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Abstract

We present an automated method to build secure distributed systems from an abstract multi-
level security component-based model. We take as input a high-level secureBIP component-
based model and transform it into a decentralized Send/Receive secureBIP model and further
on distributed code. The security policy is defined at the design time. Information flow policy
is verified and automatically preserved on intermediate models towards distributed implemen-
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1 Introduction
Preserving information flow security is significantly challenging in the context of distributed systems. Ex-
changing information across multiple, public or possibly untrusted networks increases information’s vul-
nerability to attacks by mischievous elements. The security of distributed systems usually entails the im-
plementation of cryptographic primitives and access control techniques which are essential tools to ensure
confidentiality and integrity of information flow. Although they are widely used, access control techniques
are rather limited since by only providing capacities to different users to read or modify information there
is no guarantee of the security of information propagation in the system especially with non-trivial inter-
actions. Encryption primitives are also less helpful to ensure that the system obeys an overall security
policy.
We are interested on ensuring information flow security by verifying and enforcing non-interference prop-
erty [13]. We build a component-based framework, secureBIP, which allows building secure, complex and
hierarchically structured systems by describing atomic components behavior and interactions. SecureBIP
formally defines two types of non-interference: event-based non-interference [18, 17, 21, 19] and data non-
interference generally addressed in security-typed programming languages [20]. Considering both non-
interference models allows addressing a larger range of security attacks and implementing a fine-grained
information flow security compared to solutions addressing a unique model. Moreover,we identified a set
of sufficient syntactic conditions allowing to automate verification of non-interference.

Distributed SecureBIP model

SecureBIP model

Distributed secure code

{
- Multi-party interactions
- Annotated model

{
- Asynchronous message passing
- Annotated model

{
- C++ code
- TCP/IP communication

Figure 1: Model Transformation

Starting from a high-level centralized model, the system is described as a set of components and inter-
actions. Annotations at the level of component interfaces and interactions allow to configure the system
security policies. Non-interference property is checked to verify that no information can be leaked in an
explicit or implicit way. The centralized model is transformed to a decentralized send/receive S/R secure-
BIP model that is, scheduling and communication protocol components are inserted to solve conflicting
interactions and set-up distributed communication protocols. Security annotations are translated to the new
distributed component-based architecture while preserving information flow security property. In the last
step, the S/R model is used to produce the distributed code. The model transformations are illustrated
in Figure 1. To the best of our knowledge, this is the first approach to securely decentralize high-level
component-based systems with multiparty interactions. We proved that, whenever the input model is se-
cure, that is, satisfies conditions for event and data non-interference of [7], non-interference is preserved on
the intermediate S/R secureBIP model. The first transformation has been designed such that to preserve, by
construction, the non-interference property. For the code generation, the implementation is directly derived
from the S/R model using communication primitives with security guarantees.
Our contribution can be summarized in the following points:

• We define an automated method based on model transformations to build a secure-by-construction
distributed system; the user has only to design his system in a component-based model with multi-
party interactions.

• We provide formal definitions of non-interference for component-based models and the proofs of
the model transformation’s correctness by showing the preservation of non-interference property.
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We define two kinds of non-interference: event and data non-interference for a more rigorous and
fine-grained security in distributed systems.

• We present a framework that implements our method and use it to secure a Web-Service application.

This paper is based on previous work on non-interference for centralized systems [7]. The paper is struc-
tured as follows. Section 2 presents the main concepts of the component-based framework adopted in this
work as well as non-interference definitions and the sufficient conditions. In section 3, we describe the au-
tomated distribution approach to derive secure executable code. Next, in section 4 we provide a use-case as
illustrative example and we discuss implementation and experimental results obtained. Section 5 discusses
the related work and section 6 concludes and presents some perspectives for future work. All the proofs of
technical results are given in the appendix.

2 Secure Component-Based Model
The secureBIP [7] framework is an extension of the BIP component framework [5, 4] with security features.
We recall the main concepts behind secureBIP with a particular focus on security annotations and the
different notions of non-interference and their verification.

2.1 The BIP Framework
BIP - Behavior, Interaction, Priority - [5, 4] proposes a layered component architecture model. At lower
layer, the behavior is expressed as a set of atomic components, that is, finite state automata or 1-safe Petri
nets, extended with data. The middle layer, interactions express synchronization constraints and do the
transfer of data between the interacting components. The third layer, priorities are used to filter amongst
possible interactions and to control system evolution. In the following, we recall the key concepts of
BIP which are further relevant for dealing with information flow security. In particular, we give a formal
definition of atomic components and their composition through multiparty interactions. Priorities are not
considered in this work.

Definition 1 (atomic component) An atomic component B is a tuple (L,X, P, T ) where L is a set of
states, X is a set of variables, P is a set of ports and T ⊆ L× P × L is a set of port labelled transitions.
For every port p ∈ P , we denote by Xp the subset of variables exported and available for interaction
through p. For every transition τ ∈ T , we denote by gτ its guard, that is, a boolean expression defined on
X and by fτ its update function, that is, a parallel assignment {x := exτ}x∈X to variables of X .

Let D be the data domain of variables. Given a set of variables Y , we call valuation on Y any function
y : Y → D mapping variables to data. We denote by Y the set of all valuations defined on Y . The
semantics of an atomic componentB = (L,X, P, T ) is defined as the labelled transition system LTS(B) =
(QB ,ΣB ,−→

B
) where the set of statesQB = L×X, the set of labels is ΣB = P ×X and the set of labelled

transitions −→
B

is defined by the rule:

ATOM
τ = `

p−→ `′ ∈ T x′′p ∈ Xp gτ (x) x′ = fτ (x[Xp ← x′′p ])

(`,x)
p(x′′

p )−−−→
B

(`′,x′)

That is, (`′,x′) is a successor of (`,x) labelled by p(x′′p) iff (1) τ = `
p−→ `′ is a transition of T , (2)

the guard gτ holds on the current valuation x, (3) x′′p is a valuation of exported variables Xp and (4)
x′ = fτ (x[Xp ← x′′p ]) meaning that, the new valuation x′ is obtained by applying fτ on x previously
modified according to x′′p . Whenever a p-labelled successor exist in a state, we say that p is enabled in that
state.

