
Non-Convex Invariants and Urgency Conditions
on Linear Hybrid Automata

Stefano Minopoli and Goran Frehse
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Abstract. Linear hybrid automata (LHAs) are of particular interest
to formal verification because sets of successor states can be computed
exactly, which is not the case in general for more complex dynamics.
Enhanced with urgency, LHA can be used to model complex systems
from a variety of application domains in a modular fashion. Existing
algorithms are limited to convex invariants and urgency conditions that
consist of a single constraint. Such restrictions can be a major limitation
when the LHA is intended to serve as an abstraction of a model with
urgent transitions. This includes deterministic modeling languages such
as Matlab-Simulink, Modelica, and Ptolemy, since all their transitions are
urgent. The goal of this paper is to remove these limitations, making LHA
more directly and easily applicable in practice. We propose an algorithm
for successor computation with non-convex invariants and closed, linear
urgency conditions. The algorithm is implemented in the open-source
tool PHAVer, and illustrated with an example.

1 Introduction

Linear Hybrid Automata (LHA) are discrete automata enhanced with real-
valued variables and linear constraints [16]. Despite their syntactical simplicity,
they admit a rich variety of behaviors. In LHA, the evolution of the variables
over time is governed by differential inclusions, called flows, which can be simple
intervals such as ẋ ∈ [1, 2], or more complex linear constraints over the deriva-
tives such as the conservation law ẋ+ ẏ = 0. Changes of the discrete state admit
arbitrary linear updates of the variables. For example, LHA can model discrete-
time affine systems, a widely used class of control systems, by using discrete
updates of the form x+ = Ax+ b. LHA can even generate chaotic behavior that
can be observed in real-life production systems [23]. The chaos can be due to
switching flows [9] or due to updates of the discrete state, with which one can
model piecewise affine maps such as the tent map [10].

Linear Hybrid Automata belong to the very few classes of hybrid systems
for which set-based successor computations can be carried out exactly [1]. This
makes them prime candidates for formal verification. LHA can serve as abstrac-
tions of systems that require not only timed behavior but quantitative informa-
tion, e.g., to capture accumulation effects. The LHA abstraction can then be
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verified using model checkers such as HyTech [15] or PHAVer [13]. If the ab-
straction is conservative, verifying it implies that the real system satisfies the
specification; if the abstraction is an approximation that is not entirely conser-
vative, its verification helps to find bugs and identify pertinent test cases.

In model-based design, the basis for building LHA abstractions is often an
existing model, given in formats like Matlab-Simulink/Stateflow [19, 18] or Mod-
elica [20], which are the de-facto standard in many industries. Like the academic
formalism Ptolemy [8], the semantics of these models are deterministic. In partic-
ular, a discrete transition is taken as soon as it is enable, which is also referred
to as urgent or as-soon-as-possible (ASAP) semantics. This can pose a prob-
lem when trying to build a corresponding LHA model, since LHA transitions
do not force the system to change state when they are enabled. In particular,
if the derivatives of the system happen to be zero when the guard is enabled,
the system may remain forever at that state. The only way to circumvent this
problem is to add a clock to the controller model and periodically test (with a
self-loop transition) whether the constraint is satisfied or not. This is a formally
correct and conservative way to model such a system, and it even corresponds
quite closely to actual behavior of process controllers, which periodically sample
the sensors and set actuators. But it can tremendously increase the computa-
tional complexity of the verification task: The clock ticks introduce discrete state
changes at a rate much higher than the time constants of the system, multiplying
the number of sets of states that need to be computed. A computationally more
efficient abstraction can be obtained if one adds urgency conditions to the LHA
formalism. Declaring certain states of the controller as urgent prevents time from
elapsing, and one can now construct an LHA abstraction (or approximation) of
deterministic transitions.

Existing algorithms for set-based successor computations of LHA require
urgency conditions to either be independent of the continuous variables [15] or
consist of a single constraint [13], which can be quite restrictive in practice. In
this paper, we propose an algorithm to compute successor states for arbitrary,
non-convex, closed urgency conditions. To be able to do so, we also propose an
algorithm for computing successor states for general non-convex invariants, for
which so far no algorithm is available. Related work is discussed in more detail
for non-convex invariants in Sect. 2.4 and for urgency in Sect. 3.5.

The proposed algorithms are implemented in the open-source tool PHAVer on
the SpaceEx tool platform [12]. The tool as well as all examples from this paper
are available for download at spaceex.imag.fr. Detailed proofs are available in
a technical report [21].

In the next section, we recall the basics on LHA and then propose our post
operator for non-convex invariants. In Sect. 3, we propose our post operator for
urgency conditions and make the connection to urgent transitions. The com-
putation of reachable states with these operators is illustrated by examples in
Sect. 4. The paper terminates with some conclusions in Sect. 5.
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2 Linear Hybrid Automata with Non-Convex Invariants

In this section, we give the syntax and the semantics description of a particular
case of Linear Hybrid Automata (LHA), where it is possible to define, for each
location, a non-convex invariant.

2.1 Definition and Semantics

We first need to define some notation. A convex polyhedron is a subset of Rn
that is the intersection of a finite number of strict and non-strict affine half-
spaces. A polyhedron is a subset of Rn that is the union of a finite number of
convex polyhedra. For a sake of clearity, given a convex polyhedron P , we will
write P̂ to direct explicit that P is convex. For a general (i.e., not necessarily
convex) polyhedron G ⊆ Rn, we denote by cl(G) its topological closure. Given an
ordered set X = {x1, . . . , xn} of variables, a valuation is a function v : X → R.
Let Val(X) denote the set of valuations over X. There is an obvious bijection
between Val(X) and Rn, allowing us to extend the notion of (convex) polyhedron
to sets of valuations. We denote by CPoly(X) (resp., Poly(X)) the set of convex
polyhedra (resp., polyhedra) on X. We use Ẋ to denote the set {ẋ1, . . . , ẋn} of
dotted variables, used to represent the first derivatives, and X ′ to denote the set
{x′1, . . . , x′n} of primed variables, used to represent the new values of variables
after a discrete transition. Arithmetic operations on valuations are defined in the
straightforward way. An activity over X is a function f : R≥0 → Val(X) that is
continuous on its domain and differentiable except for a finite set of points. Let
Acts(X) denote the set of activities over X. The derivative ḟ of an activity f is
defined in the standard way and it is a partial function ḟ : R≥0 → Val(Ẋ).

A Linear Hybrid Automaton H = (Loc, X,Lab,Edg ,Flow , Inv , Init) consists
of the following:

– a finite set Loc of locations,
– a finite set X = {x1, . . . , xn} of real-valued variables, A state is a pair 〈l, v〉

of a location l and a valuation v ∈ Val(X);
– a finite set of labels Lab,
– a finite set Edg of discrete transitions that describes instantaneous changes

of locations, in the course of which variables may change their value. Each
transition (l, α, η, l′) ∈ Edgc consists of a source location l, a target location
l′, a label α ∈ Lab, and a jump relation η ∈ Poly(X ∪X ′), that specifies how
the variables may change their value during the transition. The guard is the
projection of η on X and describes the valuations for which the transition is
enabled;

– a mapping Flow : Loc → CPoly(Ẋ) attributes to each location a set of
valuations over the first derivatives of the variables, which determines how
variables can change over time;

– a mapping Inv : Loc → Poly(X), called the invariant ;
– a mapping Init : Loc → Poly(X), contained in the invariant, defining the

initial states of the automaton.
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The set of states of H is S = Loc × Val(X). Moreover, we use the shorthand
notations InvS =

⋃
l∈Loc{l} × Inv(l) and InitS =

⋃
l∈Loc{l} × Init(l). Given a

set of states A and a location `, we denote by A�` the projection of A on `, i.e.
A�`= {v ∈ Val(X) | 〈`, v〉 ∈ A}.

Semantics The behavior of a LHA is based on two types of steps: discrete steps
correspond to the Edg component, and produce an instantaneous change in both
the location and the variable valuation; timed steps describe the change of the
variables over time in accordance with the Flow component.

