
Design Flow for the Rapid
Development of Distributed Sensor

Network Applications

Alexios Lekidis, Paraskevas Bourgos, Simplice
Djoko-Djoko, Marius Bozga, Saddek Bensalem

Verimag Research Report no TR-2014-13

October 8, 2014

Reports are downloadable at the following address
http://www-verimag.imag.fr

Unité Mixte de Recherche 5104 CNRS - Grenoble INP - UJF
Centre Equation
2, avenue de VIGNATE
F-38610 GIERES
tel : +33 456 52 03 40
fax : +33 456 52 03 50
http://www-verimag.imag.fr

http://www-verimag.imag.fr

Design Flow for the Rapid Development of Distributed Sensor
Network Applications

Alexios Lekidis, Paraskevas Bourgos, Simplice Djoko-Djoko, Marius Bozga, Saddek
Bensalem

October 8, 2014

Abstract

The exponential increase in the demands for the deployment of large-scale sensor networks,
makes necessary the efficient development of functional applications. Nevertheless, the exis-
tence of scarce resources and the derived application complexity, impose significant issues and
require high design expertise. Consequently, the probability of discovering design errors once
the application is implemented is considerably high. To address these constraints there is a
need for the availability of early-stage validation, performance evaluation and rapid prototyp-
ing techniques at design time. In this paper we present a novel approach for the co-design of
mixed software/hardware applications for distributed sensor network systems. This approach
uses BIP, a formal framework facilitating modeling, analysis and implementation of embedded
real-time, heterogeneous, component-based systems. Our approach is illustrated through the
modeling and deployment of a Wireless Multimedia Sensor Network (WMSN) application.
We emphasize on its merits, notably validation of functional and non-functional requirements
through statistical model-checking and automatic code generation for sensor network plat-
forms.

Keywords: Wireless Sensor Networks, Model-based development, Multimedia Communication, Clock
synchronization, Performance evaluation

Reviewers: Marius Bozga

How to cite this report:

@techreport {TR-2014-13,
title = {Design Flow for the Rapid Development of Distributed Sensor Network Applica-

tions},
author = {Alexios Lekidis, Paraskevas Bourgos, Simplice Djoko-Djoko, Marius Bozga,

Saddek Bensalem},
institution = {{Verimag} Research Report},
number = {TR-2014-13},
year = {}
}

Alexios Lekidis, Paraskevas Bourgos, Simplice Djoko-Djoko, Marius Bozga, Saddek Bensalem

Contents

1 Introduction 1

2 Sensor network applications 2

3 Design Flow 3
3.1 Pragmatic Programming Model . 5
3.2 System model in BIP . 8
3.3 Code Generation . 9

4 Case Study: Industrial WMSN Application 9
4.1 Code Generation on Distributed Sensor Network Platform 10
4.2 BIP System Model . 10
4.3 Analysis and experimental results . 14

5 Conclusions 15

Appendices 18

A Kalman filter algorithm 18

1 Introduction

The introduction of sensor networks in various application fields nowadays has been a significant tech-
nological advance. Such fields include health-care, transportation, agriculture, environmental monitoring,
security systems, high-energy physics, industrial process control, factory and building automation and
more. The applications of distributed sensor networks are broad due to the unique characteristics of the
sensor devices, from which they are composed. Each sensor is a tiny, low-cost, low-power, energy harvest-
ing, multifunctional device. Being usually deployed in a large-scale distributed environment, it needs to
configure itself automatically, in order to collect, process and send information to a central processing unit,
called base station or sink. The transmission is handled by the underlying network, which can be either
wired or wireless. The use of wireless networks is often preferred over wired, due to the derived limitations
from the cost of wiring.

The development of functional applications, ensuring the several benefits of sensor networks, is how-
ever extremely challenging. This is due to their scarce resources, imposing constraints such as the limita-
tions in the communication cost, the energy consumption, the memory usage and the achievable network
bandwidth. These limitations are enhanced as they are usually deployed in inaccessible or distant areas (e.g
mountains, forests) and thus cannot be frequently changed in case of a failure. In addition, specific appli-
cations have strict timing constraints for data handling, which may not be guaranteed due to the influence
of the communication and data processing latencies. Equally important is to consider that design errors
in the final application development stage are highly probable, even if there is detailed knowledge of the
application area and the hardware platforms. Moreover, if an error is observed at that stage, the debugging
is extremely hard and time-consuming.

To address these challenges we propose a model-based design approach, in order to express the behav-
ior and functionality of such applications. A model-based framework improves the quality, the modularity
and reusability of the developed software artifacts. It can further allow separation of concerns, in order to
describe software and hardware architecture at a certain level of abstraction. Thus, any change within the
application results only in the modification of the software architecture. Furthermore, validation and veri-
fication are enabled in every development stage. The overall contribution of this work is the construction
of a full-fledged design flow, based on a single semantic framework (BIP [2]), facilitating the rapid devel-
opment of correct and functional sensor network applications. This flow supports application and system
modeling, validation of functional correctness and performance analysis on system models. It also permits

Verimag Research Report no TR-2014-13 1/19

Alexios Lekidis, Paraskevas Bourgos, Simplice Djoko-Djoko, Marius Bozga, Saddek Bensalem

automatic code generation in distributed sensor network platforms, leading to a significant reduction in the
development time and errors of a manual implementation.

The paper is organized as follows. Section 2 provides a brief introduction to the area and the current
challenges of distributed sensor network applications. Section 3 presents the proposed design flow and
details on its key steps. Section 4 illustrates its use in a concrete WMSN application and Section 5 provides
conclusions and perspectives for future work.

2 Sensor network applications
A major design factor in the development of sensor network applications is the communication, in order to
exchange sensed data. As each network node is a resource-constrained device, the developed applications
should have low bandwidth demands and tolerance to the communication latencies. Recently, the signifi-
cant size reduction of inexpensive hardware, such as microphones and cameras, made possible the addition
of audio and video capabilities for multimedia applications on a sensor network environment [16]. The de-
velopment of such applications is mainly based on the increasingly popular lightweight versions of Linux,
often referred to as embedded Linux [11]. This is due to their open-source environment and the support of
several off-the-shelf platforms. Multimedia sensor network applications have strict timing constraints for
data delivery and are extremely demanding in terms of memory and storage. The latter make necessary the
usage of compression algorithms. An example of such an application deployed over a wireless network for
audio streaming and synchronization of the local sensors clocks is provided in Figure 1.

synchronize
slaves

speaker

Master Node

WiFi

synchronize
local clock

micro

Slave Node

synchronize
local clock

micro

Slave Node

Figure 1: WMSN Application example

The main arising challenge in the successful development of correct and functional distributed sensor
network applications is to provide productive and efficient design solutions ensuring the three following
goals:

The addressing of functional and non-functional requirements. This goal focuses in the ability
to identify and the methods to evaluate these requirements at design time ([6]). On the one hand, non-
functional requirements concern the optimal exploitation of the available hardware resources. This is
accomplished by limiting the communication cost, memory usage and energy consumption as well as
reducing the resource failure rate. A first example for such a requirement are the delays imposed by the
processing time or the communication latency, which may lead to the reception of outdated sensor data.
As an outcome, adverse actions may be triggered in the network. Secondly, is the network connectivity,
determining the packet delivery ratio, that is, the percentage of successfully received packets by the total
packets transmitted in the network. On the other hand, functional requirements concern the correctness and
performance of the application. More specifically, they aim on managing buffer utilization, improving the
efficiency of the compression algorithms for the multimedia and providing strict time guarantees for data
handling. It should be also noted that in some situations non-functional can affect the functional require-
ments, as depicted by the strong influence of the communication latency and the packet delivery ratio to
the buffer utilization.