Example 1 Figure 2 shows an atomic component that contains two control states l2 and l3 and three ports
p3, p4 and p5. Initially at state l2, the transition labelled by p4 can only occur if the transition labelled by
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p3 was executed once, at least, and the variable x is incremented. The exported variable x is associated
to the port p5. The dashed squares represent security annotations and will be presented in the coming
sections.

L

L

H

x:low

[x>0]

x=0

x:=x+1

x

x

l2

l3

p4

p3

p4

p3

B2

p5

p5

Figure 2: Atomic component

Composite components are obtained by composing an existing set of atomic components {Bi = (Li, Xi, Pi, Ti)}i=1,n

trough specific composition operators. We consider that atomic components have pairwise disjoint sets of
states, ports, and variables i.e., for any two i 6= j from {1..n}, we have Li ∩ Lj = ∅, Pi ∩ Pj = ∅, and
Xi ∩ Xj = ∅. We denote P =

⋃n
i=1 Pi the set of all the ports, L =

⋃n
i=1 Li the set of all states, and

X =
⋃n
i=1Xi the set of all variables.

An interaction a between atomic components is a triple (Pa, Ga, Fa), where Pa ⊆ P is a set of ports, Ga
is a guard, and Fa is an update function. By definition, Pa uses at most one port of every component, that
is, |Pi∩Pa| ≤ 1 for all i ∈ {1..n}. Therefore, we simply denote Pa = {pi}i∈I , where I ⊆ {1..n} contains
the indices of the components involved in a and for all i ∈ I, pi ∈ Pi. Ga and Fa are both defined on the
variables exported by the ports in Pa (i.e.,

⋃
p∈Pa

Xp).

Definition 2 (composite component) A composite component C = γ(B1, . . . , Bn) is obtained by apply-
ing a set of interactions γ to a set of atomic components B1, . . . Bn.

LetB = γ(B1, . . . , Bn) be a composite component. LetBi = (Li, Xi, Pi, Ti) and LTS(Bi) = (Qi,Σi,−−→
Bi

) their semantics, for all i = 1, n. The semantics of C is the labelled transition system LTS(C) =
(QC ,ΣC ,−→

C
) where the set of states QC = ⊗ni=1Qi, the set of labels ΣC = γ and the set of labelled

transitions −→
C

is defined by the rule:

COMP

a = ({pi}i∈I , Ga, Fa) ∈ γ Ga({xpi}i∈I) {x′′pi}i∈I = Fa({xpi}i∈I)

∀i ∈ I. (`i,xi)
pi(x

′′
pi

)
−−−−→

Bi

(`′i,x
′
i) ∀i 6∈ I. (`i,xi) = (`′i,x

′
i)

((`1,x1), . . . , (`n,xn))
a−→
C

((`′1,x
′
1), . . . , (`′n,x

′
n))

For each i ∈ I , xpi above denotes the valuation xi restricted to variables of Xpi . The rule expresses that
a composite component C = γ(B1, . . . , Bn) can execute an interaction a ∈ γ enabled in state ((`1,x1),
. . . , (`n,xn)), iff (1) for each pi ∈ Pa, the corresponding atomic component Bi can execute a transition
labelled by pi, and (2) the guard Ga of the interaction holds on the current valuation of variables exported
on ports participating in a. Execution of interaction a triggers first the update function Fa which modifies
variables exported by ports pi ∈ Pa. The new values obtained, encoded in the valuation x′′pi , are then used
by the components’ transitions. The states of components that do not participate in the interaction remain
unchanged.
Any finite sequences of interactions w = a1...ak ∈ γ∗ executable by the composite component start-
ing at some given initial state q0 is named a trace. The set of all traces w from state q0 is denoted by
TRACES(C, q0).

Verimag Research Report no TR-2014-6 3/18



Najah Ben Said , Takoua Abdellatif, Saddek Bensalem, Marius Bozga

Example 2 In a composite component, as depicted in Figure 3, interactions are represented using connec-
tors (lines) between the interacting ports. All interactions between components B1, B2 and B3 are strong
synchronized binary interactions. The c interaction implements a data transfer between components B2

and B3, that is, the update function assigns the variable x (of B2) to variable z (of B3).

a

b

c H

L

L z=0z:high

[x>0]

x:=x+1

x=0

x:low

x

z

l2

l3

p3

p5

B3B1

p2
l4

p6

l1

p3

p4

p6

p1

p2

p1

B2

p4 p5 z:=x

Figure 3: Composite component

2.2 Information Flow Security
We explore information flow policies [9, 6, 13] with focus on the non-interference property. In order to
track information we adopt the classification technique and we define a classification policy where we
annotate the information by assigning security levels to different parts of secureBIP model (data variables,
ports and interactions). The policy describes how information can flow from one classification with respect
to the other.
As an example, we can classify public information as a Low (L) security level and secret (confidential)
information as High (H) security level. Intuitively High security level is more restrictive than Low security
level and we denote it by L ⊆ H . In general, security levels are elements of a security domain, defined as
follows:

Definition 3 (security domain) A security domain is a lattice of the form 〈S,⊆,∪,∩〉 where:

• S is a finite set of security levels.

• ⊆ is a partial order "can flow to" on S that indicates that information can flow from one security
level to an equal or a more restrictive one.

• ∪ is a "join" operator for any two levels in S and that represents the upper bound of them.

• ∩ is a "meet" operator for any two levels in S and that represents the lower bound of them.

In the example above, the set of security levels is S = {L,H} and the "can flow to" partial order relation
is defined as L ⊆ L,L ⊆ H,H ⊆ H .
Let C = γ(B1, . . . Bn) be a composite component, fixed. Let X (resp. P ) be the set of all variables (resp.
ports) defined in all atomic components (Bi)i=1,n. Let 〈S,⊆,∪,∩〉 be a security domain, fixed.

