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Abstract

This paper proposes a framework for information flow security in component-based systems
which follows the model-driven security approach. The security policy is defined and verified
from the early steps of the system design. Two kinds of non-interference properties are for-
mally introduced and for both of them, sufficient conditions that ensures and simplifies the au-
tomated verification are proposed. The verification is compositional, first locally, by checking
the behavior of every atomic component and then globally, by checking the inter-components
communication and coordination. The benefit of the approach is illustrated through an appli-
cation to secure heterogeneous distributed systems.
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1 Introduction

The amount and complexity of nowadays conceived systems and software knows a continuous increase.
Information protection and secure information flow between these systems is paramount and represent
a great design challenge. Model driven security (MDS) [7] is an innovative approach that tends to solve
system-level security issues by providing an advanced modeling process representing security requirements
at a high level of abstraction. Indeed, MDS guarantees separation of concerns between functional and
security requirements, from early phases of the system development till final implementation.

Information flow security can be ensured using various mechanisms. Amongst the first approaches consid-
ered, ones find access control mechanisms [26, 19], that allow protecting data confidentiality by limiting
access to data to be read or modified only by authorized users. Unfortunately, these mechanisms have
been proven incomplete and limited since only by preventing the direct access to data, indirect (implicit)
information flows are still possible given rise to the so called covert channels [28]. As an alternative,
non-interference has been studied as a global property to characterize and to develop techniques ensuring
information flow security. Initially defined by Goguen and Meseguer [17], non-interference ensures that
the system’s secret information does not affect its public behavior.

In this work, we adapt the MDS approach to develop a component-based framework, named secBIP that
guarantees automated verification and implementation of secure information flow systems with respect to
specific definition of non-interference. In general, component-based frameworks allow the construction
of complex systems by composition of atomic components with communication and coordination opera-
tors. That is, systems are obtained from unitary atomic components that can be independently deployed
and composed with other components. Component-based frameworks are usually well adopted for man-
aging key issues for functional design including heterogeneity of components, distribution aspects, perfor-
mance issues, etc. Nonetheless, the use of component-based frameworks is also beneficial for establishing
information flow security. Particularly, the explicit system architecture allows tracking easily intra and
inter-components information flow.

The secBIP framework is built as an extension of the BIP [9, 8] framework encompassing information
flow security. SecBIP allows creating systems that are secure by construction if certain local conditions
hold for composed components. The secBIP extension includes specific annotations for classification of
both data and events. Thanks to the explicit use of composition operators in BIP, the information flow is
easily tracked within models and security requirements can be established in a compositional manner, first
locally, by checking the behavior of atomic components and then globally, by checking the communication
and coordination inter-components.

Information flow security has been traditionally studied separately for language-based models [25, 29] (see
also the survey [24]) and trace-based models [21, 22, 30, 20]. While the former mostly focus on verifica-
tion of data-flow security properties in programming languages, the latter is treating security in event-based
systems. In secBIP, we achieve a useful combination between both aspects, data-flow and event-flow secu-
rity, in a single semantics model. We introduce and distinguish two types of non-interference, respectively
event non-interference and data non-interference. For events, non-interference states that the observation
of public events should not allow deducing any information about the occurrence of secret events. For data,
it states that there is no leakage of secret data into public ones.

The paper is structured as follows. Section 2 recalls the main concepts of the component-based framework
adopted in this work. In section 3, we formally introduce the security extension and we provide the two
associated definitions of non-interference, respectively for data flows and event flows. Next, in section 4 we
formally establish non-interference based on unwinding relations and we provide sufficient conditions that
facilitate its automatic verification. In section 5, we provide a use-case as illustrative example. Section 6
discusses the related work and section 7 concludes and presents some lines for future work. Finally, due to
space limitations, all the proofs of technical results are given in an appendix. A full self-contained version
including the proofs can be found as technical report [?].
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Figure 1: Atomic Component.

2 Component-Based Design
The secBIP framework is built as an extensions of the BIP [9, 8]. BIP is a formal component-based frame-
work for modeling, design and implementation of heterogeneous real-time systems, fully implemented
and available on [1]. BIP stands for behavior, interaction and priority, that is, the three layers used for
the definition of components and their composition in this framework. BIP allows the construction of
complex, hierarchically structured models from atomic components characterized by their behavior and
their interfaces. Such components are transition systems enriched with data. Transitions are used to move
from a source to a destination location. Each time a transition is taken, component data (variables) may
be assigned new values, computed by user-denied functions (in C). Atomic components are composed by
layered application of interactions and priorities. Interactions express synchronization constraints and do
the transfer of data between the interacting components. Priorities are used to filter amongst possible inter-
actions and to steer system evolution so as to meet performance requirements e.g., to express scheduling
policies.
In this section, we formally introduce the key concepts of BIP which are further relevant for dealing with
information flow security. In particular, we give a formal definition of atomic components and their com-
position through multiparty interactions. Priorities are not considered in this work.