The synchronization of the local sensors clocks (clock synchronization). In many applications, the
exchanged data need to be accurately timestamped, in order to be further processed. Nonetheless, this poses

2/19 Verimag Research Report no TR-2014-13

Alexios Lekidis, Paraskevas Bourgos, Simplice Djoko-Djoko, Marius Bozga, Saddek Bensalem

a serious application development problem, as the construction of a common time reference in a distributed
system is hard to achieve. The common time reference can be also used to measure the duration between
two events occurring in different nodes, whose clocks can drift or become desynchronized over time. Sev-
eral solutions to this problem were proposed, in order to obtain a global time reference in the system.
The commonly obtained synchronization accuracy is considered to be in the microsecond scale. A tradi-
tionally adopted solution is the Network Time Protocol (NTP) [23], which nevertheless requires increased
computational power and storage memory, since it uses extra messages to calculate the Round Trip Delay
(RTD). Additionally, the use of several trials to compute the average RTD results in less accuracy, further
overhead and thus is suitable only for applications with low precision demands. A better protocol, also
relying on the RTD calculation, which achieves high synchronization accuracy in both wired and wireless
sensor networks, is the Precision Time Protocol (PTP) [14]. However, the derived hardware enhancements
(as in [15]) introduced to achieve microsecond accuracy may not be available in lightweight and resource-
constrained environments. A new family of protocols for software-based clock synchronization is derived
from the application of the Kalman filter algorithm [8]. Compared to the other synchronization protocols,
this family does not require the interaction or the development of dedicated drivers to access the hardware,
since it is operating in the application level. The underlying Kalman filter algorithm relies on tracking the
advance of a reference clock and automatically adapting to it. The synchronization method used by this
family is different from the above protocols, since it does not rely on the RTD calculation.

Tools for application development and code debugging. As multimedia sensor network applications
require the dense deployment of the small-scaled sensors, the communication latencies and the conflicts
occurring in the protocol stack are unpredictable. Therefore, the probability of having design errors in the
final development stage is extremely high. This situation may arise even if the developer has complete
knowledge of the application as well as the underlying hardware architecture. Moreover, the debugging
techniques at that stage are extremely hard and time consuming, even for experts. Consequently, an error
may possibly lead to a new system implementation. This happens due to the absence of separation of con-
cerns, such that the application is developed independently from the hardware architecture. In this scope, a
developer has to specify and build separate artifacts for the software and the hardware architecture, which
could also be reused in latter applications. Then, he should be able to define the optimal methodology for
the deployment of the application on the given architecture, such that it functions properly. This procedure
is called as mapping [5].

Meeting all the aforementioned goals, is extremely demanding. A starting point to this challenge would
be the availability of simulation and validation tools in the early development stage, such that the system
is validated beforehand and the design goals are ensured. Previous work in this scope is mainly divided in
three categories. The first category uses the Mathwork’s tools for modeling, simulation and automatic code
generation targeting specific sensor network operating systems [17] [18]. These tools are well known due
to their vast variety of libraries, however they are not able to address functional and non-functional system
requirements. Secondly, the metamodeling frameworks addressing such requirements use the UML tools
to model and the Eclipse platform to generate code for sensor network applications [21]. Though certain
developed frameworks ([1]) are also able to validate them, they do not focus on clock synchronization and
the generated code is usually not complete. Finally, formal modeling approaches for such applications
provide validation support for functional and non-functional requirements [22] [25] [12] as well as clock
synchronization [9], but do not implement tools for automatic code generation. Therefore, as far knowledge
is concerned, the existing work is not considering all the above design goals simultaneously. To this extent,
in the following section we propose a novel method for the systematic development of distributed sensor
network applications, enabling separation of concerns and targeting all their design goals.

3 Design Flow
In this section, we propose a novel approach for building sensor network applications. This approach is
based on a design flow, which leads to a framework for 1) the construction of a faithful sensor network
system model for analysis as well as performance evaluation and 2) the generation of deployable code for
applications in the domain of sensor networks. The design flow is based on the BIP framework described
below.

Verimag Research Report no TR-2014-13 3/19

Alexios Lekidis, Paraskevas Bourgos, Simplice Djoko-Djoko, Marius Bozga, Saddek Bensalem

The BIP – Behavior / Interaction / Priority – framework [2] is aiming at design and analysis of com-
plex, heterogeneous embedded applications. BIP is a highly expressive, component-based framework with
rigorous semantic basis. It allows the construction of complex, hierarchically structured models from
atomic components characterized by their behavior and interfaces. Such components are transition sys-
tems enriched with data. Transitions are used to move from a source to a destination location. Each time
a transition is taken, component data (variables) may be assigned new values, computed by user-defined
functions (in C/C++). Atomic components are composed by layered application of interactions and priori-
ties. Interactions express synchronization constraints and define the transfer of data between the interacting
components. Priorities are used to filter amongst possible interactions and to steer system evolution so as
to meet performance requirements e.g., to express scheduling policies. A set of atomic components can be
composed into a generic compound component by the successive application of connectors and priorities.

BIP is supported by a rich toolset 1 which includes tools for checking correctness, for source-to-source
transformations and for code generation.

Example 1 Figure 2 shows a graphical representation of one atomic component in BIP, which models the
behavior of the PLL process (presented in Section 3.1). The behavior of PLL is described as a transition
system with control locations idle, recvMsg, process and sndRes. It is responsible for the reception of
synchronization frames through the CLK RECV port. It subsequently moves from the idle to the recvMsg
state. After an interaction through the port LOCAL CLK, it calculates a software clock through the in-
ternal port update and returns to the initial (idle) state. CLK REQ port is used to receive requests for
calculating the local clock. The value of the local clock is calculated at the internal transition prepare and
is exported through port CLK RES.

idle recvMsg

processsndRes

CLK RECV
mic req:=1

CLK REQ
new frame:=1

LOCAL CLK

update
[new frame = 1]

refClk:=Mclk+delay
res:=pll clock in(refClk)

prepare
[mic req = 1]

time el:=local clock-t update
Sclk:=pll get clock(res,time el)

CLK RES

CLK REQ CLK RES Sclk

CLK RECV

frame LOCAL CLK

lclk

Figure 2: PLL component

A statistical method was recently proposed to handle scalability issues present in numerical methods
that are classically used to check stochastic systems. This novel technique is called Statistical Model
Checking (SMC) [26] [10]. It requires, as in classical model checking, building an operational formal
model of the system to verify and to provide a formal specification of the property to check, generally using
temporal logic. The BIP framework is extended to allow stochastic modeling and statistical verification
[4]. On the one hand, the method relies on BIP expressiveness to handle heterogeneous and complex
component-based systems. On the other hand it uses statistical model checking techniques to perform
quantitative verification targeting non-functional properties.