Definition 4 (security assignment σ) A security assignment for component C is a mapping σ : X ∪ P ∪
γ → S that associates security levels to variables, ports and interactions such that, moreover, the security
levels of ports matches the security levels of interactions, that is, for all a ∈ γ and for all p ∈ P it holds
σ(p) = σ(a).

In atomic components, the security levels considered for ports and variables allow to track intra-component
information flows and control the intermediate computation steps. Moreover, inter-components communi-
cation, that is, interactions with data exchange, are tracked by the security levels assigned to interactions.
For example, ports, variables and interactions of previously presented examples in Figure 2 and Figure 3
are tagged with High (H) and Low (L) security levels (graphically represented with dashed squares).
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We will now formally introduce the notions of non-interference for our component model. We start by
providing few additional notations and definitions. Let σ be a security assignment for C, fixed. For a
security level s ∈ S, we define γ ↓σs the restriction of γ to interactions with security level at most s that is
formally, γ ↓σs= {a ∈ γ | σ(a) ⊆ s}.
For a security level s ∈ S, we define w|σs the projection of a trace w ∈ γ∗ to interactions with security level
lower or equal to s. Formally, the projection is recursively defined on traces as ε|σs = ε, (aw)|σs = a(w|σs )
if σ(a) ⊆ s and (aw)|σs = w|σs if σ(a) 6⊆ s. The projection operator |σs is naturally lifted to sets of traces
W by taking W |σs = {w|σs | w ∈W}.
For a security level s ∈ S, we define the equivalence ≈σs on states of C. Two states q1, q2 are equivalent,
denoted by q1 ≈σs q2 iff (1) they coincide on variables having security levels at most s and (2) they coincide
on control states having outgoing transitions labeled with ports with security level at most s. We are now
ready to define the two notions of non-interference.

Definition 5 (event/data non-interference) The security assignment σ ensures event (ENI) and data non-
interference (DNI) of γ(B1, . . . , Bn) at security level s iff,

(ENI) ∀q0 ∈ Q0
C : TRACES(γ(B1, . . . , Bn), q0)|σs =

TRACES((γ ↓σs )(B1, . . . , Bn), q0)

(DNI) ∀q1, q2 ∈ Q0
C : q1 ≈σs q2 ⇒

∀w1 ∈ TRACES(C, q1), w2 ∈ TRACES(C, q2) : w1|σs = w2|σs ⇒
∀q′1, q′2 ∈ QC : q1

w1−−→
C

q′1 ∧ q2
w2−−→
C

q′2 ⇒ q′1 ≈σs q′2

Event non-interference (ENI) ensures isolation/security at interaction level. The definition excludes the
possibility to gain any relevant information about the occurrences of interactions (events) with strictly
greater (or incomparable) levels than s, from the exclusive observation of occurrences of interactions with
levels lower or equal to s. That is, an external observer is not able to distinguish between the case where
such higher interactions are not observable on execution traces and the case these interactions have been
actually statically removed from the composition. This definition is very close to Rushby’s [15] definition
for transitive non-interference. But, let us remark that event non-interference is not concerned about the
protection of data.
Data non-interference (DNI) provides isolation/security at data level. The definition ensures that, all states
reached from initially indistinguishable states at security level s, by execution of arbitrary but identical
traces whenever projected at level s, are also indistinguishable at level s. That means that observation of all
variables and interactions with level s or lower excludes any gain of relevant information about variables
at higher (or incomparable) level than s. Compared to event non-interference, data non-interference is a
stronger property that considers the system’s global states (local states and valuation of variables) and focus
on their equivalence along identical execution traces (at some security level).
In the secureBIP framework, a security assignment σ is said secure for a component γ(B1, . . . , Bn) iff it
ensures both event and data non-interference, at all security levels s ∈ S.

2.3 Checking Non-interference
We provide hereafter sufficient syntactic conditions that aim to simplify the verification of non-interference
and reduce it to local constrains check on both transitions (inter-component verification) and interactions
(intra-component verification). Especially, they give an easy way to automate the verification.

Definition 6 (security conditions) Let C = γ(B1, . . . , Bn) be a composite component and let σ be a
security assignment. We say that C satisfies the security conditions for security assignment σ iff:

(i) the security assignment of ports, in every atomic component Bi is locally consistent, that is:

– for every pair of causal transitions:

∀τ1, τ2 ∈ Ti : τ1 = `1
p1−→ `2, τ2 = `2

p2−→ `3 ⇒
`1 6= `2 ⇒ σ(p1) ⊆ σ(p2)
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– for every pair of conflicting transitions:

∀τ1, τ2 ∈ Ti : τ1 = `1
p1−→ `2, τ2 = `1

p2−→ `3 ⇒
σ(p1) = σ(p2)

(ii) all assignments x := e occurring in transitions within atomic components and interactions are
sequential consistent, in the classical sense:

∀y ∈ use(e) : σ(y) ⊆ σ(x)

(iii) variables are consistently used and assigned in transitions and interactions, that is,

∀τ ∈ ∪ni=1Ti ∀x, y ∈ X : x ∈ def(fτ ), y ∈ use(gτ ) ⇒
σ(y) ⊆ σ(pτ ) ⊆ σ(x)

∀a ∈ γ ∀x, y ∈ X : x ∈ def(Fa), y ∈ use(Ga) ⇒
σ(y) ⊆ σ(a) ⊆ σ(x)

(iv) all atomic components Bi are port deterministic:

∀τ1, τ2 ∈ Ti : τ1 = `1
p−→ `2, τ2 = `1

p−→ `3 ⇒
(gτ1 ∧ gτ2) is unsatisfiable

The first family of conditions (i) is similar to Accorsi’s conditions [1] for excluding causal and conflicting
places for Petri net transitions having different security levels. Similar conditions have been considered
in [10, 12] and lead to more specific definitions of non-interferences and bisimulations on annotated Petri
nets. The second condition (ii) represents the classical condition needed to avoid information leakage in
sequential assignments. The third condition (iii) tackles covert channels issues. Indeed, (iii) enforces the
security levels of the data flows which have to be consistent with security levels of the ports or interactions
(e.g., no low level data has to be updated on a high level port or interaction). Such that, observations of
public data would not reveal any secret information. Finally, condition (iv) enforces deterministic behavior
on atomic components.
The following result proven in [7] states that the above security conditions are sufficient to ensure both
event and data non-interference.

