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Abstract

CANopen is an increasingly popular protocol for the design of networked embedded systems.
Nonetheless, the large variety of communication and network management functionalities sup-
ported in it can increase significantly systems complexity and in turn, the needs for system
validation at design time. We present hereafter a novel approach relying on modeling and ver-
ification techniques, allowing to provide a comprehensive and faithful analysis of CANopen
systems. This approach uses BIP, a formal framework for modeling, analysis and implemen-
tation of real-time, heterogeneous, component-based systems and the associated BIP tools for
simulation, performance evaluation and statistical model-checking. As a proof of concept, the
approach has been applied in an existing benchmark simulating a realistic automotive system
and the Pixel Detector Control System of the ATLAS experiment at CERN’s Large Hadron
Collider (LHC) particle accelerator. This work facilitates the systematical development of
such systems and reveals potential application for the generation of optimal device configura-
tions.
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1 Introduction
Fieldbus protocols provide efficient solutions to important issues occurring in embedded system design
nowadays. Such issues include managing system complexity, reducing communication cost as well as pro-
viding guarantees for functional and real-time requirements. A high-level protocol included in this family
is CANopen [13]. This protocol is getting increasing popularity thanks to a vast variety of communication
mechanisms, such as time or event-driven, synchronous or asynchronous as well as to additional support
for time synchronization and network management. Moreover, it provides a high-degree of configuration
flexibility, requires limited resources and has therefore been deployed on many existing embedded devices.

Applications using CANopen as their communication protocol can be found in automotive systems. In
this domain, it is used as a high-level protocol on top of Controller Area Network (CAN) [5], in order to
organize and abstract its low-level communication complexity. Since it offers parametrization according to
predefined standards and manufacturer-specific device specifications, CANopen has also been deployed in
distributed control systems, maritime electronics, medical devices, railway applications, photovoltaic and
building automation systems e.t.c.

To the best of our knowledge, the existing tools for simulation, analysis and validation of CANopen
systems are very limited. Vector GmbH 1 provides a powerful tool for the simulation of such systems,
the CANalyzer [27]. It also contains a CANopen extension, namely the CANalyzer.CANopen. A relevant

1https://vector.com/
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tool can be found in youCAN stack prototypes [23], provided by port GmbH 2. CANopen Magic [16] is
an interactive tool from Embedded Systems Academy 3, providing an interface for the development and
simulation of applications using the protocol. Nonetheless, these tools are not able to perform timing anal-
ysis and validation. Furthermore, their use in the design of correct, functional CANopen systems requires
high expertise. Likewise, since they are targeting an industrial use, their evaluation versions can only be
used to familiarize with the protocol. Subsequently, they have limitations on the network size and the pro-
tocol functionalities. On the other hand, the equally powerful tools for CAN, capable of performing both
timing analysis and performance evaluation, such as RTaW-Sim [21], are not implementing the CANopen
protocol.

The aforementioned considerations are present, because CANopen is a fairly complex protocol and the
interactions between the different types of communication mechanisms are very subtle. Thus, the protocol
primitives can be easily misused, leading to poor, non-functional systems. A particular example is that
even though it offers a wide range of services and communication mechanisms, the proper use of them
is left to the device manufacturer as well as the application developer. The default method of setting the
protocol parameters does not apply in many cases. An efficient solution to this issue is the availability of
validation support at design time. Previous studies [1] [24] have illustrated that conformance testing can be
used as a validation method in CANopen systems, due to its capability of verifying system integrity as well
as the protocol’s error-free functionality. However, the lack of functional error detection and performance
analysis in earlier stages of the development cycle is a considerable design limitation for such systems.

In this work we present an alternative validation method based on the use of formal modeling and
verification techniques. We provide a systematic way to construct models of CANopen systems using the
BIP component framework [2]. These models are constructed systematically, using a structural translation
principle, from the protocol’s entities and communication mechanisms. We show that the models obtained
are faithfully compliant with the protocol’s functional and timing aspects and can be used for either func-
tional verification or performance analysis, using existing simulation and statistical model-checking tools
available for BIP. As far knowledge is concerned, this method is the first attempt to obtain formal models
for the CANopen protocol.

The rest of this article is organized as follows. Section 2 presents a brief introduction of CAN and
CANopen. Section 3 introduces briefly the BIP framework along with its associated tools and discusses
the techniques used for verification. Section 4 introduces the modeling and structural translation principles
of CANopen systems in BIP. Section 5 provides experimental results of the model-based translation on
existing benchmark systems and discusses current validation issues. Finally, Section 6 provides conclusions
and perspectives for future work.

2 Overview of CAN and CANopen

2.1 Controller Area Network (CAN)
The Controller Area Network (CAN) was initially introduced in the beginning of the 1990s by Robert
Bosch GmbH targeting industrial automotive control systems. Its scope was to reduce the number of wires
in passenger cars through a serial Bus system. Nonetheless, its use gradually became wider and nowadays
it is also found in various distributed embedded systems.

CAN is a message-oriented transmission protocol, based in a multi-master access scheme to a shared
medium. It uses the Carrier Sense Multiple Access Collision Avoidance (CSMA/CA) approach, in order
to solve bus contentions deterministically. Its protocol stack implements only the physical and the data
link layer of the OSI reference model, thus reducing the message processing delays and simplifying the
communication software. The physical layer is responsible for data transmission, whereas the data link
layer for managing the access on the Bus. CAN assigns a unique identifier to each transmitted message,
which defines both the content and the priority of the message. The absence of originating or destination
addresses facilitates the addition of new nodes in the network, without stopping its operation. Another
advantage is that the network allows multi-casting capabilities.

2http://www.port.de/
3http://www.esacademy.com/
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CAN messages are denoted as frames. Each frames can be transmitted only when the Bus is idle. They
are of three types, namely:

• Data frame, used for data transmission

• Remote frame, used for data request

• Error frame, used to report error conditions

Data frames are also divided in the standard and the extended format. Their main difference is found
in the frame identifier. The former (Figure 1a) defines a 11-bit identifier supporting up to 2048 different
frames in the network, whereas the latter (Figure 1b) a 29-bit identifier supporting up to 536870912. Re-
mote frames are similar to data frames, though they do not carry data, and error frames consist of an error
flag, denoting the occurred error condition and an error delimiter.
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Figure 1: Classic CAN data frame format

The transmission of each frame field is followed by a synchronization between all the connected nodes
in the network and the Bus, during which the latter broadcasts the received data to all of them.

The beginning of every frame, except the error frames, is indicated by the Start Of Frame (SOF) field,
which corresponds to 1 bit. Immediately after the SOF, is the Arbitration field containing the frame iden-
tifier identifier and the Remote Transmission Request (RTR) bit. The frame with the lowest identifier is
always transmitted first, since the dominant level (binary 0) in CAN has higher priority than the recessive
(binary 1). A dominant value in the RTR bit denotes a data frame and a recessive a remote frame, ensuring
higher priority for the former. The Control field contains the Identifier Extension (IDE) bit, the reserved r0
bit as well as the Data Length Code (DLC) field. The IDE bit distinguishes a standard from an extended
data frame. In the extended frame format the Arbitration field is larger, due to the addition of the IDE bit
and the Substitute Remote Request (SRR) bit. Moreover, the Control field includes one more reserved bit
in the place of the IDE bit. The DLC field denotes the length of the data and its value is between 0 and 8.
The Data field, not applicable in the remote frame, contains the frame data, which are according to [5] from
0 to 8 bytes. The integrity of a frame is guaranteed by the Cyclic Redundancy Check (CRC) field, consist-
ing of 15 bits plus a 1-bit delimiter. The ACK Field, consisting of 2 bits (ACK bit and a ACK delimiter),
serves as an acknowledgment, if at least one node received the frame successfully. In the opposite case,
the frame will be retransmitted consecutively until it is successfully received. Finally, the End Of Frame
(EOF) field indicates an error-free transmission to all the nodes connected in the network and corresponds
to 7 recessive bits.