The BIP design flow, illustrated in Figure 3, uses PPM specifications, thoroughly described in Sec-
tion 3.1, as a re-targetable input model to: (1) automatically generate a sensor network system model in
BIP and (2) automatically generate the code for execution on the target distributed sensor network platform.
The proposed flow is used to evaluate both functional, non-functional and clock synchronization require-
ments of sensor network applications. To achieve that, on the one hand, we apply SMC on the system

1http://www-verimag.imag.fr/tools

4/19 Verimag Research Report no TR-2014-13

Alexios Lekidis, Paraskevas Bourgos, Simplice Djoko-Djoko, Marius Bozga, Saddek Bensalem

model in BIP and on the other hand, we execute the generated code on the target sensor network platform.
It is important to mention that the two paths, meaning the construction of the system model in BIP and
the generation of executable code are consistent between each other. This is accomplished because, first,
both approaches integrally preserve the behavior of the input application software and, second, the Sensor
Network Components in BIP faithfully model the target sensor network.

Figure 3: Overview of the proposed Design Flow

The proposed design flow proceeds in four main steps:

1. The construction of an abstract system model. This model represents the behavior of the applica-
tion software running on the hardware platform according to the mapping, but without including all
hardware dependent (e.g. execution times, data processing delays) and network-specific information
(e.g. packet delivery ratio, end-to-end delays).

2. The generation of executable code that is deployed on the physical hardware platform. This is
performed by initially transforming the input hardware specifications into code templates. Once these
templates are fully constructed by the user, they can be reused for any sensor network application.
They are accordingly parametrized, using node configuration files, in order to automatically generate
the executable code.

3. The construction of the system model in BIP by injecting all the missing hardware dependent infor-
mation to the previously generated abstract system model.

4. The performance analysis on the calibrated system model in BIP with the use of Statistical Model
Checking (SMC) that performs quantitative verification targeting functional and non-functional re-
quirements. The results are used as a feedback to the user to propose enhancements in the design.

3.1 Pragmatic Programming Model
The Pragmatic Programming Model (PPM) is a description language developed to provide a simple and
convenient way for describing highly-parallel applications expressed as networks of communicating pro-
cesses. The language has been inspired by DOL (Distributed Operation Layer) [24], which is a framework

Verimag Research Report no TR-2014-13 5/19

Alexios Lekidis, Paraskevas Bourgos, Simplice Djoko-Djoko, Marius Bozga, Saddek Bensalem

synchro PLL

speaker micro

PLL

micro

SO1

SO2

SO3

SO4

Figure 4: WMSN Application PPM Model

devoted to the specification as well as the analysis of mixed software/hardware systems and provides a
Kahn Process Network (KPN) model of the application.

In PPM, application software is defined using a process network model. It consists of a set of determin-
istic, sequential processes communicating asynchronously through shared objects, such as FIFOs, shared
memories and mutexed locations. The mapping associates application software components to devices of
the hardware platform, that is, processes to processors and shared objects to remote communication me-
dia. Specifications of the latter, including communication interface and protocols, are also described in
the mapping to provide all the necessary details for the code generation and the construction of the system
model.

WMSN Application
In Figure 4 we present an WMSN application in PPM, referring the application described in Section 4.

It consists of 1) one clock synchronization process synchro, sending out synchronization data through
the FIFOs (SO1, SO3), and 2) two audio capturing processes micro, sending out audio data, through the
FIFOs (SO2, SO4). The synchronization data are received by two processes PLL (implementing the clock
synchronization protocol) and the audio data by an audio reproduction process speaker.

Application Software in PPM
The application software in PPM consists of three basic entities: Processes, Shared Objects, and Con-

nections. The network structure is described in XML. Each Process has input, output ports and sequential
behavior. Processes communicate by using shared objects. Each shared objects has input and output ports,
uniquely associated with ports of processes.

In Figure 5, we present a fragment of the XML specification of the WMSN application described below.
It consists of processes, shared objects and connections. In Figure 5, we depict the PLL process. For each
process, we specify the name of the process, the number of input and output ports, the names of the ports,
the respective types and the location of the source C code describing the process behavior. For each shared
object (i.e FIFO) we specify the name, the type the maximum capacity of data and the input and output
port. Finally, we define the connections between the processes and the shared objects by specifying the
input and output ports which contribute in each connection.

Process behavior is described using sequential C programs with a particular structure (see Figure 6 for
a concrete example). For a cyclic process as P, its state is defined as an arbitrary C data structure named
P state and its behavior as the program:

P init();while(true)P fire();

where P init(), P fire() are arbitrary functions operating on the process state. The initial call of the P init()
function is followed by an endless loop calling the P fire() function. Communication is realized by using
two particular primitives, namely write and read for respectively sending and receiving data to shared

6/19 Verimag Research Report no TR-2014-13

Alexios Lekidis, Paraskevas Bourgos, Simplice Djoko-Djoko, Marius Bozga, Saddek Bensalem

<header lang="c" file="global.h"/>

<process name="pll" process-class="WhileFire">
<port name="out" peer-class="FIFO" peer-name="in"/>
<header lang="c" file="pll_state.h" x-state="true"/>
<header lang="c" file="pll.h"/>
<source lang="c" file="pll.c"/>
<source lang="c" file="SPM_clock.c" libs="-lblas -lm -lrt"/>
</process>
...
<shared-object name="SO1" object-class="FIFO" size="4" item-size="64">
<port name="in"/>
<port name="out"/>
</shared-object>
...
<connection>
<port-ref node="SO1" port="out"/>
<port-ref node="pll" port="in"/>
</connection>
...

Figure 5: WMSN Application XML Description

objects. A read operation reads data from an input port, and a write operation writes data to an output
port. Moreover, the P fire() method may invoke a detach primitive in order to terminate the execution of
the process.

Example 2 The description of a PLL process is shown in Figure 6. It defines the function pll init() to
initialize the process state and the function pll fire() to describe the cyclic behavior of the process. PLL
process receives data from the process network using the FIFO read() function and the rest of the code
implements the synchronization algorithm (pll clock in() function).

