued n×n matrix and U ⊆ Rn

is a closed and bounded convex set.
In both subclasses, the transition assignments Asgn are

of the form x′ = Rx + w,w ∈ W, where R is a real-valued
n × n matrix, and W ⊂ Rn is a closed and bounded set of
nondeterministic inputs.

Urgent Conditions and ASAP Transitions.
Urgency is used to model the so-called must semantics

where, unlike the may semantics of standard HA, transi-
tions must be taken immediately when associated guards
are satisfied. Because urgent conditions impede elapsing of
time, they can be satisfied only in a single time point. This
point is the exact moment when the urgency is met (i.e. the
frontier of the urgent condition).

In our definition, the urgency condition is defined for each
location. An alternative approach, popular mainly because
of its syntactical simplicity, is to designate each discrete
transition as urgent or not. This is also referred to as as-
soon-as-possible (ASAP) transitions. As shown by Fig. 2,
urgent transitions can easily be translated to an urgency
condition: let EdgU ⊆ Edg be the set of urgent transitions.
Then the equivalent urgency condition is the union of the
outgoing guards,

Urg(ℓ) =
∪{

G
∣∣(ℓ, α,G, Asgn, ℓ′) ∈ EdgU

}
.

2.2 Parallel Composition



One attractive feature of urgency is that a model can be
decomposed for cases where this is not possible without ur-
gency. Consider the example of an automaton for the plant
and an automaton for the controller. Without urgency, the
controller automaton can in general not prevent time elapse
in the plant automaton, unless an additional clock is intro-
duced and that clock is sampled periodically.
We give a brief formal definition of parallel composition

with urgency for the case where both automata range over
the same variables. The key here is that the urgency con-
dition of the composition is the union of the urgency con-
ditions of the operands. Given a hybrid automata with ur-
gency H1, H2 with Hi = (Loci, X,Labi,Edgi,Flow i, Inv i,
Urgi, Init i), their parallel composition is the HAH = (Loc1×
Loc2, X,Lab1 ∪ Lab2, Edg ,Flow , Inv , Urg , Init), written as
H = H1∥H2, where Flow(l1, l2) = Flow1(l1) ∩ Flow2(l2);
Inv(l1, l2) = Inv1(l1) ∩ Inv2(l2); Urg(l1, l2) = Urg1(l1) ∪
Urg2(l2); Init(l1, l2) = Init1(l1) ∩ Init2(l2) and transitions
((l1, l2), α,G, Asgn, (l′2, l

′
2)) ∈ Edg iff

• α ∈ Lab1 ∩ Lab2, for i = 1, 2, (li, α,Gi, Asgni, l
′
i) ∈

Edg i, G = G1 ∩ G2, Asgn = Asgn1 ∩Asgn2, or

• α /∈ Lab1, l
′
2 = l2, (l1, α,G, Asgn, l′1) ∈ Edg1, or

• α /∈ Lab2, l
′
1 = l1, (l2, α,G, Asgn, l′2) ∈ Edg2.

2.3 Run Semantics
The behavior of a HA is based on two types of steps:

discrete steps correspond to the Trans component, and pro-
duce an instantaneous change in both the location and the
variable valuation; timed steps describe the change of the
variables over time in accordance with the Flow component.

Definition 1 (Discrete Step). Given two states s, s′, and
a transition e = (loc(s), α,G, Asgn, loc(s′)) ∈ Edg , there is

a discrete step s
e−→ s′ with source s and target s′ iff

(i) s, s′ ∈ Inv ,

(ii) val(s) ∈ G, and
(iii) val(s′) = Asgn(val(s)).

Whenever (ii) holds, we say that e is enabled in s. Given a
state s = ⟨ℓ, v⟩, let loc(s) = ℓ and val(s) = v. An activity
f ∈ Acts(X) is called admissible from s if (i) f(0) = v and

(ii) for all δ ≥ 0, if ḟ(δ) is defined then ḟ(δ) ∈ Flow(ℓ). We
denote by Adm(s) the set of activities that are admissible
from s.
To take into account the urgency condition, which affects

timed steps, we need to know the maximum amount of time
δ such that the system, by following an activity f , is al-
lowed to remain in a give location ℓ. Formally we define,
for an activity f ∈ Adm(s), the Switching Time of f in
ℓ, denoted by SwitchT (f,Urg(ℓ)), as the value δ ≥ 0 such
that, for all 0 ≤ δ′ < δ, f(δ′) /∈ Urg(ℓ) and f(δ) ∈ Urg(ℓ).
When for all δ ≥ 0 it holds that f(δ) /∈ Urg(ℓ), we write
SwitchT (f,Urg(ℓ)) = ∞.

Definition 2 (Timed Step). Given two states s, s′, there

is a timed step s
∆,f−−→ s′ with duration ∆ ∈ R≥0 and activity

f ∈ Adm(s) iff

(i) for all 0 ≤ δ′ ≤ ∆, (⟨ℓ, f(δ′)⟩) ∈ Inv ,

(ii) s′ = ⟨loc(s), f(∆)⟩, and
(iii) ∆ ≤ SwitchT (f,Urg(loc(s))).

Conditions (i) says that the system always remains in the
invariant I = Inv(ℓ) during the duration ∆ of the step,
while condition (iii) says that during this step the system
can satisfy the urgency condition only at time ∆.

A run is a sequence

r = s0
δ0,f0−−−→ s′0

e0−→ s1
δ1,f1−−−→ s′1

e1−→ s2 · · · sn . . . (1)

of alternating timed and discrete steps. If the run r is finite,
we define len(r) = n to be the length of the run, otherwise
we set len(r) = ∞. The set Runs(H) denotes the set of all
runs of the automaton H.

Given a state s ∈ S and a hybrid automatonH with initial
set of states Init , s is said to be reachable in H if there exists

a finite run r = s0
δ0,f0−−−→ s′0

e0−→ s1
δ1,f1−−−→ s′1

e1−→ s2 · · · sn,
such that s0 ∈ Init and sn = s. We denote the set of
reachable states by Reach(H).

2.4 Reachability Computation
In this section we propose an extension of the algorithm

proposed by [19] in order to compute the time-elapse opera-
tor for the class for automata with piecewise affine dynam-
ics with urgent conditions. This problem is reduced to the
computation of the time-elapse for non-convex invariants,
for which so far no algorithm is available for piecewise affine
dynamics.

