
Multiprocessor Scheduling of
Precedence-constrained

Mixed-Critical Jobs

Dario Socci, Peter Poplavko, Saddek Bensalem, Marius
Bozga

Verimag Research Report no TR-2014-11

November 2014

Reports are downloadable at the following address
http://www-verimag.imag.fr

Unité Mixte de Recherche 5104 CNRS - Grenoble INP - UJF
Centre Equation
2, avenue de VIGNATE
F-38610 GIERES
tel : +33 456 52 03 40
fax : +33 456 52 03 50
http://www-verimag.imag.fr

http://www-verimag.imag.fr


Multiprocessor Scheduling of Precedence-constrained Mixed-Critical
Jobs

Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

November 2014

Abstract

The real-time system design targeting multiprocessor platforms leads to two important com-
plications in real-time scheduling. First, to ensure deterministic processing by communicating
tasks the scheduling has to consider precedence constraints. The second complication fac-
tor is mixed criticality, i.e., integration upon a single platform of various subsystems where
some are safety-critical (e.g., car braking system) and the others are not (e.g., car digital ra-
dio). Therefore we motivate and study the multiprocessor scheduling problem of a finite set
of precedence-related mixed criticality jobs. This problem, to our knowledge, has never been
studied if not under very specific assumptions. The main contribution of our work is an algo-
rithm that, given a global fixed-priority assignment for jobs, can modify it in order to improve
its schedulability for mixed-criticality setting. Our experiments show an increase of schedula-
ble instances up to a maximum of 30% if compared to classical solutions for this category of
scheduling problems.

Keywords: real-time, mixed critical, scheduling, multiprocessor

Reviewers:

How to cite this report:

@techreport {TR-2014-11,
title = {Multiprocessor Scheduling of Precedence-constrained Mixed-Critical Jobs},
author = {Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga},
institution = {{Verimag} Research Report},
number = {TR-2014-11},
year = {2014}
}



Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

Figure 1: Proposed algortirhm MCPI. T stands for task graph and PT for priority table.

1 Introduction

The real-time system design targeting multi and many-core platforms leads to two important issues. Firstly,
to ensure deterministic processing by communicating tasks one has to consider scheduling problems with
precedence constraints, i.e., task graphs. Such tasks often have multiple execution rates and hence their jobs
have different arrival times and deadlines [1]. However, the precedence constrained scheduling theory for
multiple processors usually considers common arrival times and deadlines of connected jobs. Luckily many
practical applications are not sporadic but synchronous-periodic, so they can be modeled by a finite task
graph that represents one hyperperiod and enables simple static analysis. We abstract from job periodicity
and consider just a static set of jobs with arbitrary statically known arrival times, deadlines, and precedence
relations.

Modern technology opens the possibility to integrate upon a single chip various subsystems which
required multiple chips and boards in the past, which offers power and weight savings. However, this
integration leads to the second issue we raise here – the mixed criticality. The point is that some subsystems
are safety critical [2]; therefore, according to current industry standards, one cannot let other subsystems
share resources with them, to avoid that their errors and faults have consequences for the safety critical
subsystems. The current industry practice assumes complete time or space isolation of subsystems having
different levels of criticality, which reduces the benefits of integration. It is much more efficient [3] to let
the scheduler use the resources in a flexible way during the normal operation, and only when faults occur
give all the resources entirely to the safety critical subsystems, to provide them ample means for fault
recovery. In addition, one needs to protect highly critical subsystems from timing misbehavior, especially
execution time overruns of less critical ones [4]. For static sets of jobs on single processor, the basic
principles and results of corresponding scheduling policies were presented in [3], whereas we investigate
extensions towards precedence constraints and multiple processors.

For mixed criticality scheduling problems Audsley approach can be used for correct priority assign-
ment [1], but this approach is mainly restricted to uniprocessor scheduling [5]. This is because Audsley
approach is based on the assumption that the completion time of the job with the least priority may be com-
puted ignoring the relative priority of the other jobs. This assumption is no longer true in multiprocessors
systems. Audsley approach can still be used, by using pessimistic formulas to compute the completion
time of the least priority job [5]. However, in the case of finite set of jobs, it can be hard to find a for-
mula with an acceptable level of pessimism. The main contribution of this paper is the Mixed Criticality
Priority Improvement (MCPI ) algorithm, that overcomes the limitation of Audsley approach in multipro-
cessor system. MCPI, in fact, assigns priorities starting from the highest. This allows us to compute exact
completion times. The drawback of this approach is that, unlike Audsley approach, just picking up a job
that meets the deadline is not enough for correctness. For this reasons we need an heuristic to help us to
select a “good” job in each step. Fig. 1 shows an overview of MCPI. The algorithm takes as input the task
graph T, the number of processors m and a priority table PT. The latter may be generated by any known
multiprocessor algorithm. We call this algorithm support algorithm. The algorithm is based on the concept
of Priority Direct Acyclic Graph (P-DAG), which defines a partial order on the jobs showing sufficient pri-
ority constraints needed to obtain a certain schedule. We build such a structure by adding, at each step, jobs
from PT, starting from the one with the highest priority. Each time we add a job, we apply a modification
to the priority order given by table PT, to increase the schedulability of safety critical scenarios. When

Verimag Research Report no TR-2014-11 1/27



Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

the construction of the P-DAG is terminated, we generate a new priority table by topological sort of the
P-DAG.

The paper is organized as follows. Section 2.1 gives an introduction to the formalism of multiprocessor
scheduling in Mixed Critical System. Section 3 defines P-DAGs and their properties. The MCPI algo-
rithm is then described in Section 4. In Section 5 we discuss the related work and in Section 6 we give
experimental results. Finally in Section 7 we discuss conclusions and future work.

2 Scheduling Problem

2.1 Problem Definition
In a dual-criticality Mixed-Critical System (MCS), a job Jj is characterized by a 5-tuple Jj = (j, Aj , Dj , χj , Cj),
where:

• j ∈ N+ is a unique index

• Aj ∈ Q is the arrival time, Aj ≥ 0

• Dj ∈ Q is the deadline, Dj ≥ Aj

• χj ∈ {LO,HI} is the job’s criticality level

• Cj ∈ Q2
+ is a vector (Cj(LO), Cj(HI)) where Cj(χ) is the WCET at criticality level χ.

We assume that Cj(LO) ≤ Cj(HI)[3]. We also assume that the LO jobs are forced to complete
after Cj(LO) time units of execution, so (χj = LO) ⇒ Cj(LO) = Cj(HI). A task graph T of the MC-
scheduling problem is the pair (J,→) of a set J ofK jobs with indexes 1 . . .K and a functional precedence
relation→⊂ J × J. The criticality of a precedence constraint Ja → Jb is HI if χ(a) = χ(b) = HI. It is
LO otherwise.

A scenario of a task graph T = (J,→) is a vector of execution times of all jobs: (c1, c2, . . . , cK). If at
least one cj exceeds Cj(HI), the scenario is called erroneous. The criticality of scenario (c1, c2, . . . , cK)
is the least critical χ such that cj ≤ Cj(χ), ∀j ∈ [1,K]. A scenario is basic if for each j = 1, . . . ,K
either cj = Cj(LO) or cj = Cj(HI).

A (preemptive) schedule S of a given scenario is a mapping from physical time to Jε×Jε× . . .×Jε =
Jmε where Jε = J ∪ {ε}, where ε denotes no job and m the number of processors available. Every job
should start at time Aj or later and run for no more than cj time units. A job may be assigned to only one
processor at time t, but we assume that job migration is possible to any processor at any time. Also for
each precedence constraint Ja → Jb, job Jb may not run until Ja completes. A job J is said to be ready at
time t iff:

1. all its predecessors completed execution before t

2. it is already arrived at time t

3. it is not yet completed at time t

The online state of a run-time scheduler at every time instance consists of the set of completed jobs,
the set of ready jobs, the progress of ready jobs, i.e., for how much each of them has executed so far, and
the current criticality mode, χmode, initialized as χmode = LO and switched to ‘HI’ as soon as a HI job
exceeds Cj(LO). A schedule is feasible if the following conditions are met:

Condition 1. If all jobs run at most for their LO WCET, then both critical (HI) and non-critical (LO) jobs
must complete before their deadline, respecting all precedence constraints.

Condition 2. If at least one job runs for more then its LO WCET, than all critical (HI) jobs must complete
before their deadline, whereas non-critical (LO) jobs may be even dropped. Also LO precedence constraints
may be ignored.

2/27 Verimag Research Report no TR-2014-11



Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

Figure 2: The graph of an airplane localization system illustrating LO→HI dependencies.

The reason why we allow to have precedences from LO jobs to HI jobs can be seen in the example of
Fig. 2. There we have a task graph of the localization system of an airplane, composed of four sensors (jobs
s1-s4) and the job L, that computes the position. Data coming from sensor s4 is necessary and sufficient
to compute the plane position with a safe precision, thus only s4 and L are marked as HI critical. On the
other hand, data from s1, s2 and s3 may improve the precision of the computed position, thus granting the
possibility of saving fuel by a better computation of the plane’s route. So we do want job L to wait for
all the sensors during normal execution, but when the systems switch to HI mode we only wait for data
coming from s4.

Based on the online state, a scheduling policy deterministically decides which ready jobs are scheduled
at every time instant on m processors. A scheduling policy is correct for the given task graph T if for each
non-erroneous scenario it generates a feasible schedule. A scheduling policy is predictable, if an earlier
completion of a job may not delay the completion of another job.

A task graph T is MC-schedulable if there exists a correct scheduling policy for it. A fixed-priority
scheduling policy is a policy that can be defined by a priority table PT , which is a vector specifying all
jobs in a certain order. The position of a job in PT is its priority, the earlier a job is to occur in PT the
higher the priority it has. Among all ready jobs, the fixed-priority scheduling policy always selects the m
highest-priority jobs in PT . A priority table PT defines a total ordering relationship between the jobs. If
job J1 has higher priority than job J2 in table PT , we write J1 �PT J2 or simply J1 � J2, if PT is clear
from the context. In this paper we assume global fixed-priority scheduling which allows unrestricted job
migration. A priority table PT is required to be precedence compliant i.e., the following property should
hold:

J → J ′ ⇒ J �PT J ′ (1)

The above requirement is reasonable, since we may not schedule a job before its predecessors complete.
The use of fixed-priority in combination with the adopted precedence aware definition of ready job is called
in literature List Scheduling.