#include "pll_process.h"
void pll_init(pll_process *p) {

(p->local->pll).stream_size = 1;
(p->local->pll).block_size = (unsigned int) sizeof(clockOut_t);
(p->local->pll).data_in = malloc((p->local->pll).block_size);
p->local->data_size = (p->local->pll).block_size;

}
int pll_fire(pll_process *p) {

FIFO_read(p->in, (p->local->pll).data_in, (p->local->pll).block_size);
gettimeofday (&(p->local->slave_time), NULL);
uint64_t slave_clock = ((uint64_t) p->local->slave_time.tv_sec * \
(uint64_t) 1000000) + (uint64_t) p->local->slave_time.tv_usec;

clockOut_t* master_frameClock = (clockOut_t*) (p->local->pll).data_in;

master_clock = master_frameClock->time;
pll_clock_in (slave_clock, master_clock, p->local->argument);

return 0;
}

Figure 6: PLL Process Code Description

Verimag Research Report no TR-2014-13 7/19

Alexios Lekidis, Paraskevas Bourgos, Simplice Djoko-Djoko, Marius Bozga, Saddek Bensalem

Application Mapping on the Platform
The deployment of the use case applications on the target platform is specified with the use of a map-

ping XML description file, as presented in Figure 7. The application processes (“app-node” in XML) are
bound to a hardware platform node (“hw-element” in XML). The binding (“deployment” in XML) in-
cludes additional information, concerning the hardware platform (“hw-property”), that are necessary for
the configuration for establishing communication between the network nodes. This information includes
the network interface name, the IP addresses of the destination network node, the port specification and the
type of communication used (unicast, multicast and broadcast). The “communication protocol” globally
used and “extra” process properties (“app-property”) are specified in separate XML elements.

Example 3 The description of the mapping XML file of the WMSN application is shown in Figure 7. The
first “deployment” element specifies that the PLL process is deployed on the “udoo” hardware node using
“wlan0” as network interface, “10.0.0.14” as destination IP address and 375, 250 as origin and target
port respectively. The second “deployment” binds the synchro process to a second “udoo” hardware node.
The use of the UDP communication protocol is defined next, followed by extra application properties such
as the clock synchronization periods.

<deployment>
<app-node name="pll"/>
<hw-element name="node" hw-class="udoo" index="0"/>
<hw-property name="networkInterface" hw-class="node-inter" value="wlan0"/>
<hw-property name="srcPort" hw-class="node-srcPort" value="375"/>
<hw-property name="dstPort" hw-class="node-dstPort" value="250"/>
<hw-property name="dstIP" hw-class="node-dstIP" value="10.0.0.14"/>

</deployment>
<deployment>
<app-node name="synchro"/>
<hw-element name="node" hw-class="udoo" index="1"/>
<hw-property name="networkInterface" hw-class="node-networkInterface" value="wlan0"/>
<hw-property name="srcPort" hw-class="node-srcPort" value="250"/>
<hw-property name="multiIP" hw-class="node-multiIP" value="10.0.0.255"/>
<hw-property name="broadcast" hw-class="node-broadcast" value="0"/>

</deployment>
...
<communication protocol="udp"/>
...
<extra>

<app-property app-name="synchro" property-name="period" value="1"/>
</extra>

Figure 7: WMSN Application Mapping XML Description

3.2 System model in BIP

In our design flow, we construct the system model in BIP to faithfully represent the behavior of the applica-
tion running on the underlying hardware and network. The construction proceeds in two steps, as presented
in the design flow. The first step is the construction of the intermediate abstract system model in BIP and
the second step is the construction of the complete system model in BIP.

The abstract system model in BIP is constructed in several steps. Firstly, the application software model
in BIP is constructed by performing transformations to the application software. These transformations and
proven correct-by-construction [5] by preserving all the functional properties of the application software.
Secondly, HW specific components are constructed systematically from the characteristics of the sensor
network platforms as well as the entities and communication mechanisms of the network protocols. As an
example, the model of the wireless network includes specific details as the collision detection and avoidance
techniques of the MAC layer, the out-of-order delivery and the packet losses due to possible collisions

8/19 Verimag Research Report no TR-2014-13

Alexios Lekidis, Paraskevas Bourgos, Simplice Djoko-Djoko, Marius Bozga, Saddek Bensalem

or reduction of the network bandwidth. Finally, the derived application software model is progressively
enriched with the HW specific components, given a specified mapping.

The generation of the application software model in BIP, presented in [5], receives as input an appli-
cation software model described in PPM and produces the equivalent representation in a BIP model. The
construction is fully automated and preserves the behavior of the software application. Thus, the generated
BIP models inherit all the merits of PPM models which enable separate analysis of computation and com-
munication, expose functional parallelism and separate the functionality of the application from the target
hardware platform.

The derived abstract system model in BIP is parametrized and allows flexible integration of specific
target hardware features, such as communication protocols, scheduling policy etc. However, the abstract
system model in BIP does not include all the hardware-dependent (e.g. execution times, data processing
delays) and network-specific information (e.g. packet delivery ratios, end-to-end delays). The above infor-
mation are injected to the model in the form of probabilistic distributions which are obtained by profiling
techniques and execution of the generated code on the physical hardware platform. To compute these prob-
abilistic distributions, we analyze the debugging traces from the execution of the generated code on the
hardware platform and produce stochastic independent data [19] [13]. This technique is called calibration
and results in obtaining the complete system model in BIP.

3.3 Code Generation

In this section, we describe the method and the associated tool for automatic generation of deployable code,
targeting distributed sensor networks. The method is based on an infrastructure for generating code from
PPM specifications. The generated code is portable and can be eventually deployed and run on different
hardware including sensor networks. The generated code consists of the functional code and the glue code.

The functional code is generated from the application software in PPM consisting of processes and
shared objects. In the case of sensor networks, processes are implemented as threads, and shared objects
are implemented according to the underlying communication protocols. The implementation in C contains
the thread local data and the routine implementing the specific thread functionality. The latter is a sequential
program consisting of plain C used as a controller, wrapping the process C code described in PPM. The
communication function calls are implemented by substituting the read and write primitives by read and
write API calls on the respective communication protocol.

The glue code implements the deployment of the application to the sensor network platforms, i.e., al-
location of threads to the sensors. The glue code is essentially obtained from the mapping. Threads are
created and allocated to network nodes according to the process mapping, which also specifies configu-
ration parameters for the underlying communication protocols. In particular, for User Datagram Protocol
(UDP), each process is assigned a source port (srcPort), a destination (dstPort) port and a destination node
IP (dstIP). The glue code is linked with sensor network hardware library to produce the binary executables
for execution on the sensor network nodes.

The generated code is described in C language. Both functional and glue code are implemented using
re-targetable template files and sensor network hardware specific files. The tool is implemented in C++
and it consists of approximately 35 files and 11235 lines of code.