Theorem 1 (Corollary 1 of [7]) Whenever the security conditions hold, the security assignment σ is se-
cure for the composite component C.

As an illustration, consider the composite component in Figure 3. It can be relatively easily checked that
the security conditions hold, henceforth, the composite component is secure.

3 Secure Decentralized Model
In this section we describe the decentralization method for secureBIP and provide formal proofs for se-
curity preservation. This method relies on a systematic transformation from arbitrary BIP components
into distributed BIP components with S/R interactions previously introduced in [8]. S/R interactions are
binary point-to-point and directed interactions from one sender component (port), to one receiver compo-
nent (port) implementing message passing. The transformation guarantees that the receive port is always
enabled when the corresponding send port becomes enabled, and therefore S/R interactions can be safely
implemented using any asynchronous message passing primitives (e.g., TCP/IP network communication,
MPI communication, etc...).

Definition 7 (composite S/R component) CSR = γSR(BSR1 ,. . . , BSRn ) is a S/R secureBIP composite
component if we can partition the set of ports of BSR into three sets Ps, Pr, Pu that are respectively
the set of send-ports, receive-ports and unary interaction ports.
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Figure 4: 3-Layer Architecture

• Each interaction a = (Pa, Ga, Fa) ∈ γSR is either (1) a S/R interaction with Pa = (s, r1, r2, ..., rk),
s ∈ Ps, r1, ..., rk ∈ Pr and Ga = true and Fa copies the variables exported by the port s to
the variables exported by the port r1, r2..., rk or (2) a unary interaction Pa = {p} with p ∈ Pu,
Ga = true, Fa is the identity function.

• If s is a port in Ps, then there exists one and only one S/R interaction a = (Pa, Ga, Fa) ∈ γSR with
Pa = (s, r1, r2, ..., rk) and all ports r1, r2, ..., rk are receive ports. We say that r1, r2, ..., rk are the
receive ports associated to F .

• If a = (Pa, Ga, Fa) with Pa = (s, r1, r2, ..., rk) is a S/R interaction in γSR and s is enabled in some
global state of CSR then all its associated receive-ports r1, r2, ..., rk are also enabled at that state.

From a functional point of view, the main challenge when transforming a BIP component into a distributed
S/R BIP component is to enhance parallelism for execution of concurrent interactions. That is, in a dis-
tributed setting, each atomic component executes independently and thus has to communicate with other
components in order to ensure correct execution with respect to the original semantics. The existing method
for distributed implementation of BIP relies on structuring the distributed components according to a hier-
archical architecture with three layers, as depicted in Figure 4:

• The first layer (S/R atomic component) includes transformed atomic components. Each atomic com-
ponent will publish its offer, that is the list of its enabled ports, and then wait for a notification
indicating which interaction has been chosen for execution.

• The second layer (IP) deals with distributed execution of interactions by implementing specific in-
teraction protocols. The interaction protocol evaluates the guard of each interaction and executes the
associated update function The interface between this layer and the component layer provides ports
for receiving offers and notifying the ports selected for execution.

• The third layer (CRP) deals with conflict resolution between IPs. A conflict occurs if two different
IP components try to execute two interactions involving a common atomic component in the lower
layer. Several distributed algorithms exist for conflict resolution, this layer is generic with appropriate
interfaces.

The existing method in [8] has been designed without considering any security concerns. In the following,
we will show that it can be adapted such that to preserve information flow security. Roughly speaking,
this is achieved by using a slightly different transformation for atomic components as well as by imposing
few additional restrictions on the structure of the interaction protocol and conflict resolution layers. In this
case, we show that the the security assignment from the original secureBIP component is naturally lifted
to the distributed component and non-interference is preserved along the transformation.
Let C = γ(B1, · · ·Bn) be a composite component and σ be a security assignment for C with domain S,
fixed. Moreover, assume that σ satisfies the security conditions defined in subsection 2.3 for C. Further-
more, to simplify presentation, consider that atomic components are deterministic, that is, for every state `
and for every port p there exists at most one transition outgoing ` which is labelled by p.
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3.1 Atomic Components Layer
Referring to the [8] transformation method, the atomicity of transitions is broken at the atomic component
level. Precisely, each transition is split into two consecutive steps: (1) an offer that publishes the current
state of the component, and (2) a notification that triggers the update function. The intuition behind this
transformation is that the offer transition correspond to sending information about component’s intention
to interact to some scheduler and the notification transition corresponds to receiving the answer from the
scheduler, once some interaction has been completed. Update functions can be then executed concurrently
and independently by components upon notification reception.

Definition 8 (Transformed atomic component) Let B = (L,X, P, T ) be an atomic component within
C. The corresponding transformed S/R component is BSR = (LSR, XSR, PSR, TSR):

• LSR = L ∪ L⊥, where L⊥ = {⊥` | ` ∈ L}

• XSR = X ∪ {xp}p∈P ∪ {ns|s ∈ S} where each xp is a boolean variable indicating whether port p
is enabled, and ns is an integer called a participation number (for security level s).

• PSR = P∪{os | s ∈ S}. The offer ports os export the variablesXSR
os = {ns}

⋃
{{xp}∪Xp | σ(p) =

s} that is the participation number ns, the new boolean variables xp and the variablesXp associated
to ports p having security level s. For all other ports p ∈ P , we define XSR

p = Xp.

• For each state ` ∈ LSR, let S` be the set of security levels assigned to ports labelling all outgoing
transitions of `. For each security level s ∈ S`, we include the following transition τos = (⊥`

os−→
`) ∈ TSR, where the guard gos is true and fos is the identity function.