We combine list scheduling with fixed priority per mode (FPM), a policy with two tables: PTLO and
PTHI. The former includes all jobs. The latter only HI jobs. As long as the current mode is LO, this policy
performs the fixed priority scheduling according to PTLO. After a switch to the HI mode, this policy drops
all pending LO jobs and applies priority table PTHI. Since scheduling after the mode switch is a single-
criticality problem, such a table can be obtained by using classical approaches. Therefore, we focus on
producing the table PTLO, in the following simply denoted as PT .

Fixed-priority (FP) policy (without precedences), is predictable [6], while list scheduling (with prece-
dences) is not, therefore, for the online scheduling we modify this policy to ensure predictability as de-
scribed in Sec. 4.2. For predictable policies it is sufficient to restrict the offline schedulability check to
simulation of basic scenarios [3]. To be more specific [7], firstly, we check the scenario with execution
times cj = Cj(LO), i.e., the LO scenario. Secondly, for each HI job Jh, we check the scenario where the
jobs that completed before Jh have cj = Cj(LO), while the other jobs (including Jh) have cj = Cj(HI).
Such a scenario is denoted HI[Jh]. We check these scenarios offline under list scheduling, and then use
their start times as arrival times online.

Verimag Research Report no TR-2014-11 3/27



Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

2.2 Characterization of Problem Instance
To characterize the performance of scheduling algorithms one uses the utilization and the related demand-
capacity ratio metrics. For a job set J = {Ji} and an assignment of execution times ci the appropriate
metric is load [8]:

`oad(J, c) = max
0≤t1<t2

∑
Ji∈J: t1≤Ai∧Di≤t2 ci

t2 − t1
For a multiprocessor system there does not exist a necessary and sufficient schedulability bound on

load, whereas it exists for uniprocessor systems: `oad ≤ 1. For m-processor system the corresponding
bound is only necessary, but not sufficient [9]: `oad ≤ m. In Section 5 we also discuss sufficient conditions
on load for fixed priority scheduling.

From the problem instance T(J,→) it is convenient to derive the following graphs:

HI-criticality graph THI(JHI,→HI), where the nodes and edges are the subset of HI jobs and precedences
of HI criticality level

MIX-criticality graph TMIX(JMIX,→), where the jobs in JMIX are obtained from the original set of jobs J
by modifying only job deadlines: DMIXi = Di − (Ci(HI)− Ci(LO)).

For static mixed-criticality jobs, [10] and [11] propose the following characterization of mixed-criticality
load:

LoadLO(T) = `oad(J, C(LO))

LoadHI(T) = `oad(JHI, C(HI))

LoadMIX(T) = `oad(JMIX, C(LO))

The necessary schedulability condition for load on m identical processors then generalizes to mixed
criticality as follows: LoadLO(T) ≤ m ∧ LoadHI(T) ≤ m. However, it was noticed in [11] that in the LO
scenario the jobs should meet deadlines DMIXj , otherwise deadlines Dj can be missed in a HI scenario, so
they made this condition stronger by replacing LoadLO by LoadMIX.

Lemma 2.1 (Necessary condition for schedulability). Mixed-critical problem instance T is schedulable
only if

LoadMIX(T) ≤ m ∧ LoadHI(T) ≤ m (2)

In MIX-criticality graph TMIX we should have for all jobs:

Ai + Ci(LO) ≤ DMIXi

whereas in HI-criticality graph THI we should have:

Ai + Ci(HI) ≤ Di

For practical reasons, we refine the load to a new metric:

stress(J, c) = max
0≤t1<t2

m

min{m, |J′|}
·
∑

J′=Ji|t1≤Ai∧Di≤t2 ci

t2 − t1

The m/|J′| scale factor is used to consider the fact that if there are j < m ready jobs then only j
processors can be used to schedule them.

Based on stress , one can define StressLO, StressHI and StressMIX. One can also rewrite the necessary
conditions (2) using stress, but that would not make them stronger. Nevertheless in general, we have
stress ≥ `oad , therefore we use it as a more ‘realistic’ metric of ‘complexity’ of the scheduling problem,
as for the problem instances of growing complexity it approaches the critical bound m faster than the load.

The formulas of Load and Stress introduced above do not take into account precedence constraints. To
solve this issue, we define ASAP arrival times and ALAP deadlines, known in the task graph theory [12],
but so far mainly used to derive priority tables rather than to compute the load1.

1In literature the word ALAP is usually used for latest arrival

4/27 Verimag Research Report no TR-2014-11



Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

For a task graph with execution times c, ASAP arrival time A∗ is the earliest time when a job can
possibly start:

A∗j = max
i

(Aj , A
∗
i + ci | Ji are predecessors of Jj)

Dually, ALAP deadline D∗ is the latest time when a job is allowed to complete:

D∗j = min
i

(Dj , D
∗
i − ci | Ji are successors of Jj)

It is trivial that substituting ASAP arrival time and ALAP deadline to the job parameters does not
change the schedulability of the task graph, so the necessary conditions in Lemma 2.1 remain valid, whereas
the lemma becomes, in general, stronger. It should be noted that, by definition, to compute LoadMIX one
should do the ASAP/ALAP calculation in MIX-criticality graph TMIX using C(LO), whereas for LoadHI

it should be done in graph THI using C(HI). Therefore ASAP arrival and ALAP deadlines for the same
job are mode-dependent, and one should use these mode-dependent values also for the second part of
Lemma 2.1, where we check the properties of individual jobs. In the sequel, unless mentioned otherwise,
we assume in the algorithms and analysis that the load and stress values are computed using ASAP and
ALAP values.

3 Priority DAG
In this section we will introduce the idea of Priority DAG (P-DAG). Informally it is a graph that defines a
partial order on the jobs showing sufficient priority constraints needed to obtain a certain schedule. This
structure makes it easier to reason on priorities than a priority table, since the latter is a total order and thus
contains also unnecessary priority constraints. We will imply for the rest of this section that we are using
preemptive list scheduling and we always refer to the basic LO scenario. A priority table PT defines a total
order on the set of jobs J of T. A priority table PT defines one and only one schedule S when applying
list scheduling on m processors, we indicate it with the following notation: PT �m S.

Consider a task graph T = (J,→), a number of processors m and the graph G = (J,B), where B is a
partial order relation defined on J.

Definition 1 (P-DAGs and their Equivalence). We call PT(G) the set of all priority tables that can be
obtained by a topological sort of G. G is a P-DAG on m processors for schedule S iff:

∀PT, PT ∈ PT(G)⇒ PT �m S (3)

Two P-DAGs giving the same schedule are called equivalent.

Definition 2 (Canonical P-DAG). A Canonical P-DAG for a schedule S is a P-DAG G:

∀PT, PT ∈ PT(G)⇔ PT �m S (4)

Let S be the schedule of a task graph T = (J,→) produced by a priority table PT on m processors.
Given two jobs J1 and J2, we say that J1 blocks J2 (J1 `S J2) if in the schedule S there is a point in time
t where J2 is ready but not running while J1 is running. It’s trivial that:

J1 `S J2 ⇒ J1 �PT J2 (5)

Lemma 3.1. Given a task graph T = (J,→), a table PT and a number of processors m. Consider the
blocking relation `S , where S is such that PT �m S. Then G = (J,`S) is a canonical P-DAG for S.

Proof. We need to prove that (4) holds. Let us first prove that G is actually a P-DAG (i.e., (3) holds). This
trivially comes from the observation that during the execution of the schedule S, we only need to define a
priority when a job blocks another. So the priorities defined by `S are sufficient to generate S.

To prove that the priorities defined by `S are also necessary, let us suppose by contradiction that there
exist a table PT ′ such that PT ′ �m S and PT ′ /∈ PT(G). The latter means that ∃ J1, J2 so that J1 `S J2
and J1 �PT ′ J2. By the first statement and by (5), we have J1 �PT ′ J2 that contradicts the second
statement.

Verimag Research Report no TR-2014-11 5/27



Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

(a) Schedule (b) P-DAG

Figure 3: The figures of Example 3.1.

Example 3.1. Let us consider the tasks of Fig 2, where J is defined as follows:

Job A D χ C(LO) C(HI)
s1 0 3 LO 1 1
s2 0 3 LO 1 1
s3 0 3 LO 1 1
s4 0 4 HI 1 3
L 0 6 HI 1 3

consider the priority table PT = {s1 � s2 � s3 � s4 � L}. On two processors PT produces the
schedule S shown in Fig. 3(a). From the figure is easy to derive the blocking relation `S . We have:
s1 ` s3, s2 ` s3, s1 ` s4, s2 ` s4. Notice that L is never blocked, because, due to precedence constraints,
it is never ready until time 2, when all its predecessors complete. From the blocking relation `S , we can
derive the canonical P-DAG G = (J,`S), shown in Fig. 3(b).

Also, the following is trivial:

Lemma 3.2. If adding an edge to a P-DAG G does not introduce a cycle, the resulting graph G′ is still a
P-DAG and it is equivalent to G. Also PT(G′) ⊆ PT(G).

Definition 3 (Redundant edges). An edge (J1, J2) of a P-DAGG is called redundant iff there exists another
path in G from J1 to J2.

Removing redundant edges from a P-DAG G will not have any effect on PT(G). The following
trivially follows from Lemmas 3.1 and 3.2:

Lemma 3.3. Consider a task graph T = (J,→) and a graphG = (J,B). LetB∗ be the transitive closure
of B and S be a schedule generated by a priority table PT ∈ PT(G). Then G is a P-DAG iff:

J ′ `S J ′′ ⇒ J ′ B∗ J ′′, ∀J ′, J ′′ ∈ J (6)

We are interested in generating P-DAGs that are shaped like forests (i.e., a set of unconnected trees).
The reason why we want such a structure will be clear in Section 4, where we use the properties of forest
to prove some properties of our algorithm.

We propose in this section an algorithm that generates a forest-shaped P-DAG. We will first explain
the algorithm and then prove its correctness. The algorithm is shown in Fig. 4, it takes a task graph and
a precedence compliant priority table as input and proceeds as follows. The highest priority job JCurr is
removed from the table PT and added to the graph G. Then we simulate a run on the list scheduler in
the basic LO scenario for the jobs included so far in G with their precedence relation taken from T and
using as priority table a topological sort of G. During this simulation we keep note of the jobs that block
JCurr. Based on the computed blocking relation, in the next steps we inspect the trees of (forest) graph G,
looking for the trees that contain a job that is known to block the job JCurr. For each such tree, its root is
connected by a new edge in graph G to the job JCurr.