4 Case Study: Industrial WMSN Application
We illustrate our approach using a case study provided by an industrial partner (Cyberio 2). It targets on
audio capturing and reproduction over a WiFi wireless network with the addition of local clock synchro-
nization. In this case we focus on a sender-to-receiver synchronization, where the base station broadcasts
periodically a frame containing the hardware clock value (synchro process of Figure 8) to all the nodes
through the wireless network. Each node applies a Phase Locked Loop (PLL [20]) synchronization tech-
nique, to construct a software clock. The PLL system takes as input the broadcasted clock and keeps the
local clock synchronized to it. The construction is based on the Kalman filter algorithm (Appendix A). The

2www.cyberio-dsi.com/

Verimag Research Report no TR-2014-13 9/19

Alexios Lekidis, Paraskevas Bourgos, Simplice Djoko-Djoko, Marius Bozga, Saddek Bensalem

expected synchronization accuracy, defined as the difference between the input and output clock, for the
particular case study is specified as 1µs. The resulting clock is used by the micro process to timestamp the
audio frames. Subsequently, the base station is able to reproduce the received audio frames in the correct
chronological order.

Sensor Network Platform Description
We target as platform a Wireless Sensor Network (WSN) of spatially distributed autonomous sensors.

They are responsible of monitoring sound, referred as slave nodes, and cooperatively pass their data through
the network to a base station, referred as the master node.

The wireless network (WLAN) provides the ability of bidirectional communication between all the
network nodes for audio handling and clock synchronization. Thus, the choice of the master node is
completely arbitrary. In addition, the WLAN is based on the IEEE 802.11 standards (WiFi).

Each network node is a hardware platform, which consists of the computational core, the WiFi and
the sound card. The computational core is responsible for the node’s processing operations, the WiFi
card supports the wireless communication of the network, and the sound card is dedicated to capture or
reproduce sound.

In the specific case study, we use a WSN that consists of three network nodes, as represented graphically
in the lower part of Figure 8. As network nodes we use 3 UDOO platforms 3 and as Access Point (AP) we
use a Snowball SDK platform 4. To capture and reproduce audio samples, we used the API provided by the
Advanced Linux Sound Architecture (ALSA) 5. This API supplies structures and functions to communicate
with the node’s sound card through the ALSA library.

In the following subsection we present the mapping that is used for the deployment of a WMSN appli-
cation to different hardware nodes.

4.1 Code Generation on Distributed Sensor Network Platform
As depicted by the deployment of Figure 8 the clock synchronization protocol runs in parallel with an
audio application. The synchro and speaker processes are mapped to the Master UDOO node, whereas
the PLL and micro processes to the Slave UDOO nodes. The shared objects are mapped to the WiFi
cards, which are managing the communication through the Snowball SDK AP. The sensor network nodes
can communicate through various modes, such as unicast, broadcast and multicast. They also support
additional communication protocols, apart from UDP, such as the raw Socket protocol.

We hereby present some experimental results obtained from the generated code for the case study. The
results focus on the clock synchronization accuracy of a slave node. Specifically, in Figure 9 we plot the
time difference between the Master and the software clock computed in the PLL of the Slave. The software
clock follows the advance of the Master clock and maintains a relative offset from it (here around 100µs)
with a resulting accuracy of 76µs. As illustrated in [20], in a PLL-based approach this offset depends on
the synchronization frequency of the application. Although an increase of this frequency results in better
synchronization, it is simultaneously increasing the number of transmitted packets in the network. This
leads to higher energy consumption, thus shortening the network lifetime.

The execution of the generated code also provided debugging traces, which we analyzed, in order
to compute probabilistic distributions for specific case study parameters. These parameters concerned
the computation of each local hardware clock, the packet delivery ratio and the end-to-end delays. The
debugging traces were used to calibrate the BIP abstract system model and produce the BIP system model
(design flow step 3), thoroughly described in the following subsection.

4.2 BIP System Model
This section presents the system model constructed for the WMSN case study. It consists of the Master
component and two instances of the Slave component, using the same interfaces and interactions with the

3http://www.udoo.org/features/
4http://www.calao-systems.com/articles.php?pg=6186
5http://www.alsa-project.org/main/index.php/Main Page

10/19 Verimag Research Report no TR-2014-13

Alexios Lekidis, Paraskevas Bourgos, Simplice Djoko-Djoko, Marius Bozga, Saddek Bensalem

synchro PLL

speaker micro

PLL

micro

WMSN Application

SO1

SO2

SO3

SO4

Master WiFi
card

Sound
card

UDOO node

Sensor Network Distributed Platform

Snowball SDK
Access Point

WiFi

WiFi
card SlaveWiFi
card

Sound
card

UDOO node

SlaveWiFi
card

Sound
card

UDOO node

SPM Audio()
functions

COM eth()
functions

Figure 8: Mapping of the WMSN Application on the distributed network

0 200 400 600 800 1000 1200
0

20

40

60

80

100

120

140

160

180

S
yn

ch
ro

ni
za

tio
n

er
ro

r
(u

se
c)

Number of samples

Figure 9: Synchronization accuracy (in µs) observed from the generated code

other system components. For comprehension purposes, Figure 10 illustrates a simpler system containing
only one instance of the Slave component. The Master is responsible for periodical transmission of syn-
chronization packets containing its hardware clock value through the port CLK SEND. This value, as well
as the Slave’s hardware clock value, are obtained using probabilistic distributions for the Gaussian random
variables of the discrete clock model (see Appendix A). The timing model is as a discrete time step advance
and associated with the interaction TICK. This interaction is used as a strong synchronization among all
the system components, implementing a timing model. The transmitted and received packets are stored in
a buffer component (Mbuffer and Sbuffer instances of Figure 10), which follows a FIFO queuing policy.
The processing and transmission of the data is handled by the WiFi component, modeling the wireless
network (WiFi unit of Figure 8), and responsible for the packet transmission to every Slave component in
the model. This component is using probabilistic distributions for network-specific characteristics, such

Verimag Research Report no TR-2014-13 11/19

Alexios Lekidis, Paraskevas Bourgos, Simplice Djoko-Djoko, Marius Bozga, Saddek Bensalem

as the packet delivery rate and the end-to-end delays. Whenever a synchronization packet is received by
the Slave component (CLK RECV port), it computes the synchronized clock of the Kalman algorithm (see
Appendix A). Each audio packet is transmitted through the AUDIO SEND port and timestamped with the
latest computed value of the synchronized clock.

TICK

READ

speaker

SEND RECV

RECV

REQ REQ

RECV

Sbuffer

TICK

SEND RECV

CLK_RECV

LOCAL_CLK

CLK_REQ

CLK_RES

Slave
micro

LOCAL_CLK

AUDIO_SEND

CLK_REQ

CLK_RES

Mbuffer WiFi
Mclock

GET_CLK

Sclock

CLK_SEND

TICK synchro
TICK

Master

PLL

Figure 10: BIP abstract system model of the case study

Thereafter, we provide a detailed description of the representative BIP system components, depicted by
finite-state automata and extended by the data and functions used in the real application. As an abbreviation
we consider that the ports used in the interactions between the system components are presented in capitals,
hence all the remaining are internal ports.