2.4.1 Standard Post Operators
A classic algorithm to compute the set Reach(H) is a

fixed-point procedure based on a continuous post operator
and on a discrete post operator : given a set of states S′ ⊆ S,
the continuous post is used to compute the states reachable
from S′ by following an admissible trajectory, while the dis-
crete post is used to compute the states reachable from S′

via discrete transitions.
Given a hybrid automaton H, a location ℓ ∈ Loc, a set

of valuations P, I ⊆ Inv(ℓ), U = Urg(ℓ), and a time hori-
zon T ≥ 0, the ∆-timed horizon continuous post operator
∆Postℓ(P, I, T ) contains the set of all valuations v ∈ Val(X)
reachable from some u ∈ P , within the time T by never leav-
ing I:

∆Postℓ(P, I, T ) =
{
v ∈ val(X)

∣∣ ∃0 ≤ δ ≤ T, u ∈ P,

f ∈ Adm(⟨ℓ, u⟩) : ∀0 ≤ δ′ ≤ δ : f(δ′) ∈ I

and f(δ) = v
}
. (2)

The standard continuous post operator Postℓ(P, I) contains
the set of all valuations v ∈ Val(X) reachable from some
u ∈ P , without leaving I:

Postℓ(P, I) =
∪
δ≥0

∆Postℓ(P, I, δ) (3)

The discrete post operator Poste(P ) contains the set of all
valuations v ∈ Val(X) reachable from some u ∈ P by taking
the discrete transition e = (ℓ,G, Asgn, ℓ′):

Poste(P ) =
{
v ∈ val(X)

∣∣∣ ∃u ∈ P ∩G ∧ v ∈ Inv(ℓ′)
}
. (4)

Notice that urgency does not affect discrete steps, hence
the above definition of discrete post is still valid in case of
urgency. From these operators on valuations we obtain the
continuous and discrete post operators for a set of states S



by iterating over all locations and transitions:

Postc(S) =
∪

ℓ∈Loc

{ℓ} × Postℓ(S �ℓ, Inv(ℓ)), (5)

Postd(S) =
∪

(ℓ,α,G,Asgn,ℓ′)∈Edg

{ℓ′} × Post(ℓ,α,G,Asgn,ℓ′)(S �ℓ).

(6)
Note that definition (3) is valid regardless whether I is con-
vex or not. For the sake of clarity, we will denote the con-
tinuous post with Postℓ(P, I) when I is convex, and with
ncPostℓ(P, I) when I is nonconvex.
The reachable statesReach(H) are computed as the small-

est fixed point of the sequence S0 = Postc(Init) and Sk+1 =
Sk ∪ Postc(Postd(Sk)).

2.4.2 Computation of ncPost
We describe here an approach for computing the continu-

ous post when the invariant I of a location is a non-convex
and closed polyhedron. The technique is similar to the one
proposed in [19] for piecewise constant dynamics. However,
the proof differs since [19] relies entirely on straight-line tra-
jectories.
We propose a characterization of ncPostℓ based on the

standard Postℓ evaluated iteratively over a convex cover of
I. Given an affine HA H and let ℓ ∈ Loc, I = Inv(ℓ) and
consider the initial set P ⊆ I. For each convex component

Î ′ ∈ [[I]], we apply the standard continuous post operator

with P ∩ Î ′ as initial set and Î ′ as invariant. The proce-
dure is applied recursively by building a sequence W0 ⊆
W1 ⊆ . . .Wk of reachable valuations, with W0 = P . Then
ncPostℓ(P, I) is the fixed point of that sequence. This is
formalized by the following theorem:

Theorem 1. Given a location ℓ ∈ Loc and let I = Inv(ℓ)
be the invariant in location ℓ. For every set of valuations
P ⊆ I such that the sequence W0 = P ,

Wk+1 =
∪

Î′∈[[I]]

Postℓ(Wk ∩ Î ′, Î ′)

satisfies Wk = Wk+1 for some k, then ncPostℓ(P, I) = Wk.

Proof. Before to give the proof we define the crossing
between convex component of the invariant as follows. Let

Îs and Ît be convex components of the invariant I and f

be an activity, there is a crossing from the source Îs to the

target Ît if there exist times 0 ≤ δs ≤ δc ≤ δt such that for

all δs ≤ δ′ ≤ δc it holds that f(δ′) ∈ Îs, f(δc) ∈ Îs ∩ Ît, and

for all δc ≤ δ′ ≤ δt it holds that f(δ′) ∈ Ît.
The proof proceeds by induction over the index i ≤ k

of the sets Wi. The induction hypothesis is as follows:
vi ∈ ncPostℓ(P, I) is reachable through i − 1 crossings of
convex components of I if and only if vi ∈ Wi. Since the
activities are analytic functions, the number of crossings is
finite (analytic functions have isolated zeros).
[⊆] Let v be a valuation belonging to ncPostℓ(P, I), by

definition of post operator, there exists a valuation u ∈ P ,
an activity f ∈ Adm(⟨ℓ, u⟩) and a time δ such that for all
0 ≤ δ′ ≤ δ it holds that f(δ′) ∈ I and f(δ) = v.
The base case is for i = 1, which means that from u to

v along f no crossings occurs, meaning that the system re-
mains always inside the same convex component of I. For-

mally, there exists a convex component Î ′ ∈ [[I]] such that

for all 0 ≤ δ′ ≤ δ it holds that f(δ′) ∈ Î ′. Hence by defi-

nition of post operator, v ∈ Postℓ(P ∩ Î ′, Î ′) ⊆ W1, ending
the base case. In other words, since the base case refers
to states reachable inside a single convex component of I,
the problem is practically reduced to the classic convex post
operation.

For the inductive step consider i > 1, meaning that i− 1
crossings are required to get v from u along f . By definition
of ncPostℓ the valuation v must belongs to a convex compo-

nent of I, meaning that there exists Ît ∈ I such that v ∈ Ît.
In addition i > 1 and then there exists another component

Îs such that in order to reach v from u a crossing from Îs
to Ît must take place at some time δc By definition of cross-
ing, this means that there exists times 0 ≤ δs < δc < δ

such that (i) for all δs ≤ δ′ ≤ δc it holds that f(δ′) ∈ Îs,

(ii) f(δc) ∈ Îs ∩ Ît, and (iii) for all δc ≤ δ′ ≤ δ it holds

that f(δ′) ∈ Ît. Condition (ii) implies that the valuation
f(δc) is reachable from u with i − 2 crossing and then by
inductive hypothesis f(δc) ∈ Wi−1. Moreover by condition

(iii) it holds f(δs) ∈ Wi−1 ∩ Ît and then by condition (iii)

v ∈ Postℓ(Wi−1 ∩ Ît, Ît) ⊆ Wi.
[⊇] Let v be a valuation belonging to Wi. The base case

is for i = 1, which implies v ∈ W1. By definition of W1,

there exists a convex component Ît ∈ [[I]] such that v ∈
Postℓ(W0∩ Ît, Ît). Recalling that W0 = P then W0∩ Ît ⊆ P ,

and hence v ∈ Postℓ(P, Ît) ⊆ ncPostℓ(P, I).
For the inductive step, let v be a valuation belonging to