CAN provides a high-degree of synchronization among the connected nodes, due to the sufficient num-
ber of edges in the transmitted bit sequence. This is achieved by a bit encoding technique, termed as
bit-stuffing [5]. According to it, whenever 5 consecutive bits have the same value (dominant or recessive)
an additional bit of the opposite value is added to the sequence. However, the added bit can be followed by
a sequence of 4 consecutive bits of the same polarity. Thus, in the worst case the number of consecutive
bits subject to bit-stuffing is considered as 4. Though bit-stuffing is an important and efficient technique,
it increases the frame response time proportionally to the content of the transmitted data and therefore is
not fixed. A highly probable outcome of its usage are the additional transmission jitters, which may cause
deadline violations.

Verimag Research Report no TR-2014-1 3/28
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As each node receives every transmitted frame on its local receive buffer, a frame acceptance filtering
has to be applied. This mechanism determines if the received data are relevant to the specific node or not.
In the first case, the frame is sent to the upper communication layer, whereas in the second it is discarded.

The ability to resolve collisions deterministically is one of the protocol’s main characteristics. This is
accomplished through the arbitration mechanism, following the transmission of the SOF bit. The outcome
of this technique is to ensure that only the node with the highest priority frame will transmit its data to the
Bus. This process is serial, meaning that the frame’s identifier will be transmitted bit-per-bit. The level
of the Bus will be dominant if at least one node is transmitting a dominant bit. If a node is transmitting
a recessive value and senses the Bus at dominant level, it will immediately halt, since it will understand
that it lost the contention. It will only retry whenever the current frame transmission ends and accordingly
senses the Bus idle again. However, if two or more nodes having the same frame identifier proceed to
the arbitration phase at the same time, unmanageable collisions will occur in the Bus. The only exception
for this situation is found in remote frame transmissions, where the involved data request frames will just
overlap. Nevertheless, the requesting node is usually unaware of the data length he is about to receive and
sets the DLC field randomly. Consequently, unmanageable collisions are still not avoided.

Although CAN is robust and cost-effective, its low-level complexity and the correct allocation of the
frame identifiers introduce certain obstacles in complex CAN-based system design. To facilitate their
design, high-level protocols build on top of CAN, such as CANopen [13] for embedded systems, DeviceNet
[25] for factory automation and J1939 [26] for trucks and other vehicles have been proposed. All these
protocols except CANopen are found only in CAN-based systems. Whenever used in such systems, they
adopt the CAN standard frames, since they are shorter and enable higher communication efficiency.

2.2 CANopen
CANopen uses a master/slave architecture for management services, but concurrently allows the utilization
of the client/server communication model for configuration services as well as the the producer/consumer
model for real-time communication services. A comprehensive introduction to the protocol can be found
in [22]. Unlike other Fieldbus protocols it does not require a single master controlling all the network com-
munication. Instead a CANopen system is specified by a set of devices (Figure 2), which in turn use a set
of profiles, in order to define the device-specific functionality along with all the supported communication
mechanisms. The communication profile defines all the services that can be used for communication and
the device profile how the device-specific functionality is made accessible. The communication profile
is defined in the DS-301 standard [13], whereas the device profiles providing a detailed description on
CANopen’s usage for a particular application-domain, are defined in the DS-4xx standards 4. If CANopen
systems require configurations or data access mechanisms not covered by the standard communication
profile, profile extensions can also be defined. These are called Frameworks and are found in the DS-3xx
standards 4.

The protocol’s communication mechanisms according to the DS-301 are specified by standard Commu-
nication Objects (COB). All the COBs have their own priority and are transmitted through regular frames
of the chosen lower-layer protocol. They are generally divided in the following main categories:

• Network Management objects (NMT), used for the initialization, configuration and supervision of the
network

• Process Data Object (PDO), used for real-time critical data exchange

• Service Data Object (SDO), used for service/configuration data exchange

• Predefined objects, found in specific entries in every OD. The featured objects in this category are:

– Synchronization object (SYNC), broadcasted periodically to offer synchronized communication
as well as coordinate operations

– Timestamp object (TIME), broadcasted asynchronously to provide accurate clock synchroniza-
tion using a common time reference

4http://www.can-cia.org/index.php?id=440
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Figure 2: Communication in a CANopen system

– Emergency object (EMCY), triggering interrupt-type notifications whenever device errors are
detected

All the aforementioned objects are stored in a centralized repository, called Object Dictionary (OD),
which holds all network-accessible data and is unique for every device. Commonly used to describe the
behavior of a device, it supports up to 65536 objects. The COBs are spread to distinct areas, defining
communication, device and manufacturer specific parameters. The latter are left empty and are used by
manufacturers, in order to provide their own device functionalities.

The OD entries are described by electronically readable file formats, such that they are uniformly
interpreted by configuration tools and monitors. According to the DS-306 standard [10] they are provided
by the INI format files and termed as Electronic Data Sheet (EDS) files. These files provide a generic
description of a device type. However, since CANopen allows parametrization according to manufacturer
specifications, a specific file format exists and is defined as Device Configuration File (DCF). This file
describes the configuration for a specific device. Nevertheless, EDS and DCF files have limitations on the
validation and presentation of the data as well as require a specific editor. Therefore, new XML-based
device descriptions were introduced according to the DS-311 standard [11]. These substitute the EDS with
the XML Device Description (XDD) file format and the DCF with the XML Device Configuration (XDC)
file format. Currently, the protocol supports both device descriptions.

2.2.1 Process Data Objects (PDO)

The real-time data-oriented communication follows the producer/consumer model. It is used for the trans-
mission of small amount of time critical data. PDOs can transfer up to 8 bytes (64 bits) of data per frame
and are divided in two types: The transmit PDO (TPDO) denoting data transmission and the receive PDO
(RPDO) denoting data reception. Therefore, a TPDO transmitted from a CANopen device is received as
an RPDO in another device (Figure 3). Additionally, the supported scheduling modes are:

• Event driven, where the transmission is asynchronous and triggered by the occurrence of an object-
specific event

• Time driven, where transmission is triggered periodically by an elapsed timer

• Synchronous transmission, triggered by the reception of the SYNC object, further divided in:

– Periodic transmission within an OD-defined window (synchronous window), termed as Cyclic
PDO transmission

Verimag Research Report no TR-2014-1 5/28
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– Aperiodic transmission according to an application specific event, termed as Acyclic PDO
transmission

• Individual polling, triggered by the reception of a remote request (see [9])

Network

CANopen Device 2CANopen Device 1

TPDO RPDO

Figure 3: PDO communication

Each PDO is described by two OD sub-objects: The Communication Parameter and Mapping Param-
eter. For a TPDO (OD entry 6144 and 6656 accordingly) the former indicates the way it is transmitted in
the network and the latter the location of the OD entry/entries, which are mapped in the payload. On the
contrary for a RPDO (OD entry 5120 and 5632 accordingly) the former indicates how it is received from
the network and the latter the decoding of the received payload and the OD entry/entries where the data is
stored.

The Communication Parameter entry includes the Communication Identifier (COB-ID) of the specific
PDO, the scheduling method, termed as transmission type, the inhibit time and the event timer. The inhibit
time (expressed as a multiple of 100 µs) defines the shortest and the event timer (expressed as a multiple
of 1 ms) the longest time duration between two consecutive transmissions of the same PDO.

The Mapping Parameter describes the structure of a PDO. It can be of two types, that is, static or
dynamic. Static mapping in a device cannot be changed, whereas dynamic mapping can be configured at
all times through an SDO.

2.2.2 Service Data Objects (SDO)

The service oriented communication follows the client/server model. It supports large, non-critical data
transfers and uses three modes to allow peer-to-peer asynchronous communication through the use of
virtual channels:

• Expedited transfer, where service data up to 4 bytes are transmitted in a single request/response pair.

• Segmented transfer, where service data are transmitted in a variable number of request/response
pairs, termed as segments. In particular it consists of an initiation request/response followed by
8-byte request-response segments.