Component behavior
The transmission of synchronization packets is initiated by the Master compound component in the

model, formed by the Mclock, the synchro and the speaker atomic components. The Mclock (Figure 11a)
models the behavior of the Master’s hardware clock. The synchro component is responsible for the period-
ical transmission of synchronization packets and the speaker component for the consumption and playout
of the received audio packets. The Mclock component (Figure 11a) consists of the initial state idle and
the transmit state. It periodically triggers the transmission of packets through an interaction with the syn-
chro component. The time needed for the generation of packets (PSY NC) is fixed and thus considered
as a model parameter. An interaction through the port TICK will result in a time progress equal to one
(tick) unit. When the time is equal to PSY NC , the control moves from idle to the transmit state due to the
corresponding guard. Following the interaction involving its SEND port, the current hardware clock value
is forwarded to the synchro component. This value is computed using probabilistic distributions for the
discrete clock model of the Master. The speaker component starts to reproduce the received audio samples
periodically (PP period) through the port READ after an initial playout delay p1.

The WiFi component (Figure 12) is formed by two parts. The first concerns the reception of the
transmitted frame by the Master component and the second, the response time calculation as well as the
transmission of a frame to the Sbuffer component. We accordingly consider packets that lost or delivered
out-of-order as failed transmissions. Consequently, in the model every frame received through the RECV
port, is either successfully transmitted (success state) or discarded if delayed or lost (degraded state). The
number of consecutive successful or failed packet transmissions is chosen by corresponding probabilistic
distributions (λok and λfail respectively). If a frame is received in the success state through the RECV
port, it is stored in a FIFO queue and the value of successful packet transmissions is decreased. The
frame’s transmission time is accordingly chosen by the end-to-end delay distribution (λdelay). Afterwards,
the control moves to the second part, where the time advances through the TICK port. Whenever the
transmission time of a frame in the queue is reached, it is forwarded to the Sbuffer component through
the SEND port. In the meantime, if the chosen number of consecutive successful transmissions is equal to
zero, the component moves from success to the degraded state. Accordingly, a value from the distribution
of failed transmissions is chosen. This value indicates the number of subsequent frames, received through
the RECV port, that are discarded. The WiFi component only returns to the success state, when it becomes
equal to zero again.

12/19 Verimag Research Report no TR-2014-13

Alexios Lekidis, Paraskevas Bourgos, Simplice Djoko-Djoko, Marius Bozga, Saddek Bensalem

idleMclk = TM0

transmit

generate
[t = PSY NC]

timestamp:=Mclk
t:=0

TICK
[t < PSY NC]

aM := aM + λγ
Mclk:=Mclk+aM ∗ tMperiod

t:=t+1

SEND

TICK

SEND

Mclk

(a) Mclock component

idleSclk = TS0

request

TICK
aS := aS + λγ

Sclk:=Sclk+aS ∗ tSperiod

GET CLKnewReq

TICK

GET CLK

Sclk

(b) Sclock component

Figure 11: Hardware clock components of the Master and the Slave

The Slave compound component consists of three atomic components: The Micro, the Sclock and the
PLL. The Micro component is responsible of capturing and transmitting periodically audio samples. Ad-
ditionally, the Sclock component is modeling the hardware clock of the Slave and the PLL component
(previously presented in Figure 2) computes the synchronized clock of the Kalman filter algorithm. In
order to model the Sclock component (Figure 11b) we use the same method with the Mclock component
constructing a probabilistic distribution for the discrete clock model of the Slave. Furthermore, the PLL
component receives the transmitted synchronization packets from the Master and updates the synchronized
clock. To accomplish that, it needs to interact with the Sclock component receiving its local clock (LO-
CAL CLK port), in order to apply the PLL functions of the real application. It is also polled periodically by
the Micro component (CLK REQ port), in order to add a hardware clock value to each audio packet sched-
uled for transmission. The corresponding reply (CLK RES port) contains the latest computed synchronized
clock value augmented by the time elapsed between the last reception of a packet and the received request.
Both are measured through an interaction with the Sclock component (LOCAL CLK port). The Micro
component generates each audio packet periodically (PM period).

successc:=choose(λok)

degraded

idle

iterate prepare

sending

RECV
[c > 0]

N:=N+1
delay[N]:=choose(λdelay)

c:=c-1

[c = 0]
c:=choose(λfail)

[c = 0]
c:=choose(λok)

RECV
[c > 0]
c:=c-1

TICK
[t < P]
t:=t+1

[t = P]

t:=0
i:=0

[i = N]
expired:=0

[i < N]
delay[i]=delay[i]-P

[delay[i] 6= 0]
i:=i+1

[delay[i] = 0]
i:=i+1

SEND

SEND frame

TICK

RECV frame

Figure 12: WiFi component

Verimag Research Report no TR-2014-13 13/19

Alexios Lekidis, Paraskevas Bourgos, Simplice Djoko-Djoko, Marius Bozga, Saddek Bensalem

In the following subsection we report on the experimental results from the analysis of the BIP system
model (step 4 of the design flow), obtained by the simulations and the use of SMC.

4.3 Analysis and experimental results
We conducted two sets of experiments, focusing on equally important requirements in the development of
multimedia sensor networks. The first analyzed the utilization of the buffer components concerning only the
audio capturing and reproduction in the system. Thus, this experiment focused a functional requirement,
influenced by non-functional such as the packet delivery ratio and the end-to-end delays. In the second
we focused on the synchronization of the device clocks. Therefore, we observed the difference between
the Master clock (θM) and the synchronized clock computed in every Slave (θS) without the impact of the
audio capturing and reproduction. In order to evaluate these requirements we describe them with stochastic
temporal properties using the Probabilistic Bounded Linear Temporal Logic (PBLTL) formalism [4] and
detail on their probabilistic results using the SMC tool of the BIP framework.

Experiment 1: Buffer utilization. We evaluated the property of avoiding overflow or underflow in
each buffer component by considering the following properties: φ1 = (SSbuffer < MAX), as well as
φ2 = (SMbuffer > 0), where SSbuffer and SMbuffer indicate the size of the Slave and Master buffer
components accordingly. The value of MAX is considered as fixed and equal to 400. As illustrated by
Figure 13 P (φ1) = 1, meaning overflow in the SBuffer is avoided, for the considered value of MAX .
Furthermore, the probability of underflow avoidance in the Mbuffer depends on the initial playout delay
(p1). Specifically, in Figure 14 we can observe that for delays greater than 1430 ms P (φ2) = 1, meaning
that the Master component should start the consumption of audio packets when this time duration has
elapsed.

●●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●

●●●

0 100 200 300 400 500 600 700 800 900 1000

0
20

40
60

80
10

0

size(Sbuffer)

P
ro

ba
bi

lit
y(

%
)

Figure 13: Probability of satisfying overflow avoidance in the Sbuffer

Experiment 2: Synchronization accuracy. The property of maintaining a bounded synchronization
accuracy is defined as: φ3 = (|(θM − θS)−A| < ∆), where A indicates a fixed offset between the Master
and each computed software clock and ∆ is a fixed non-negative number, denoting the resulting bound.
In the first step we used several probabilistic distributions from the execution results of the application
to test if the expected bound ∆ = 1µs is achieved. However, as it can be depicted by Figure 15 the
achieved bound by the simulations was always above the defined bound of 1µs for A = 100µs. As a
second step we repeated the previous experiments, in order to estimate the best bound. Thus, we tried to
estimate the smallest bound, which ensures synchronization with probability P (φ3) = 1, by repeating the
previous experiment for a variety of ∆ between 10µs and 80 µs. The simulations have depicted that the
synchronization bound was 76 µs, as it is also observed by the execution results of the generated code in
Section 4.1.