Wi with i > 1. If v also belongs to Wi−1 then by inductive
hypothesis v is reachable from a valuation u ∈ P via i −
2 crossings and trivially v ∈ ncPostℓ(P, I). Otherwise by

definition ofWi there exists a convex component Ît ∈ I, such

that v ∈ Postℓ(Wi−1∩ Ît, Ît). By definition of post operator,

there exist a valuation us ∈ Wi−1∩ Ît, an admissible activity
f ∈ Adm(⟨ℓ, us⟩) and a time δs ≥ 0 such that (i) for all

0 ≤ δ′ ≤ δs it holds f(δ′) ∈ Ît and (ii) f(δ) = v. By
applying the inductive hypothesis on us ∈ Wi−1 we have
us ∈ ncPostℓ(P, I) and us is reachable from u ∈ P via
i − 2 crossings. The last one in enough to conclude that
v ∈ ncPostℓ(P, I). 2

Theorem 1 provides an effective way to compute an over-
approximation of the post with non-convex invariants. In-
deed several algorithms for computing overapproximation of
the standard post with convex invariants are available, and
they can be used to compute overapproximation of the sets
Wi. The overapproximative post operator, whose error is
bounded by the non-negative real number υ ≥ 0, is denoted
by Postυℓ . The definition of the overapproximative reachabil-
ity set denoted by Reachυ, is straightforward. The following
result is a direct consequence of Theorem 1.

Corollary 1. Given a location ℓ ∈ Loc and let I = Inv(ℓ)
be the non-convex invariant in location ℓ and υ ≥ 0 a non-
negative number. For every set of valuations P ⊆ I such
that the sequence W0 = P ,

Wk+1 =
∪

Î′∈[[I]]

Postυℓ (Wk ∩ Î ′, Î ′)

reaches fixed point in k iterations, then Wk is an overap-
proximation of ncPostℓ(P, I) with error kυ.
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2.4.3 Computation of UPost
We now define the continuous post operator under ur-

gency conditions, and show that it can be approximated us-
ing the post operator for nonconvex invariants. The urgent
continuous post operator is

UPostℓ(P, I, U) =
{
v ∈ val(X)

∣∣∣ ∃δ ≥ 0, u ∈ P,

f ∈ Adm(⟨ℓ, u⟩) : ∀0 ≤ δ′ ≤ δ : f(δ′) ∈ I,

f(δ) = v, δ ≤ SwitchT (f, U)
}
. (7)

The intuition is that, since an urgent condition U blocks
activities that inside U , the complement of U can be added
to the invariant. This allows time-elapse only outside U .
However, the system can reach the border of U , which is
not included in the complement of U . Hence we include
the topological closure of U in the invariant, at the price of
including spurious behavior. The spurious behavior arises
from admissible activities that continue after touching the
border of the urgent condition, as illustrated in Figure 3.
They are excluded if U is enlarged even slightly. Let the
ε-ball of some norm ∥·∥ be Bε = {x | ∥x∥ ≤ ε}.

Theorem 2. Given a location ℓ ∈ Loc. Let P be a set
of valuations, I = Inv(ℓ) be the invariant in location ℓ and
U = Urg(ℓ) be the urgent condition of ℓ. The urgent post
operator UPostℓ(P, I, U) can be overapproximated by

UPostℓ(P, I, U) ⊆ ncPostℓ(P, I ∩ cl(U)),

and any ε > 0,

ncPostℓ(P, I ∩ cl(U ⊕ Bε)) ⊆ UPostℓ(P, I, U).

Proof. First we show thatUPostℓ(P, I, U) ⊆ ncPostℓ(P, I∩
cl(U)). Let v be a valuation belonging to UPostℓ(P, I, U).
By definition of urgent post this means that there exists a
valuation u ∈ P , an activity f ∈ Adm(⟨ℓ, u⟩) and a time
δ ≥ 0 such that for all 0 ≤ δ′ ≤ δ it holds that f(δ′) ∈ I,
f(δ) = v and δ ≤ SwitchT (f, U). From last one condition
we can distinguish two cases, either (a) δ < SwitchT (f, U),
or (b) δ = SwitchT (f, U). If we are in case (a) then trivially
for all 0 ≤ δ′ ≤ δ it holds that f(δ′) ∈ U ⊆ cl(U), and hence
v ∈ ncPostℓ(P, I∩cl(U)). Otherwise, case (b) is when for all
0 ≤ δ′ < δ, f(δ′) ∈ U ⊆ cl(U) and f(δ) ∈ U . By convexity
trivially holds that f(δ) ∈ U ∩ cl(U). Hence for all 0 ≤ δ′ ≤
δ, f(δ′) ∈ I ∩ cl(I) meaning that v ∈ ncPostℓ(P, I ∩ cl(U)).
Now we show that for any ε > 0 it holds ncPostℓ(P, I ∩

cl(U ⊕ Bε)). Let v be a valuation belonging to ncPostℓ(P, I∩
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Figure 4: Hybrid automata modeling the Water
Tank Controller (WTC)

cl(U ⊕ Bε)). By definition of post operator this means that
there exist a valuation u ∈ P , an activity f ∈ Adm(⟨ℓ, u⟩)
and a time δ ≥ 0 such that f(δ) = v and for all 0 ≤ δ′ ≤ δ
it holds that f(δ′) ∈ I ∩ cl(U ⊕ Bε). Last one condition
says that along the activity f the urgent condition U can
never been satisfied. Hence by definition of switching time
SwitchT (f, U) = ∞. Clearly δ < SwitchT (f, U) and then
by definition of urgent post v ∈ UPostℓ(P, I, U). 2

3. RELAXATIONS OF HYBRID
AUTOMATA

The standard semantics of hybrid automata, as presented
in Sect. 2, may be problematic if the goal is to verify a given
simulation model. They are a mathematical idealization,
while numerical simulation is based on time discretization
and finite precision arithmetic.

Assumption 1. An execution of the simulation model ap-
proximates each activity f(t) at time points t0, t1, . . . with a
sequence of valuations v0, v1, . . . such that for all i = 0, 1, . . .,

(i) ti+1 − ti ≤ ∆ (bounded time step), and

(ii) ∥f(ti)− vi∥ ≤ ε (bounded precision).