6/27 Verimag Research Report no TR-2014-11



Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

1: Algorithm: Forest PDAG
2: Input: task graph T
3: Input: priority table PT
4: Output: P-DAG G
5: G = (∅, ∅)
6: while PT 6= ∅ do
7: JCurr ← PopHighestPriority(PT )
8: G.J← G.J ∪ {JCurr}
9: ` ← SimulateListSchedule(LO, (G .J,→), PT(G))

10: for all trees ST ′ ∈ G do
11: if ∃ J ′ ∈ ST ′ : J ′ ` JCurr then
12: G. B← G. B ∪{(root(ST ′), JCurr)}
13: end if
14: end for
15: end while
16: return G

Figure 4: The forest P-DAG generation algorithm

Figure 5: Forest P-DAG

Example 3.2. Consider the task graph and the priority table of Example 3.1. We will apply Forest PDAG
algorithm to them. In the first step the algorithm picks up s1, the highest priority jobs from PT , and will
add it to the graph. In the second iteration, we pick up s2, since it is not blocked by any job, we continue
without adding any arc. Then we pick up s3, that is blocked by both s1 and s2, so we add the arcs (s1, s3)
and (s2, s3). At the next iteration we pick up job s4, that is also blocked by both s1 and s2, so we add an
arc from the root of the tree that contains the blocking jobs (i.e., s3) to s4. In the final iteration we pick up
job L, that is not blocked by any job, thus we add it to the graph without inserting any arcs from it. The
resulting graph is shown in Fig. 5.

Theorem 3.4. Let G be the graph generated by the Forest PDAG algorithm. Then G is a P-DAG and a
forest.

Proof. We will prove both by induction, by showing that at the n-th step, the statement is true for the partial
graph Gn and for priority table PTn, where both are composed of the first n elements of PT .

Basic step. The basic step is trivial. We have a priority table PT1 = {J1} with one element and a
graph G1 = ({J1}, ∅). A graph of one element is a forest and the only possible topological sort of G1

gives PT1.
Inductive step. We know by inductive hypothesis that Gn−1 is a P-DAG and can generate PTn−1.

Also Gn−1 is a forest. We only add edges to Jn from the root of unrelated subtrees, this operation may
only generate another tree, thus Gn is a forest. Also, since Jn has no successors in G, during a topological
sort of Gn we can give Jn the n-th position in the priority table, same position it has in PTn. For the
other jobs, the partial graph that we have to explore is exactly Gn−1, so we can generate PTn−1 from it.

Verimag Research Report no TR-2014-11 7/27



Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

1: Algorithm: MCPI
2: Input: task graph T
3: Input: priority table SPT
4: Output: priority table PT
5: SPT ← PTTransform(SPT )
6: CheckLOscenarioSchedulability(T,SPT )
7: G← MCPI PDAG(T, SPT, ∅)
8: PT ← TopologicalSort(G)
9: if anyScenarioFailure(PT,T) then

10: return (FAIL)
11: end if

Figure 6: The MCPI algorithm

Since by construction up to the (n − 1)-th element PTn and PTn−1 are equal, we can generate PTn by
topological sort of Gn.

4 Algorithm
We define here the Mixed Criticality Priority Improvement (MCPI) algorithm. It is basically an algorithm
to compute offline job priorities under list scheduling, while online we use precedence-unaware global
fixed priority with adapted arrival times. As previously discussed, our aim is to overcome the limitation of
Audsley approach in multiprocessor systems, by assigning priorities starting from the highest. This allows
us to compute the exact job completion times. We first discuss the offline computation of priorities and
then we describe the online policy.

4.1 Offline priorities computation
As shown in Fig. 1, MCPI takes as input a priority table, produced by a support algorithm. If we use
support algorithm ALGO, we indicate that with the following notation: MCPI(ALGO). A panoramic of the
possible support algorithms is given in Section 5.

We use FPM policy, i.e., we have to generate two tables, one for LO mode and one for HI mode. As
previously discussed, scheduling in HI mode is a single criticality problem. Thus we will compute PTHI
for HI with the support algorithm using C(HI) and graph THI. MCPI is just used to compute PTLO, which
we will simply denote as PT . To construct such a PT , MCPI takes the priority table generated by the
support algorithm and tries to improve the HI scenarios schedulability by increasing the priorities of HI
jobs as much as possible without undermining the LO schedulability.

The pseudocode of the algorithm is given in Fig. 6. The algorithm takes as inputs the support priority
table SPT and the task graph T. We require SPT to satisfy precedence compliant property (1). In the
case where the support algorithm does not imply property (1), we apply a transformation to SPT such that
(1) will hold. The transformation is done as follows. We repeatedly scan the priority table, from the highest
to the least priority. For each job J that has higher priority than some of its predecessors in T, we raise
the priority of those predecessors moving them immediately before J , keeping their relative order. This
procedure is illustrated in Fig 7, where we show the task graph, the priority table and its modifications.

We then check LO scenario schedulability. If the schedulability holds, it will be kept as an invariant
during the execution. Subroutine MCPI PDAG generates a forest P-DAG, based on the support priority
table SPT . It is a modified version of Forest PDAG . Then we obtain a priority table from G by using
the well-known TopologicalSort procedure (see e.g., [13]), which traverses the trees in G from the leafs
to the roots while adding the visited nodes to PT . Finally, the subroutine anyScenarioFailure checks the
schedulability. The check is done by a simulation over the set of all scenarios HI[Jh], as explained in
Section 2.1.

In Fig. 8 subroutine MCPI PDAG is shown. It takes as inputs the task graph T, the support priority

8/27 Verimag Research Report no TR-2014-11



Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

Figure 7: The initial PT transformation

1: Algorithm: MCPI PDAG
2: Input: task graph T(J,→)
3: Input: priority table SPT
4: In/out: forest P-DAG G(J′,B)
5: if T 6= ∅ then
6: Jcurr ← SelectHighestPriorityJob(T.J, SPT )
7: ` ← SimulateListSchedule(LO, (G .J′,→), PT(G) a J curr )
8: G.J′ ← G.J′ ∪ {Jcurr}
9: for all trees ST ∈ G do

10: if χ(Jcurr) = LO then
11: if ∃ J ′ ∈ ST : J ′ ` Jcurr ∨ J ′ → Jcurr then
12: ConnectAsRoot(ST, Jcurr)
13: end if
14: else
15: ConnectAsRoot(ST, Jcurr)
16: end if
17: end for
18: if χ(Jcurr) = HI then PullUp (Jcurr, G,T, SPT )
19: T.J← T.J \ {Jcurr}
20: MCPI PDAG(T, SPT,G)
21: end if

Figure 8: The algorithm for computing priority tree in MCPI

Verimag Research Report no TR-2014-11 9/27



Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

1: Algorithm: PullUp
2: Input: job J
3: In/out: forest P-DAG G
4: Input: task graph T(J,→)
5: Input: priority table SPT
6: PREC ← LOpredecessors(J,G)
7: while PREC 6= ∅ do
8: J ′ ← SelectLeastPriorityJob(PREC, SPT )
9: PREC ← PREC \ {J ′}

10: if CanSwap(J, J ′, G,T, SPT ) then
11: PREC ← PREC ∪ LOpredecessors(J ′, G)
12: TreeSwap(J, J ′, G)
13: end if
14: end while

Figure 9: The pull-up subroutine

1: Algorithm: CanSwap
2: Input: HI job J
3: Input: LO job J ′
4: Input: forest P-DAG G
5: Input: task graph T(J,→)
6: Input: priority table SPT
7: if J ′ →∗ J then
8: return False
9: end if

10: TreeSwap(J, J ′, G)
11: J′′ ← G.J′ ∪ T.J
12: PT ′′ ← PT(G) a (SPT |≺ J)
13: allDeadlinesMet ← SimulateListSchedule(LO, (J′′,T.→), PT ′′)
14: return allDeadlinesMet

Figure 10: The subroutine for checking the feasibility of a priority swap

table SPT , and the graph G generated so far (that will be empty at the beginning). This subroutine is very
similar to the algorithm of Fig. 4. It selects the highest priority unassigned job of table SPT and adds it to
the graph G. Then it evaluates the relation ` by simulation. In this simulation we assume that the selected
job has the lowest priority and the other priorities are determined by P-DAG G. Notation PT a J means
concatenation of job J in the lowest-priority (i.e., the last) position in the priority table PT . After that:

if χ(Jcurr) = LO we add an arc to Jcurr from all the roots of the trees ST present in G where ∃ J ′ : J ′ `
Jcurr. We also add an arc to Jcurr from the root of the subtrees ST present in G where ∃ J ′ : J ′ →
Jcurr. This makes Jcurr the new root of ST .

if χ(Jcurr) = HI an arc to Jcurr from the roots of all the trees present in G is added.

The reason why we add extra arcs, compared to the procedure shown in Fig. 4 is to ensure safety of
further modifications of G. These modifications are done by subroutine PullUp when called on Jcurr.
This subroutine is the core of the algorithm. It modifies the P-DAG generated so far trying to improve the
HI schedulability of the initial priority order. Notice that if this subroutine were not called, the algorithm
would just generate a P-DAG of the initial priority table SPT . After the PullUp, we just remove the
current job from the working set and the subroutine is called again recursively.

Procedure PullUp is described by the pseudocode in Fig. 9. The idea behind this subroutine is to try
to improve the schedulability of HI scenarios by raising the priorities of HI jobs, “swapping” their position
in the graph with LO jobs while keeping the LO scenario schedulability an invariant.

10/27 Verimag Research Report no TR-2014-11



Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

Figure 11: The effect of a Swap. The red triangle marked with S represent the successors of J , while the
triangle marked with P and P ′ are, respectively the predecessors of J and J ′.

Procedure LOpredecessors(J,G) returns the set of direct predecessors of LO criticality: {Js | Js B
J, χs = LO}. At each step in Fig. 9 we pick the least priority predecessor from the working set PREC,
then subroutine CanSwap checks if J and J ′ can swap priorities. If so, we perform the swap and extend
the working set. The subroutine proceeds until this set is empty. As shown in Figure 10, subroutine
CanSwap uses a private copy of graph G to perform a tentative swap modification and then evaluates
its impact by reconstructing the whole original job instance as J′′. It also constructs a complete PT ′′ by
letting the jobs already included in G to have the most significant priorities, obtained according to G, and
the jobs not yet included in G to have the least priorities according to SPT . Note that the latter jobs are
identified by the ‘trailer’ part of SPT that has less priority than the current HI job J , we denote that ‘trailer’
part as (SPT |≺ J). Note that thus we check the whole job set of the problem instance and not only the
jobs whose priorities have been changed. This is required on a multi-processor because, unlike in single-
processor case, changing the priorities of a pair of jobs may impact the schedulability of not only these jobs
but of all jobs that have less priority. We accept the swapping only if it does not lead to a deadline miss for
any job. This way, we maintain the schedulability in LO mode as an invariant of the algorithm. Note that
CanSwap immediately rejects to swap J and J ′ if J ′ →∗ J , to maintain the precedence compliance of
priorities.