• Block transfer, optionally used for the transmission of large amounts of data as a sequence of blocks,
where each one contains up to 127 segments.

A CANopen device can either receive or request an SDO, therefore these objects are not separated as
the PDOs, instead they are distinguished according to their identifiers (Section 2.2.4). The communication
is always initiated by a device defined as client in the network towards the server, nonetheless information
is exchanged bidirectionally with two services: Download and Upload. The former is used when the client
is attempting service data transmission to the server, whereas the latter when it is requesting data from
the server. In both services the use of the virtual channel ensures that the received SDO is identical to
the transmitted (Figure 4), unlike in PDO communication. Each request or receive SDO uses byte 0 as
metadata, containing important information about the transmitted object and reducing the payload to seven
bytes per frame. This byte includes the command specifier, which indicates the type of the frame, that
is initiate or domain segment and request or response. The command specifier is either termed as client
command specifier (ccs) for the client device or server command specifier (scs) for the server device. For

6/28 Verimag Research Report no TR-2014-1
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Figure 4: SDO communication

the initial request/response pair byte 0 also determines which of the three modes is used (see [13]). If
transmission errors are detected either on the client or the server side, data transfer is aborted through the
SDO abort frame. SDOs are used for configuration and parametrization, but also allow the transmission of
a large quantity of asynchronous data, consequently they are always assigned a lower priority than PDOs.

2.2.3 Predefined objects

These specific objects provide additional functionalities to the protocol. Their transmission is following
the producer/consumer communication model. Particularly, the SYNC and the TIME object are always
transmitted from a specific device (Producer), according to the OD specification, whereas the EMCY object
can be transmitted by any device in the network (dynamical configuration). The Predefined objects are
always assigned with a high priority, in order to be transmitted as soon as possible.

The SYNC object is used to enable synchronized operation. Yet, if the transmission is handled by
the CAN protocol the derived delays due to non-preemption can result to a certain jitter. Thus, if it does
not provide the required accuracy for the synchronization, CANopen enables the use of the TIME object,
containing a reference clock time. Though implementing a different synchronization mechanism, this
object is used for accuracy, measuring the difference between theoretical and the actual transmission time
of the SYNC and transmit it through a subsequent PDO.

The EMCY object is used in internal error conditions in a device and transmitted as an interrupt, in
order to notify other devices. However, no notification is present when the internal error is fixed and thus
the other devices cannot know the change of condition. Consequently, its implementation is not considered
mandatory in CANopen systems.

2.2.4 Network configuration

Considerable complexity in CANopen systems is found in the configuration and allocation of a frame
identifier to each COB. As CANopen allows parametrization the allocation scheme can be configured
according to specific manufacturer requirements, however sufficient attention must be given to the priority
group of each object. Therefore, to reduce the complexity of CANopen system development, a default
allocation scheme based on the CAN protocol is provided, namely the Predefined Connection Set. As
defined by this scheme, every object is assigned an identifier (COB-ID) according to Table 1, derived from
its priority in the protocol. Nevertheless, each frame has its own identifier, since the COB-ID is augmented
by the specific identifier of the node transmitting it. Every device can use up to four TPDOs, four RPDOs,
one EMCY and one SDO. All the COB-IDs can be configured, except of the SDOs, if the particular device
allows it.

2.2.5 CANopen system example

In Figure 5 we illustrate a simple example of CANopen system, based on the DS-401 device profile [12]
and consisting of three devices. The two Slave devices are gathering analogue data from temperature
sensors (Analog Temperature Detectors or ATD). The sensors are scanned periodically, whenever the event
timer expires, initiating a new scan cycle. If a change in a sensor’s temperature value is detected, termed

Verimag Research Report no TR-2014-1 7/28
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Communication Object COB-ID
NMT 0
SYNC 128
EMCY 129
TIME 256

TPDO1 385-511
RPDO1 513-639
TPDO2 641-767
RPDO2 769-895
TPDO3 897-1023
RPDO3 1025-1151
TPDO4 1153-1279
RPDO4 1281-1407
Tx-SDO 1408-1535
Rx-SDO 1536-1663

Table 1: Predefined Connection Set

as Change-of-State (CoS), an event driven PDO (configuration in Table 2 and mapping in Table 3) with the
temperature value will be transmitted to the Master device, after the required conversion from the ADC.
The Master device is responsible of obtaining the analogue temperature values through the DAC conversion
and displaying them in an LCD display. It can also trigger the transmission of the SYNC object, informing
the Slaves to abort the ongoing scan cycle and accordingly start a new one. The total number of temperature
sensors in each slave device is not fixed and should be provided to the Master device during the boot-up
process of the network through an SDO Download operation to its OD.

LCD

DAC

Network

OD OD OD

ATD

ADC

ATD

ADC

Master Slave 2

Hardware HardwareHardware

Slave 1

Figure 5: Example of a CANopen system

3 The BIP component framework
The BIP framework (Behavior-Interaction-Priority) [2] supports a layered component construction method-
ology (Figure 6, facilitating the hierarchical system composition. The lower layer (Behavior) is described
by finite-state automata or Petri-Nets and models the behavior of transition systems, termed as atomic
components. Each transition is labeled by an action name, termed as port, but also associated with a guard
and functions manipulating a set of variables. Guards are Boolean expressions enabling conditions in the
component states. The use of ports in the second layer (Interaction) defines strong or loose synchronization
upon data exchange, through the use of connectors. A connector is a list of ports of atomic components
which may interact. Thus, an interaction is defined as strong synchronization, when all the ports of a con-
nector are involved (graphically represented by a bullet), whereas in the opposite case it is defined as loose
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Index Subindex Description Value
6144 (1800h) 0 Number of entries 5

1 COB-ID 641 + deviceID
2 Transmission type 255
3 Inhibit time (in ms) 1
4 Reserved -
5 Event timer (in ms) 1000

Table 2: TPDO configuration

Index Subindex Description Value
6656 (1A00h) 0 Number of entries 1

1 1st object to be mapped 25600 (6400h)/Subindex 1
25600 (6400h) 0 Number of analogue inputs n

1 input 1 (in ◦C) 30.5
:::: :::: :::: ::::

n input n (in ◦C) 23

Table 3: TPDO mapping

(graphically represented by a triangle). The third layer (Priority) restricts any non-determinism between si-
multaneously enabled interactions. A set of atomic components can be composed into a generic compound
component by the successive application of connectors and priorities.

Figure 6: BIP layered component model

Figure 7 illustrates an example of a BIP composite component, comprised by two atomic components,
the Sender and the Receiver. The ports TICK, SEND and RECV are used for the interactions between them.
Each time both components are in the idle state the interaction involving the SEND and RECV ports is
enabled. Its selection will lead to an update of variable r. The Sender and Receiver will respectively move
to the transmit and the receive state. Consequently, both components will interact through the port TICK
and increment variable t. Nevertheless, the Receiver component is also able to interact through the EXE
port, in order to receive interruptions from other components. This conflict is resolved deterministically by
priority π1 : TICK < EXE, allowing the transition involving port EXE to be chosen, when they are both
enabled. On the contrary, port COM of the Sender component is not enabled as long as variable t is less
than a specific value (here 100), due to the specified guard. As an interrupt may trigger port EXE before
this value is reached, port TICK is evenly enabled in the idle state of the Receiver component.

The BIP toolset 5 includes a rich set of tools for modeling, model transformation, analysis (both static
and code generation) and execution of BIP models. It builds on a dedicated modeling language for describ-
ing BIP components. Besides purely functional primitives for describing behavior (extended automata
with C/C++ functions) and composition glue (connectors and priorities), the language offers additional
constructs for expressing probabilistic and/or timing constraints. The front-end BIP tools allow editing and
parsing of BIP descriptions, and generating an intermediate model, followed by code generation (in C/C++)
either for execution on platforms or for analysis using dedicated simulation-based tools. In particular, the
BIP toolset has recently incorporated a statistical-model checking tool [4] that allows verification of proba-
bilistic properties by combining simulation with statistical methods, thus guaranteeing the correctness and
confidence of the results. Additionally, specific source-to-source transformation can be used beforehand,

5http://www.bip-components.com
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[t < 100]

t:=t+1

COM
[t = 100]

t:=0

idle

receive

EXE
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TICK
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TICKTICK

SEND s

r:=r+s

Figure 7: BIP components example

in order to increase the performance of such analysis tools.