Given a state s = 〈l, v〉, we set loc(s) = l and val(s) = v. An activity
f ∈ Acts(X) is called admissible from s if (i) f(0) = v and (ii) for all δ ≥ 0,
if ḟ(δ) is defined then ḟ(δ) ∈ Flow(l). An activity is linear if there exists a
constant slope c ∈ Flow(l) such that, for all δ ≥ 0, ḟ(δ) = c. We denote by
Adm(s) the set of activities that are admissible from s.

Runs Given two states s, s′, and a transition e ∈ Edg , there is a discrete step
s
e−→ s′ with source s and target s′ iff (i) s, s′ ∈ InvS , (ii) e = (loc(s), α, η, loc(s′)),

and (iii) (val(s), val(s′)[X ′/X]) ∈ η, where val(s′)[X ′/X] is the valuation in
Val(X ′) obtained from s′ by renaming each variable in X with the corresponding
primed variable in X ′. Whenever condition (iii) holds, we say that e is enabled

in s. There is a timed step s
δ,f−−→ s′ with duration δ ∈ R≥0 and activity f ∈

Adm(s) iff (i) s ∈ InvS , (ii) for all 0 < δ′ ≤ δ, (〈l, f(δ′)〉) ∈ InvS , and (iii)
s′ = 〈loc(s), f(δ)〉. For technical convenience, we admit timed steps of duration

zero. A special timed step is denoted by s
∞,f−−−→ and represents the case when

the system follows the activity f forever. This is allowed only if for all δ ≥ 0,
(〈l, f(δ)〉) ∈ InvS . A run is a sequence

r = s0
δ0,f0−−−→ s′0

e0−→ s1
δ1,f1−−−→ s′1

e1−→ s2 · · · sn · · · (1)

of alternating timed and discrete steps, such that either the sequence is infinite,

or it ends with a timed step of the type sn
∞,f−−−→.

If the run r is finite, we define len(r) = n to be the length of the run,
otherwise we set len(r) = ∞. Given a hybrid automaton H, the set Runs(H)
contains all the possible runs induced by the automaton H.

2.2 Reachability

Given a state s ∈ S and a hybrid automaton H with initial set of states Init ,

s is said to be reachable in H if there exists a finite run r = s0
δ0,f0−−−→ s′0

e0−→
s1

δ1,f1−−−→ s′1
e1−→ s2 · · · sn, such that s0 ∈ Init and sn = s. In a natural way, we

can extend the concept of reachability to the valuations: considering the run r
explicited before, if s0 = (〈l, u〉) and sn = (〈l′, v〉), we can say that the valuation
v is reachable from the valuation u. The reachability problem for the automaton



Non-Convex Invariants and Urgency Conditions on Linear Hybrid Automata 5

H consists in the computation of the set of states

Reach(H) =
{
s ∈ S

∣∣∃r ∈ Runs(H) : len(r) 6=∞, r = s0
δ0,f0−−−→ · · · sn,

where s0 ∈ Init and sn = s
}
.

Classically, the algorithm that computes the set Reach(H) is a fixed-point
procedure, over all the locations l ∈ Loc, based on the continuous post operator
and on the discrete post operator : given a set of states S′ ⊆ S, the first one
operator is used to compute the set of states reachable from S′ by following an
admissible trajectory, while the second one operator is used to compute the set
of states reachable from S′ via discrete transitions. Notice that the computation
of the discrete post operator is not affected by the nature of the invariants, so
we focus on the continuous post operator. The formal definitions are as follows:

Definition 1 (Post operators). Given an hybrid automaton H, a location ` ∈
Loc, a set of valuations P, I ⊆ Inv(`), the continuous post operator Post`(P, I)
contains the set of all valuations v ∈ Val(X) reachable from some u ∈ P without
leaving I:

Post`(P, I) =
{
v ∈ val(X)

∣∣∃u ∈ P, f ∈ Adm(〈l, u〉) and δ ≥ 0 :

∀0 < δ′ ≤ δ, f(δ′) ∈ I and f(δ) = v
}
. (2)

The discrete post operator Postε(P ) contains the set of all valuations v ∈
Val(X) reachable from some u ∈ P by taking the discrete transition ε = (`, η, `′):

Postε(P ) =
{
v ∈ val(X)

∣∣ ∃u ∈ P, (u, v[X ′/X]) ∈ η and v ∈ Inv(`′)
}
.

From these operators on valuations we obtain the continuous and discrete post
operators for a set of states S by iterating over all locations and transitions:

Postc(S) =
⋃

`∈Loc

{`}×Post`(S �`, Inv(`)), Postd(S) =
⋃

(`,α,η,`′)∈Edg

{`′}×Postε(S �`).

Note that definition (2) is valid regardless whether I is convex or not. It differs
slightly from the classic definition in that we do not require that P ⊆ I. This
trick is used in the next section to apply the operator iteratively to convex
partitions of a non-convex invariant. In this case, I is a convex subset of the
invariant but P is not necessarily a subset of I. For the sake of clarity, we will
denote by Post`(P, I) the continuous post operator when I is convex and by
ncPost`(P, I) when I is non-convex.

The following simple algorithm is used by tools such as HyTech and PHAVer
to compute the reachable states. Starting from the initial states, it computes
the continuous and discrete post in alternation until a fixed point is reached.
Note that this is a semi-algorithm, since it may not terminate. The algorithm
computes the sequence S0 = Postc(InitS ), and Sk+1 = Sk ∪ Postc(Postd(Sk)).
It terminates if Sk+1 = Sk, with the result that Reach(H) = Sk.
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2.3 Computing the Continuous Post Operator with Nonconvex
Invariants

In this section we first recall how the continuous post operator is computed,
when the invariant is a convex polyhedron, and why it is not possible to use the
same way when the invariant is non-convex. Then we give a sound and complete
procedure that, given a non-convex invariant I and an initial set of valuation
P ⊆ I, computes the continuous post operator ncPost`(P, I). Given a linear
hybrid automaton H, it is well known that the continuous post operator, on a
location l ∈ Loc, a convex invariant I = Inv(`), a flow F = Flow(`) and a set of
initial valuations P ⊆ Inv(`), is given by:

Post`(P, I) = (P↗F ) ∩ I, (3)

where P↗F are valuations on straight line trajectories starting in P with con-
stant derivative ẋ = c for any c ∈ F :

P↗F= {x′ | x ∈ P, c ∈ F, t ∈ R≥0, x′ = x+ ct}. (4)

The operator (4) is straightforward to compute for polyhedral sets, and is avail-
able in computational geometry libraries such as the Parma Polyhedra Library
(PPL) [2]. The result of (4) is a convex polyhedron if P, F are convex polyhedra
and F is closed and bounded; otherwise, it is the union of P with a convex
polyhedron [7].

The natural question now is: what happens if (3) is applied when I is a
non-convex polyhedron? Example 1 illustrates the answer with a simple case.

Example 1. Given a LHA with non-convex polyhedra invariants H = (Loc, X,

Edg ,Flow , Inv , Init), and fix l ∈ Loc, I = Î1 ∪ Î2 = Inv(`), P ⊆ I, and
F = Flow(`), Figure 1 shows the comparison between the correct result of
ncPost`(P, I) and the result obtained by forcing the usage of the classical post
operator also with non-convex invariant (that is by computing P↗F ∩I). The
gray area in Figure 1(a) contains all the valuations coming from (3). Notice that,

in the resulting set there are also valuations belonging to Î2. But, according to
the definition of continuous post, this is not correct because all the valuations
reached during the evolution of the time have to remain in the invariant: in
this case, for all the admissible activities in P , the only way to reach Î2, is to
cross the area between Î1 and Î2, that is clearly not in the invariant and then
the valuations in Post`(P, I)∩ Î2 do not belong to ncPost`(P, I). The gray area
of Figure 1(b) contains, instead, all the valuations that properly belong to the
ncPost`(P, I): starting from any valuations in P , the evolution can proceed only

until the right border of Î1 is reached, and there is no way to reach Î2 without
crossing I.

Example 1 can also give an intuition about how to tackle the issues of the classical
approach: in order to compute ncPost`(P, I), it is necessary to consider not the
global I, but the single convex polyhedra in [[I]], in a kind of fix-point procedure.
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P

̂I1

F = Flow(l)

(a) (P↗F ) ∩ I.

P

̂I1
̂I2

F = Flow(l)

(b) The correct result.