Procedure TreeSwap(J, J ′, G) performs the following modification on graph G(J′,B):
1. J ′ B J is transformed into J B J ′

2. ∀Jp : Jp B J ′, Jp B J ′ is transformed into Jp B J
3. if ∃Js : J B Js, J B Js is transformed into J ′ B Js

The swap is illustrated in Fig. 11.
When the swap is done, the PullUp subroutine updates the set PREC to take into account point 2 in

the TreeSwap definition and reiterates.

Example 4.1. Consider again the instance and the priority table of Example 3.2. Let us apply MCPI on
them. The table PT is already precedence compliant, so PTTransform will not modify it. Then we
check LO schedulability, by simulation. The result of the simulation of the LO scenario is the Gantt chart
of Fig. 3(a), where it is easy to check that no jobs miss its deadline.

Then we apply subroutine MCPI PDAG. In the first iteration we add s1 to G. It is not blocked by any
other job, so we proceed with the second iteration. s2 is added to G, again we do not have any blocking.
Next we add job s3, and we have the following blocking relations: s1 ` s3 and s2 ` s3. Thus we add
the following edges to G: s1 B s3 and s2 B s3. Then we add s4. Since it is a HI job, we add the edge
s3 B s4, since s3 is the root of the only tree of G.

Since s4 is a HI job, we run PullUp on it. First we swap it with s3, after checking that after this op-
eration the jobs will still meet their deadlines. Then we swap it also with s1 and s2. The result of PullUp
subroutine is shown in Fig. 12. Finally we add job L to the graph and the edge s3 B L. Since s3→ L, we
may not swap further, thus obtaining the following P-DAG:

Verimag Research Report no TR-2014-11 11/27



Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

Figure 12: The effect of subroutine PullUp on job s4.

Figure 13: The schedule obtained by MCPI in Example 4.1.

From topological sort we obtain the priority table PT = {s4 � s1 � s2 � s3 � L}. The priority
table thus obtained leads to the schedule of Fig. 13. The reader may easily verify that using the initial
priority assignment, the schedule will fail in scenario HI[s4], where s4 will run for 3 time units, while
using the table generated by MCPI the task graph is schedulable in HI[s4] and HI[L].

Theorem 4.1. The Graph produced by MCPI PDAG procedure is a forest P-DAG.

Proof. MCPI PDAG proceeds similarly to Forest PDAG, whose correctness was already shown by The-
orem 3.4. There are only two differences:

1. more edges are added at each step
2. the swap modification is performed

Since, by Lemma 3.2, with extra edges added, G still remains a P-DAG, we observe, by Theorem 3.4, that
MCPI PDAG ensures that G is a P-DAG at least until the first swap.

To complete the proof we have to show that after the swap operation G remains to be a P-DAG. Let us
assume by contradiction that, after a swap TreeSwap(Js, Jp, G), the resulting graph G′ = (J′,B) is no
longer a P-DAG. Notice that Js is a HI job, and thus after inserting it G becomes a connected tree. Also,
after the first swap, G is still a tree, such that Jp is the new root and job Js is the root of a subtree that
contains all jobs except Jp (see Fig. 11). After multiple swaps, we will have a tree composed of a chain of
LO jobs in the upper part, connected to a subtree that has Js as root. This is illustrated in Fig. 14.

On the left side of the figure we have a tree with HI job J as root. After swapping J with J ′,J ′′ and
J ′′′ (in this order), we obtain the tree on the right side. This tree is composed of a chain of J ′,J ′′ and J ′′′

and a subtree whose root is J .
By Lemma 3.3 and the contradicting hypothesis, we have that G′ can generate a table PT ′ that leads

to a schedule S such that:
∃J ′, J ′′ : J ′ `S J ′′ ∧ J ′ 7∗ J ′′

For TreeSwap(Js, Jp, G) all the possible J ′ ` J ′′ relations that were not present before the swap are
such that either J ′′ = Jp or Jp →∗ J ′′. This is because, by lowering Jp priority (i.e., shifting forward its
execution), it might enter in the execution window of another job and get blocked by it. The same holds
for its successors in T.

12/27 Verimag Research Report no TR-2014-11



Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

Figure 14: The effect of multiple Swaps.

For Jp, we can then rewrite our contradicting hypothesis as follows:

∃J ′ : J ′ `S Jp ∧ J ′ 7∗ Jp

After the swap, Jp is the root of a subtree ST . So ∀J ∈ ST, J.∗Jp. All jobs J ′ that are not in ST are in the
chain below Jp, this means that ∀J ′, J ′ 7∗ Jp ⇒ Jp.∗J ′ which implies that ∀PT ′ ∈ PT(G), J ′ 0S Jp.

Let us now consider jobs J ′′ such that J ′′ →∗ Jp. An invariant of our algorithm is precedence com-
pliance, i.e., Jp →∗ J ′′ ⇒ Jp .∗ J ′′. This means that all such J ′ are in the chain below Jp. The same
reasoning as in the previous case holds.

Theorem 4.2. Let k be the number of jobs in ‘J’, E the number of precedence edges in ‘→’ and m the
number of processors. The computational complexity of MCPI is

O(Ek2 +mk3 log k) (7)

Proof. One of the main contributions to the computational complexity of the algorithm is given by the high
number of list schedule simulations. Thus we will first compute the complexity of one simulation. List
scheduling must keep track for each job of whether or not all its predecessors have terminated. This can be
implemented by assigning each job a counter of the number of predecessors and decrementing it when a
predecessor terminates. Since there are E predecessor-successor pairs, maintaining these counters gives a
total contribution to the complexity linear with E. Also, each simulation sorts the jobs by the arrival times,
in O(k log k) time. Every simulation examines the jobs in the order of arrivals, adding each arriving job to
the priority queue data structure [13]. At most once per job arrival or termination the m greatest-priority
jobs need to be selected in the queue. Once per job termination, a job is removed from the queue. Because
the addition, removal and selection operations are doneO(k) times and each priority-queue operation costs
O(log k), the cost of all queue operations is O(mk log k). The complexity of one simulation is thus:

O(E +mk log k) (8)

Let us now analyze the algorithm of Figure 7 line by line. Routine PTTransform has a complexity
of O(k2). This is because we run through the linked list of all jobs, and for each of them we move all the
predecessors that have a lower priority in front of the current job, and the maximum number of predecessors
for each job isO(k). CheckLOscenarioSchedulability does one simulation, thus it has a complexity of (8).
MCPI PDAG gives the highest contribution, and its complexity will be discussed later. TopologicalSort
has complexity O(k) [13]. Finally, anyScenarioFailure does O(k) simulations, and thus its complexity is
O(k(E +mk log k)).

Verimag Research Report no TR-2014-11 13/27



Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

Let us now analyze routine MCPI PDAG . This is a recursive subroutine that is called exactly k
times. This subroutine, after someO(1) operations, performs a simulation, which gives a total contribution
of O(k(E + mk log k)). Then for each subtree a ConnectAsRoot operation is performed. One such
operation has a linear complexity in jobs, because we have to find the root of a subtree. There are O(k)
subtrees, thus this operation yields a total contribution ofO(k3). Finally we have to analyze the complexity
of PullUp (Figure 9). In this subroutine there is a while loop that is executed once for each LO predecessor
of the current job, thus a O(k) number of times inside PullUp and O(k2) number of times per one one
execution of MCPI . All the operations performed in the subroutine are O(1) except for CanSwap, which
performs a simulation and thus it has complexity (8). Thus the CanSwap subroutine gives the main total
contribution to the complexity of the algorithm, executing in total O(k2) simulations of complexity (8),
which gives the result given in (7).

Notice that for large practical problem instances it can be expected that m � k, and also m is usually
considered as a constant given by the platform. Also, even if in general E = O(k2), having a quadratic
number of precedence edges is really unrealistic in parallel programs, as this situation is likely to seriously
restrict the possibility of parallel execution. If we consider only the cases where the number of job inputs
and outputs is bounded by a constant then the number of precedence edges would grow linearly with the
number of jobs. Under the assumptions mentioned here Formula (7) can be simplified as follows:

O(k3 log k) (9)

4.2 Predictable Online Policy
The online policy should be predictable, in the sense that lowering the execution times may not increase
the termination time. List scheduling is, in general, non-predictable. Therefore, online we execute a
predictable policy that behaves the same way as list scheduling in basic scenarios. Recall that offline we
check schedulability by simulating all basic scenarios. For each of them we record all jobs start time in
a table and provide the table to the online policy. Online, we keep track of the current basic scenario,
assuming LO when in LO mode and HI[Jh] when job Jh causes a switch to HI mode. We assume that jobs
arrive not at their nominal arrival times, but at their offline start times specified in the table of the current
scenario. The modified arrival times ensure that precedences are satisfied. Therefore, while preserving the
precedence constraints, instead of list scheduling our online policy uses the default classical global fixed
priority scheduling, which is known to be predictable.

5 Related Work: Discussion and Analysis
Although our scope is finite set of jobs, most of the literature concerns with instances that have an infinite
set of jobs, generated by periodic or sporadic tasks. Periodic tasks are said to be synchronous if the offsets
between the first arrival of different tasks are statically known. The deadlines can be implicit (i.e., equal to
the period), constrained (i.e., less or equal to the period) or pipelined (i.e., larger than period).

Our work can be applied for scheduling the hyperperiod of periodic synchronous non-pipelined(i.e., im-
plicit or constrained-deadline) tasks with precedence constraints. However, we still consider general real-
time policies, even if not originally designed for such systems, as they can be reused as starting point for
our priority-improvement algorithm. We are particularly interested in the policies tailored for multiproces-
sor systems, assuming global fixed priority for jobs.

5.1 Multiprocessor Scheduling
Whereas for uniprocessor scheduling a fixed-job-priority algorithm (EDF) is optimal, for multiprocessor
case, dynamic job priorities are essential for optimality[5]. Moreover, the EDF heuristic can be very ineffi-
cient for multiprocessors. In seminal work of Dhall and Liu [14] it was shown that the best, i.e., maximal,
load that can be guaranteed for any schedulable job instance for EDF on multiprocessors is no better than
for EDF on uniprocessor. For arbitrarily small ε > 0 one can find a feasible job instance with load 1 + ε

14/27 Verimag Research Report no TR-2014-11



Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

that is not schedulable by EDF. For this, let us consider m small-deadline jobs with utilization ε/m each
and one job with utilization 1 and a large deadline. If the last job, which has a large utilization, was given
the highest priority then the schedule would be feasible.