4 Modeling CANopen in BIP

CANopen systems in BIP consist of two communication layers. The top (application) layer components
represent CANopen devices, responsible for the frame transmission or reception, respectively called Device
components. Following the CANopen specification, the model defines always a Device component as the
Master, responsible for the transmission of the SYNC object and all the remaining Devices as Slaves. For
the bottom (network) layer, we consider that communication is handled by the Controller Area Network
(CAN) protocol. The CANopen Device component interacts with the CAN protocol, in order transmit
or receive frames through the Bus. Therefore, prior to the derived structural translation of the CANopen
primitives and communication mechanisms in BIP, we provide a brief introduction to the CAN protocol
model [20].

4.1 CAN protocol model

In our previous work [20] we developed a BIP model for the classic CAN as well as the newly developed
CAN FD protocol [6]. The construction of the protocol model is using a library of CAN components,
which in turn allows modularity and reusability. The soundness of the model was proved by the application
in benchmark automotive systems, indicating similar results with RTaW-Sim [21].

The supported version of the protocol is the Basic CAN [22], meaning a single transmit and a single
receive buffer are used for the transmission and the reception of the frames accordingly. The model is
also compliant with the High Speed physical layer standard [22], due its higher baud rate and interoper-
ability with the higher-level protocols mentioned in Section 1. Finally, the current version is not modeling
transmission errors.

The BIP model uses two generic types of components: the CAN station and the CAN bus. The former
represents the hardware transceivers and the acceptance filters of the protocol and serves as an intermediary,
in order to transmit frame requests generated from the upper layer to the Bus or equally deliver the received
frames from the Bus to the upper layer. Thus, it is modeled as a compound component consisting of
the Controller and the Filter atomic components accordingly. The latter represents the Bus functionality,
preserving entirely its arbitration and broadcast mechanisms. Data transmission is synchronous, that is, all
stations receive synchronously the frames sent by any of them. Furthermore, the underlying communication
is a two-step process: first data are transmitted to the CAN bus and consequently broadcasted to all the
CAN stations, including the sender. The transmission of each CAN frame field is followed by strong
synchronization between the CAN stations and the CAN bus, through the use of interactions between the
ports.
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The CAN protocol model architecture is presented in Figure 8. It uses two groups of ports for its
interactions, consisting of:

1. The REQUEST port (frame transmission) and the RECV port (frame reception) used for the interac-
tions with the upper layer.

2. The SOF, ARBITRATION, CONTROL, DATA, ACK, EOF ports used for the interactions between the
CAN station and the CAN bus component

DATAARBITRATION CONTROL EOFACKSOF

REQUEST RECV
REQUEST RECV

DATA
DATA

ARBITRATION CONTROL EOFACK
SOF ARBITRATION CONTROL ACK EOF

SOF

SOF ARBITRATION CONTROL DATA ACK EOF

CAN bus

CAN station 1CAN station 0

Filter Controller FilterController Controller Filter

TICK

RECVREQUEST

CAN station n

Figure 8: Generic model of a CAN system

The main types of components used in a CAN systems are:the CAN station and the CAN bus. CAN
stations mediate the frame transmission on the CAN bus. They are later connected to application compo-
nents. The CAN bus is modeling the arbitration and the broadcast mechanisms of every frame to all the
connected CAN stations. The frame transmission process consists of two steps. First data are sent to the
CAN bus and then broadcasted to all the stations, including the sender. Strong synchronization between all
the CAN stations and the CAN bus is used for the transmission of each frame field. Each frame sent over
the CAN bus can be of two types: data transmission (data frame) or data request (remote frame). In both
cases it is represented by the tuple id, rtr, ide, length, payload, whose meaning is as follows:

• id is the frame identifier

• rtr is the Remote Transfer Request (RTR) bit

• ide is the IDentifier Extension (IDE) bit

• length contains the length of the data to be sent

• payload contains the data

For CAN higher-layer protocols (such as CANopen) rtr and ide are automatically recessive (binary 1)
for every frame.
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4.1.1 BIP model of CAN stations

CAN stations are composite components consisting of two atomic components: the CAN Controller and
the CAN Filter. These components are responsible for the frame transmission to the CAN bus (REQUEST
interaction) and the frame transmission to the application (RECV interaction) accordingly. The Controller
component uses a transmission queue, in order to store the pending frames, that is, received from the
application and waiting to be sent over the Bus. The queuing policy can either be of type First-in-First-Out
(FIFO) or High Priority First (HPF), where frames are selected according to their priority. The selection is
application-specific.

The Controller component (Figure 9) is modeled as a Petri-Net, which (1) receives frames from the
application and (2) sends or receives frames from the CAN bus component. The transmission process is
initiated through the REQUEST port, which stores the received frame in the transmission queue. If the
Controller has a frame to send, the transmission cycle begins (SOF port). Next, in the arbitration phase,
labeled by the ARBITRATION port in the model, every Controller sends its identifier (id field) to the CAN
bus. The minimum identifier wins the arbitration and gets broadcasted to all of them 6. The Controller with
the minimum identifier is allowed to proceed with the transmission of the length and payload fields, while
all the others are receiving them. The end of the transmission cycle is denoted by the EOF port. Throughout
this cycles duration the REQUEST port is always available, ensuring the seamless frame reception from the
application. If at least one receiving CAN station receives the frame fields correctly, the sending Controller
will stop retransmitting its frame. The receiving Controllers send the frames to the Filter component
through the port RECV.

R1

R2 R3

REQUEST
queue.push(frame)

process req
p: = find min(queue,arb)

queue.pop(frame)

busy: = T

REQUEST
queue.push(frame)

no req
[busy = F ∧ queue = 0]

frame sent
[busy = F ∧ queue 6= 0]

S1

S2

S3

S4 S5

S6

S7

S8

S9

S10

CONTROL DATA

ACK

EOF

SOF
[busy = T]

ARBITRATION

check min
[min = arb]

arb loss
[min 6= arb]

rtr set
[rtr = T]

send
[rtr = F] listen

trans end
[f = send]

trans error
[ack sig = F ∧f = recv]

RECV
[ack sig = T ∧f = recv]

REQUEST frame RECV frame

SOF ARBITRATION CONTROL DATA ACK EOF

Figure 9: CAN Controller component

The acceptance filters receive every frame from the Bus, in order to either deliver it to the application
or ignore it. Thus, the Filter component is receiving all the frames through an interaction involving its

6If a Controller has no frame to send its identifier will be automatically set to 211 for the standard frame and 229 for the extended
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HANDLE port and the RECV port of the Controller component, such that only the needed frames are
delivered to the application. It checks accordingly their dentifier to a list of identifiers provided by the
application (check). If the identifier belongs to the list, the frame is transmitted through the transition
RECV, otherwise it is discarded through the transition filtered.