For the purpose of this paper, assumption (i) can be relaxed
so that it applies only to states within a neighborhood of the
urgent guards. Assumption (ii) is satisfied by most ODE
solvers, except that the global bound ε is usually not known
in absolute terms. Instead, solvers guarantee convergence
as the time step goes to zero, e.g., ε = O(∆p), where p is
the order of the solver. ODE solvers that guarantee global
bounds are available [20], but convergence and scalability
are more challenging when conservative error bounds are
imposed.

Example 1. We use a simplification of the Water Tank
Control (WTC ) model reported in [11] to illustrate why a
verification model can be safe while its simulation model can
be instead unsafe. The WTC consists of a single tank with
a valve that can be controlled to add water. The water is
subject to natural evaporation. The level of the water inside
the tank is monitored by a sensor. A verification model of
the WTC is used to check whether, via a sequence of opening
and closing of the valve, it is possible to maintain the level
of the water within given bounds.

The verification model consists of the hybrid automata in
Fig. 4. The tank model is shown in Fig. 4(a). A continuous
variable x models the water level. Two locations are used
to model when x is decreasing (i.e. closed valve and evapo-
ration) and increasing (i.e. open valve). The automaton for
the controller is shown by Fig. 4(b). It has two locations for
modeling the open and close commands for the valve. Since
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the desired safety property is to maintain x inside the in-
terval S = [0.5, 2.5], the urgent (ASAP) guards are x ≤ 0.5
for opening and x ≥ 2.5 for closing the value; the urgency
conditions of the locations are the union of the urgent guard
conditions.
The reachability analysis under standard semantics shows

the safety of the verification model. The solid black line of
Fig. 5(a) is a graphical representation of the reachability set
from initial condition x = 1, over the first 4 sec., and it is
easy to see that x never exceeds the limits 0.5 and 2.5.
A numerical simulation with an upper bound ∆ on the

time step may recognize an urgent guard condition during
the next sample time, thus by delaying the reaction by ∆
units of times. This delay leads the system to unsafe states,
as shown the gray area of Fig. 5(a). For ∆ = 0.25 sec., the
system may exceed the upper limit by 0.5 units by delaying
the switch ∆ extra time with flow ẋ = 2. Similarly, the
lower limit may be exceeded by 0.25 units.
To capture the finite precision computation, let the ap-

proximate value be x̂ = x + ϵ′, where ϵ′ ∈ ε = [−ϵ,+ϵ].
The guard check of the simulator evaluates x̂ ∈ G. As a
consequence, the resulting reachable set contains some ex-
tra valuations, as depicted in Fig. 5(b) by the tiled gray area
for ∆ = 0.25 sec. and ϵ = 0.125.

3.1 Relaxed Semantics
In this section we define relaxed semantics for hybrid au-

tomata. The semantics uses as parameters a bound ∆ on
the time step of the simulation model and a bound ϵ on the
precision error, as defined in Assumption 1.
To formally define the relaxed semantics, we need some

extra notation. Let P be a set of valuations and ϵ ≥ 0. The
ε-enlargement of P is the set

⌈P ⌉ε = {w | ∃v ∈ P : ∥v − w∥ ≤ ε} = P ⊕ Bε,

where ⊕ denotes the Minkowski sum and Bε is the ball of
size ε of the chosen norm. The ε-shrinkage of P is the set

⌊P ⌋ε =
∩

b∈Bε

{v − b | v ∈ P} = P ⊖ Bε.

We now define the relaxed semantics. Let ∆ ≥ 0 be the
bound on the time step and ϵ ≥ 0 be the precision error. A
discrete step in relaxed semantics is obtained from a discrete
step in standard semantics, Def. 1, by replacing condition
(ii), the check of the guard condition, with the following
condition that accounts for the precision error:

(ii)∗ ∃e ∈ Bε: val(s) + e ∈ G.

To define a relaxed time step, we use a relaxed definition of
the switching time, which takes into account that the urgent
condition is checked only at discrete time points, and that
the check is subjected to the precision error. First, time may
elapse until the urgency condition U is satisfied even when
taking into account all possible precision errors. Second,
since the urgency condition is only checked at discrete time
points, the urgency condition must be satisfied for at least ∆
time to be sure that a check takes place. Both phenomena
are captured by the following relaxation of the switching
time. The relaxed switching time of an activity f ∈ Adm(s)
in location ℓ, denoted by SwitchT∆

ε (f,Urg(ℓ)), is the value
T + ∆ ≥ 0 such that, for all 0 ≤ δ′ < T , there exists some
precision error e ∈ Bε such that f(δ′) + e /∈ Urg(ℓ), and
for all T ≤ δ′ ≤ T + ∆ and for all precision errors e ∈ Bε,
f(δ′) + e ∈ Urg(ℓ). When such a value does not exists, we
write SwitchT∆

ε (f,Urg(ℓ)) = ∞.
A timed step in relaxed semantics is obtained from a timed

step in standard semantics, Def. 2, by replacing condition
(iii), the check of the urgency condition via the switching
time, with the relaxed switching time:

(iii)∗ δ ≤ SwitchT∆
ε (f,Urg(loc(s))).

The definition of a relaxed run is straightforward, as well as
the resulting definition of reachability. We denote the set of
the run under relaxed semantics by Runs∆ϵ (H) and the set
of reachable states under relaxed semantics by Reach∆

ϵ (H).
The following properties about relaxed semantics are in-

tuitive.

Property 1. [Faster is better] LetH be a hybrid automaton
and given ϵ ≥ 0. For any ∆1,∆2 ∈ R≥0 such that ∆1 ≤ ∆2,
it holds that Reach∆1

ε (H) ⊆ Reach∆2
ε (H)

Proof. Let v be a valuation belonging to Reach∆1
ε (H).

By definition, there exists a run r from an initial state s0 ∈
Init leading to sn = s. For each timed step si

δi,fi−−−→ s′i of the
run, by definition δi ≤ SwitchT∆1

ϵ (fi,Urg(loc(si))). By defi-
nition of relaxed switching time, we have that SwitchT∆1

ϵ (fi,
Urg(loc(si))) = T + ∆1 for some T ≥ 0. By hypothesis
∆1 ≤ ∆2, hence δi ≤ T +∆2 and this is enough to conclude

that the timed step si
δi,fi−−−→ s′i is allowed also under the

relaxed semantics with ∆2, meaning that s′i ∈ Reach∆2
ε (H).

Discrete steps s′i
ei−→ si+1 are not affected by the bound on

sample time, hence si+1 belongs also to Reach∆2
ε (H). Hence

s can be reached from s0 also under the relaxed semantics
with ∆2, by performing exactly the same run r. And we can
conclude that s ∈ Reach∆2

ε (H). 2

Property 2. [Precision is a quality] Let H be a hybrid
automaton and given ∆ ≥ 0. For any ϵ1, ϵ2 ∈ R≥0 such that
ϵ1 ≤ ϵ2, it holds that Reach

∆
ε1(H) ⊆ Reach∆

ε2(H)

Proof. Let v be a valuation belonging to Reach∆
ε1(H).