Fig. 1. Comparison between Post`(P, I) and ncPost`(P, I), with non-convex invariant

I = Inv(`) = Î1 ∪ Î2.

Considering again Figure 1, the first step is to compute P1 = P↗F ∩Î1. Once
obtained the result, we need to check if there exists a valuation u ∈ P1 such that,
by following some admissible activity f ∈ Adm(〈`, u〉), it is possible to reach a

valuation v ∈ Î2, while the system always remains in the invariant (i.e. while
avoiding I). In the case depicted in Figure 1, does not exist such a valuation

(indeed, in order to reach Î2 via an admissible activity, it is always necessary to
cross I).

Before giving the fixed point characterization of ncPost`, we need to intro-
duce some extra notation (some of them similar to operators defined in [7]). The
topological closure of a set G is denoted by cl(G). Given polyhedra A and B,
their boundary is

bndry(A,B) = (cl(A) ∩B) ∪ (A ∩ cl(B)). (5)

Clearly, bndry(A,B) is nonempty only if A and B are adjacent to one another
or they overlap; otherwise, it is empty.

Definition 2 (Potential entry). Given a location ` and convex polyhedra A
and B, the potential entry region from A to B denotes the set of points on the
boundary between A and B that may reach B by following some linear activity
in location `, while always remaining in A ∪B:

pentry`(A,B) =
{
p ∈ bndry(A,B) | ∃q ∈ A, δ ≥ 0 and c ∈ Flow(`) :

p = q + δ · c and for all 0 ≤ δ′ < δ, q + δ′ · c ∈ A
}
. (6)

We call the above set the “potential” entry because it may happen that, even
though pentry`(A,B) is not empty, the system is not able to reach valuations
in B starting from a valuation in A (see Example 2, Fig. 2(c), Fig. 2(f)). The
following Lemma gives us a way to effectively compute the potential entry region.

Lemma 1. Given a location ` and convex polyhedra A and B, let F = Flow(`),
the potential entry region from A to B can be computed by:

pentry`(A,B) = bndry(A,B) ∩A↗F .
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Proof (⊆). Let p ∈ pentry`(A,B), by definition of potential entry we have that
p ∈ bndry(A,B) and there exists a valuation q ∈ A, c ∈ F and a time δ ≥ 0, such
that p = q+ δ · c and for all 0 ≤ δ′ < δ, it holds that q+ δ′ · c ∈ A. The last one,
recalling that q ∈ A and the time elapse-definition, allows us to write that for
all 0 ≤ δ′ < δ, it holds that q+ δ′ · c ∈ A↗F . Again, by definition of time elapse,
if for all 0 ≤ δ′ < δ, then q + δ′ · c ∈ A↗F and also p = q + δ · c ∈ A↗F . Hence,
p ∈ bndry(A,B) and p ∈ A↗F trivially implies that p ∈ bndry(A,B) ∩A↗B .

[⊇] Let p ∈ bndry(A,B) ∩ A↗F , by definition of time-elapse we have that
there exists a valuation q ∈ A, a point c ∈ F and a time δ ≥ 0 such that
p = q + δ · c or, equivalently there exists an activity f ∈ Adm(〈l, u〉) such
that p = f(δ) ∈ bndry(A,B). Due to the convexity of A and the definition of
boundary, we have that for all 0 ≤ δ′ < δ, f(δ′) ∈ A. The last one, coupled with
f(δ) ∈ bndry(A,B), allows us to conclude p ∈ pentry`(A,B). 2

From Lemma 1 follows the following Corollary:

Corollary 1. If A ⊆ B, then A ⊆ pentry`(A,B) ⊆ cl(A).

Example 2. Figure 2 shows two convex polyhedra A and B whose boundary
is non empty (A and B are adjacent), where flow is represented by an arrow.
Considering Figure 2(a), it is easy to check that the flow allows to reach valu-
ations on the boundary between A and B starting from a valuation belongs to
A. Figure 2(d) shows the computation of pentry`(A,B), obtained by performing
the intersection between bndry(A,B) and A↗F . Considering instead the case
depicted in Figure 2(b) (same as the previous one except for the flow), there
is no way to reach valuations belong to bndry(A,B) starting from a valuation
u ∈ A: according to Lemma 1, Figure 2(e) shows that the intersection between
the boundary and the post-flow is empty. Figure 2(c) shows a case where the
polyhedron B is not closed and then by following the flow, the system can never
reach B, even if the starting valuation is on the top border of A. Notice that (see
Figure 2(f)), even if B is not reachable from A, we have that pentry`(A,B) 6= ∅:
this clearifies why we denote this set as “potential”.

Now we are ready to give a way to correctly compute the continuous post
operator when the invariants could be non-convex. Given a LHA H and let
l ∈ Loc, I = Inv(`), F = Flow(`) and P ⊆ I, as Example 1 suggests, the idea is
to build incrementally the sets of reachable valuations by considering each time
a single convex component Î ′ ∈ [[I]] instead of considering the entire invariant I.

The procedure starts by finding, for all Î ′ ∈ [[I]] and P̂ ′ ∈ [[P ]], the potential entry

from P̂ ′ to Î ′. Once obtained the set pentry`(P̂
′, Î ′), the procedure computes

the classical continuous post operator on pentry`(P̂
′, Î ′) and Î ′. The procedure

is applied recursively by building the sequence W0 ⊆W1 ⊆ . . .Wi−1 = Wi of the
sets of the reachable valuations, with W0 = P , and ends when no new valuation
can be added to a set. When this happens, we have that ncPost`(P, I) = Wi.

Before formalizing we informally explain, by Figure 3, why the procedure
needs to compute the potential entry sets pentry`(Ŵ

′, Î ′), instead of simply

performing the intersection between Ŵ ′ and Î ′. Consider the step that build the
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A B

F = Flow(l)

(a) Case 1: the flow al-
lows to reach B from
bndry(A,B).

A B

F = Flow(l)

(b) Case 2: the flow does
not allow to reach B from
bndry(A,B).

A

F = Flow(l)

B

(c) Case 3: the flow does
not allow to reach B from
bndry(A,B).

A ↗ F

bn
d
ry

(A
,B

)

(d) bndry(A,B) ∩ A↗F 6=
∅: potential entry from A
to B.

bn
d
ry

(A
,B

)

A ↗ F

(e) bndry(A,B) ∩ A↗F =
∅: entry from A to B im-
possible.

A ↗ F

bndry(A,B)

(f) bndry(A,B) ∩ A↗F 6=
∅, but the system can not
reach B from A.

Fig. 2. The computation of potential entry from A to B involves computing the bound-
ary of A and B (as shown in Figs. 2(a),2(b),2(c)), and identifying states reachable on
that boundary (see, respectively, Figs. 2(d),2(e),2(f))

set Ŵ3, as depicted in Figure 3(b), and suppose that the procedure, instead of

using Post`(pentry`(Ŵ2, Î3), Î3) would use Post`(Ŵ2 ∩ Î3, Î3). Due to the fact

that Î2 is right open, also Ŵ2 is right open and then the initial set Ŵ2∩ Î3 would
be empty as well as Post`(Ŵ2 ∩ Î3, Î3).

Notice that, even if the initial set of valuations pentry`(Ŵ2, Î3) is not in the

invariant convex component Î3, the set Post`(pentry`(Ŵ
′, Î ′) is non-empty. We

have that pentry`(Ŵ2, Î3) ⊆ I that is the starting valuations have to belong
to the global non-convex invariant I, not necessary to the convex component
Î3 ∈ [[I]].

The formal relationship between the fixed-point procedure described above
and the computation of the continuous post operator, when the invariant is
non-convex, is given by the following theorem:

Theorem 1. Given a location ` ∈ Loc and sets P ⊆ Inv(`), I = Inv(`),
ncPost`(P, I) is the smallest fixed point of the sequence W0 = P ,

Wk =
⋃

Ŵ ′∈[[Wk−1]]

⋃

Î′∈[[I]]

Post`(pentry`(Ŵ
′, Î ′), Î ′).
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W0 = P W1

Î1 Î2 Î3

F = Flow(l)

(a) First step: computation of W1 starting from the initial set P .

P W1 W2

Î1 Î2 Î3

F = Flow(l)

(b) Second step: computation of W2 starting from pentry`(W1, Î2).