L1 L2 L3
RECV

check
result: = find(arb, id list)

HANDLE
[result = T]

filtered
[result = F]

Figure 10: CAN Filter component

4.1.2 BIP model of the CAN bus

The CAN bus component is using two groups of ports for its interactions:

• The TICK port denoting one time step advance and,

• The SOF, ARBITRATION, CONTROL, DATA, ACK, EOF ports used for interaction with the Con-
troller component

As shown in Figure 11 the CAN bus is receiving the frame fields id, rtr, ide, length, payload from
the Controller component. A significant difference to the Controller is the modeling of the discrete time
step advance needed for the transmission of each frame field, denoted by the port TICK in the model.
One tick corresponds to the time needed for the transmission of one bit (τbit). The role of the CAN
bus is to synchronize all the CAN stations. During the transmission cycle it interacts with all the CAN
station components through the SOF port. The identity of the data frame sent to the Bus is determined
through a check on the ide field, providing information about the number of bits transmitted through the
ARBITRATION port. The resulting value is 12 for a standard frame and 32 for an extended representing
the time needed for the arbitration phase, accordingly stored in variable g. The time duration for the
transmission of the payload field (DATA port) will depend on the value of the length field received through
the CONTROL port (6-tick time duration). The checksum computation results in a 16-tick time duration.
The transmission cycle ends through the EOF port, which along with the ACK port correspond to a 9-tick
time duration. The presence of the Interframe space (IFS) between consecutive frame transmissions is used
to avoid Bus overload occurrences and corresponds to a 3-tick time duration in the model. After this time
elapses the control returns to its initial state (ifs port). The overall frame transmission time in the model is
given by:

Cframe = (32 + g + 8× length) τbit (1)

However the bit-stuffing encoding technique (Section 2) may increase the aforementioned time by:

Cstuffing =
⌊
(23 + w + 8× length− 1)

s

100

⌋
τbit (2)

where w = g − 1, since the remote request bit is not subject to stuffing, τbit = 1 and s ∈ [1, 25] is
a parameter of the model, denoting the number of stuffed bits for every frame. If the frame payload is
known beforehand, this number is calculated directly from the sequence of transmitted bits, whereas in the
opposite case it can be rather chosen from a probabilistic distribution provided as an input to the model.
Related to the analysis provided in [15], our model is not considering the IFS field as part of the frame and
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the worst-case transmission time is provided with s equal to 25. In every case, the number stuffed bits is
denoted by the variable stuff in the model and added to the transmission time after the DATA interaction
(Figure 11). Related to the analysis provided in [15], our model is not considering the IFS field as part of
the frame and the worst-case transmission time is provided with s equal to 25.
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t := 0

DATA
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[t < 8 ∗ length + stuff ]
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TICK
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[t < 9]
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TICK
[t < 3]
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ifs
[t = 3]

SOF

TICK

ARBITRATION CONTROL DATA ACK EOF

Figure 11: CAN bus component

However, the overall frame transmission time is not completely derived from Equation 2, due to the
additional queue-waiting time for every generated frame, termed as blocking time. This additional time
depends on the choice of the queuing policy for each CAN station component, and on the selection or not
of transmission offsets as well as of abortable or non-abortable transmission requests [19].

4.2 CANopen model
The modeling of CANopen systems in BIP is structural. Every Device component is composed from several
sub-components, corresponding to COBs present in the device OD. As illustrated in Figure 12, the generic
CANopen Device component is composed of three parts: a transmitting part (TRANSMIT), a receiving part
(RECEIVE) and a third part involving both transmission and reception (TR). Each part consists of a set of
components, implementing the protocol’s communication mechanisms. Each component is directly derived
from a COB of the device OD, such that it will belong to one of the main categories mentioned in Section
2. In particular, PDO components can either exist exclusively only in the TRANSMIT or the RECEIVE
part, or they can also be unused for the specific Device, meaning that they will not exist in any part. The
same policy applies to SDO components with the difference that if they exist for the specific Device, they
are included in the TR part. Furthermore, only one of the dashed SDO components is allowed to operate
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in the system at a time, thus the interactions between them are not maximal (loose synchronization). In the
Predefined objects component category though only one Device can exist in the transmitting part and all
the other on the receiving, meaning that they are exclusive for every Device. Therefore, only one of the
dashed SYNC objects will be associated with the Device of Figure 12.

Each component is responsible for the handling of a COB as a frame and consists of the tuple:
(id,length,payload), where id is the value of the COB-ID for a particular frame. In the model it belongs to
the Predefined Connection Set (Section 2.2.3). Thereafter, length contains the length of data and payload
the actual data of the frame.

T−SYNC

U−SDO

D−SDO

T−PDO1

SYNC_TRIG

REQUEST

TR

R−PDO1 R−PDOmR−PDO2

RECV

R−SYNC

RECEIVE

TICK OD_WRITEASYNC_TRIGEVENT_TRIG

TRANSMIT

T−PDO2T−PDOn

Figure 12: Generic CANopen Device component

We accordingly detail the behavior of the generic components used in the model, according to the COB
category they belong. Each component, except the ones belonging to the SDO category, is atomic and
described by abbreviations. These denote the part it belongs and the name of the object derived from, i.e
SYNC Transmitter (T-SYNC) or SYNC Receiver (R-SYNC).

The generic CANopen Device component consists of four groups of ports using strong or loose syn-
chronization upon interactions:

• The first implements interactions between different CANopen objects, such as the SYNC TRIG port

• The second implements interactions between the Device component and the lower communication
layer, such as the REQUEST, RECV ports

• The third implements interactions between the Device component and application-specific compo-
nents, such as the EVENT TRIG, ASYNC TRIG, OD WRITE ports

• The fourth implements specific interactions for general synchronization and invokes all the previ-
ously listed groups, such as the TICK port

4.2.1 Process Data Objects (PDO)

The PDO component types implement all the supported scheduling policies, as illustrated in Section 2.2.1.
Consequently they can be of three types: SYNC-triggered, time-triggered and event-triggered. Each type
is further divided in two categories: T-PDO and R-PDO. The PDO component types implement all the
supported scheduling policies, as illustrated in Section 2.2.1. Consequently they can be of three types:
SYNC-triggered, time-triggered and event-triggered. Each type is further divided in two categories: T-
PDO and R-PDO.

Each T-PDO component is responsible for the correct initialization and generation a TPDO (RE-
QUEST port). In particular, the SYNC-triggered T-PDO component following the interaction between
its SYNC TRIG port and the R-SYNC component (Section 4.2.3), generates a synchronous PDO or per-
forms another device-specific action. Evenly triggered by external interrupts is the event-triggered T-PDO
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component, through the port EVENT TRIG. Finally, the time-triggered component implements a specific
timer modeling the time step advance, through the TICK port. When this timer expires a time driven PDO
is generated. Figure 13 presents the SYNC-triggered T-PDO component, responsible for the transmission
of a TPDO2 frame, when it is triggered by a SYNC frame. It consists of the states trigger, transmit and
the ports: TICK, SYNC TRIG and REQUEST, also corresponding to transition labels. A connector between
the SYNC TRIG ports of this component and the component used for the reception of the SYNC (Section
4.2.3) ensures a synchronized operation, such that the T-PDO component moves from the trigger to the
transmit state. The PDO parameters have to be provided before the transmission is triggered through the
REQUEST port. After the interaction with the lower communication layer, it returns to the trigger state.

The corresponding RPDO components are responsible for the reception of a specific COB frame, pro-
vided as a parameter. They are triggered by lower-layer frame receptions (RECV port) and subsequently
check the id of the received frame. If it is the expected frame its payload is written to the OD of the
receiving Device component, through the port OD WRITE. The particular OD entry is provided by the
Mapping Parameter corresponding to the specified COB. This process may accordingly trigger a device-
specific action. A particular example the component associated with the reception of TPDO2 frames is
R-TPDO2 (Figure 13). Since, it is a receiver component it consists of the states idle, receive and the ports:
SYNC TRIG and RECV. It is also triggered by lower-layer frame receptions (RECV port) moving to the
receive state, where it checks the id of the received frame. If it is the TPDO2 frame sent by the aforemen-
tioned T-PDO component, the frame’s corresponding payload will be written to the OD of the receiving
Device component, through the port OD WRITE. This process may accordingly trigger a device-specific
action.

idle

trigger

SYNC TRIG
id:=TPDO2REQUEST

idle

receive

RECVOD WRITE
[id = TPDO2]

internal
[id 6= TPDO2]