By definition, there exists a run r from an initial state
s0 ∈ Init leading to sn = s. The proof is similar to the
one for Prop. 1. Here timed steps are the same, because the
two relaxations share the same upper bound ∆ on the sam-
ple time, while discrete steps may potentially be different.

Let s′i
ei−→ si+1 be a discrete step of the run, by definition it

holds that val(s′i) ∈ ⌈G⌉ε1 where G is the guard of transition
ei. Being by hypothesis ϵ1 ≤ ϵ2, the definition of guard en-
largement directly says that ⌈G⌉ε1 ⊆ ⌈G⌉ε2 and this allows



to write val(s′i) ∈ ⌈G⌉ε2 . Hence discrete steps s′i
ei−→ si+1

can be also performed under relaxation with factor ϵ2, al-
lowing us to write that s ∈ Reach∆

ε2(H). 2

Property 3. [Preserving Safety] LetH be a hybrid automa-
ton, ∆′ > 0 be a bound on the sampling time and ϵ′ > 0 be
a bound on the precision error. If H is safe in relaxed se-
mantics, then there is a bound 0 < ∆ ≤ ∆′ on the sampling
time and a bound on the precision error 0 < ε ≤ ε′ such
that all executions of the simulation model are safe under
Assumption 1.

Proof. By hypothesis Reach∆
ϵ (H) ∩ S = ∅. By com-

bining Prop. 1 and Prop. 2, we have that Reach∆′
ϵ′ (H) ⊆

Reach∆
ϵ (H). Hence Reach∆′

ϵ′ (H) ∩ S = ∅ by concluding the
proof. 2

3.2 Relaxed Hybrid Automata
In this section we will show that the relaxed semantics

can be translated to an equivalent relaxed model evaluated
under standard semantics. The advantage of having this
equivalence is that the correctness of a simulation model
could be proved by using the standard reachability on the
relaxed model.
We already show the reachability set Reach∆

ϵ (H) for the
WTC example obtained with a time step bounded by ∆ =
0.25 sec and a global error measurement bounded by ϵ =
0.125 (see the gray area depicted by Fig. 5(b)).
Consider now another version of controller modeled by the

linear hybrid automaton H ′, obtained from the by replacing
guards and urgent conditions of automaton H depicted by
Fig. 4(b). Now the urgent conditions are less restrictive (i.e.
x ≤ 0.125 and x ≥ 3.125 for the two locations, respectively),
as well as the guards (i.e. x ≤ 0.625 and x ≥ 2.375, respec-
tively). The obtained relaxed model is such that, under the
standard semantics, the model may perform a discrete tran-
sition when x ∈ (0.125, 0.625] or x ∈ [2.375, 3.125), while it
must jump when x = 0.125 or 3.125. Accordingly the reach-
ability set Reach(H ′) of such a model is clearly bounded
by the interval ∈ [0.125, 3.125], and moreover is completely
equivalent to the relaxed reachability set Reach∆

ϵ (H). In
other words, the standard reachability set on the relaxed
model is equal to the relaxed reachability set on the stan-
dard model. The key point behind this equivalence is that
the relaxed automaton was obtained by properly relaxing
urgent conditions and guards of transitions. In particular,
guard are enlarged according to the interval error ε. Instead
urgent condition are shrunk according to ε and in addition
in a way that allows time-elapse for further ∆ units of time,
where ∆ is the bound of the time step. The following defi-
nition is the formalization of the urgency relaxation.

Definition 3 (Urgency Relaxation). Given a location
ℓ ∈ Loc, and let U = Urg(ℓ) be the urgent condition location
ℓ, ∆ ≥ 0 and ϵ ≥ 0 be bounds on time step and precision
error, respectively.

The relaxation of the urgency condition U is the set of
valuations

⌊U⌋∆ε =
{
p ∈ ⌊U⌋ε

∣∣p /∈ Postℓ(⌊U⌋ε,Rn) or

∃u ∈ ⌊U⌋ε, f ∈ Adm(⟨ℓ, u⟩), 0 < δ1 < δ2 with δ2 ≥ δ1 +∆ :

∀0 ≤ δ′ < δ1, f(δ
′) /∈ ⌊U⌋ε,

∀δ1 ≤ δ′ ≤ δ2, f(δ
′) ∈ ⌊U⌋ε, and

f(δ2) = p
}

(8)

There is an immediate relation between the relaxed switch-
ing time of an urgent condition U and the standard switching
time of a corresponding relaxed condition, as stated by the
following lemma.

Lemma 1. Given a location ℓ ∈ Loc, and let U = Urg(ℓ) be
a urgent condition, ∆, ϵ ≥ 0 be upper bounds on time step
and precision error, respectively. Then for all u ∈ ⌊U⌋ε∩
and f ∈ Adm(⟨ℓ, u⟩),

SwitchT (f, ⌊U⌋∆ε ) = SwitchT∆
ε (f, U).

Proof. Let p be a point belonging to ⌊U⌋∆ε . By defi-
nition of urgency relaxation we can distinguish two cases,
that we denote by (a) and (b). Case (a) is when there exists

a point q ∈ ⌊U⌋ε an activity f ∈ Adm(⟨ℓ, q⟩), a sequence
of times 0 < δ1 < δ2 with δ2 ≥ δ1 + ∆, such that for all
0 ≤ δ′ < δ1, f(δ′) ∈ ⌊U⌋ε, for all δ1 ≤ δ′ ≤ δ2, f(δ

′) ∈
⌊U⌋ε and f(δ2) = p. Hence, by the definition of switching
time directly follows that SwitchT (f, ⌊U⌋∆ε ) = δ1 + ∆. On
the other side, by definition of the relaxed switching time,
we have that SwitchT∆

ε (f, U) is the non-negative number
T + ∆ ≥ 0 such that for all 0 ≤ δ′ < T , f(δ′) /∈ ⌊U⌋ε
and for all T ≤ δ′ ≤ T + ∆, f(δ′) ∈ ⌊U⌋ε. This di-
rectly implies that T = δ1 and hence SwitchT (f, ⌊U⌋∆ε ) =
SwitchT∆

ε (f, U). Case (b) is when it is not possible to reach

p from a point q ∈ ⌊U⌋ε ∩ Inv(ℓ). With such a situation,
it is clear that SwitchT (f, ⌊U⌋∆ε ) = ∞. On the other side,
by definition of the relaxed switching time, we have that
SwitchT∆

ε (f, U) is the non-negative number T + ∆ ≥ 0
such that for all 0 ≤ δ′ < T , f(δ′) /∈ ⌊U⌋ε and for all
T ≤ δ′ ≤ T + ∆, f(δ′) ∈ ⌊U⌋ε. But this number does not
exists, otherwise p should be reachable from u. Hence, we
can write that SwitchT∆

ε (f, U) = ∞ and concluding with
SwitchT (f, ⌊U⌋∆ε ) = SwitchT∆

ε (f, U). 2

Now we are ready to formalize the automaton relaxed by
considering a reaction delay ∆ and a global measurement
error ϵ.