P W1 W2 W3

Î1 Î2 Î3

F = Flow(l)

(c) Last step: computation of W3 starting from pentry`(W2, Î3).

Fig. 3. The central role of pentry`(W2, Î3) in the computation of ncPost`(P, I).

Moreover, the above sequence reaches the fixed point in at most n =
∣∣[[I]]

∣∣ steps,
that is Wn+1 = Wn.

We split the proof of Theorem 1 into several lemmas. Given a polyhedron I and
two valuations u and v, assuming that v is reachable from u via an admissible
activity that always remains in I (i.e. always avoids I), we denote by d(u, v, I)
the minimum number of convex polyhedra in [[I]] in which the system must
remain in order to reach v from u via any admissible activity f . Formally:

d(u, v, I) = min{n > 0 | ∃f ∈ Adm(〈`, u〉), δ ≥ 0, Î1, . . . În ∈ [[I]] :

f(δ) = v and ∀0 ≤ δ′ ≤ δ ∃j ∈ {1, . . . , n} : f(δ′) ∈ Îj}.

When there is no activity that can reach v from u avoiding I, we write d(u, v, I) =
∞. Hence either d(u, v, I) ≤

∣∣[[I]]
∣∣ or d(u, v, I) = ∞. Now, we define a slightly

different version of ncPost` that take into account only valuations v such that
the system, in order to reach v, always remains in a fixed number of convex
polyhedra in the invariant. Formally, given a location l and fixed I = Inv(`),
P ⊆ I and i ≤ |[[I]]|,

ncPost`(P, I, i) =
{
v ∈ ncPost`(P, I)|∃u ∈ P : d(u, v, I) ≤ i

}
.

Note that for all i ≤ j, ncPost`(P, I, i) ⊆ ncPost`(P, I, j).
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Î1 Î2 Î3

u = f1(0)

v = f3(δ3)

u′

f1 f2 f3

(a) From u to u′ the system never touches Î3.

Î1 Î2 Î3

u = f1(0)

v = f3(δ3)

u′ = f2(δ2) = f3(0)

u∗
f1 f2

f3
=f2(δ∗)

(b) From u to u′ the system touches also Î3.

Fig. 4. Cases (a) and (b) of the proof of Lemma 3.

A fundamental property of LHA is that if there is an activity that goes
from u to v inside the invariant, there is also a sequence of linear activities that
does the same. Moreover, each linear activity is contained within one convex
polyhedron of [[I]] and hence the connecting points between any two consecutive
linear activities lie on the boundary between two polyhedra in [[I]]. The following
formalization is a reformulation of Lemma 2.2 in [25] given as Lemma 5 in [7]:

Lemma 2. [7] Let u and v be valuations, and I a polyhedron. If d(u, v, I) = i <
∞, then there is a sequence of linear activities f1, . . . , fi, delays δ0, . . . , δi, and
convex polyhedra Î1, . . . , Îi ∈ [[I]] such that (i) f1 ∈ Adm(〈l, u〉), (ii) fi−1(δi−1) =

v, (iii) for all j < i it holds fj(δj) ∈ bndry(Îj , Îj+1) and fj+1 ∈ Adm(〈l, fj(δj)〉),
and (iv) for all j ≤ i and 0 < δ′ < δj it holds fj(δ

′) ∈ Îj.

Now we are ready to give two lemma that prove Theorem 1.

Lemma 3. For all locations `, polyhedra P and I, and i ≥ 1, it holds

ncPost`(P, I, i) ⊆Wi.

Proof. Let v be a valuation belonging to ncPost`(P, I, i), by definition we have
that there exists a valuation u ∈ P , an activity f ∈ Adm(〈`, u〉) and a time δ ≥ 0
such that f(δ) = v, d(u, v, I) = i and, for all 0 < δ′ ≤ δ, f(δ′) ∈ I.

Now, we proceed by induction on i ≥ 1. For the base case, if i = 1 then
d(u, v, I) = 1. Recalling the definition, d(u, v, I) = 1 means that in order to reach
valuation v from u the system remains always in just one convex component of
[[I]]. Hence, there exists a convex polyhedron Î ′ ∈ [[I]] such that, for all 0 ≤ δ′ ≤ δ,
it holds that f(δ′) ∈ Î ′. As a consequence, f(0) = u ∈ P ∩ Î ′ and, by Corollary 1,

we obtain u ∈ pentry`(P, Î
′). From the valuation u that belongs to the potential
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entry from P to Î ′, it is possible to reach the valuation v via the activity f by
always remaining in Î ′. But this is the definition of post operator, and then we
can write v ∈ Post`(pentry`(P, Î

′)) ⊆W1, ending the base case. For the inductive
step, we consider i ≥ 2. If the valuation v also belongs to ncPost`(P, I, i − 1)
then the thesis trivially holds by inductive hypothesis. Otherwise, by Lemma
2, there exists a sequence of activities f1, . . ., fi, of convex component I1, . . .,
Ii ∈ [[I]] and times δ1, . . ., δi, such that from valuation u = f1(0) it is possible

to reach the valuation u′ = fi−1(δi−1), and u′ = fi−1(δi−1) ∈ bndry(Îi−1, Îi).
Moreover, Lemma 2 also says that by following activities f1, . . ., fi−1, the system

always remains in the convex components I1, . . ., Ii−1 and in bndry(Îi−1, Îi).

By definition of boundary, we have either (a) u′ ∈ Îi−1 ∩ cl(Îi) (and then the

system always remains in I1, . . ., Ii−1) or (b) u′ ∈ Îi ∩ cl(Îi−1) (and then the
system always remains in I1, . . ., Ii. Considering case (a), since the system always
remains in I1, . . ., Ii−1, it is clear that d(u, u′, I) = i− 1 and then, by inductive

hypothesis, u′ ∈Wi−1. Hence, u′ ∈Wi−1 ∩ cl(Îi), that means that there exists a

convex polyhedron Ŵ ′ ∈ [[Wi−1]] such that u′ ∈ Ŵ ′∩cl(Îi) ⊆ Ŵ ′↗F and clearly

u′ ∈ bndry(Ŵ ′, Îi). Considering the last two conditions and Lemma 1, we have

that u′ ∈ pentry`(Ŵ
′, Îi). Now, from the valuation u′ ∈ pentry`(Ŵ

′, Îi), it is
possible to reach the valuation v via the activity fi without leaving the invariant
Îi, allowing us to write v ∈ Post`(pentry`(Ŵ

′, Îi)) ⊆Wi, and this ends the first
case (see Figure 4(a) to better understand the reasoning). Case (b), otherwise,

is when u′ ∈ Îi ∩ cl(Îi−1) and then in order to reach the valuation u′ from u
the system always remains in I1, . . ., Ii. By Lemma 2, for all 0 < δ∗ < δi−1, the

valuation u∗ = fi−1(δ∗) belong to Îi−1 and is reachable from u while the system

always remains in Î1, . . ., Îi−1. Hence, by definition, d(u, u∗, I) = i− 1 and then
u∗ ∈ ncPost`(P, I, i− 1). By inductive hypothesis, we have also that u∗ ∈Wi−1,

that is there exists Ŵ ′ ∈Wi−1 such that u∗ ∈ Ŵ ′. Moreover, u′ can be reached

from any of the u∗ via the activity fi−1. But this means that u′ ∈ Ŵ ′↗F and,

recalling that u′ ∈ Îi, this means that u′ ∈ pentry`(Ŵ
′, Îi) (Lemma 1). Now, by

using again Lemma 2, there exists the activity fi and the time δi such that (i)

fi(0) = u′, (ii) fi(δi) = v, and (iii) for all 0 < δ′ < δ, fi(δ
′) ∈ Îi. By combining

conditions i, ii and iii, we have that v ∈ Post`(pentry`(Ŵ
′, Îi), Îi) ⊆ Wi. This

ends the second case (see Figure 4(b) to better understand the reasoning) and
the entire proof. 2

Lemma 4. For all locations `, polyhedra P and I, and i ≥ 1, it holds

Wi ⊆ ncPost`(P, I, i).