OD WRITE

RECV frame

TICK

REQUEST frame

SYNC TRIG

Figure 13: T-PDO and R-PDO components

4.2.2 Service Data Objects (SDO)

The SDO components are of two types: SDO Download (D-SDO) and SDO Upload (U-SDO) according
to the protocol’s communication mechanisms. The D-SDO and U-SDO components are responsible for
configuration data exchange in the model, using one of the mechanisms presented in Section 2.2.2. They
correspond accordingly to the SDO Download mechanism and the SDO Upload mechanism. As the SDO
frames are accosiated with two COB-IDs (Section 2.2.4), the Device transmitting the actual data is as-
sociated with the Tx-SDO COB-ID, whereas the Device receiving them with the Rx-SDO COB-ID. The
D-SDO and U-SDO are implemented as compound components in the model, consisting of a Client and a
Server atomic component. The former is illustrated in Figure 14. The SDO components do not implement
any timing model, since service data transmission in CANopen is asynchronous. The Client component
is always initiating data transmission, after it is triggered by an external event, through the ASYNC TRIG
port. The D-SDO Client component is presented in Figure 15. Apart from the ASYNC TRIG port it inter-
acts with the REQUEST and RECV ports, used for interactions with the lower communication layer. All
its remaining ports are internal. Initially, in the S1 state it moves to the S2, whenever it is triggered by
an asynchronous event. Accordingly, it determines if service data transmission is expedited or segmented.
After the data request (REQUEST port) it remains in the S3 state, until it receives (RECV port) a frame
whose id is 1408+clientID and the received server command specifier (scs) is valid. ClientID is the iden-
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tifier of the specific client device. If the transmission was expedited (bit e of byte 0 is set) it will return to
the initial state (S1), otherwise it will repeat the aforementioned process for all the subsequent segments,
initialized according to the device OD and denoted in the model by variable N (model parameter). The
variable counter is decremented in every successful transmission of a request/receive pair, until it is equal
to 1, indicating the last segment (bit c of byte 0 is set). Afterwards, the component moves to the initial
state, otherwise it proceeds to the next segment by the transition next segment. The toggle variable is used
to identify the sequence of successfully received request/response segments (bit t from payload byte 0).

D−SDO

Client Server

REQUEST RECV

ASYNC_TRIG

REQUEST RECV

REQUEST RECV

ASYNC_TRIG

Figure 14: D-SDO compound component
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recv initiate
[recv id = 1408+ clientID]

scs=calc specifier(payload)
if (e 6= 0) then counter:=Nexpedited

[e = 1 ∧ scs = 3]

not valid
[scs 6= 3]

REQUEST
[e 6= 1 ∧ scs = 3]
counter=counter-1

if (counter=1) then c:=1 else c:=0

RECV

recv segment
[recv id = 1408+ clientID]

scs=calc specifier(payload)

not valid
[scs 6= 1]

segment valid
[scs = 1]

toggle:=toggle+1
if (toggle%2) then t:=0 else t:=1

next segment
[c = 0]

last segment
[c = 1]

ASYNC TRIG

REQUEST frame RECV frame

Figure 15: D-SDO Client component

4.2.3 Predefined objects

This category is focused on the SYNC object, as the other objects are not considered mandatory according
to Section 2.2.3.

As for PDO, the SYNC components are divided in two categories: T-SYNC and R-SYNC (Figure 16).
The T-SYNC component is responsible for the SYNC frame transmission. It consists of the states idle,
transmit and the ports: TICK and REQUEST. Initially it is in the idle state, where it interacts through
the TICK port. This port denotes the notion of step time advance in the model, which is calculated and
stored in the variable t. When t is equal to the value of the SYNC period, defined in the device OD, the
transmission is triggered by an internal move to the state transmit. The transmitted frame is initialized
with the SYNC object parameters before the transmission through the port REQUEST. Subsequently, the
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component moves to the trigger state. The R-SYNC component is controlling the SYNC-triggered PDO
transmission. It only triggers a frame transmission upon the successful reception of the SYNC frame.
This component consists of the states idle, receive and the ports: SYNC TRIG and RECV. When a frame
is received through the RECV port, used for the interactions with the lower communication layer, it will
move to the receive state. It returns to the idle state either by triggering the transmission of a PDO frame
(SYNC TRIG port), or internally. The choice is controlled by a specific guard.

idle

transmit

internal
[t = period]

t:=0
id:=SYNC
length:=1

TICK
[t 6= period]

t:=t+1

REQUEST

idle

receive

RECVSYNC TRIG
[id = SY NC]

internal
[id 6= SY NC]

SYNC TRIG

RECV frame

TICK

REQUEST frame

Figure 16: T-SYNC and R-SYNC components

4.2.4 Timing and version issues

A constraint that has to be carefully considered in our model is the choice of the time step advance for
the TICK interaction. Its granularity has to be relative with the baud-rate (speed) of the CAN protocol.
Therefore we consider the time needed for the transmission of one bit to the Bus equal to one-step advance
in our model. For example a baud-rate of 500 kbit/s, corresponds to a time step advance of 2 microseconds
(µs). Subsequently, 2µs of real time will be taken as a one-step advance in our model.

The version of the CANopen protocol model represents the functionality of the most recent communi-
cation profile [13], which additionally implies that the SYNC object is not anymore mapped to an empty
frame, but includes an 1-byte counter as payload. Moreover, currently we don’t consider hardware or
transmission errors. Therefore, the SDO abort frame is not included in the model.

4.2.5 Concluding remarks on the modeling

The construction of a formal model facilitated the identification of some important issues in CANopen
communication. Initially, in SDO communication the data size parameter is optional and usually not indi-
cated in CANopen systems before as well as during the transfer. Even though this type of objects should
always be addressed with the lowest priority, the receiver cannot perform a consistency check, which is
consequently reducing the robustness of the protocol. Another important issue is related to the number of
unused data bytes in some SDO frames, instead filled with padding, in order to follow the 7-byte data re-
quest/receive pair specification. The outcome is the introduction of significant overhead to the lower-layer
transmission protocol, which might cause additional delays in the transmission of high-priority frames,
especially during SDO block transfers.

Overall, the built component libraries contained 14 types of atomic components for CANopen and 3
types of atomic components for CAN.

5 Validation and experiments
The conducted experiments are focusing on validation and performance evaluation of CAN and CANopen
applying the presented approach to two case studies. The first concerns a deterministic powertrain network
benchmark [14], triggering periodic or stochastic data transmission through the CAN bus. The second is
related to the Pixel Detector Control System (DCS), used as the innermost part for the ongoing ATLAS
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experiment at CERN’s Large Hadron Collider (LHC) particle accelerator [3], where communication is
handled by CANopen.

5.1 Powertrain network

5.1.1 Deterministic model

For this case study we compare our approach with existing domain-specific tools, such as NETCAR-
BENCH [8]. The comparison is done in terms of accuracy and simulation time.

The CAN application layer is represented as a collection of Device components. These components
are atomic and contain a transmission and a reception part. Figure 17 illustrates the former part. Frame
transmission is handled by the REQUEST port, whereas frame reception by the RECV port. Each frame
is triggered when its specific period is reached (port generate). This is achieved by consecutively incre-
menting variable t whenever the interaction through the port TICK is possible. Specifically, this interaction
is enabled until t is equal to the minimum period of the array P, responsible of storing the periods for all
the frames. The size of P is a model parameter, denoted as N. As the periods here are fixed, the minimum
period of every Device component is only calculated in the initial state.