Definition 4 (Relaxed Hybrid Automaton). Let H =
(Loc, X,Lab, Inv ,Urg ,Flow ,Trans, Init) be a hybrid automa-
ton, ∆, ϵ ≥ 0 be upper bounds on time step and error
precision, respectively. Then the relaxed hybrid automa-
ton H∆

ε = (Loc, X,Lab, Inv ,Urg ′,Flow ,Trans ′, Init) is such
that:

• Urg ′ =
{
⟨ℓ, ⌊U⌋∆ε ⟩

∣∣⟨ℓ, U⟩ ∈ Urg
}

• Trans ′ =
{
⟨ℓ1, α, ⌈G⌉ε, Asgn⟩ | ⟨ℓ1, α,G, Asgn⟩ ∈ Trans

}
As already informal discussed, there is a direct relation that
connects an automatonH evaluated under relaxed semantics



and its relaxation H∆
ε evaluated on standard semantics. As

the intuition suggests, the corresponding sets of all the runs
are equivalent, as formalized by the following theorem.

Theorem 3. [Relaxed Semantics Equivalence] Given a hy-
brid automatonH = (Loc, X,Lab, Inv ,Urg ,Flow ,Trans, Init).
Let ∆ ≥ 0 be a reaction delay, and ϵ ≥ 0 be a global
measurement error. The relaxed automaton H∆

ε = (Loc, X,
Lab, Inv ,Urg ′,Flow ,Trans ′, Init) is such that

Runs∆ϵ (H) = Runs(H∆
ε ).

Proof. To prove that the sets of runs are the same, we
need to show that each state sn reachable in H from an
initial state s0 ∈ Init the same happens in H∆

ε . First, by
construction the relaxed automaton H∆

ε has the same set
of the initial states of the automaton H, and hence each
runs of H and H∆

ε start from the same states. Being a
run a sequence of alternating timed and discrete steps, it is
enough to prove that for each step in H from a source s to
a target s′ there is in H∆

ε an equivalent step from s to s′,
and vice-versa.
[⊆] Let s

e−→ s′ be a relaxed discrete step of H, for some
e = ⟨loc(s), α,G, Asgn, loc(s′)⟩ ∈ Trans. By relaxed discrete
step definition we have that (i) s, s′ ∈ Inv , (ii) val(s) ∈ ⌈G⌉ε,
and (iii) val(s′) = Asgn(val(s)). By construction of H∆

ε ,
the transition e′ = ⟨loc(s), α, ⌈G⌈ε, Asgn, loc(s′)⟩ belongs to
Trans ′. Conditions (i), (ii) and (iii) directly imply that au-

tomatonH∆
ε is allowed to perform the discrete jump s

e′−→ s′.
Hence, there exists in the relaxed automaton a (standard)
discrete step from the same source to the same target. And

this ends the case for the discrete steps. Let s
δ,f−−→ s′

be a relaxed timed step of H, with duration δ and activ-
ity f . By relaxed timed step definition we have that (i)
s ∈ Inv , (ii) for all 0 < δ′ ≤ δ, (⟨loc(s), f(δ′)⟩) ∈ Inv , (iii)
s′ = ⟨loc(s), f(δ)⟩, and (iv) δ ≤ SwitchT∆

ε (f,Urg(loc(s)).
By construction of Hε∆, the relaxed urgent condition U ′

of location loc(s) is U ′ = ⌊Urg(loc(s)⌋∆ε . Hence, in or-

der to show that the timed step s
δ,f−−→ s′ is also allowed

for the relaxed automaton Hε∆, is necessary to prove that
δ ≤ SwitchT (f, U ′) ≤ δ. With Lemma 1 we have that
SwitchT (f, U ′) = SwitchT∆

ε (f,Urg(loc(s)). Hence by con-
dition (iv), δ ≤ SwitchT (f, U ′) ≤ δ by allowing the re-
laxed automaton H∆

ε to perform the standard discrete step

s
δ,f−−→ s′, and this concludes this direction of the proof.
[⊇] This direction of the proof is very similar to the one for

the other side. Indeed, a standard discrete step s
e′−→ s′ in

the relaxed automaton trivially implies that val(s) ∈ ⌈G⌉ε,
where ⌈G⌉ε is the guard of transition e′. But e′ ∈ Trans ′

means that there exists a transition e ∈ Trans whose guard
is G. And then the automaton H is allowed to perform the
relaxed discrete step s

e−→ s′, by ending the case for dis-

crete transitions. A standard timed step s
δ,f−−→ s′ of the re-

laxed automaton implies that δ ≤ SwitchT (f,Urg(loc(s))).
By construction of H∆

ε , we have that Urg(loc(s)) = ⌊U⌋∆ε
where U is the urgent condition of location loc(s) (i.e. U =
Urg(loc(s))). To prove that there exists in the automa-

ton H the relaxed timed step s
δ,f−−→ s′ it is only neces-

sary to show that δ ≤ SwitchT∆
ε (f, U). With Lemma 1

we have that SwitchT (f,Urg(loc(s))) = SwitchT∆
ε (f, U).

Hence condition δ ≤ SwitchT (f,Urg(loc(s))) trivially im-
plies that δ ≤ SwitchT∆

ε (f, U) and this ends the entire proof.
2

From Theorem 3 directly follows the reachability equiva-
lence, as stated by the following corollary

Corollary 2. Given a hybrid automaton H = (Loc,X,Lab,
Inv ,Urg ,Flow ,Trans, Init). Let ∆ ≥ 0 be a reaction delay,
and ϵ ≥ 0 be a global measurement error. The relaxed au-
tomaton H∆

ε = (Loc, X,Lab, Inv ,Urg ′,Flow ,Trans ′, Init) is
such that

Reach∆
ϵ (H) = Reach(H∆

ϵ ).