In [15] it was shown that in general implicit-deadline periodic task sets under global fixed priority
for jobs have the following best guaranteed utilization: (m + 1)/2. Roughly speaking, the fixed priority
scheduling can be guaranteed to find a multiprocessor schedule if the system is loaded by no more than
one half, and even this is only possible if job priorities are well calculated, e.g., the plain EDF cannot
provide this guarantee, as explained earlier. Therefore, EDF modifications have been proposed to provide
this guarantee. The main idea of several such algorithms is so-called ‘separation’ of jobs, i.e., separating
those that have low and high contribution to load. One of such algorithms is fpEDF, formulated for periodic
tasks [15], and later on generalized to sporadic tasks under name EDF-DS, where DS stands for density
separation (see [5] for references). In our notation, this algorithm computes job density as δi = Ci/(Di −
Ai) and it differs from EDF by always giving the jobs with δi > th the highest priority, for a certain
threshold th. Ties are broken arbitrarily. For the other jobs, the priority is the default EDF. Obviously,
this strategy resolves the Dhall-effect counterexample mentioned earlier. However this approach does
not give any schedulability assurance in the case of finite sets of jobs. Experiments shows that it can
even decrease the schedulability using a threshold th = 1/2. For such cases, experiments suggest to use
a higher threshold to improve schedulability. In the experiments presented here the threshold is set to:
th = 1, i.e., only density-one jobs get the highest priority, whereas in future work we will investigate other
thresholds.

5.2 Precedence-constrained Scheduling
The list scheduling can be seen as generalization of fixed-priority scheduling by handling precedence con-
straints using synchronization between dependent jobs, i.e., including wait for predecessor completion into
the condition of job ‘ready’ status. Synchronization is essential for multiprocessors, whereas for single
processor systems it may be sufficient to require precedence compliance of the priority [16, 1]. In both
cases, it is generally recognized that the definition of EDF heuristics should be adjusted by using ALAP
deadlines D∗ instead of the nominal deadlines for priority assignment. For example, the list schedul-
ing knows so-called ‘ALAP’ and b-level heuristics [12]. Single-processor scheduling uses this approach
for priority assignment with adjusted deadlines [16]. Sometimes the ALAP-adjusted EDF is a part of an
optimal strategy, see [12] for further references.

5.3 Mixed-critical Scheduling
There are many works on mixed-critical scheduling for uniprocessor systems without precedence con-
straints. These works compute priorities either by a variant of Audsley approach or by improving the EDF
priorities. Our previous work, MCEDF [7] algorithm can be seen as a combination of the two, also based on
P-DAG. Another uniprocessor algorithm should be mentioned, OCBP, which applies Audsley approach to
obtain optimal priority tables for FP (fixed priority) policy. Unlike OCBP, MCEDF exploits FPM schedul-
ing policy and, due to this advantage, it has been shown to dominate OCBP [7]. On the other hand, it
should be also mentioned that OCBP was generalized to precedence-constrained instances in [1]. Possible
dominance of some precedence-aware MCEDF extension over the precedence-aware OCBP is subject of
future work.

Compared to MCEDF, in the present paper we extended the P-DAG analysis to support precedence
relation and multiple processors. Moreover we abandon Audsley approach replacing it by more elaborate
priority improvement in P-DAGs, while, by the following observation, we also offer a generalization of
MCEDF.

Observation 5.1. For single processor and without precedence constraints, a slightly modified MCPI(EDF)
is equivalent to MCEDF and both algorithms are optimal among those that put HI jobs in EDF order.

The mentioned modification of our algorithm leads to a slight improvement in schedulability, which
is practically invisible in the random experiments but is necessary to establish the properties mentioned
above. Note that the above observation also implies dominance of the modified MCPI(EDF) over OCBP

Verimag Research Report no TR-2014-11 15/27



Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

m jobs arcs step δ σs instances EDF EDF-DSMCPI(EDF)MCPI(EDF-DS) diff(%) diff-DS(%)
2 30 20 0.005 0.01 3.2 128800 20924 21023 27375 27467 30.83% 30.65 %
4 60 40 0.02 0.05 6 50500 6839 6887 8263 8310 20.82% 20.66 %
8 120 80 0.05 0.125 12 31575 3065 3082 3521 3538 14.88% 14.80%

Table 1: Experimental results.

for the case of no precedence constraints. We describe the modification, formalize the above claim, and
prove it in Appendix A.

EDF sets the PT in the increasing deadline order, therefore the EDF improvement strategies perform
deadline modification of HI jobs, reducing their deadlines to improve their priorities w.r.t. LO jobs and
re-use EDF schedulability analyzes for the modified problem instance. One of the strategies for deadline
modifications scales the relative deadline of all HI jobs by the same factor x, 0 < x < 1. This strategy was
generalized for multiprocessors in [17], where it was combined with EDF-DS.

There are only a few works on precedence-constrained mixed-criticality scheduling. For single pro-
cessor, [1] generalizes Audsley approach based algorithm OCBP to support precedence constraints for
synchronous systems. In [18], multiprocessor list scheduling algorithm was proposed. However, it is re-
stricted to jobs that all have the same arrival and deadline times. Finally, [19] consider pipelined scheduling
for task graphs. However, they implicitly assume that the deadlines are large enough, such that they can
be ignored during the problem solving, as only period (throughput) constraints were considered and not
deadline (latency) ones.

5.4 Analysis
From the analysis of literature we make the following choices. For multiprocessor scheduling we use
density separation, i.e., EDF-DS, for the construction of FPM priority tables: PTLO and PTHI To represent
the state-of-the art approach to mixed critical multiprocessor scheduling, we apply deadline modification
to the HI jobs, but instead of the deadline scaling, we use the deadlines DMIX, which anyway should be met
in the LO mode. In fact, we base the construction of the LO priority table on the MIX-task graph, TMIX. In
this graph we calculate ALAP deadlines. The resulting values for DMIX

∗ are substituted as the ‘deadlines’
when calculating the job density and deadline-based priority in the context of EDF-DS. The resulting LO
priority table serves as input for MCPI. For fair comparison with related work in the experiments, we use
this table as the reference to evaluate the improvement brought by the MCPI into this table. For the HI
table PTHI we use the ALAP deadlines calculated in HI task graph THI.

6 Implementation and Experiments
We evaluated the schedulability performance of MCPI comparing it with those the performance of the
support algorithms. We randomly generated task graphs with integer timing parameters. Every task graph
was generated for a target LO and HI stress pair. The method to generate the random problem instances is
similar to the one used in [7]. We restricted our experiments to “hard” task graphs, i.e., those satisfying the
following formula:

StressLO(T) + StressHI(T) ≥ σs (10)

The reason of this choice is that task graphs under that line are relatively easy to schedule. We ran multiple
job generation experiments, ranging the target of StressLO and StressHI in the area defined by (10) with a
fixed step s. Per each target, ten experiments were run, generating the points lying near the target with a
certain tolerance δ. The result of the experiments are shown in Table 1. We ran experiments for 2, 4 and 8
processors. For each generated task graph, we checked the schedulability of EDF, EDF-DS, MCPI(EDF),
MCPI(EDF-DS). All algorithms were applied using the FPM scheduling policy, the ALAP and ASAP
arrivals and deadlines, based upon modified deadline DMIX in the LO mode, as described in Section 5.
From the result we can see that MCPI gives a big improvement in schedulability compared to the support
algorithm, reaching a maximum of 30.83%.

16/27 Verimag Research Report no TR-2014-11



Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

Fig. 15 and Fig. 16 give the contour graph of the density of the generated points in grayscale, where
black is the maximum value and white is 0. The horizontal axis is Load LO, the vertical is LoadHI. We used

(a) Density of Generated Jobs (b) Schedulable by EDF-DS[1/2]

(c) Schedulable by MCPI (d) Schedulable by MCPI and not by EDF-DS[1/2]

Figure 15: The contour graphs of random task graphs for 2 processors. The horizontal axis is Load LO, the
vertical is LoadHI.

Load in the axes because it better reflects required parallelism. Figures from Fig. 15(a) to Fig. 15(d) refer
to the experiments made for 2 processors. In particular Fig. 15(a) shows the density of the generated task
graphs, Fig. 15(b) shows the percentage of instances schedulable by EDF-DS among the generated ones.
Likewise Fig. 15(c) shows the percentage of task graphs schedulable by MCPI (EDF-DS) and Fig. 15(d)
shows the percentage of task graphs schedulable by MCPI (EDF-DS) and not schedulable by EDF-DS.
As expected the schedulability decreases while the distance from the axis origin increase. Fig. 15(d) is
particularly interesting, because it shows how MCPI increases the schedulability over the support algorithm
when the load increases. Notice that approximately around point (1.7, 1.7) the density is higher, suggesting
that around this point MCPI is more effective.

Figures from Fig. 16(a) to Fig. 16(d) show respectively the same information of figures from Fig. 15(a)
to Fig. 15(d), but referred to experiments on 4 processors. From those graph we have confirmation of
the conclusions made above. Also in Fig. 16(d) we have an area where MCPI is particularly effective,
approximately around point (3.3, 3.1).

7 Conclusions

We addressed the problem of multi-processor scheduling of mixed criticality task graphs in synchronous
systems. The advantage of our algorithm over state of the art was demonstrated by experiments on a large
set of synthetic benchmarks, demonstrating a good improvement in schedulability.

Verimag Research Report no TR-2014-11 17/27



Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

(a) Density of Generated Jobs (b) Schedulable by EDF-DS[1/2]

(c) Schedulable by MCPI (d) Schedulable by MCPI and not by EDF-DS[1/2]

Figure 16: The contour graphs of random task graphs for 4 processors. The horizontal axis is Load LO, the
vertical is LoadHI.

In multi-processor scheduling is hard to apply the Audsley approach, previously proven effective for
single-processor mixed-critical scheduling with precedence constraints [1]. Therefore in our algorithm,
MCPI , we assign the priorities in a different order. Nevertheless, MCPI still generalizes an Audsley-
approach compliant algorithm MCEDF [7], when applied to single-processor instances without prece-
dences.

In future work, we plan to extend the algorithm for multiple criticality levels and to support pipelining.