• For each transition τ = `
p−→ `′ ∈ T we include a notification transition τp = (`

p−→ ⊥`′) where the
guard gp is true. The function fp applies the original update function fτ on X , increments ns and
updates the boolean variables, for all r ∈ P :

xr :=

{
gτ if ∃τ = `′

r−→ `′′ ∈ T
false otherwise

Example 3 Figure 5 represents the transformed S/R version of the atomic component presented in Figure
2. The component is initially in control state ⊥l2. It sends an offer through the corresponding offer port
o2l containing the current enabled ports xp3, xp4 and the participation number n2l, then reaches state l2.
In that state, it waits for a notification on either port p3 or p4. The notification on p3 triggers the execution
of the update function which consists on incrementing the variable x, incrementing the value of n2l and
re-evaluating xp3 and xp4 based on the guards of transition labelled with p3 and p4 from l2).
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xp3 := true

xp4 := (x > 0)

xp5 := false

n2l + +

fl3 =


xp3 := false

xp4 := false

xp5 := true

n2h + +

Figure 5: Transformation of atomic components
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Definition 9 (security assignment σSR for BSR) The security assignment σSR is defined as an exten-
sion of the original security assignment σ. For variables XSR and ports PSR of a transformed atomic
components BSR, define

σSR(x) =


σ(p) if x = xp for some p ∈ P
s if x = ns for some s ∈ S
σ(x) otherwise, for any other x ∈ XSR

σSR(p) =

{
s if p = os for some s ∈ S
σ(p) otherwise, for any other p ∈ PSR

As an illustration, reconsider the example depicted in Figure 5. Following the above definition, ports p3, p4
and o2l are tagged as Low (L) and respectively ports p5, o2h are tagged as High (H).

Lemma 1 If the security assignment σ satisfies the security conditions for the atomic component B then
the security assignment σSR is satisfies the security conditions for the transformed S/R component BSR.

Proof: We show that transformed S/R atomic components are secure by construction, that is, security
conditions (i), (ii), (iii) and (iv), related to events and data are preserved by the transformation.

• Condition (i): In a transformed atomic BSR component we distinguish two cases of conflicting
transitions:

1. τ1 = ⊥`
os−→ ` and τ2 = ⊥`

os′−−→ `

2. τ1 = `
p1−→ ⊥`1 and τ2 = `

p2−→ ⊥`2 .

From hypothesis, B annotated by σ satisfies security conditions. Hence, from condition (i) related to
conflicting transitions in B the case (1) can not take place since ports labelling outgoing transitions
of state ` have the same security level and, moreover, in case (2), it implies that σSR(p1) = σSR(p2).

Similarly, in the transformed component there are two cases of causal transitions:

1. τ1 = ⊥`
os−→ ` and τ2 = `

p−→ ⊥`1 and

2. τ1 = `
p−→ ⊥`1 and τ2 = ⊥`1

os′−−→ `1

By construction, in (1) σSR(os) = σ(p). Hence, condition related to causal transitions is verified
and σSR(os) ⊆ σ(p). In (2) σSR(os′) = σSR(p′) such that p′ belong to the set of ports labelling
outgoing transitions of `′. By assumption, initial atomic component B satisfies security conditions,
thus σ(p) ⊆ σ(p′) and by construction σSR(p) ⊆ σSR(p′). Therefore σSR(p) ⊆ σSR(os′) which
satisfies security conditions (i).

• Condition (ii, iii): we verify the security level consistency of variables assigned in transitions. All
actions defined on transitions of atomic component B are kept unchanged in BSR and the security
level of all variables are preserved with σSR. Hence, by construction these actions are still secure
and satisfy conditions (ii) and (iii). The xpi variables of enables ports pi on a state {⊥`i}`i∈LSR are
modified at the received notification transition labelled with port p at the same state ⊥`i where (1)
σSR(xpi) = σSR(pi). From condition (i), we have security level consistency of causal transition,
thus (2) σSR(p) ⊆ σSR(pi). Each variable xpi is evaluated according to the guard gτpi . For all
y ∈ gτpi we have (3) σSR(y) ⊆ σSR.(pi). From (1), (2) and (3) we can deduce that the condition (iii)
is preserved for all xpi variables. The participation number ns is only incremented with notification
transitions labelled with port p having the same security level s. Thus σSR(p) ⊆ σSR(ns), condition
(ii), is valid in all transitions.

• condition (iv): This condition is trivially verified whenever the atomic component B is deterministic
where, for every state there is at most one transition that is labelled by each port.

�
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3.2 Interaction Protocol (IP) Layer
This layer consists of a set of components, each in charge of execution of a subset of interactions in the ini-
tial secureBIP model. Each component represent a scheduler that receives messages from S/R components
then calculates the enabled interaction and selects them for execution.
IP components cannot however run totally independent because of conflicting interactions. Two interac-
tions a1 and a2 are in conflict iff either, they share a common port p (i.e p ∈ a1 ∩ a2), or there exist two
conflicting transitions at a local state ` of a component Bi that are labelled with ports p1 and p2, where
p1 ∈ a1 and p2 ∈ a2. Conflicts between interactions executed by the same IP component are resolved by
that component locally. In contrast, conflicts between interactions executed by different IP components are
resolved with the help of the conflict resolution layer.
For the case of secureBIP systems we present hereafter two configurations of the IP layer. The first,
called centralized management uses the partitioning of interactions following their security level. If the
original system satisfies the security conditions, it can be proven that the partitioning is conflict-free, that
is, all conflicts are local and can be therefore solved locally by IP components. The second solution, called
decentralized management uses any finer partitioning. That is, the only restriction is that all the interactions
handled by some IP component have the same security level. In this case, conflicts may exists but only
between IP components handling interactions of the same security level. In this case, the additional conflict
resolution layer will be used.

3.2.1 Centralized interactions management

Interaction partitioning is automatically enforced by security types. With a centralized management, all in-
teractions having the same security level are handled by a distinct IP component. Let C = γ(B1, · · · , Bn)
be a composite component and γs = {ai = (Pi, Fi, Gi)|ai ∈ γ, σ(ai) = s} the set of interactions of level
s. Let participants(γs) (resp. ports(γs)) be the set of atomic components (resp. ports) participating (resp.
occurring) in interactions from γs.