R1 R2

R3

generate
[t = period]

t:=0

TICK
[t < period]

t++

init(P)
period := min(P)

internal
[i = N]

period := min(P)

trig
[i < N]

P[i]− = period
REQUEST
[P[i] = 0]
init(P[i])

i++

internal
[P[i] 6= 0]

TICK

REQUEST frame RECV frame

Figure 17: Deterministic powertrain component

The deterministic powertrain network benchmark was generated by NETCARBENCH. It consisted of
5 Electronic Control Units (ECUs) communicating over a Bus with a bit-rate of 500kbit/s. The queuing
policy used was HPF and the observed Bus load was 13.8%, distributed approximately equal in every ECU.
Bit-stuffing was fixed to 10%, meaning s was equal to 10 for every frame in Equation 2. Transmission
offsets and clock drifts were not considered in this model. All parameters concerning the frame identifier,
period and payload are provided in Table 4. Our analysis focused on the frame response times using two
methods. The first method applied the BIP design flow on the generated benchmark, to construct and
analyze the BIP system model. The derived translation represented the entire SW/HW system, reflected
by the benchmark. The obtained system model was accordingly simulated using the associated simulation-
based tools. The second method provided the generated benchmark as input to RTaW-Sim [21].

The system model in BIP contains 15 atomic components for the CAN protocol model and 5 atomic
components for the application model. It also uses 60 connectors (40 for the CAN protocol and 20 for the
application model). The total number of transitions in the system is 255 (210 for the CAN protocol and 45
for the application model). Overall the model totals about 1250 lines of BIP textual code.

Figure 18 illustrates the results obtained using the two methods, where the analysis focused in three
categories, that is minimum, average and worst-case frame response times. The results were identical for
both methods, in all the aforementioned categories. From the conducted analysis we can also note that
approximately 55% of the frames had a deterministic response time, where the remaining 45% had a fixed
blocking time, due to higher priority frame transmission.
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ECU CAN ID Period (ms) Payload

1

189 10 5
200 20 1
269 50 2
298 50 8
533 100 6
685 2000 8

2

328 20 6
371 100 8
379 20 8
477 50 5
506 200 8

3

262 20 7
427 50 7
472 100 6
492 100 7
774 2000 8
977 1000 8

4

159 20 6
208 20 7
321 50 7
480 50 8
502 100 4
628 200 7
690 2000 8
776 1000 8

5

260 20 4
307 50 6
370 100 5
473 50 6
724 200 7

Table 4: Network configuration parameters
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Figure 18: BIP/RTaW-Sim frame response times for the powertrain network

A real system time of 1 hour was simulated in 5 minutes and 30 seconds using the BIP simulator and
in 13.5 seconds using the RTaW-Sim simulator. The observed divergence occurred due to the difference in
the simulation models. The BIP simulator is state-based, whereas RTaW-Sim is an event-based simulator.
Nevertheless, we are currently introducing existing model transformations [7] in the BIP system model, in
order to improve the simulation time.
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5.1.2 Stochastic model

We accordingly introduce a stochastic behavior to the previous powertrain network case-study. This is
accomplished by adding first a probabilistic margin (jitter) for every period, subsequently reducing the
load on the Bus. Each margin follows a Poisson distribution based on a mean rate equal to 1/10 of each
period. The probabilistic margins are stored in the array m (Figure 19). These are added to the frame
periods and the resulting period is stored in the array D. As the minimum period of every stochastic Device
component is not fixed it has to be calculated iteratively and not only in the initial state. The second
step is the introduction of a stochastic bit-stuffing, thus the additional response time is not fixed as well.
Consequently, parameter s in Equation 2 varies according to a uniform distribution in the range [1,25] and
each transmitted frame has a different response time. The results, shown in Figure 20, are also divided in
the three aforementioned categories. As it is observed, in average all the frames have a very small blocking
time. However, due to the non-deterministic behavior of the system, response times cannot be described
only through the previous timing analysis. Therefore, in Figure 21 we focus on a particular frame, in order
to show the probabilistic variation of the obtained response times.

R1 R2

R3

generate
[t = period]

t:=0

TICK
[t < period]

t++

m := choose(λmargin)
D:=init(P+m)

period := min(D)

internal
[i = N]

period := min(D)

trig
[i < N]

D[i]− = period

REQUEST
[D[i] = 0]

m[i] := choose(λmargin)
D[i]=init(P[i]+m[i])

i++

internal
[D[i] 6= 0]

TICK

REQUEST frame RECV frame

Figure 19: Stochastic powertrain Device component
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Figure 20: BIP frame response times for the stochastic powertrain network

This model exceeds the simulation capabilities of NETCARBENCH. It can also be analyzed using the
recently incorporated statistical-model checking tool of the BIP toolset [4].
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Figure 21: Response time distribution of a frame

5.2 Pixel Detector Control System
The conducted experiments focused on the Pixel Detector Control System (DCS), used as the innermost
part for the ongoing ATLAS experiment at CERN’s Large Hadron Collider (LHC) particle accelerator. For
the particular case study we consider an extension to the test beam of 2002, previously presented in [18],
used for the calibration and performance evaluation of the detector modules used in the experiment.

The chosen test beam is presented in Figure 22 and consists of two Detector systems, where each
one contains four pixel detector modules. Each pixel detector module is equipped with a temperature
sensor, used in order to measure its operating temperature and accordingly determine its lifetime. The
measurements are subsequently provided as input to a thermal interlock system (Interlock Box) and a plug-
on I/O board manufactured in CERN, named as ELMB (Embedded Local Monitor Board), in order to be
transmitted to a Detector Control System (DCS) Station through the CAN Bus, using CANopen as the
communication protocol. The application software as well as the hardware configuration for the ELMB
board can be found in [17]. This manual also provides a full listing of the Object Dictionary, defining
not only the standard objects according to the DS-401 Device Profile [12], but also manufacturer-specific
objects for the ELMB.

A new scan cycle begins every 1 second and in the course of it all the pixel detector modules are
scanned. A TPDO2 frame is transmitted whenever a CoS in a module is detected. The transmitted frame
contains the ADC readout in counts (ADC resolution). However, after a power-up or a reset of the ELMB
the ADC voltage ranges need to be re-calibrated through a TPDO3 frame. This frame contains the input
voltage in µV and is transmitted prior to the generation of a TPDO2 frame. Since each temperature sensor
is exposed to safety risks, the Interlock Box is responsible of comparing the input data to a reference value
(threshold) as well as for the generation of a logical signal, if the temperature is found higher. The output
of every Interlock Box module is provided to a Logic Unit, which is also monitored by an ELMB module.
This module is used to transmit the generated signal as a TPDO1 frame, informing the associated pixel
detector that it is overheated, in order to enable its Cooling Box. The coolant flow inside each Cooling
Box is set and controlled by an expedited SDO frame. Therefore, two additional ELMB modules are
considered, each one obtaining coolant flow data from a Regulator module. Subsequently they establish a
peer-to-peer communication channel with the corresponding ELMB of each Detector module and transmit
the data through an SDO Download operation. Finally, although the DCS Station is mainly used for data
logging, it is also responsible for the periodical transmission of the SYNC frame, informing the ELMB
module of every Detector to abort the current scan cycle and accordingly start a new one.

The bit-rate of the CAN Bus for the particular test beam is set to 125kbit/s. An equally important
remark is that during the initialization phase of the system the DCS Station initializes properly, all the
ELMB devices, storing via an SDO Download operation all the COB-IDs correctly in their OD.