Corollary 2 has a practice consequence on the task of prov-
ing safeness w.r.t. a safe state S of a simulation model via
reachability of a corresponding verification model H. In-
deed, Prop. 3 says that this can by done by checking whether
Reach∆

ϵ (H) ∩ S is empty or not. But by Corollary 2 this is
equivalent to check whether Reach(H∆

ε )∩S is empty or not.
In other words, the safeness of a simulation model can be
proved via the standard reachability on the corresponding
relaxed automaton as formalized by the following corollary

Corollary 3. Given a time step bounded by ∆ > 0, an
error measurement bounded by ϵ > 0 and a safe state S.
Let H∆

ϵ be a relaxed automaton. Then there exists a safe
implementation of H∆

ϵ by a simulation model with time step
bounded by 0 < ∆′ ≤ ∆ and an error measurement bounded
by 0 < ϵ′ ≤ ϵ if and only if

Reach(H∆
ϵ ) ∩ S = ∅.

Theorem 3 establishes the equivalence between relaxed se-
mantics on ideal models and standard semantics on relaxed
models. Now we present how to compute the corresponding
relaxed automaton.

The following lemmas gives a way to compute the enlarge-
ment and shrinkage operators for the case of polyhedral sets.
The exact solution would be of exponential complexity in the
number of variables. To keep the computation scalable, we
use conservative approximations.

Lemma 2. [Enlargement and Shrinkage] Given a convex
polyhedron P =

{
x ∈ Rn

∣∣∧
i a

T
i x ≤ bi} and a real number

ϵ ≥ 0,

⌈P ⌉ε ⊆
{
x ∈ Rn

∣∣ ∧
i

aT
i x ≤ bi + ϵ ∥ai∥

}
, and

{
x ∈ Rn

∣∣ ∧
i

aT
i x ≤ bi − ϵ ∥ai∥

}
⊆ ⌊P ⌋ε.

While the enlargement and shrinkage operations on poly-
hedra in Lemma 2 are only approximative, the approxima-
tion error goes to zero as ϵ → 0. This is sufficient for the
purposes of this paper and the results that follow. The next
lemma establishes how to compute the relaxation of urgent
conditions.

Lemma 3. [Computation for relaxed urgency] The relaxed
urgency condition ⌊U⌋∆ε can be computed as:

⌊U⌋∆ε = ⌊U⌋ϵ \∆Postℓ(⌊U⌋ε,Rn,∆).
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Figure 6: Reachability sets with different parame-
ters for the relaxed WTC

Proof. [⊆] Let p be a valuation belonging to ⌊U⌋∆ε . The
definition of relaxation implies that p ∈ ⌊U⌋ε and either (a)

p /∈ Postℓ(⌊U⌋ε,Rn) or (b) there exists a valuation u ∈ ⌊U⌋ε,
an activity f ∈ Adm(⟨ℓ, u⟩) and times 0 < δ1 < δ2 with
δ2 ≥ δ1 + ∆ such that for all 0 ≤ δ′ < δ1 it holds that
f(δ′) /∈ ⌊U⌋ε, for all δ1 ≤ δ′ ≤ δ2 it holds that f(δ′) ∈ ⌊U⌋ε,
and f(δ2) = p.

Case (a) implies that p /∈ ∆Postℓ(⌊U⌋ε,Rn,∆), and hence

p ∈ ⌊U⌋ϵ \ ∆Postℓ(⌊U⌋ε,Rn,∆). Otherwise, for case (b)

suppose by contradiction that p ∈ ∆Postℓ(⌊U⌋ε,Rn,∆),

that is there exists a valuation u ∈ ⌊U⌋ε, an activity f ∈
Adm(⟨ℓ, u⟩) and a time δ ≤ ∆ such that f(δ) = p. Hence, for

reaching p ∈ ⌊U⌋ε from u ∈ ⌊U⌋ε the system spends at most
δ < ∆ time inside ⌊U⌋ε. The last would imply p /∈ ⌊U⌋∆ε ,
that is in contrast with the hypothesis p ∈ ⌊U⌋∆ε . Hence

p /∈ ∆Postℓ(⌊U⌋ε,Rn,∆), and by recalling that p ∈ ⌊U⌋ε we

can write p ∈ ⌊U⌋ε \∆Postℓ(⌊U⌋ε,Rn,∆).

[⊇] Let p be a valuation belonging to ⌊U⌋ϵ \∆Postℓ(⌊U⌋ε,
Rn,∆). That is p ∈ ⌊U⌋ϵ and p /∈ ∆Postℓ(⌊U⌋ε,Rn,∆).

Last one condition means that either (a) p /∈ Postℓ(⌊U⌋ε,Rn)

or (b) there exists a time ∆1 > ∆ such that p ∈ ∆Postℓ(⌊U⌋ε,
Rn,∆1). By definition of relaxation of urgency, case (a)
trivially implies that p ∈ ⌊U⌋∆ε . Otherwise case (b) says

that there exist a valuation u ∈ ⌊U⌋ε, an activity f ∈
Adm(⟨ℓ, u⟩) and a time δ with ∆ < δ ≤ ∆1, such that

f(δ) = p. On the trajectory leading from u = f(0) ∈ ⌊U⌋ε
to p = f(δ) ∈ ⌊U⌋ε it is always possible to identify the last
time δ∗ with ∆ < δ∗ ≤ δ such that for all δ∗ ≤ δ′ ≤ δ it
holds that f(δ′) ∈ ⌊U⌋ε. If δ − δ∗ < ∆ then by definition

p ∈ ∆Postℓ(⌊U⌋ε,Rn,∆) that contradicts the hypothesis.
Hence δ − δ∗ must be at least equal to ∆ and then by defi-
nition of relaxed urgency p ∈ ⌊U⌋∆ε . 2

3.3 Approximative Reachability
In general, the reachable states of a hybrid system with

piecewise affine dynamics can only by computed approxima-
tively. When checking safety properties, one can use conser-
vative overapproximations to obtain soundness. But this
may lead to false negatives, i.e., the analysis could indicate
a violation of safety even if actually the system is safe. Con-
cretely, if the reachability analysis indicates that the system
is unsafe then it is not clear whether one should repeat the
analysis with increased precision or whether one should con-
clude that the system is actually unsafe. It has long been
argued, e.g., in [6], that real systems should robustly satisfy
safety properties, and that including robustness assumptions
in the semantics or the analysis can lead to decidability. A

similar argument can be made for the relaxed semantics pre-
sented in this paper.

For illustration, consider a safe relaxed hybrid automaton
whose exact reachability set is depicted by the black area of
Fig. 6(a). For this case, the reachability analysis with an ap-
proximation error of υ1 = 0.25 indicates a violation of safety
even if the model is safe. A first possibility is to compute the
reachability set with a smaller error, for example by setting
υ′ = 0.1, but this may not be sufficient no matter how small
υ′. In order to give more room to the approximation er-
ror, we can use smaller bound on the time step (for example
∆′ = 0.1 sec) and on the error measurement (for example
ϵ′ = 0.1). With these parameters, the reachability analysis
is now able to show the safety of the system, as shown by
Fig. 6(b).