References
[1] S. Baruah, “Semantics-preserving implementation of multirate mixed-criticality synchronous pro-

grams,” in RTNS’12, pp. 11–19, ACM, 2012. 1, 5.2, 5.3, 5.3, 7

[2] J. Barhorst, T. Belote, P. Binns, J. Hoffman, J. Paunicka, P. Sarathy, J. Stanfill, D. Stuart, and R. Urzi,
“White paper: A research agenda for mixed-criticality systems,” Apr. 2009. 1

[3] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela, N. Megow, and L. Stougie,
“Scheduling real-time mixed-criticality jobs,” IEEE Trans. Comput., vol. 61, pp. 1140 –1152, aug.
2012. 1, 2.1, 2.1

[4] C. Ficek, N. Feiertag, and K. Richter, “Applying the AUTOSAR timing protection to build safe and
efficient ISO 26262 mixed-criticality systems,” in ERTSS’2012, 2012. 1

[5] R. I. Davis and A. Burns, “A survey of hard real-time scheduling for multiprocessor systems,” ACM
Comput. Surv., vol. 43, Oct. 2011. 1, 5.1

18/27 Verimag Research Report no TR-2014-11



Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

[6] R. Ha and J. W. S. Liu, “Validating timing constraints in multiprocessor and distributed real-time
systems,” in Proc. Int. Conf. Distributed Computing Systems, pp. 162–171, Jun 1994. 2.1

[7] D. Socci, P. Poplavko, S. Bensalem, and M. Bozga, “Mixed critical earliest deadline first,” in Euromi-
cro Conf. on Real-Time Systems, ECRTS’13, pp. 93–102, IEEE, 2013. 2.1, 5.3, 6, 7, A, A.3

[8] J. W. S. Liu, Real-Time Systems. Prentice-Hall, Inc., 2000. 2.2

[9] S. Baruah and N. Fisher, “The partitioned multiprocessor scheduling of sporadic task systems,” in
Real-Time Systems Symposium, 2005. RTSS 2005. 26th IEEE International, pp. 9 pp.–329, Dec 2005.
2.2

[10] H. Li and S. Baruah, “Load-based schedulability analysis of certifiable mixed-criticality systems,” in
Intern. Conf. on Embedded Software, EMSOFT ’10, pp. 99–108, ACM, 2010. 2.2

[11] T. Park and S. Kim, “Dynamic scheduling algorithm and its schedulability analysis for certifiable
dual-criticality systems,” in Intern. Conf. on Embedded software, EMSOFT ’11, pp. 253–262, ACM,
2011. 2.2

[12] Y.-K. Kwok and I. Ahmad, “Static scheduling algorithms for allocating directed task graphs to multi-
processors,” ACM Comput. Surv., vol. 31, pp. 406–471, Dec. 1999. 2.2, 5.2

[13] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction to Algorithms. McGraw-Hill
Higher Education, 2nd ed., 2001. 4.1, 4.1, 4.1

[14] S. K. Dhall and C. L. Liu, “On a real-time scheduling problem,” Operations Research, vol. 26, no. 1,
pp. 127–140, 1978. 5.1

[15] S. K. Baruah, “Optimal utilization bounds for the fixed-priority scheduling of periodic task systems
on identical multiprocessors,” IEEE Trans. Comput., vol. 53, pp. 781–784, June 2004. 5.1

[16] J. Forget et al., “Scheduling dependent periodic tasks without synchronization mechanisms,” in
RTAS’10, pp. 301–310. 5.2

[17] H. Li and S. K. Baruah, “Outstanding paper award: Global mixed-criticality scheduling on multipro-
cessors,” in 24th Euromicro Conference on Real-Time Systems, ECRTS 2012, 2012. 5.3

[18] S. Baruah, “Implementing mixed-criticality synchronous reactive systems upon multiprocessor plat-
forms.” 5.3

[19] E. Yip, M. Kuo, P. S. Roop, and D. Broman, “Relaxing the Synchronous Approach for Mixed-
Criticality Systems,” in 12th IEEE Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS), Apr. 2014. 5.3

Verimag Research Report no TR-2014-11 19/27



Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

Appendices
A MCEDF and MCPI(EDF): Modifications and Optimality
In this appendix we formalize and prove Observation 5.1, which states that the MCEDF algorithm, pro-
posed in [7], and a slightly modified MCPI(EDF) have equivalent schedulability. Note that because all
these algorithms use LO-mode schedules to construct the priority tables, under the ‘scheduling’ we always
mean the LO-mode scheduling unless mentioned otherwise.

A.1 Modified Version of MCPI
In this subsection we formulate a modified version of MCPI that is ‘closer’ to MCEDF. Additional ex-
periments show results that are statistically indistinguishable from those of MCPI. In a later subsection
we show that the modified MCis also equivalent to MCEDF, thus completing the argument of equivalence
between MCPI and MCEDF.

The modified version differs from MCPI by replacing subroutine MCPI PDAG by the subroutine
modMCPI PDAG, shown in Figure 17. Also the PullUp subroutine is replaced by modPullup, where
swap is defined differently.

The modified MCPI is based on the following concept.

Definition 4 (Potential Interference Relation). Given task graph T(J,→), number of processors m and a

subset J′ ⊆ J, we say that an equivalence relation J′

∼ on set J′ is a ‘potential interference’ relation if it has
the following property:

∀J1, J2 ∈ J′. ∃PT : J1 `PT J2 ⇒ J1
J′

∼ J2

whereby we consider LO-mode m-processor list schedules on maximal task subgraph with nodes J′.

In modified MCPI we exploit the fact that if a potential interference relation is known then any two
unrelated jobs can be kept in two different subtrees of a P-DAG even when one modifies the priorities in one
of the subtrees, e.g., if one performs the priority swap operations. In general, there exist multiple potential
interference relations, as joining two equivalence classes would lead to a new potential interference relation.
Therefore, the (unique) maximal such relation is the total equivalence. The (unique) minimal potential
interference relation can be obtained by union of blocking relations under all possible PT ’s, followed by
transitive and reflexive closure, however it is a costly computation due to exponential number of PT ’s.
Instead of computing this minimum, we over-approximate it by exploiting the following theorem (given
without proof).

Theorem A.1 (Single-Processor Interference). In preemptive list scheduling, a potential interference rela-
tion for single processor is also a potential interference relation for m processors.

As it turns out (see the next section), calculating the minimal potential interference on a single processor
can be done by a fast (almost linear) algorithm (the ‘makespan’). Therefore, we use the single-processor
approximation, though it can be very rough one, and more refined approximations could be defined.

Observation A.2 (Optimality Requirement on Interference Approximation). For the single-processor op-
timality results established in this section, the only requirement that we place on interference-relation
over-approximation algorithm is that it gives the exact minimal interference relation at least for single-
processor problem instances without precedence constraints (and which can be always ensured by using
makespan).

The modified MCPI algorithm differs from the original MCPI by the way it handles the HI jobs in
the P-DAG construction. It employs a potential interference relation to try to put these jobs in separate
sub-trees when pulling them up the P-DAG, reducing the ‘job-chaining’ in the P-DAG which we showed
in Fig. 14. Note that the modified MCPI would behave exactly as the basic one if one used the worst

20/27 Verimag Research Report no TR-2014-11



Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

1: Algorithm: modMCPI PDAG
2: Input: task graph T(J,→)
3: Input: priority table SPT
4: In/out: forest P-DAG G(J′,B)
5: if J 6= ∅ then
6: Jcurr ← SelectHighestPriorityJob(J, SPT )
7: ` ← SimulateListSchedule(LO, (G .J′,→), PT(G) a J curr)
8: G.J′ ← G.J′ ∪ {Jcurr}
9: for all trees ST ∈ G do

10: if χ(Jcurr) = LO then
11: if ∃ J ′ ∈ ST : J ′ ` J curr ∨ J ′ → Jcurr then
12: ConnectAsRoot(ST, Jcurr)
13: end if
14: else
15: if ∃ J ′ ∈ ST : J ′

J′

∼ J curr ∨ J ′ → Jcurr then
16: ConnectAsRoot(ST, Jcurr)
17: end if
18: end if
19: end for
20: if χ(Jcurr) = HI then modPullUp(Jcurr, G, SPT )
21: modMCPI PDAG( T( J \ {Jcurr}, →), SPT, G(J′,B))
22: end if

Figure 17: The algorithm for computing P-DAG in MCPI - modified version

interference approximation (i.e., the total equivalence), but, obviously, such an approximation would not
satisfy the optimality requirement in general.

The P-DAG construction algorithm for the modified MCPI is shown in Figure 17. We see that the
HI jobs now are connected only to the trees that may potentially interfere with them and hence also with
each other when priorities are modified by the priority improvement. The modified priority improvement,
modPullUp calls a modified version of TreeSwap, denoted modTreeSwap.

Definition 5 (Modified Swap). Let G(J′,B) be a forest P-DAG, let JLO B JHI and let J′′ represent the
subset of jobs whose priorities can be potentially higher than or equal to JHI after the swap is performed:

J′′ = {JHI} ∪ {J ′ | J ′ B∗ JHI} \ {JLO}

Subroutine modTreeSwap(JHI, JLO, G) performs the following ‘swap’ transformation on graph G:
1. JLO B JHI is transformed into JHI B JLO

2. ∀ tree ST : root(ST ) B JHI ∨ root(ST ) B JLO

(a) if ∃J ′ ∈ ST : J ′
J′′

∼ JHI ∨ J ′ → JHI

then in the new G: root(ST ) B JHI

(b) else in the new G: root(ST ) B JLO

3. if ∃Js : JHI B Js then JHI B Js is transformed into JLO B Js

The difference of the modified ‘swap’ operation from the basic version used by algorithm in Fig. 9
is only in the second rule above. The basic version does not distinguish the two cases in the second rule
and always ‘plugs’ the subtrees ST into JHI. The modified version only plugs the subtree into JHI if after
priority modifications the subtree can be involved in a blocking relation with JHI and/or other subtrees.
Such a blocking relation would invalidate its property of being an independent tree in a P-DAG. If under
no circumstances such a blocking relation can appear, the tree is plugged to the lower-priority job JLO. As a
result, instead of a LO-job chain below the HI job shown in Fig. 14 we may see a stem to which side trees

may be plugged. Because, due to the check involving the ‘J
′′

∼’ relation, the side subtrees can never block
any job from the subtrees higher in the stem, the proposed modification to the swapping procedure may

Verimag Research Report no TR-2014-11 21/27



Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

1: Algorithm: modPullUp
2: Input: job J
3: Input: priority table SPT
4: In/out: forest P-DAG G
5: DONE = ∅
6: while LOpredecessors(J,G) 6= DONE do
7: J ′ ← SelectLeastPriorityJob( ( LOpredecessors(J,G) \ DONE), SPT )
8: DONE ← DONE ∪ {J ′}
9: if CanSwap(J, J ′, G) then

10: modTreeSwap(J, J ′, G)
11: DONE ← DONE ∩ LOpredecessors(J,G)
12: end if
13: end while

Figure 18: The modified pull-up subroutine

never lead to possible violations of the P-DAG property. Therefore, we adapt, without proof, Theorem 4.1
to the modified version of MCPI:

Theorem A.3. The Graph produced by modMCPI PDAG procedure is a P-DAG. Moreover, after each
basic step of the algorithm – the initial connection of a new job Jcurr and a tree swap – the intermediate
graph G is a P-DAG as well.