14/19 Verimag Research Report no TR-2014-13

Alexios Lekidis, Paraskevas Bourgos, Simplice Djoko-Djoko, Marius Bozga, Saddek Bensalem

●●●

●●●

●

●

●

●

●●

0 160 320 480 640 800 960 1120 1280 1440 1600

0
20

40
60

80
10

0

Initial playout delay (ms)

P
ro

ba
bi

lit
y(

%
)

Figure 14: Probability of satisfying underflow avoidance in the Mbuffer

0 200 400 600 800 1000 1200
20

40

60

80

100

120

140

160

180

S
yn

ch
ro

ni
za

tio
n

er
ro

r
(u

se
c)

Number of samples

Figure 15: Synchronization accuracy (in µs) observed from the BIP model simulations

5 Conclusions
We have presented a novel approach, based on a design flow, facilitating the development of correct and
operational applications for sensor network systems. It takes as input the application software and the
hardware specification (communication protocol and sensor network platforms) as well as the mapping
between them and constructs a system model in BIP. This model is stochastic, meaning that it can be
tested, simulated and validated using the statistical model checking tool of the BIP toolset. Moreover,
through the use of rapid prototyping, our approach supports the automatic code generation for the target
distributed sensor network platform.

We illustrate our method through a multimedia sensor network application targetting in two paths: 1)
the construction of a sensor network system model and 2) the automatic generation of correct C code for
execution in the target platforms. The method is used to evaluate functional and non-functional require-
ments for such applications, through statistical model checking. It also exploits the advantages of code
generation for deployment on the target platform and for debugging purposes. The conducted experiments
focus on the buffer utilization and the synchronization accuracy of local clocks according to a common
time reference in the system.

As a future work, we are considering improvements in order to decrease the relative offset between the
software clock, computed in each device, according to a reference clock. Thus we are experimenting with
various clock synchronization frequencies, whilst trying to keep the amount of packets in the network as

Verimag Research Report no TR-2014-13 15/19

Alexios Lekidis, Paraskevas Bourgos, Simplice Djoko-Djoko, Marius Bozga, Saddek Bensalem

low as possible. This may as well result in a possible alternation of the clock synchronization protocol.
Additionally, we focus on multimedia applications for environments supporting lower resource platforms
than Linux. In this scope, Basu et al. introduced in [3] formal models for TinyOS, an evenly popular
environment for the development of such applications. Although supporting communication with lower
resource consumption, such systems allow the transmission of a small amount of data in each packet.
Therefore, in the target multimedia applications data are often transmitted in several packets. Consequently,
the network is more frequently occupied, resulting in a higher probability of collision occurrence and packet
loss. In order to analyze the impact of the additional latencies in the available resources, we plan to develop
a similar design flow for such systems.

References
[1] Bahar Akbal-Delibas, Pruet Boonma, and Junichi Suzuki. Extensible and precise modeling for wire-

less sensor networks. In Information Systems: Modeling, Development, and Integration, pages 551–
562. Springer, 2009. 2

[2] A. Basu, S. Bensalem, M. Bozga, J. Combaz, M. Jaber, T.H. Nguyen, and J. Sifakis. Rigorous
component-based design using the BIP framework. IEEE Software, Special Edition from Routines to
Services 28 (3), pages 41–48, 2011. 1, 3

[3] Ananda Basu, Laurent Mounier, Marc Poulhies, Jacques Pulou, and Joseph Sifakis. Using BIP for
Modeling and Verification of Networked Systems–A Case Study on TinyOS-based Networks. In
Network Computing and Applications, 2007. NCA 2007. Sixth IEEE International Symposium on,
pages 257–260. IEEE, 2007. 5

[4] Saddek Bensalem, Marius Bozga, Benoit Delahaye, Cyrille Jegourel, Axel Legay, and Ayoub Nouri.
Statistical Model Checking QoS properties of Systems with SBIP. In Leveraging Applications of
Formal Methods, Verification and Validation. Technologies for Mastering Change, pages 327–341.
Springer, 2012. 3, 4.3

[5] Paraskevas Bourgos. Rigorous Design Flow for Programming Manycore Platforms. PhD thesis,
Université Joseph Fourier, 2013. 2, 3.2

[6] Dazhi Chen and Pramod K Varshney. QoS Support in Wireless Sensor Networks: A Survey. In
International Conference on Wireless Networks, volume 233, pages 1–7, 2004. 2

[7] Jeremy Elson, Lewis Girod, and Deborah Estrin. Fine-grained network time synchronization using
reference broadcasts. ACM SIGOPS Operating Systems Review, 36(SI):147–163, 2002. A

[8] Benjamin R. Hamilton, Xiaoli Ma, Qi Zhao, and Jun Xu. ACES: adaptive clock estimation and
synchronization using Kalman filtering. In Mobile Computing and Networking, page 152–162, 2008.
2, A, A

[9] Faranak Heidarian, Julien Schmaltz, and Frits Vaandrager. Analysis of a clock synchronization pro-
tocol for wireless sensor networks. Theoretical Computer Science, 413(1):87–105, 2012. 2

[10] Thomas Hérault, Richard Lassaigne, Frédéric Magniette, and Sylvain Peyronnet. Approximate prob-
abilistic model checking. In Verification, Model Checking, and Abstract Interpretation, pages 73–84.
Springer, 2004. 3

[11] Jason Hill, Mike Horton, Ralph Kling, and Lakshman Krishnamurthy. The platforms enabling wire-
less sensor networks. Communications of the ACM, 47(6):41–46, 2004. 2

[12] S Jager, Tino Jungebloud, Ralph Maschotta, and Armin Zimmermann. Model-Based QoS Evaluation
and Validation for Embedded Wireless Sensor Networks. 2

[13] Jean-Yves Le Boudec. Performance Evaluation of Computer and Communication Systems. EPFL
Press, Lausanne, Switzerland, 2010. 3.2

16/19 Verimag Research Report no TR-2014-13

Alexios Lekidis, Paraskevas Bourgos, Simplice Djoko-Djoko, Marius Bozga, Saddek Bensalem

[14] K Lee, John C Eidson, Hans Weibel, and Dirk Mohl. IEEE 1588-Standard for a Precision Clock
Synchronization Protocol for Networked Measurement and Control Systems. In Conference on IEEE,
volume 1588, 2005. 2

[15] Aneeq Mahmood, Georg Gaderer, Henning Trsek, Stefan Schwalowsky, and N Kero. Towards high
accuracy in IEEE 802.11 based clock synchronization using PTP. In Precision Clock Synchronization
for Measurement Control and Communication (ISPCS), 2011 International IEEE Symposium on,
pages 13–18. IEEE, 2011. 2