Proof. We proceed by induction on i ≥ 1. For the base case, let v ∈ W1 and
recalling that W0 = P , by definition there exist convex polyhedra P̂ ′ ∈ [[P ]] and

Î ′ ∈ [[I]] such that v ∈ Post`
(
pentry`(P̂

′, Î ′), Î ′
)
. By definition of post operator,

there exists a valuation u ∈ pentry`(P̂
′, Î ′), an activity f ∈ Adm(〈l, u〉) and

time δ ≥ 0 such that f(δ) = v and for all 0 < δ′ ≤ δ, f(δ′) ∈ Î ′. But the last
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Î3 = Î ′Î1 Î2

u0 = f0(0)

v = f(δ)

u

f0 f

(a) Case (a): u ∈ Îi−1 = Î2. Subcase (a1) occours when Î1 = Î ′ or

Î2 = Î ′, otherwise we are in subcase (a2).

Î3 = Î ′Î1 Î2

u0 = f0(0)

v = f(δ)

u

f0 f
u1

f1

(b) Case (b): u ∈ Îi = Î3. Subcase (b1) occours when Î1 = Î ′ or Î2 = Î ′,
otherwise we are in subcase (b2).

Fig. 5. The cases in the proof of Lemma 4.

one implies d(u, v, I) = 1 that, together with the other conditions, allows us to
write v ∈ ncPost`(P, I, 1) and this concludes the base case. For the inductive
step, let i ≥ 2 and v ∈ Wi. If the valuation v also belongs to Wi−1, then the
thesis trivially holds for the inductive hypothesis. Otherwise, there exists convex
polyhedra Ŵ ′ ∈ Wi−1 and Î ′ ∈ [[I]] such that v ∈ Post`(pentry`(Ŵ

′, Î ′), Î ′)

By definition of post operator, there exists a valuation u ∈ pentry`(Ŵ
′, Î ′), an

activity f ∈ Adm(〈l, u〉) and time δ ≥ 0 such that f(δ) = v and for all 0 < δ′ ≤ δ,
f(δ′) ∈ Î ′. From u ∈ pentry`(Ŵ

′, Î ′) we have either (a) u ∈ Ŵ ′ ∩ cl(Î ′) or (b)

u ∈ cl(Ŵ ′) ∩ Î ′. Case (a), that is u ∈ Ŵ ′, trivially implies that u ∈ Wi−1
and then, by inductive hypothesis, u ∈ ncPost`(P, I, i − 1). By definition of
post operator, there exists a valuation u0 ∈ P , an activity f0 ∈ Adm(〈l, u0〉)
and time δ0 ≥ 0 such that f(δ0) = u, for all 0 < δ′ ≤ δ0, it holds f(δ′) ∈ I
and d(u0, u, I) = i − 1. Now we can distinguish two subcases: (a1) when the

convex polyhedron Î ′ is one of the i−1 components of the invariant in which the
system remains, and (a2) when the system never reaches Î ′ during the activity
f0 that leads from u0 to u. Figure 5(a) graphically depicts this case and the
corresponding subcases. In the case (a1) v belongs to ncPost`(P, I, i − 1): one
can reach v from u by concatenation f0 and f and the system does not exit the
i−1 (including Î ′) components of the invariant. So v ∈ ncPost`(P, I, i−1), which
directly implies that v ∈ ncPost`(P, I, i), and we are done for the subcase (a1).
In the case (a2), it is clear that d(u0, v, I) = i (the system reaches for the first

time Î ′) and, recalling that f(δ) = v, we can conclude that v ∈ ncPost`(P, I, i),

and this conclude the subcase (a2). In the case (b), we have that u ∈ cl(Ŵ ′)∩ Î ′.
By definition of potential entry there exists a valuation u1 ∈ Ŵ ′, an activity
f1 ∈ Adm(〈l, u1〉) and time δ1 ≥ 0 such that f1(δ1) = u and for all 0 ≤ δ′ < δ1,
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f1(δ′) ∈ Ŵ ′. But u1 ∈ Ŵ ′ implies that u1 ∈Wi−1 and by inductive hypothesis we
can write u1 ∈ ncPost`(P, I, i−1). Now, by definition of the post operator, there
exists a valuation u0 ∈ P , an activity f0 ∈ Adm(〈l, u∗〉) and time δ0 ≥ 0 such
that f0(δ0) = u, for all 0 < δ′ ≤ δ0 it holds that f0(δ′) ∈ I and d(u0, u1, I) = i−1.
The last one means that in order to reach the valuation u1 from the valuation
u0 (via the activity f0) the system always remains in i − 1 convex components

of [[I]]. Now, two different subcases can happen: (b1) Î ′ is one of the i− 1 visited
convex component or (b2) otherwise. Figure 5(b) graphically depicts this case
and the corresponding subcases. Consider the subcase (b1) and recall that for

all 0 ≤ δ′ < δ1, f1(δ′) ∈ Ŵ ′, clearly we have that f1(δ′) ∈ Wk−1 and, by
inductive hypothesis, f1(δ′) ∈ ncPost`(P, I, i − 1). Hence, in order to reach the
valuation u = f1(δ1) from u0 the system always remains in the same i − 1

convex (included Î ′) and then d(u0, u, I) = i − 1. Then, from u to v (via the

activity f) the system always remains in Î ′ and then d(u0, v, I) = i− 1. Hence,
v ∈ ncPost`(P, I, i − 1) ⊆ ncPost`(P, I, i), and this ends subcase (b1). In the
subcase (b2), we have that d(u0, u, I) = i − 1. Then in order to reach v from

u (via activity f), the system remains in Î ′ (never reached before) and then
d(u0, v, I) = i and hence v ∈ ncPost`(P, I, i) that ends the case and the entire
proof. 2

Finally, we are able to easly prove Theorem 1, by using Lemma 3 and Lemma 4
as follows:

Proof of Theorem 1 First, notice that give two valuation u and v, where
u, v ∈ ncPost`(P, I), then by definition of post operator d(u, v, I) ≤

∣∣[[I]]
∣∣. Then

trivially holds that let n =
∣∣[[I]]

∣∣, we have that ncPost`(P, I) = ncPost`(P, I, n).
Now, by Lemmas 3 and 4, for all k ≥ n, ncPost`(P, I) = Wk. This means

that the sequence reaches the fixed point after at most n iterations. 2

2.4 Related Work

In [17], the author shows a different approach in order to tackle non-convex
invariants. The proposed algorithm to compute the reachable set is built only for
closed convex invariants, but this is not a restriction because (closed) non-convex
invariants can be modeled by splitting locations. This means that starting from
an automaton A with non-convex invariants, it is necessary to build an equivalent
automaton B whose locations have only convex invariants: this is done by taking,
for each location of A, the exact convex covering Q of the corresponding invariant
and then, for each convex component Q̂ ∈ Q, by adding a location to B whose
associated (convex and closed) invariant is Q̂. Therefore, this approach does not
work with non-closed invariants and needs a postprocessing phase in order to
build the automaton B. Our approach tries to overcome these limitations: the
recahibility analysis is directly done by using the ncPost` operator, allowing the
usage of non-closed invariants and avoiding the hidden process of building a new
automaton.
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The operator ncPost` has an interesting relation with a group of operators
used in safety control problems. In particular with the RWAm

l operator defined in
[7] (also known under other names as Reach [24], Unavoid Pre [3] and flow avoid
[25]). Informally, given a location l and two sets of variable valuations U and V ,
RWAm

l (A,B) contains the set of valuations from which there exists an activity
that reaches A while avoiding B ∩A. Formally:

RWAm
l (A,B) =

{
u ∈ Val(X)

∣∣∣∃f ∈ Adm(〈l, u〉), δ ≥ 0 :

f(δ) ∈ A and ∀ 0 ≤ δ′ < δ : f(δ′) ∈ B ∪A
}
.

Informally, we can express ncPost`(P, I) as the set of valuations that, starting
from P , may reach I while avoiding I. The main difference is given by the fact
that RWAm

l does not take into account a starting set of valuations, while the
computation of ncPost`(P, I) depends on the initial set P . This is reflected also
in how the operators are computed: in the case of RWAm

l (A,B), the computation
is given by a backward procedure that starts from the target set of valuations A
and by taking all the valuations that avoid B. In the opposite, ncPost`(P, I) is
computed by a forward procedure that starts from the initial set of valuations
P and by taking all the valuations that avoid I.