The modified PullUp procedure, which exploits the new swap operation, is illustrated in Fig. 18.
Unlike the basic PullUp, Fig. 9, instead of keeping a list of predecessors that were not yet considered
for swapping we keep its complement – the list of predecessors that have already been considered for
swapping (‘done’). Like in the basic algorithm, we do not re-try to swap any such predecessor again, not
even after another job has been swapped successfully. The main reason for this restriction is computational
complexity, we would like to keep the worst case number of swap trials linear in the total number of jobs.

Note that the modified algorithm can potentially directly connect two LO jobs by P-DAG edge that is
incompatible with SPT priority order, which can happen if a swap will fail and another one will succeed.
Note also that we use the same CanSwap procedure as before. We could have used a modified subroutine
modCanSwap, which would differ from the basic CanSwap only in that it evaluates the schedulability
of the P-DAG obtained from modified swap transformation, not the basic one. However, one can easily
show that the schedulability of both P-DAGs is equivalent (because they differ only in the way they connect
the non-interfering subtrees). However, as discussed earlier, the two different swapping methods result in
different P-DAG structures, and, as we see in some examples, this may have essential effect on the HI jobs
that are pulled through the same region of the P-DAG later than the current HI job.

A.2 Single-processor Scheduling and Busy Intervals
An important concept in the context of single-processor scheduling is busy interval. However, because this
concept is better studied and understood for the case of no precedence constraints, we will define it using
the notion of ‘modeling job set’.

Definition 6 (Modeling job set). Given a task graph T(J,→), its modeling job set J∗ is the set of jobs
whose arrival times are calculated as ASAP times A∗j for LO mode.

Observation A.4 (Modeling job set identity when no precedences). The modeling job set is identical to
the original job set if the task graph has no precedence edges.

Definition 7 (Predecessor-closed subset). Given a task graph T(J,→), a subset of jobs J′ ⊆ J is
predecessor-closed if including a job in this subset implies including all its predecessors.

The following theorem is given without proof:

22/27 Verimag Research Report no TR-2014-11



Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

Theorem A.5 (Modeling list schedule by fixed priority). Given a predecessor-closed subset and consid-
ering single processor schedules, then using any priority table that is priority-compliant one gets the same
basic LO scenario schedules from:

1. the list scheduling of the corresponding maximal subgraph
2. fixed-priority scheduling of the corresponding modeling subset

Definition 8 (Busy Interval). A busy interval for a predecessor-closed subset of jobs J′ is a time interval
in a fixed-priority schedule for the corresponding modeling job subset J′∗. It is defined as a maximal time
interval (τ1, τ2] where at least job is ready for execution. By abuse of terminology, we apply the term ‘busy
interval’ also to the subset of jobs running in that interval, and denote it BI .

Note that the time interval in the definition is half-open because the jobs that arrive at time t count
ready only for the time instances strictly later than t.

It is obvious that on a single processor either the start time nor the length of a busy interval depends
on the exact priority assignment, because the former corresponds to the earliest job arrival and the latter
is equal to the sum of Ci(LO) of all jobs in the interval. In general, a job set J′ can be partitioned into
multiple BI subsets, because some jobs may arrive at or later than the end of a busy interval of some other
jobs. To calculate the busy intervals one can simulate the fixed-priority policy on the modeling job set for
any priority table and apply the definition of busy interval to find the time bounds and the contents of job
subsets that belong to the same busy interval.

The following lemma is easy to prove:

Lemma A.6 (Least priority in a busy interval). Given a job set J′ and any of its busy interval BI with
time interval (τ1, τ2]. In fixed-priority scheduling for job set J′, the least-priority job running in this BI
terminates at time τ2 and is blocked by at least one other job in BI (if there are any).

The following theorem can be easily derived from the above lemma:

Theorem A.7 (Minimal Potential Interference in Busy Intervals). Given a job set J′ without precedences,
then the set of busy intervals BI are the equivalence classes of the corresponding minimal potential inter-

ference relation J′

∼ on single processor.

Corollary A.8 (Potential interference with precedences). Given a task graph and a predecessor-closed
subset of jobs J′. The set of busy intervals BI correspond to equivalence classes of some (not necessarily

minimal) potential interference relation J′

∼ on single processor.

We cannot claim minimality in the second case above because currently we are not sure about it.

Observation A.9 (Implementation of Modified MCPI based on Busy Intervals). It can be easily shown

that modified MCPI evaluates relation J′

∼ only for predecessor-closed subsets. Therefore, it can use busy
intervals for this evaluation. Because to obtain busy intervals one requires to do just one extra simulation
for a subset of jobs where at least one simulation needs to be done anyway, the modified MCPI based
on busy intervals has the same computational complexity as the basic MCPI. Moreover, by the theorem
above, busy intervals satisfy our requirement of giving exact evaluation of the minimal single-processor
interference for the case without precedence constraints.

A.3 Recalling the MCEDF Algorithm
MCEDF is defined, which are, compared to the assumptions of this paper, restricted in two different ways:

(1) assume single processor platform, m = 1
(2) assume no precedence between jobs,→= ∅
Due to the second restriction, we consider just job sets J rather than task graphs T as problem instances,

and simple fixed-priority policy instead of list scheduling.
In this section we recall the definition of MCEDF from [7], while adapting this description to the

terminology and notations of this paper.

Verimag Research Report no TR-2014-11 23/27



Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

1: Algorithm: MCEDF PDAG
2: Input: job set J
3: Input: node Jparent
4: In/out: P-DAG G
5: Input: EDF-compliant priority table SPT
6:
7: B← PartitionIntoBIs(J);
8: for all BI ∈ B do
9: J least ← AssignJobLeastPriority(BI, SPT )

10: G.J← G.J ∪ {J least}
11: if Jparent 6= ∅ then
12: G. B ← G. B ∪ {(J least, Jparent)}
13: end if
14: J′ ← BI \ {J least}
15: MCEDF PDAG(J′, J least, G)
16: end for

Figure 19: The MCEDF algorithm for computing P-DAG

The MCEDF algorithm has the same basic structure as MCPI. The top-level structure of MCEDF
basically repeats that of MCPI given in Fig. 6, except that it does not need to call PTTransform. Though
it is not explicit in the original description of MCEDF, similarly to MCPI, it also uses a support priority
table SPT . The point is that it requires that SPT must be EDF-compliant, but if all jobs have different
deadlines (which is often the case) than there exists only one unique such table for the given job set. For
the theoretical properties studied in [7] the choice of the particular EDF-compliant table does not have an
influence, but in this description we emphasize the SPT table as are final goal is to prove the equivalence
of (modified) MCPI and MCEDF under the condition that they use the same SPT .

Though, like modified MCPI, MCEDF also employs busy intervals, it uses an essentially different
algorithm for constructing the P-DAG, shown as subroutine MCEDF PDAG in Figure 19.

The P-DAG construction algorithm splits the instance into BI’s and assigns one of the jobs in each BI
the least priority. Recall from Lemma A.6, that in a busy interval (τ1, τ2], the job assigned the least priority
will complete at time τ2.

The two candidates to be assigned the least priority by MCEDF are J low
LO and J low

HI , which are the least
SPT -priority jobs LO resp. HI jobs among those in the busy interval. Note that since the SPT table is
EDF compliant, those two jobs are also latest-deadline among the LO resp. HI jobs present in the given
BI .

Subroutine AssignJobLeastPriority selects the least priority job according to the following rule.

• if ∃Jj ∈ BI : χj = LO ∧ J low
LO .D ≥ τ2

• then J least ← J low
LO

• else J least ← J low
HI

This rule prefers to assign the least priority to J low
LO if BI has some LO jobs and if a latest-deadline one

among them would not miss its deadline. Otherwise the algorithm has no other choice but to select a HI
job. Thus, the algorithm greedily avoids assigning a HI job the least priority, and does so only when this
cannot be avoided. Intuitively, this is similar to trying to pull a HI job as high as possible in the P-DAG in
the context of MCPI.

After assigning the least priority in the givenBI the algorithm continues recursively with sub-instances
J′ = BI \ {J least}. Removing a job from a BI reveals further fragmentation into busy intervals, which
become direct children of BI in the P-DAG. In those new BI’s the same algorithm is used to find the
least-priority job and to construct the subtree further from the roots to the leafs.

The final G P-DAG of the MCEDF algorithm has multiple subtrees whose root nodes correspond to
the BI’s of the complete problem instance J. If we consider each subtree separately as a subset J′ and

24/27 Verimag Research Report no TR-2014-11



Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

remove the root of the subtree from the subset, then, by construction, different children of the root would
correspond to the busy intervals of the given subset. We can consider this process again and again and will
see further fragmentation into busy intervals of jobs that have a higher priority than the root of the subtree.

A.4 The Properties of MCEDF and the Modified MCPI
In this subsection under MCPI will always mean the modified version of MCPI and we assume that both
algorithms use the same EDF-compliant support priority table SPT .

The following lemma establishes for MCPI a property that is true for MCEDF by construction.

Lemma A.10. In MCPI, as in MCEDF, each tree of the P-DAG contains jobs from one and only one busy
interval.

Proof. (sketch) For MCPI, we argue that this property is true by demonstrating that at each basic step of
the algorithm: the initial connection of a new job to the P-DAG and the swapping. When a LO-job is
connected to a P-DAG, the criterion is to connect it to the trees that block the given job when it has the
least priority. Since they block the given job then they must be in the same busy interval. When a HI job
is initially connected, the property holds by construction, as we use splitting into busy intervals to evaluate
J′

∼.
Now consider the swapping. After the swapping, the current HI job forms one same busy interval with

the subtrees connected to it by the same argument as the ones we used for the initial connection. The
LO job which was swapped forms one busy interval with the current HI job tree and other trees that are
plugged to it by observation that this was already the case before the swap and the busy intervals do not
change when priority assignment changes.