The existence of certain requirements for the DCS ensure the proper functionality of the system. They
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Index Subindex Description Type
4096 (1000h) device type Unsigned32
4097 (1001h) error register Unsigned8

:::: :::: ::::
5120 (1400h) 1st receive PDO communication parameter PDOComPar

0 Number of entries Unsigned8
1 COB-ID used by PDO Unsigned32
2 transmission type Unsigned8
3 inhibit time Unsigned16
4 Reserved
5 Event timer Unsigned8

:::: :::: ::::
5632 (1600h) 1st receive PDO mapping parameter PDOMapping

0 Number of mapped objects in PDO Unsigned8
1 1st object to be mapped Unsigned32
2 2nd object to be mapped Unsigned32
3 3rd object to be mapped Unsigned32

:::: :::: ::::
6144 (1800h) 1st transmit PDO communication parameter PDOComPar

0 Number of entries Unsigned8
1 COB-ID used by PDO Unsigned32
2 transmission type Unsigned8
3 inhibit time Unsigned16
4 Reserved
5 Event timer Unsigned8

:::: :::: ::::
6656 (1A00h) 1st transmit PDO mapping parameter PDOMapping

0 Number of mapped objects in PDO Unsigned8
1 1st object to be mapped Unsigned32
2 2nd object to be mapped Unsigned32
3 3rd object to be mapped Unsigned32

:::: :::: ::::
24576 (6000h) digital input

0 Number of digital inputs Unsigned8
1 read 8 inputs 1-8 Unsigned8

25600 (6400h) analog input
0 Number of analogue inputs Unsigned8
1 input 1 Integer16
2 input 2 Integer16
3 input 3 Integer16
4 input 4 Integer16

Table 5: Object Dictionary of the ELMB

Interlock Box

Logic Unit

Cooling Box Cooling BoxInterlock Box

CAN Bus

ELMB1ELMB2

ELMB3
ELMB4ELMB5

DCS Station

Detector 2 Detector 1

Regulator 2 Regulator 1

Figure 22: Pixel Detector Control System

are divided in two categories: those concerning the physics and performance of the DCS individual subsys-
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tems, found in the CERN Document Server 7, and those related to the communication through CANopen.
Specific requirements belonging to the second category are:

1. In case of an increased sensor temperature the Logic Unit must inform the DCS Station rapidly,
through a TPDO1 frame. Thus, the TPDO1 frame must have a zero blocking time, once triggered.

2. When ELBM1 or ELMB2 is reset a TPDO3 frame should be transmitted before a CoS in a pixel
detector module is detected, since the generated TPDO2 will require an ADC conversion.

3. The coolant flow must be set at least once before a Cooling Box is required to cool an indicated pixel
detector module. Consequently, ELMB4 and ELMB5 should initiate the transmission of the D-SDO
frame before any other frame in the network is triggered.

We constructed the model of the Pixel Detector Control System, using the library of CANopen com-
ponents presented in Section 4.2. The resulting BIP system for the DCS is illustrated in Figure 23. It is
comprised by 39 atomic components forming the CANopen communication layer and 13 atomic compo-
nents for the CAN protocol. The generated BIP model used 95 connectors (53 for the CANopen and 42
for the lower-layer communication model). The total number of transitions for this system was 427 (174
for the CANopen and 252 for the lower-layer communication model). Overall the model totals about 2300
lines of BIP textual code.
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R−SYNC

R−PDO1
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R−PDO3

ASYNC_TRIG
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TICK ASYNC_TRIGTICK ASYNC_TRIG

Figure 23: BIP model of the Pixel Detector Control System

For the conducted experiments we used real temperature data provided as input to the model, thus de-
riving a distribution for the temperature changes, as well as the reference value (threshold) for the Interlock
Box. Moreover, the external event triggering an SDO transmission was modeled as an asynchronous timer
generating event interrupts, whenever it expired.

A real system time of 4 hours was simulated in 2 minutes and 43 seconds using the BIP simulator. The
obtained results are illustrated in terms of minimum, average and worst-case frame response times in Figure
24. The existing COB frames of the DCS system are represented in the horizontal axis. As it is observed
the response times (in milliseconds) are highly dependent from the choice of the lower-layer scheduling
policy (here HPF). Due to the stochastic behavior of the system, the blocking time for each transmission
varies according to the Bus load at the given instant. This variation between the minimum (zero) and the
worst-case (maximum) blocking time depends on the frame identifier, defining its priority on the system.
In particular, the SYNC frame (COB-ID 128) has a relatively small variation compared to the D-SDO
frames of ELMB1 and ELMB2 (COB-IDs 1540 and 1541 respectively). In this analysis the response time
of the SDO frames is measured from the instantiation of the request frame until the transmission end of the
response frame.

7http://cds.cern.ch/record/391176
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Figure 24: Frame response times computed from the BIP model

In order to evaluate the system requirements we describe the above requirements with stochastic tem-
poral properties using the Probabilistic Bounded Linear Temporal Logic (PBLTL) formalism [4]. We
accordingly present the results derived properties after an extensive number of simulations using the SBIP
model checker 8.

Property 1: Requirement 1. This property is expressed as φ1 = 210000000(Tinhibit > TTPDO1),
where 10000000 indicates the number of steps for each simulation, corresponding to a large number of
communication cycles. Furthermore, Tinhibit is the inhibit time and TTPDO1 the response time of the
TPDO1 frame (COB-ID 388). For the DCS system Tinhibit is equal to 1 sec, which much greater than the
worst-case response time of TPDO1 (TTPDO1max = 1.72 msec from Figure 24). Therefore P (φ1) = 1
and this requirement is always satisfied.

Property 2: Requirement 2. In the second experiment, we try to estimate the property
φ2 = �10000000(TTPDO2 < TTPDO3), where 10000000 is explained as above, TTPDO2 and TTPDO3

denote the response time of TPDO2 and TPDO3 following an ELMB reset (Figure 25). The conducted
experiments have shown that if a scan cycle is initiated through the reception of the SYNC frame, a CoS can
be detected before the generation of a TPDO3 frame. However, a reset in ELMB1 or ELMB2 occurred in
approximately 3% of the simulations, thus this property was quantified as P (φ2) = 0.005. This probability
is equal to the tool’s level of confidence, thus the requirement is considered as satisfied.

Property 3: Requirement 3. Finally, we tested through simulation the property: φ3 = 224000(tTPDO2 >
tD−SDO), where 24000 is the number of steps required for the initialization period as Tinit is 2 sec,
tTPDO2 is the system time at the end of the TPDO2 frame transmission and tD−SDO is the system time at
the beginning of the D-SDO frame transmission. Since the D-SDO frame was generated asynchronously,
this property was quantified as P (φ3) = 0.1. As it is observed by Figure 26, focusing in a specific sim-
ulation, the TPDO2 frames from ELMB1 and ELBM2 finish their transmission before a D-SDO frame.
Moreover the conducted experiments have shown that even when the D-SDO frame was generated before
the first instance of a TPDO2 frame, it was mostly blocked due to its lowest priority for this system.

8http://www-verimag.imag.fr/Statistical-Model-Checking.html
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Figure 26: Response time graph for TPDO1, TPDO2 and D-SDO

6 Conclusion and ongoing work

We have presented a systematic method to construct detailed functional models for CANopen systems
in the BIP component framework. The construction method is fully structural, that is, it preserves the
CANopen system structure in BIP, meaning systems consisting of a number of network-connected devices,
which in turn, consist of a number of interacting communication objects, as defined in the device and
the communication profile accordingly. The model captures both functional and extra-functional aspects,
referring to timing characteristics for periodic and aperiodic transmission. The models are fully operational,
they can be tested, simulated and validated using statistical model checking tools available in the BIP
toolset.

For the time being, our model uses the CAN protocol for the low-layer network communication. How-
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ever, its use also raises practical limitations as with unconfirmed services, since there is no possibility of
knowing when a frame is lost. A possible solution would be the use of individual polling from the Mas-
ter device. Nevertheless, this method will produce additional overhead, if there is no CoS in a number
of devices. Furthermore, the two COB-IDs defined for SDO communication allow only one client/server
channel in the network at a time. In the opposite case collisions or conflicts are inevitable. Additionally,
the growing use of extensive networks and the rising data load are increasing the complexity of CANopen
systems nowadays. One of the main reasons behind this is the low bandwidth (1 Mbit/s) and the limitation
in the network length (127 nodes and 25m max bus length). CAN FD was introduced, in order to ameliorate
the former limitation, nonetheless the bandwidth is only increased during the data transmission period.

For all these reasons, we are working on further extensions, in order to support CANopen systems de-
ployed on other wired or wireless protocols. The two most interesting protocols in this domain are the IEEE
802.3, used for wired Ethernet communication and the IEEE 802.11, used for wireless communication. In
the scope of these extensions, we shall map the presented primitives and communication mechanisms of
CANopen to each aforementioned protocol.
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