Definition 10 (IP component at level s) The component IPs = (LIP , XIP , P IP , T IP ) handling γs is
defined as:

• Set of places LIP = {wi, rcvi | Bi ∈ participants(γs)} ∪ {sndp | p ∈ ports(γs)}.

• Set of variables XIP = {nis | Bi ∈ participants(γs)}
⋃
{{xp} ∪Xp | p ∈ ports(γs)}

• Set of ports P IP = {osi | Bi ∈ participants(γs)} ∪ {p | p ∈ portsγs} where offer ports ois are
associated to variables nis, xp, and Xp from component Bi and ports p are associated to variables
Xp.

• Set of transitions T IP ⊆ 2L
IP × P IP × 2L

IP

. A transition τ is a triple (•τ, p, τ•), where •τ is the
set of input places of τ and τ• is the set of output places of τ . We introduce three types of transitions:

– receiving offers (wi, osi, rcvi) for all components Bi ∈ participants(γs).

– executing interaction ({rcvi}i∈I , a, {sndpi}i∈I ) for each interaction a ∈ γs such that a =
{pi}i∈I , where I is the set of components involved in a. To this transition we associate the
guard [Ga ∧

∧
p∈a xp] and we apply the original update function Fa on ∪p∈aXp.

– sending notification (sndp, p, wi) for all ports p and component Bi ∈ participants(γs).

Example 4 Figure 6 illustrates the IPL component constructed for the L level security interactions γL =
{p1p3, p2p4} for the example shown in Figure 3. For all Bi components involved in interactions γL, we
introduce a waiting (wi) and receiving (rcvi) places (i.e, (w1 ,w2) and (rcv1, rcv2). For all ports p involved
in γL we introduce a sending place sndp (i.e, (sndp1 , sndp2 , sndp3 , sndp4 ). The IPL component moves
from wi to rcvi whenever it receives an offer from the corresponding component Bi. After choosing and
executing interactions, the IPL component moves to sending (sndp) places to send notification through
ports p to the corresponding component.
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Figure 6: IPL component managing low interactions

Definition 11 (security assignment σSR for IPs) The security assignment σSR is built from the original
security assignment σ. For variables XIP and ports P IP of the IPs component that handles γs, we define

σSR(x) =

{
σ(x) if x ∈ Xp and s ⊆ σ(x)

s otherwise
σSR(p) = s, forall p ∈ P IP

Within IPs component, all ports are annotated with security level s. The imported variables from atomic
component Bi having security level higher or equal to s are copied into variables annotated with the same
security level σ(x). Whereas, imported variables with security level lower or incomparable to s are copied
into variables having s as security level. This definition ensures the preservation of security conditions
within IPcomponent components.

Lemma 2 IP components satisfies the security conditions with security assignment σSR.

Proof: We verify the security of IPs component handling γs interactions at event and data level. Security
level consistency of causal and conflicting transitions can be easily verified in the IPs components. Indeed,
all ports labeling all transitions of the IPs have the same security level s, therefore, the security condition
(i) related to causal and conflicting transitions is satisfied at IPs by construction.
Next, we check the security level consistency of data at different transitions of IPs component: At exe-
cution transition, we consider an interaction a = (Ga, Pa, Fa) ∈ γ . By assumption, the system initially
satisfies security conditions (iii) at interaction level, that is σ(y) ⊆ σ(a) ⊆ σ(x) for all y ∈ use(Ga)
and x ∈ def(Fa). At the IP component we use copies of variables of the interaction a, where for all
y ∈ use(Ga) there exist a y′ such that y′ = y and for all x ∈ def(Fa) there exist a x′ such that x′ = x.
By transformation, σSR(y′) = s, σSR(x′) = σ(x) and for all pi ∈ {Pa}, σSR(pi) = σ(a) = s. With σSR

the condition (iii), σSR(y′) ⊆ σSR(pi) ⊆ σSR(x′), is preserved. �
Figure 7 represents the distributed model of the system shown in Figure 3 with centralized interaction
management. Indeed, low-level security interactions a and b are managed with a single IPL, where high
level interaction c is managed with a centralized IPH component.

3.2.2 Decentralized interactions management

To improve the system performance, one can choose to split the set of same security level interactions γs
into distinct subsets of interactions γjs that are executed by different IPjs components. Hence, conflicts
can occur between interactions handled by distinct IPjs components, e.g in Figure 8 interactions a and b
are in conflict at state l2 of component BSR2 . To solve this conflict the IP layer has to communicate with
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Figure 7: Centralized interaction management

the upper layer to take decisions and select the interaction to execute. To this purpose and for all a ∈ γis
iff ∃a′ ∈ γks where k 6= j and a is conflicting with a′ we include to the previous definition of the IPs
component the following:

• Place: {ta} the try places.

• Ports: {ra, oka, fa} where we associate to port ra a set of participation numbers {nis}i∈I where I
is the set of all Bi components involved in interaction a.

• Transitions: (1) reservation request ({rcvi}i∈I , ra, {ta}) guarded with
∧
p∈a xpi ∧ Ga, (2) positive

CRPs response ({ta}, oka, {sndpi}i∈I ) and (3) negative CRPs response ({ta}, fa, {rcvi}i∈I ).