Lemma A.11 (Per-criticality EDF Compliance of P-DAG). In the P-DAG G of MCPI(EDF) or MCEDF,
consider any P-DAG path between two jobs of the same criticality: Ji B∗ Jj . This path can only join Ji
and Jj in the direction that is compliant with their relative priority in SPT . Mathematically:

∀i, j . χi = χj ∧ Ji B
∗ Jj ⇒ Ji �SPT Jj (11)

Proof. (sketch) For MCEDF the Property (11) holds by construction, as it requires that Jj be the root of a
subtree that contains Ji and MCEDF PDAG assigns the least SPT -priority job of a given criticality as the
root of the subtree.

For MCPI, as P-DAG construction evolves, the property can only be potentially broken by the swap
operations. However, for criticality level HI it is not broken because we never swap two HI jobs. For
criticality LO it can be only invalidated if CanSwap never returns ‘false’ and then ‘true’ in the same
PullUp subroutine call. This is so because the LO jobs are evaluated for swapping in an order compliant
with reverse SPT and the stem of swapped jobs forms a chain in the same order as the swapping is done.
The job for which CanSwap would return ‘false’ would stay as predecessor of the current HI job and
the job with ‘true’ would become successor, thus forming a pair of LO jobs connected inconsistently with
SPT . However, this cannot happen if SPT is EDF-compliant, as the first ‘false’ result from CanSwap
will be followed by other ‘false’. To show this, recall that by Lemma A.10 the HI job forms one busy
interval (τ1, τ2] with its subtree. When CanSwap evaluates different LO jobs for the least priority it
evaluates for the possibility that the swapped job can terminate at time τ2 while meeting its deadline. The
jobs are evaluated in reverse EDF order, so the job with the largest deadline will be evaluated first. However,
if that job misses its deadline at time τ2 then the other jobs will fail as well.

By the above lemma, for MCEDF and MCPI(EDF), it is always possible to find a topological sort of
graph G such that the resulting priority table satisfies the following property:

Definition 9 (HI-criticality EDF Compliance of Priority Table). Given an EDF-compliant SPT priority
table, any LO-mode priority table PT is said to be HI-criticality EDF-compliant according to table SPT
if the HI jobs appear in PT in the same order as in SPT , that is:

∀i, j . χi = χj = HI ∧ Ji �PT Jj ⇒ Ji �SPT Jj ∧ Di ≤ Dj

Verimag Research Report no TR-2014-11 25/27



Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

Consider a problem instance J where h jobs are HI-critical. We can partition an EDF-compliant priority
table generated by MCEDF/MCPI(EDF) into the following sequence of job sets:

PT : JLO
1 �PT {JHI

1 } �PT JLO
2 �PT {JHI

2 } �PT . . . JLO
h �PT {JHI

h } �PT JLO
h+1 (12a)

HI jobs : JHI
1 �SPT JHI

2 �SPT . . . JHI
h−1 �SPT JHI

h (12b)

where subscript l and h denote LO and HI jobs and relation ‘�’ between two job sets means that any job
in the first set has a higher priority than any job in the second set.

Let us denote byB∗LO a relation between two jobs that are joined in the P-DAG by a path that may have
only LO jobs as intermediate nodes. The following is trivial:

Lemma A.12. There always exists a priority table PT obtained from a topological sort of P-DAG G of
MCEDF or MCPI(EDF) that has the structure shown in Formulas (12) where, in addition, the LO job sets
JLO
i are defined as the sets of LO jobs related to JHI

i by B∗LO :

for i = 1..h . JLO
i = {Jj | χj = LO ∧ Jj B

∗LO JHI
i } (13a)

JLO
h+1 = {Jj | χj = LO ∧ 6 ∃i : Jj B∗LO JHI

i } (13b)

Definition 10 (A Least LO-Priority Table). Given a P-DAG G that is per-criticality compliant to support
priority table SPT . A priority table obtained from graph G that can be partitioned as shown in Formu-
las (12) and (13) is called a least LO-priority table.

The reason to give a priority table this name is that such a table puts each LO job at the highest-i (and
hence also the least-priority) set JLO

i . The following lemma states that one cannot give any LO job even
less priority w.r.t. a HI job.

Lemma A.13. Let J be a problem instance where MCEDF or MCPI(EDF) generates a P-DAG based on
an EDF-compliant SPT , let JLO

i characterize its least LO-priority table. Let PT ′ be a HI-criticality SPT -
compliant priority table where some LO jobs in some job sets JLO

i ‘violate the least LO priority constraint’
in the sense that they have a less priority than the corresponding HI job JHI

i . Then at least one of such jobs
will miss its deadline.

Proof. Let i′ be the smallest-index i of the job sets JLO
i that contain ‘violating’ LO jobs in the sense defined

the in lemma conditions. Let Jj be the least-priority violating job from that set. Let us show that it will
miss its deadline. The part of the priority table PT ′ that contains jobs of priority higher or equal to Jj can
be represented by (dropping the curly braces for singleton sets):

PT ′ |�j : J′1 � JHI
1 � . . . � J′i′−1 � JHI

i′−1 � J′i′ � JHI
i′ � J′′i′ � Jj

Observing that in single processor scheduling the relative priority order of higher-priority jobs does not
matter for the least priority job, let us reorder the priority of the last HI job and obtain table PT ′′ that
results in equal termination time for job Jj :

PT ′′ : J′1 � JHI
1 � . . . � J′i′−1 � JHI

i′−1 � J′i′ � J′′i′ � JHI
i′ � Jj

From the definition of violating jobs and from the assumption that the sets JLO
m for m ≤ i′ − 1 contain no

violating jobs (i′ being the lowest ‘violating’ index) we have:

for 1 ≤ m ≤ i′ − 1 : JLO
m ⊆ J′m

Also because, by our assumptions, Jj is the least priority violating job in set i′ we have:

JLO
i′ ⊆ (J′i′ ∪ J′′i′ ∪ {Jj})

By the job-set inclusion relation above, the following priority table PT ′′′ when compared to PT ′′ has at
most the same but possibly less jobs of higher-priority than Jj :

PT ′′′ : JLO
1 � JHI

1 � . . . � JLO
i′−1 � JHI

i′−1 � (JLO
i′ \ Jj) � JHI

i′ � Jj

26/27 Verimag Research Report no TR-2014-11



Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

By properties of MCEDF resp. MCPI(EDF) we have that job JHI
i′ forms one busy interval BI with the

higher subtrees connected to it and by observation that Jj B∗LO JHI
i′ also belongs to the same busy interval

BI . Now observe that the reason why MCEDF resp. MCPI(EDF) assigned JHI
i′ the least priority in the

given BI is because the highest-deadline LO job belonging to the same interval would miss the deadline.
Jj , by construction, cannot have a higher deadline, so it should also miss its deadline as the least-priority
job in BI . Therefore it will also miss its deadline in PT ′′′, and hence also in PT ′′ and PT ′.

We can now prove the following:

Theorem A.14. For a given EDF-compliant SPT , MCEDF and MCPI(EDF) are optimal among the FPM
algorithms that are HI-criticality EDF-compliant according to SPT .

Proof. (sketch) First, note that if an instance J is MC-Schedulable, then the MCEDF and MCPI(EDF)
algorithms will never fail in LO mode and produce a P-DAG that conforms to the lemma’s and properties
presented in this section. This is so because, firstly, both algorithms are based on iterative improvement of
an EDF table, which is optimal in the LO mode. Secondly, at every improvement step the LO-schedulability
of the problem instance is preserved as an invariant. This leads to two important conclusions:

1. The only possible schedulability failure that MCEDF or MCPI(EDF) can have is when a HI job that
misses its deadline in a HI scenario.

2. For MC-schedulable instance, even if we see the worst case presented in point 1, both algorithms
manage to construct a LO-schedulable P-DAG that satisfies all lemma’s and properties presented in
this section.

Consider an instance J with h HI jobs. Suppose by contradiction that MCEDF resp. MCPI(EDF) fail
to produce a feasible schedule due to a failure in a HI scenario, whereas the optimal algorithm can. By
lemma’s above, we can present the solution of both algorithms as shown in Formulas (12) and (13).

The theorem conditions require that priority tables be HI-criticality EDF-compatible according to SPT ,
so the optimal priority table PT ′ can also be presented in a similar form:

PT ′ : J′1 � {JHI
1 } � J′2 � {JHI

2 } � . . . J′h � {JHI
h } � J′h+1

By Lemma A.13 we should have:

for 1 ≤ m ≤ h :

m⋃
i=1

JLO
i ⊆

m⋃
i=1

J′i

where JLO
m are the least LO-priority job sets of MCEDF resp. MCPI(EDF).

This means that, compared to MCEDF or MCPI(EDF), for every HI job JHI
m the optimal algorithm puts

at least the same but possibly a larger set of jobs as higher-priority w.r.t. to JHI
m. On a single processor

this can only decrease the progress made by each HI jobs up to any given point in time in the LO mode.
Therefore, after a mode switch, all the HI jobs in the optimal algorithm will have at least the same or
possibly more workload to complete than in MCEDF or MCPI(EDF). Therefore, if the latter would fail in
some HI scenario all the more so the former would also fail in the same scenario, therefore the optimal
algorithm would fail and thus we have a contradiction.

The next theorem follows as a corollary of Theorem A.14:

Theorem A.15. When using the same EDF-compatible SPT table MCEDF and MCPI(EDF) are equiva-
lent.

Note that, despite equivalence, MCEDF has a lower computational complexity, O(k2 log k), than
MCPI, which has O(k3 log k) (where k is the number of jobs). Intuitively, this is so because MCEDF
is ‘specialized’ for the single-processor scheduling problems, which is inherently ‘simpler’ than the multi-
processor ones, handled by MCPI.

Verimag Research Report no TR-2014-11 27/27


	Introduction
	Scheduling Problem
	Problem Definition
	Characterization of Problem Instance

	Priority DAG
	Algorithm
	Offline priorities computation
	Predictable Online Policy

	Related Work: Discussion and Analysis 
	Multiprocessor Scheduling
	Precedence-constrained Scheduling
	Mixed-critical Scheduling
	Analysis

	Implementation and Experiments
	Conclusions
	Appendices
	MCEDF and MCPI(EDF): Modifications and Optimality 
	Modified Version of MCPI 
	Single-processor Scheduling and Busy Intervals
	Recalling the MCEDF Algorithm
	The Properties of MCEDF and the Modified MCPI