3 Linear Hybrid Automata with Urgency

In this section, we extend LHA with a so-called urgency condition each location.
The urgency condition impedes time elapse, i.e., no continuous activities continue
from a valuation that satisfies the condition. As we will see later, there is a
connection between urgency conditions on locations and urgent semantics on
transitions.

3.1 Definition and Semantics

We denote by SPoly(X) the subset of RX that can be obtained by finite dis-
junction of closed convex polyhedron. A Linear Hybrid Automaton with Urgency
(LHAU) H = (Loc, X,Lab,Edg ,Flow , Inv ,Urg , Init) consists of a LHA defined
in Sect. 2 and a mapping Urg : Loc → SPoly(X), called urgency condition. To
designate the urgent states, we use the shorthand UrgS =

⋃
l∈Loc{`} ×Urg(`).

Urgent transitions In our definition, the urgency condition is defined for each
location. An alternative approach, popular mainly because of its syntactical
simplicity, is to designate each discrete transition as urgent or not. This is also
referred to as as-soon-as-possible (ASAP) transitions. Urgent transitions can
easily be translated to an urgency condition: Let EdgU ⊆ Edg be the set of
urgent transitions. Then the equivalent urgency condition is the union of the
outgoing guards,

Urg(`) = {u | ∃(`, η, `′) ∈ EdgU : (u, v) ∈ η}.
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Semantics The urgency conditions affect only the timed steps, while the defini-
tion of discrete step remains the same as for LHA. Given a state s = 〈l, v〉, we
define loc(s) = l and val(s) = v. In order to give the semantics of timed-steps
for LHAU we define, for an activity f ∈ Adm(s), the Switching Time of f in
l, denoted by SwitchT (f, U), as the value δ ≥ 0 such that, for all 0 ≤ δ′ < δ,
f(δ′) /∈ U and f(δ) ∈ U . When for all δ ≥ 0 it holds that f(δ) /∈ U , we write
SwitchT (f, U) =∞. Informally, the switching time of an activity f in the loca-
tion l specifies the maximum amount of time δ such that the system, by following
the activity f , is allowed to remain in the location l.

Given two states s, s′, there is a timed step s
δ,f−−→ s′ with duration δ ∈ R≥0

and activity f ∈ Adm(s) iff (i) there exists the timed step s
δ,f−−→ s′ in the

LHA without urgency conditions, and (ii) δ ≤ SwitchT (f,Urg(loc(s))). The

special timed step s
∞,f−−−→, which represents the case when the system follows

the activity f forever, is allowed only if, for all 0 ≤ δ′ ≤ δ, 〈loc(s), f(δ′)〉 ∈ InvS
and SwitchT (f,Urg(loc(s))) =∞.

3.2 Parallel Composition

One attractive feature of urgency is that a model can be decomposed for cases
where this is not possible without urgency. Consider the example of an au-
tomaton for the plant and an automaton for the controller. Without urgency,
the controller automaton can in general not prevent time elapse in the plant
automaton, unless an additional clock is introduced and that clock is sampled
periodically, see also remarks in Sect. 1. We give a brief formal definition of par-
allel composition with urgency for the case where both automata range over the
same variables. For a definition including input and output variables (as used in
SpaceEx) see [11]. The key here is that the urgency condition of the composition
is the union of the urgency conditions of the operands.

Definition 3 (Parallel composition). Given linear hybrid automata with ur-
gency H1, H2 with Hi = (Loci, X,Labi,Edg i,Flow i, Inv i, Urg i, Init i), their par-
allel composition is the LHAU H = (Loc1×Loc2, X,Lab1∪Lab2, Edg ,Flow , Inv,
Urg , Init), written as H = H1‖H2, where

– ((l1, l2), α, η, (l′2, l
′
2)) ∈ Edg iff

• α ∈ Lab1 ∩ Lab2, for i = 1, 2, (li, α, ηi, l
′
i) ∈ Edg i, with η = η1 ∩ η2, or

• α /∈ Lab1, l′2 = l2, and (l1, α, η, l
′
1) ∈ Edg1, or

• α /∈ Lab2, l′1 = l1, and (l2, α, η, l
′
2) ∈ Edg2 ;

– Flow(l1, l2) = Flow1(l1) ∩ Flow2(l2);

– Inv(l1, l2) = Inv1(l1) ∩ Inv2(l2);

– Urg(l1, l2) = Urg1(l1) ∪Urg2(l2);

– Init(l1, l2) = Init1(l1) ∩ Init2(l2).
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3.3 Reachability

The discrete post operator for the class of LHAU is trivially the same of the
classical one, while the continuous one, that we call Urgent Continuous Post
Operator, changes due to the extra condition induced by the operator SwitchT :

Definition 4 (Urgent continous post). Given a linear hybrid automaton
with urgency H, a location ` ∈ Loc, and a set of valuations P ⊆ Inv(`), let I =
Inv(`), and U = Urg(`). The urgent continuous post operator UPost(P, I, U)
is defined as:

UPost(P, I, U) =
{
v ∈ val(X)

∣∣∣∃u ∈ P, f ∈ Adm(〈`, u〉), δ ≥ 0 :

f(δ) = v, for all 0 < δ′ ≤ δ, f(δ′) ∈ I, and δ ≤ SwitchT (f, U)
}
.

Notice that, by definition, UPost`(P, I, U) ⊆ ncPost`(P, I).

3.4 Computing the Urgent Continuous Post Operator

We now derive a construction of the urgent post operator, starting with the post
operator for non-convex invariants and adding the states that are missing.

The urgent post operator has to compute the valuations that are reachable
from some set P without passing through states in the urgent set U . This includes
the states that are reachable within the complement of U , so ncPost`(P ∩U, I ∩
U) is an underapproximation of UPost`(P, I, U). In the following, let Vnc =
ncPost`(P ∩ U,U) and VU = UPost`(P, I, U). The set Vnc trivially does not
contain valuations that belong to U (by definition of invariant), while VU also
contains those valuations that touch U for the first time on a run. Indeed, while
the system is allowed to remain on the boundary of an invariant for any time
as the invariant is satisfied, the system can not remain on the boundary of an
urgency condition because in the instant the urgency condition is meet, the
system can not evolve any more, i.e., it is forced either to stop the evolution
of the continuous variables or to jump in another location. Figure 6 illustrates
the relationship between ncPost`(P ∩ U, I ∩ U) (left column of the figure) and
UPost`(P, I, U) (right column of the figure) with several examples.

We compute VU by adding (i) P itself (ii) the reachable states in Ū Vnc, and
(iii) the valuations that belong to the boundary between Vnc and U from where
it is possible to reach U by following some admissible activity. This is formalized
as follows:

Theorem 2. Given a location ` ∈ Loc and a set P ⊆ Inv(`), let I = Inv(`), U =

Urg(`), Vnc = ncPost`(P∩U, I∩U), and B =
⋃
Â′∈[[Vnc]]

⋃
Û ′∈[[U ]] pentry`(Â

′, Û ′∩
I). Then

UPost`(P, I, U) = P ∪ Vnc ∪B.
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U U

P

Flow(l)

(a) Vnc with U = {x ≥ d}.

U U

P

Flow(l)

(b) VU contains the boundary of Vnc

with U .

U U

PP

Flow(l)

(c) Vnc with U = {x = d}.

U U

P

Flow(l)

(d) VU contains P∩U and the bound-
ary of Vnc with U .

U

P

Flow(l)

(e) Vnc with flow tangential to U .

U

P

Flow(l)

(f) VU contains only the reachable
part of the boundary of Vnc with U .

Fig. 6. The urgent post states VU = UPost`(P, I, U) can be obtained from Vnc =
ncPost`(P ∩U, I ∩U) plus a part of the boundary between ncPost`(P ∩U, I ∩U) and
U . Here, the invariant I is defined to be true. The dashed lines identify the non-closed
borders.