In order to formalize the feature described above, we in-
troduce some extra notation. Let Loc be the set of locations,
S = {⟨ℓ, v⟩

∥∥ℓ ∈ Loc, v ∈ Val(X)} be a set of states and s
be a state. With abuse of notation we use bndry(s, P ) to
denote the boundary between the valuation of s and the set
of valuations of S, that is bndry(val(s), S �Loc).

Next assumption is enough to avoid false positive.

Assumption 2. Let H∆
ϵ be a relaxed hybrid automaton

with ∆ > 0 and ϵ > 0, and S be a set of safe states. The
reachability set of H∆

ϵ is such that each state s ∈ Reach(H∆
ϵ )

with bndry(s, S) ̸= ∅ can only be reachable by a run r =

s0
δ0,f0−−−→ s′0

e0−→ s1
δ1,f1−−−→ s′1

e1−→ s2 · · · s′n = s such that

∃δi > 0 : δi = SwitchT
(
fi,Urg

(
loc(s′i)

))
.

Assumption 2 says that each reachable state s lying on
the boundary with the unsafe set can be reachable only via
a run where at least an urgent condition is satisfied after a
non-zero elapsing of time. From a practical point of view
we are assuming that critical behaviors of the systems are
generated by those trajectories that at same point in the
time touch an urgent condition, and this is plausible if one
consider that urgent conditions are used precisely in order to
prevent unsafe behaviors. Moreover the condition of δi > 0
implies that initial states do not belong to the unsafe state
S. And also this choice is plausible because initial states
belonging to S make the system unsafe by definition.

Given a relaxed automaton H∆
ϵ and a set of safe states

S, the practical sufficient condition to guarantee that H∆
ϵ

satisfies Assumption 2 is the existence of an error location
err ∈ Loc accessible through urgent transitions, one from
each location. The urgent condition associated to these tran-
sitions is the topological closure of the unsafe set of valua-
tions, that is Z = cl(val(S)). Moreover, the set of initial
valuations of H∆

ϵ must not belong to Z.
The following theorem is the formalization of the features

described above.

Theorem 4. [Absorption of the overapproximation] Let
H∆

ϵ be a relaxed hybrid automaton with ∆ > 0 and ϵ > 0,
and S be a set of safe states. If H∆

ϵ satisfies Assumption 2
and Reach(H∆

ϵ )∩S = ∅ then there exists an approximation
error υ > 0, a time step bound 0 < ∆′ < ∆ and a precision

error bound 0 < ϵ′ < ϵ such that Reachυ(H∆′

ϵ′ ) ∩ S = ∅.

Proof. By hypothesis we have that Reach(H∆
ϵ )∩S = ∅.

This means either (a) for all s ∈ Reach(H∆
ϵ ) it holds that



bndry(s, S) = ∅, or (b) there exists s ∈ Reach(H∆
ϵ ) such

that bndry(s, S) ̸= ∅.
If case (a) holds then the distance between Reach(H∆

ϵ )
and S is not zero, and hence trivially there always exists
υ > 0 such that for ∆′ = ∆ and ϵ′ = ϵ it holds that
Reachυ(H∆′

ϵ′ ) = ∅. Notice that this result is valid even for
standard (i.e. non-relaxed) automata (i.e. ∆′ = ∆ = 0 and
ϵ′ = ϵ = 0). Otherwise case (b), together with Assumption
2, means that the distance between Reach(H∆

ϵ ) and S is
exactly zero. Notice that this case can not be handle when
the automaton is standard because each approximation error
υ > 0 is such that the intersection between the overapprox-
imative reachability set and the unsafe set is not empty. By
hypothesis we are focused on a purely relaxed automaton
(i.e. ∆ > 0 and ϵ > 0) which satisfies Assumption 2. We
want to show that in this case it is always possible to reduce
the bounds of time-steps (i.e. by choosing 0 < ∆′ < ∆)
and precision error (i.e. by choosing 0 < ϵ′ < ϵ) in order to

build a relaxed automaton H∆′

ϵ′ whose reachability set has
no common boundary with the unsafe set.
By Assumption 2, each state s ∈ Reach(H∆

ϵ ) where bndry(s, S) ̸=
∅ is such that s can be reachable by a run where at least a
timed step of duration δi > 0 satisfies the urgent condi-
tion Urg(loc(si))⌊U⌋∆ϵ at time δi. Formally, there exists a
time δi > 0, an activity fi ∈ Adm(si), and a timed step

si
δi,fi−−−→ s′i such that δi = SwitchT (fi, ⌊U⌋∆ϵ ). Last condi-

tion means that val(si) = fi(δi) ∈ ⌊U⌋∆ϵ . Now by choosing
smaller upperbound on time step and precision error, that
is 0 < ∆s < ∆ and 0 < ϵs < ϵ, and by setting ⌊U⌋∆s

ϵs

as urgent condition of loc(si), then the maximum duration
δ′i of timed steps from si is trivially smaller then δi. This
timed step of duration δ′i leads to state s′′i = ⟨loc(si), fi(δ′i)⟩.
It is clear that the distance d > 0 between s′i and s′′i is
strictly greater than zero. Now from s′′i and by continu-
ing the run r, the induced run is such that either (i) it
is shorter then r, or (ii) has the same length of r. If we
are in case (i) then the reached state s∗ at the end of the
induced run is such that it is trivially not on the bound-
ary with S, otherwise the state s∗ would be subjected to
the same argumentation of this proof. Hence, similarly to
case (a) above, it is always possible to find υ > 0 such
that (s∗ ⊕ Bυ) ∩ S = ∅. If we are in case (ii) then the dis-
tance between the reached state s∗ at the end of the induced
run and the unsafe set S is at least d > 0. Trivially, it is
enough to choose an approximation υ such that 0 < υ < d
to have (s∗ ⊕ Bυ) ∩ S = ∅. Finally, for each s such that
bndry(s, S) ̸= ∅, it is enough to set the bound of time steps
∆′ as the minimum among ∆s and to set the bound of pre-
cision error ϵ′ as the minimum among ϵs to obtain a re-

laxed automaton H∆′

ϵ′ such that bndry(Reach(H∆′

ϵ′ ), S) = ∅.
Hence, it is always possible to find an approximation error

υ > 0 such that Reachυ(H∆′

ϵ′ ) ∩ S = ∅. 2
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