The security level of added ports to the decentralized version of IPjs are equal to s, that is, σSR(ra) =
σSR(oka) = σSR(fa) = s. Thus, we have consistency of the security level of causal and conflicting
transitions (condition(i)) and IPjs components are secure.
Figure 8 represents the distributed model of system shown in Figure 3 with decentralized interaction man-
agement. The low-level security interactions a and b are now managed by IP1L and IP2L, respectively.
In this case, the conflict between both interactions a and b which requires the use of CRPL component to
coordinate between IP1L and IP2L components and to schedule the interactions execution.

p2 o1l o2l o2hp3 p4 p5 p6 o3h

BSR
1 BSR

2 BSR
3

p1 p2 o1 o2 o2o1 p3 p4 o2 o3p5 p6

CRPL

rok f

fa

rok

fb

f

okara rbokb

IP2L = {b}

p1

IPH = {c}IP1L = {a}

Figure 8: Decentralized interaction management

3.3 Conflict Resolution (CRP) Layer
This layer implements a distributed algorithm that solves the committee coordination problem [16]. Con-
flicts between interactions of the same security level s hosted by distinct IPjs components are managed by
a centralized CRPs component. That is, to preserve non-interference we use a distinct conflict resolution
component for each security level. As explained earlier, this is possible only because whenever the original
secureBIP system satisfies the security conditions, conflicts can occur only between interactions having the
same security level.
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For the time being, we restrict ourselves to a centralized model of CRPs as a single atomic component. In
this case, for each component Bi participating to interactions having security level s, the CRPs maintains
a participation number Nis that stores the latest used value of the participation number nis of component
Bi. Its behavior is as follows. Whenever a reservation message ra for interaction a = {pi}i∈I is received
by CRPs, the message provides a set of participation numbers ({nis}i∈I ) for all components involved in a.
If for each component Bi, the participation number nis is greater than Nis, then the CRPs acknowledges
successful reservation through port oka and the participation numbers in the CRPs are set to values sent by
the IPs. On the contrary, if there exists a component whose participation number is less than or equal to
what the CRPs has recorded, then the corresponding component has already participated for this number
and the CRP replies failure via port fa.
Let us notice that ports and variables in each CRPs component have the same security level s, and therefore
they trivially satisfy the security conditions (by construction). Thus, CRPs are secure for all s ∈ S.

Example 5 Figure 9 illustrate the CRPL component needed for conflict resolution in the example presented
in Figure 8.

L L L L L L
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Figure 9: Centralized model of CRPL

3.4 Cross-layer interactions

In this subsection, we define the interactions in the 3-layer model. Following Definition 7, we introduce
S/R interactions by specifying the sender and the associated receivers. Given a composite component C =
γ(B1, · · · , Bn), and partitions γ1s, · · · , γms of γs ⊆ γ, for every security levels s ∈ S, the transformation
produces a S/R composite component CSR = γSR(BSR1 , · · · , BSRn , (IP1s, · · · , IPms)s∈S , {CRPs}s∈S).
We define the S/R interactions of γSR as follows:

• For every atomic component BSRi participating in interactions of security level s, for every IP com-
ponents IP1s, · · · , IPms handling γs, include in γSR the offer interaction offs=(BSRi .os, IP1s.ois,...,
IPms.ois).

• For every port p in componentBSRi and for every IPjs component handling an interaction involving
p, we include in γSR the response interaction resp=(IPjs.p, BSRi .p)

• For every IPjs component handling an interaction a that is in conflict with an other interaction a′

handled by some different IP, include in γSR the reserve interaction r=(IPjs.ra, CRPs.ra). Likewise,
include in γSR the ok interaction ok=(CRPs.oka, IPjs.oka) and the fail interaction f=(CRPs.fa,
IPjs.fa).

Definition 12 (security assignment σSR for γSR) The security assignment σSR is build from the security
assignment σ. For interactions γSR between all atomic components of the transformed model, we define
σSR(a) = s for any interaction a involving an IPjs component handling interactions with security level s.

Lemma 3 All the cross-layer interactions of CSR are secure with σSR.
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Proof: We verify the security level consistency of transferred data on different interactions:

• At offer interaction offs, we perform a copy of received variables through offer ports fromBSRi com-
ponent to the IP component, such that ∀x ∈ {{Xp}p∈P∪{xp}p∈P∪{nsi|Bi ∈ participants(γs), s ∈
S}} there exist a x′ ∈ XIP where x′ := x. By transformation, σSR(x′) = s if σ(x) ⊆ s and
σSR(x′) = σ(x) otherwise. The security level of updated variables (x′) and used variables (x) are
consistent with security level of there corresponding offer interaction, where σSR(offs) = s. Thus,
the security condition (ii) and (iii) are preserved at offer interactions.

• At response interactions resp, we send notifications to the corresponding ports p associated with the
updated variables x′, where σSR(p) ⊆ σSR(x′). By construction, σ(p) = σSR(p) = σSR(resp),
thus, σSR(resp) = σSR(x′) which satisfies condition (iii).

• With interactions r, f and ok, the only exchanged variables are the participation numbers nsi of
each participating component i. By construction, each CRPs and IPs components are handling
interactions of the same security level s, thus σSR(r) = σSR(f) = σSR(ok) = σSR(nsi). Therefore
the security condition (iii) is preserved at these interactions.

�
The following theorem states the correctness of our transformation, that is, the constructed S/R model
satisfies the security conditions by construction.

Theorem 2 (Security-by-construction) If the component C satisfies security conditions for the security
assignment σ then the transformed componentCSR satisfies security conditions for the security assignment
σSR.

Proof: From lemma 1,2 and 3 we ensure the preservation of all security conditions at all S/R model layer
and transformation steps. �

4 Implementation and Experiments
We illustrate the secure decentralization method with a typical example, a simplified web service reser-
vation system introduced in [7]. A businessman, living in France, plans to go to Berlin for a private and
secret mission. To organize his travel, he uses an intelligent web service who contacts two travel agencies:
The first agency, AgencyA, arranges flights in Europe and the second agency, AgencyB, arranges flights
exclusively to Germany. The reservation service obtains in return specific flight information and their
corresponding prices and chooses the flight that is more convenient for him.
In this example, there are two types of interference that can occur, (1) data-interference since learning
the flight price may reveal the flight destination and (2) event interference, since observing the interaction
with AgencyB can reveal the destination as well. Thus, to keep the mission private, the flight prices and
interactions with AgencyB have to be kept confidential.
The modeling of the system using secureBIP involves two main distinct steps: first, functional requirements
modeling reflecting the system behavior, and second, security annotations enforcing the desired security
policy. The model of the system has four components denoted: TravelA and TravelB who are instances
from the same component and correspond respectively to AgencyA and AgencyB, and components Reser-
vation and Payment. To avoid Figure 10 cluttering, we did not represent the interactions with TravelA
component. Search parameters are supplied by the user through the Reservation component ports dests and
dates to which we associate respectively variables (from, to) and dates. Next, through search interaction,
Reservation component contacts TravelB component to search for available flights and obtains in return a
list L of specific flights with their corresponding prices. Thereafter, Reservation component selects a ticket
ti from the list L and requests the Payment component to perform the payment.
All the search parameters from, to, dates, as well as the flights list L are set to low since users are not
identified while sending these queries. Other sensitive data like the selected flight ti, the price variable p
and the payment parameters (identity id, credit card variable cna and code number cno) are set to high.
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Figure 10: High-level application model.