Proof. [⊆] Let v ∈ UPost`(P, I, U), by definition there exists a valuation u ∈ P ,
an admissible activity f ∈ Adm(〈`, u〉) and a real value δ ≥ 0 such that f(δ) = v,
for all 0 < δ′ ≤ δ it holds that f(δ′) ∈ I, and δ ≤ SwitchT (f, U). Moreover,
due to the fact that P ⊆ I, we have also that f(0) ∈ I and then, for all 0 ≤
δ′ ≤ δ, we have that f(δ′) ∈ I. Now, we can distinguish three different cases on
SwitchT (f, U):

1. If SwitchT (f, U) = 0, then δ = 0. By definition of SwitchT , we have that
u = v = f(0) ∈ U , and then v ∈ (P ∩ U), and the thesis holds.

2. If 0 6= δ < SwitchT (f, U), then for all 0 ≤ δ′ ≤ δ it holds f(δ′) ∈ U . The
latter, coupled with the conditions on the invariant, gives us f(δ′) ∈ I ∩ U ,
and then v ∈ A.
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3. If 0 6= δ = SwitchT (f, U) then, for all 0 ≤ δ′ < δ it holds that f(δ′) ∈ U ,
and f(δ) ∈ U . Moreover, for all 0 ≤ δ′ < δ, f(δ′) also belongs to Vnc (f(δ′)
is always in the invariant I ∩U). This means that, starting from a valuation

in Â′ ∈ [[Vnc]] it is possible to reach f(δ) in Û ′ ∈ [[U ]], and by definition of

potential entry we have that v = f(δ) ∈ pentry`(Â
′, Û ′ ∩ I) = B.

[⊇] Considering the valuation v that belongs to the r.h.s. of the formula in
Theorem 2, we can distinguish three cases, based on at what disjunct among A,
B or (P ∩ U) the valuation v belongs.

1. If v ∈ (P ∩ U), then there exists an activity f ∈ Adm(〈`, v〉) and δ = 0
such that v = f(δ) ∈ P ∩ I ∩ U . Hence f(0) is in the invariant I and
SwitchT (f, U) = 0 and we can conclude that v ∈ UPost`(P, I, U).

2. If v ∈ A, then by definition of ncPost`(P ∩U, I ∩U), there exists a valuation
u ∈ P ∩U , an activity f ∈ Adm(〈`, u〉) and time δ ≥ 0 such that, for all 0 ≤
δ′ ≤ δ, we have f(δ′) ∈ I ∩ U . This clearly implies that SwitchT (f, U) > δ,
and we can conclude that v ∈ UPost`(P, I, U).

3. If v ∈ B then, by definition of B, there exists Â′ ∈ [[Vnc]] and Û ′ ∈ [[U ∩ I]]

such that v ∈ pentry`(Â
′, Û ′ ∩ I). Using the potential entry definition, we

have that there exists a valuation u ∈ Â′, an activity f ∈ Adm(〈`, u〉) and

a time δ ≥ 0 such that v = f(δ) ∈ bndry(Â′, Û ′ ∩ I) and for all 0 ≤ δ′ < δ,

it holds that f(δ′) ∈ Â′. The last one implies, by definition of Vnc (i.e. post
operator), that (i) for all 0 ≤ δ′ < δ, f(δ′) ∈ I ∩ U . Moreover, the fact that

U ∈ SPoly(X) and f(δ) ∈ bndry(Â′, Û ′∩I) implies that f(δ) ∈ cl(Â′)∩Û ′∩I
and then (ii) f(δ) ∈ Û ′ ∩ I. By coupling conditions (i) and (ii) we have that
(iii) δ = SwitchT (f, U). But conditions (i), (ii) and (iii) are the definition
of the urgent post operator, allowing us to write v ∈ UPost`(P, I, U).

2

3.5 Related Work

A general class of hybrid automata with urgency conditions is described in detail
in [22], but without giving a way to compute the continuous post operator that
takes into account the extra constraints coming from the urgency. In that work,
the authors define the Time Can Progress (tcp) predicate that roughly speaking
specifies, for each location l ∈ Loc, the maximum sojourn time at l, which may
depend on the values of the variables when entering the location. There are two
main differences between our urgency condition and the tcp predicate. First of
all, an urgency condition on location l defines when the system is constraint to
exit from l, while tcp describes exactly the opposite. Then, informally speaking,
we can say that in order to model, by using our formalism, a tcp predicate
associated to a location l, we need to attach to l an urgency condition that is
the complement of tcp. In [22] the authors also describe several kind of policies on
urgency. One of them, called Synchronous Scheduling Policy, exactly describes
our approach: the location must be left as soon as possible an edge becomes
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enabled (the urgency condition is meet, in our case). This policy is realized
by setting the tcp predicate equal to the complement of the disjunction of the
outgoing guards from the related location. This means that, by using our urgency
condition, in order to model multi-outgoing asap transition from a location `,
we have to define Urg(l) as the disjunction of the outgoing guards transitions.
This give us another motivation to choose non-convex polyhedra to define the
urgency condition: by this way, we are able to easily model a system with multiple
outgoing transition with asap guards. Notice that the semantics specified in [22]
requires that in the exact moment that a location ` is entered, the tcp associated
to ` must be satisfied. In our framework we relax this constraint, by allowing
to jump in ` even if its urgency condition is already satisfied: in this case, the
system must exit from ` instantaneously. The rational behind this choice coming
from the usual asap transitions semantics: considering a location `1 with an
outgoing transition that must be taken in the exact moment that a variable
assumes a fixed value. Even if the target location `2 has another asap outgoing
transition whose guard is already satisfied (and hence the system is constrained
to exit from `2 without time progress), the system is still allowed to jump to
`2 and escape from it instantaneously. For this motivation, our UPostc`2(P, I, U)
operator also contains all the valuations that at entering time (valuations that
belong to P ) already meet the urgency condition.

Our definition of urgency condition is closer to the stopping condition de-
fined in [14] (in the context of timed automata), that is a predicate on the clock-
variables of an automaton, associated to each location, which allows passing of
time in the location as long as the stopping condition is false. The urgency in
hybrid automata is also described in the Computational Interchange Format for
Hybrid Systems (CIF) (see [5]), accepted as standard for modelling hybrid sys-
tems. As in our case, the time is allowed to progress until the urgency condition
is false. The difference is that, similarly to the tcp predicate, CIF requires that
in the exact moment that a location is entered, the valuation of the variables
have to satisfies the condition.

Urgent locations In the classic LHA model checker HyTech, a transition can be
designated as urgent by adding the keyword ASAP [17]. But this is restricted to
transitions without guard constraints locally, as well as in the composed model
(see [15, 17] for more details). This is equivalent to having urgent locations, i.e.,
locations in which time progress is not allowed. The real-time verification tool
UPPAAL [6] similarly features urgent locations and urgent channels (synchro-
nization labels) that can be used only on transitions without guard constraints.
Urgent locations are semantically equivalent to adding an extra variable t, with
dynamics ṫ = 1, that is set to zero when the location is entered and by attaching
the invariant t = 0 to the location. It is easy to check that this technique can
not be applied if we want to model even just a slightly more complex urgency
condition. For example, consider a system with a variable x and a location, say
`1, where the derivative of x can be zero, and the location must be left when
x = 0. There is no way to model this behaviour just using invariants: by defining
(x < 0) ∨ (x > 0) as invariant, the system can never reach the state x = 0. In
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the other hand, by relaxing the invariant in order to allow the system to reach
a state with x = 0, the system is allowed to remain in location `1 always.

In previous versions of our model checker PHAVer, transitions could be
designated as urgent, but only if the guard consists of a single constraint, locally
as well as in the composed model [13]. This restriction was imposed because it
suffices to be able to compute the urgent post using the standard post operator
for convex invariants.

Almost ASAP In [26] the authors propose a relaxed semantics on asap transition
in the context of the timed automaton, for the so called almost asap by delay
δ. In practice, they define the guard enlargement, that means that transitions
can be taken also with δ time delay. The rationale behind this approach is that
no hardware can guarantee that a transition will always be taken in the exact
moment as defined in theory. We could define a similar approach, not only on
clock variables, in a simple but opposite way: it is enough to define the urgency
condition by narrowing all the constraints by a quantity that is equal to the
maximum variation of the variable in the time δ.

4 Examples

The following examples shall illustrate the application of the non-convex and
urgent post operators. The first example is a set of test cases for the imple-
mentation. The second example is a small case study modeling a batch reactor
system.