[16] Satyajayant Misra, Martin Reisslein, and Guoliang Xue. A survey of multimedia streaming in wireless
sensor networks. Communications Surveys & Tutorials, IEEE, 10(4):18–39, 2008. 2

[17] Mohammad Mostafizur Rahman Mozumdar, Francesco Gregoretti, Luciano Lavagno, Laura Vanzago,
and Stefano Olivieri. A framework for modeling, simulation and automatic code generation of sensor
network application. In Sensor, Mesh and Ad Hoc Communications and Networks, 2008. SECON’08.
5th Annual IEEE Communications Society Conference on, pages 515–522. IEEE, 2008. 2

[18] Mohammad Mostafizur Rahman Mozumdar, Luciano Lavagno, Laura Vanzago, and Alberto L
Sangiovanni-Vincentelli. Hilac: A framework for hardware in the loop simulation and multi-platform
automatic code generation of WSN applications. In Industrial Embedded Systems (SIES), 2010 Inter-
national Symposium on, pages 88–97. IEEE, 2010. 2

[19] Ayoub Nouri, Marius Bozga, Anca Molnos, Axel Legay, and Saddek Bensalem. Building Faithful
High-level Models and Performance Evaluation of Manycore Embedded Systems. In Formal Methods
and Models for Codesign (MEMOCODE), 2014 10th IEEE/ACM International Conference on. IEEE,
2014. 3.2

[20] Fengyuan Ren, Chuang Lin, and Feng Liu. Self-correcting time synchronization using reference
broadcast in wireless sensor network. IEEE Wireless Commun., 15(4):79–85, 2008. 4, 4.1

[21] Taniro Rodrigues, Priscilla Dantas, Flávia Coimbra Delicato, Paulo F Pires, Luci Pirmez, Thais
Batista, Claudio Miceli, and Albert Zomaya. Model-driven development of wireless sensor net-
work applications. In Embedded and Ubiquitous Computing (EUC), 2011 IFIP 9th International
Conference on, pages 11–18. IEEE, 2011. 2

[22] Ludovic Samper, Florence Maraninchi, Laurent Mounier, and Louis Mandel. GLONEMO: Global
and accurate formal models for the analysis of ad-hoc sensor networks. In Proceedings of the first
international conference on Integrated internet ad hoc and sensor networks, page 3. ACM, 2006. 2

[23] Bharath Sundararaman, Ugo Buy, and Ajay D Kshemkalyani. Clock synchronization for wireless
sensor networks: a survey. Ad Hoc Networks, 3(3):281–323, 2005. 2, A

[24] Lothar Thiele, Iuliana Bacivarov, Wolfgang Haid, and Kai Huang. Mapping Applications to Tiled
Multiprocessor Embedded Systems. In Proceedings of the Seventh International Conference on Ap-
plication of Concurrency to System Design, ACSD ’07, pages 29–40, Washington, DC, USA, 2007.
IEEE Computer Society. 3.1

[25] Simon Tschirner, Liang Xuedong, and Wang Yi. Model-based validation of QoS properties of
biomedical sensor networks. In Proceedings of the 8th ACM international conference on Embed-
ded software, pages 69–78. ACM, 2008. 2

[26] Håkan LS Younes. Ymer: A statistical model checker. In Computer Aided Verification, pages 429–
433. Springer, 2005. 3

Verimag Research Report no TR-2014-13 17/19

Alexios Lekidis, Paraskevas Bourgos, Simplice Djoko-Djoko, Marius Bozga, Saddek Bensalem

Appendices
A Kalman filter algorithm
This clock synchronization algorithm (proposed in [8]) continuously corrects the local clock reducing its
offset from the master clock. A clock is defined by a discrete model as follows:

θ[n] =

n∑
k=1

α[k]τ [k] + θ0 + ω[n] (1)

, where α is the clock skew, τ [k] the sampling period at the kth sample, θ0 the initial clock offset, and w[n]
the random measurement as well as other types of additive noise. In a sender-to-receiver synchronization,
this noise consists of four factors [23]:

• the time for message construction and sender’s system overhead,

• the time to access the transmit channel,

• propagation delay,

• the time spent by the receiver to process the message.

Since τ [k] can be different, the above clock model covers uniform and non-uniform sampling. Equation
(1) can be rewritten recursively as follows:

θ[n] = θ[n− 1] + α[n]τ [n] + ϑ[n] (2)

, where ϑ[n] = ω[n]−ω[n− 1] is considered as a Gaussian random variable with mean 0 and variance σ2
ϑ,

as described in [7]. We assume that the clock skew α[n] is time-varying, that is, it can change completely
from one sample to another with the optimal estimator being:

α̂[n] =
θ[n]− θ[n− 1]

τ [n]
(3)

This variation can be modeled as a random process defined by the Equation (4):

α[n] = α[n− 1] + γ[n] (4)

, where γ is considered as a Gaussian random variable with mean 0 and variance σ2
γ indicating the noise

model,as described in [8]. As the above equations are used to define the Kalman Filter algorithm, we
accordingly illustrate its vector-matrix form, previously introduced in [8].

Let θ denote the master timestamp in which we add the noise delays (see Equation (1)), and θ̃ the value
of the synchronized clock.

θ̃ [n] =

n∑
k=1

α [k] τ [k] + θ0 ⇒

θ̃ [n] = θ̃ [n− 1] + α [n] τ [n] (5)

Based on the Equation (4), the Kalman Filter state of the synchronized clock is defined by the Equation
(6).

x [n] = Ax [n− 1] + u [n] (6)

18/19 Verimag Research Report no TR-2014-13

Alexios Lekidis, Paraskevas Bourgos, Simplice Djoko-Djoko, Marius Bozga, Saddek Bensalem

, where x [n] = [θ̃ [n] α[n]]
T

, A =

[
1 τ
0 1

]
, u [n] = [0 γ[n]]

T and τ is the sampling period. The

Kalman Filter observation Equation is the noisy observation of the reference clock (Equation (7)).

θ [n] = θ̃ [n] + v [n] = bTx [n] + v [n] (7)

, where bT = [1 0]. Then, the Kalman Filter vector-matrix form is defined by the following Equations:

x̂[n] = Ax̂[n− 1] + G [n]
(
θ [n]− bT Ax̂[n− 1]

)
(8)

S [n] = AM [n− 1]AT + Cu (9)

M [n] =
(
I −G [n] bT

)
S [n] (10)

G [n] = S [n] b (σ2
v + bT S [n] b)

−1
(11)

Verimag Research Report no TR-2014-13 19/19

	Introduction
	Sensor network applications
	Design Flow
	Pragmatic Programming Model
	System model in BIP
	Code Generation

	Case Study: Industrial WMSN Application
	Code Generation on Distributed Sensor Network Platform
	BIP System Model
	Analysis and experimental results

	Conclusions
	Appendices
	Kalman filter algorithm