Internal ports dests and dates as well as search, fly_list, accept interactions are set to low since these
interactions (events) do not reveal any information about the client private trip. However, the select_fly
interaction must be set to high since the observation of the selection event from AgencyB allows deducing
the client destination. In the case of a selected flight from AgencyA, the select_fly interaction could be set
to low since, in this case, the destination could not be deduced just from the event occurrence.
We recall that any system can be proven non-interferent iff it satisfies the syntactic security conditions
from definition 6. Indeed, these conditions hold for the system model depicted in Figure 10. In particular,
it can be easily checked that all assignments occurring in transitions within atomic component as well as
within interactions are sequential consistent. For example, at the select_fly interaction we assign a low
level security item from the flight list L to a high security level variable ti, formally ti = L[i]. Besides, the
security levels assignments to ports exclude inconsistencies due to causal and conflicting transitions, in all
atomic components.
The decentralization of this system can be done flowing two manners of interaction partitioning: (1)
conflict-free partitioning with centralized interaction management for each security level or (2) decen-
tralized management with specific partitioning with conflict resolution between IP components. That is,
in the first case conflicts are handled at the IP layer and no further interactions with CRP layer is needed.
A solution in the second case, decentralized interaction management at each security level with arbitrary
partitioning is represented by Figure 11. In this case, high security interactions are partitioned amongst
IP1H and IP2H components while low interactions are handled by IPL. With this partitioning, conflicts
occur between ports labelling outgoing transitions at both states l3 and l8 of Payment and Reservation
components, respectively. To handle this conflict, a centralized CRPH for high security level interaction
is introduced.
The solution proposed to automatically distribute secure systems handles well issues of protecting confi-
dentiality in concurrent settings. From the S/R model, we automatically generates stand-alone processes
(C++ code) for every S/R components (atomic, IP or CRP). S/R interactions are implemented using TCP/IP
socket-based communication. The implementation can be deployed and run on a distributed network. For
the time being, however, we assume that communications are managed through secure private/public net-
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Figure 11: Distributed application model.

works, that is, communication at every security level is ensured with trusted secure channels. Nevertheless,
cryptographic mechanisms that guarantee secrecy and integrity of transferred data on TCP/IP sockets can
be included in our model and is part of our planned future work.

5 Related Work

In this work we presented a distributed secureBIP framework, that handles both event and data-flow non-
interference, in a single semantic model. To the best of our knowledge, these properties have never been
jointly considered for component-based models. Nevertheless, the need to consider together event and
data flow non-interference has been recently identified in the existing literature. The bottom line is that
preserving the safety of data flow in a system does not necessarily preserve safe observability on system’s
public behavior (i.e., secret/private executions may have an observable impact on system public events).
The issue has been recently considered in [1], for data leaks and information leaks in business processes
based on system’s data-flows and work-flows. Also, [3] showed that formal verification of the system’s
event behavior is not sufficient to guarantee specific data properties. Furthermore, [10] attempted to fill
the gap between respectively language-based and process calculus-based information security and make an
explicit distinction between preventing the data leakage through the execution of programs and preventing
secret events from being revealed in inter-process communications.
Other previous works [22, 23, 11] have studied secure program distribution. In [22, 23] the authors present
a secure compiler JiF/Split to build secure distributed systems by splitting typed sequential java programs
with assumption that the communications are secure through the network. Whereas [11] presents a similar
approach as Jif/Split, it further enforces the network communication security by providing cryptographic
mechanisms. Compared to this, we give a different approach by follow a component-based design analy-
sis handling heterogeneous systems with formally proved transformation steps. Our method significantly
reduces the verification of complex systems and automatically ensures security from the high-level model
till code generation.
We should notice that recent works on information flow security in web services rely on Petri-nets model-
ing generated from BPEL orchestration tools [2]. The Petri-net graph is modified by the developer to take
into account shared resources (mainly between users sessions) and security annotations are added at inter-
action level. Our abstract high-level model provides more fine-grained description of the system through
intra-component description and a modular compositional verification. Furthermore and unlike [14], that
provides limited method using calculus types refinement for web services dynamic composition and which
required expensive calculations resources for types propagation for big scaled systems, our model is more
general and we can use it for verifying any kind of component-based systems and not only web services.
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6 Conclusion

We present an automated secure distributed implementation from abstract component-based model with
multiparty interactions. Our method consists of enforcing information flow security at centralized input
model then generating a distributed model where multiparty interactions are replaced with asynchronous
message passing and sets of interactions belonging to same security level are handled separately. The inter-
mediate distributed model is formally proved "secure by construction" and the generated code implements
the desired security policy defined at the centralized level.
Besides, when evaluating secure systems three primary factors are usually emphasized: security, perfor-
mance and ease-of-use. In our approach, security is handled at an abstract high-level and preserved till code
generation automatically. Second, compared to the [8] transformation, the distribution preserves the struc-
ture of distributed S/R model where no additional components or security levels are added. Furthermore,
performance is almost preserved, the only penalties being related to encryption mechanisms for network
connections.
This work is now being extended in two directions. First, we are working towards the implementation
of cryptographic primitives for multi-level security (MLS) systems. This implementation connects the
generated C++ code to cryptographic libraries in order to ensure confidentiality and integrity of exchanged
messages. Second, the current definition of transitive non-interference is relatively strict for practical use,
therefore, we are investigating to which extent our decentralization method applies to relaxed version of
non-interference (e.g, intransitive or with declassification mechanisms).
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