4.1 Test Cases

Figure 7 depicts two test cases. The first one (Figure 7(a)) is used to check cases
(a) and (b) of Lemma 3: the two cases are verified because one time there is a

potential entry all inside Î2 (by going from Î1 to Î2), and one time there is a

potential entry that is not inside Î3 (by going from Î2 to Î3). Notice that in the
situation shown in Figure 7(a), all the founded potential entry really are entries.
This test case is described as follows:

– Init set P ≡ x ≥ 1 and x ≤ 2 and y ≥ 3 and y ≤ 6;
– Invariant Inv = Î1 ∪ Î2 ∪ Î3 ∪ Î4;
– Î1 ≡ 0 ≤ x < 3 and 0 ≤ y ≤ 8;
– Î2 ≡ 3 ≤ x ≤ 5 and 1 ≤ y ≤ 4;
– Î3 ≡ 5 < x ≤ 8 and 0 ≤ y ≤ 4;
– Î4 ≡ 6 ≤ x ≤ 9 and 4 < y ≤ 7;
– Flow F ≡ ẋ = 1 and −0.5 ≤ ẏ ≤ 0.5.

The set of all the reachable valuations is described as follows:

(
1 ≤ x < 3 and − 0.5 · x+ 3.5 ≤ y ≤ 0.5 · x+ 5.5

)
||
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Fig. 7. Two Test Cases with the results.

(
3 ≤ x ≤ 5 and − 0.5 · x+ 3.5 ≤ y ≤ 4

)
||

(
5 < x ≤ 8 and y ≥ −0.5 · x+ 3.5 and 0 ≤ y ≤ 4

)
||

(
6 < x ≤ 9 and 4 < y ≤ 0.5 · x+ 1

)
.

The second test case (Figure 7(c)) is built with the same invariant shape of
the first one (and then it is usuful to stress the two cases of Lemma 3) but the
real aim here is to see what happens when there is a non-empty potential entry
that actually it is not a real entry: here, due to the nature of the flow (it is
constant and described by ẋ = 1, that is no vertical movement is allowed) when

the system reach the convex component Î3, even if it is possible to identify a
potential entry to Î4, the flow is such that it is impossible to enter in Î4 from Î3.

This test case is described as follows:
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– Init set P ≡ x ≥ 1 and x ≤ 2 and y ≥ 3 and y ≤ 6;
– Invariant Inv = Î1 ∪ Î2 ∪ Î3 ∪ Î4;
– Î1 ≡ 0 ≤ x < 3 and 0 ≤ y ≤ 8;
– Î2 ≡ 3 ≤ x ≤ 5 and 1 ≤ y ≤ 4;
– Î3 ≡ 5 < x ≤ 8 and 0 ≤ y ≤ 4;
– Î4 ≡ 6 ≤ x ≤ 9 and 4 < y ≤ 7;
– Flow F ≡ ẋ = 1 and ẏ = 0.

The set of all the reachable valuations is described as follows:

(
1 ≤ x < 3 and 3 ≤ y ≤ 6

)
||

(
3 ≤ x ≤ 5 and 3 ≤ y ≤ 4

)
||

(
5 < x ≤ 8 and 3 ≤ y ≤ 4

)
||.

4.2 Batch Reactor

To showcase the algorithm an its implementation, we present a modular model
of a batch-reactor system, which is a variation of the case study in [4]. It shall
illustrate the following points:

– urgency conditions simplify the modeling process greatly because models can
be better decomposed and each module can be simpler;

– urgent and non-urgent transitions arise naturally in practice, as abstractions
that reflect the degree of determinism and knowledge about the system;

– urgent transitions with more than one guard constraint also arise naturally,
illustrating how limiting the restrictions of HyTech and PHAVer can be;

– the requirement that urgency conditions be closed is of lesser importance in
practice, since individual guard constraints need not be closed.

The batch reactor is comprised of a reactor R1 and two buffer tanks B2,B3
connected by pipes. The reactor is used to create a product that is then made
available to a consumer in the two buffer tanks, see the schematic in Fig. 8(a).
A controller measures the fill levels in the reactor and the buffers, and opens
and closes valves connecting the reactor to the buffers in order to produce and
deliver the product to the consumer. The specification is to verify that neither
buffer ever becomes empty, and that none of the tanks overflows.

We now present the LHA models.

Controller The controller automaton is shown in Fig. 8(d). The opening and
closing of valves is modeled by synchronization labels. In the production step,
the reactor is filled with educts (raw materials) coming from the outside. Details
on the filling and reaction process itself are omitted since they are irrelevant
to this example, but it does take a certain amount of time and produces an
uncertain amount of product. This is modeled by the fact that the controller
ends the filling process when the reactor level x1 ∈ [x1 ,full , x1 ,max ], which is
accomplished with the invariant x1 ≤ x1 ,max and a non-urgent transition with
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Fig. 8. Batch Reactor System: Schematic and Automata Models.

label close in and guard condition x1 ≥ x1 ,full . When the product is ready, the
controller decides whether to fill buffer B2, buffer B3, or wait. The controller
decides which buffer to fill using the following simple criteria:

– To avoid overflow, never start filling a buffer above a given maximum level.
– To avoid empty buffers, fill a buffer below a given minimum level.
– If the above is met, fill the buffer with the lower level.
– To be deterministic, prioritize B2.

All transitions for filling buffers B2 and B3 are urgent. The if-then-else structure
of the criteria leads to guards with more than one constraint, some of which
are strict inequalities. Thanks to the urgency, the controller model requires no
clocks or while-loops.

Reactor The reactor automaton is shown in Fig. 8(b). The locations of the re-
actor correspond to the different combinations of open and closed valves. If the
tank is empty, the dynamics of the locations draining i lead to a deadlock, so
locations draining i empty with ẋ1 = 0 are included to allow time to elapse. The
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Fig. 9. The evolution of the continuous variables of the batch reactor example, starting
from location `1 with initial values x1 = 0, x2 = 100 and x2 = 100

model is simplified using the assumptions that the reactor must not be filled
and drained at the same time (a common requirement in chemical engineering),
and that only one of the buffers is filled at any given time. An error location is
included so that violations of these assumptions can be detected. The transitions
are not set as urgent in this automaton; the urgency in the composed system
results from the controller.

Buffers The buffers are modeled each as an instantiation of the automaton
shown in Fig 8(c). The outflow of the buffers is determined by the consumer, and
therefore only known within the bounds [−di,max ,−di,min ] (there is no valve to
control outflow). The inflow is determined is equal to the outflow of the reactor.
This leads to the dynamics ẋi = [−di,max ,−di,min ]− ẋ1. Note that ẋ1 is negative
when the buffer is filling, so ẋi is augmented by −ẋ1 in this dynamics. Again,
the transitions are not set as urgent; the urgency in the composed system results
from the controller.

The specification was verified using SpaceEx/PHAVer (an implementation
of the PHAVer reachability algorithm built on the SpaceEx platform). The in-
flow and outflow rates were set nondeterministically to be within intervals; the
models incl. parameter values are available at spaceex.imag.fr. The computa-
tion of the complete reachable states shown in Fig. 9(a) takes 3.0 s and 24 MB
of memory on a standard laptop. Finding the fixed point takes a total of 178
continuous post operations.
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5 Conclusions

Linear Hybrid Automata stand out in the hybrid systems domain because sets
of successor states can be carried out exactly. Available algorithms are require
convex invariants and single-constraint urgency conditions. In this paper we pro-
pose algorithms that can handle non convex invariants and (closed) non-convex
urgency conditions. The practical impact is that this extension can be used in
order to model system in which transitions have to be taken as soon as possible.
This is a common feature in several commercial tools used as de-facto standard
in the industry (for example in the automotive context) such as Matlab/Simulink
or Modelica. We formally proved the correctness and the termination of the pro-
posed procedures, which are based on two operators: the first one is the classical
continuous post operator Post` and the other one (defined here) is the so-called
potential entry operator pentry`. To the best of our knowledge, the proposed
solutions represent the first sound and complete procedures for the task in the
literature. We extended the tool PHAVer with our procedures and illustrated
the results on an example.

The results from this paper will serve as the basis for future work on hybrid
automata with more complex (piecewise affine and nonlinear) dynamics. The
approach will need to be adapted since the specialized successor computations
for these classes, e.g., in [12], only handle closed sets.
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