2.1 Atomic Components

Definition 1 (atomic component) An atomic component B is a tuple (L,X, P, T ) where L is a set of
locations, X is a set of variables, P is a set of ports and T ⊆ L × P × L is a set of port labelled
transitions. For every port p ∈ P , we denote by Xp the subset of variables exported and available for
interaction through p. For every transition τ ∈ T , we denote by gτ its guard, that is, a boolean expression
defined on X and by fτ its update function, that is, a parallel assignment {x := exτ}x∈X to variables of
X .

Example 1 Figure 1 provides an example of an atomic component. It contains two control locations l1
and l2 and two ports p1 and p2. The transition labeled with p1 can take place only if the guard (0 < x) is
true. When the transition takes place, the variable y is recalculated as some function of x.

Let D be the data domain of variables. Given a set of variables Y , we call valuation on Y any function
y : Y → D mapping variables to data. We denote by Y the set of all valuations defined on Y .

Definition 2 (atomic component semantics) The semantics of an atomic component B = (L,X,P, T ) is
defined as the labelled transition system LTS(B) = (QB ,ΣB ,−→

B
) where the set of states QB = L ×X,

the set of labels is ΣB = P ×X and the set of labelled transitions −→
B

is defined by the rule:

ATOM
τ = `

p−→ `′ ∈ T x′′p ∈ Xp gτ (x) x′ = fτ (x[Xp ← x′′p ])

(`,x)
p(x′′

p )−−−→
B

(`′,x′)
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That is, (`′,x′) is a successor of (`,x) labelled by p(x′′p) iff (1) τ = `
p−→ `′ is a transition of T , (2)

the guard gτ holds on the current valuation x, (3) x′′p is a valuation of exported variables Xp and (4)
x′ = fτ (x[Xp ← x′′p ]) meaning that, the new valuation x′ is obtained by applying fτ on x previously
modified according to x′′p . Whenever a p-labelled successor exist in a state, we say that p is enabled in that
state.

2.2 Composite Components
Composite components are obtained by composing an existing set of atomic components {Bi = (Li, Xi, Pi, Ti)}i=1,n

trough specific composition operators. We consider that atomic components have pairwise disjoint sets of
states, ports, and variables i.e., for any two i 6= j from {1..n}, we have Li ∩ Lj = ∅, Pi ∩ Pj = ∅, and
Xi ∩Xj = ∅. We denote P =

⋃n
i=1 Pi the set of all the ports, L =

⋃n
i=1 Li the set of all locations, and

X =
⋃n
i=1Xi the set of all variables.

Definition 3 (interaction) An interaction a between atomic components is a triple (Pa, Ga, Fa), where
Pa ⊆ P is a set of ports,Ga is a guard, andFa is an update function. By definition, Pa uses at most one port
of every component, that is, |Pi ∩ Pa| ≤ 1 for all i ∈ {1..n}. Therefore, we simply denote Pa = {pi}i∈I ,
where I ⊆ {1..n} contains the indices of the components involved in a and for all i ∈ I, pi ∈ Pi. Ga and
Fa are both defined on the variables exported by the ports in Pa (i.e.,

⋃
p∈Pa Xp).

Definition 4 (composite component) A composite component C = γ(B1, . . . , Bn) is obtained by apply-
ing a set of interactions γ to a set of atomic components B1, . . . Bn.

Producer Buffer Consumer

pu
t

pu
t

ge
t

ge
t

γ : {{put, put}, {get, get}, {produce}, {consume}}

produce consume

produce consume

l2

put

l1
l4

l5

get

x = 0

l3

get
[x ≥ 1]
x = x− 1

x = x + 1
put

Figure 2: Producer-Buffer-Consumer example

Example 2 Figure 2 presents a classical producer-buffer-consumer example modeled in secBIP. It consists
of three atomic components, namely Producer, Buffer and Consumer. The Buffer is a shared memory
placeholder, which is accessible by both the Producer and the Consumer. It holds into the local variable
x the number of items available. The Buffer interacts with the Producer (res. Consumer) on the put (resp.
get) interaction. On the put interaction, an item is added to the Buffer and x is incremented. On the get
interaction, the Consumer removes an item from the Buffer, if at least one exists (the guard [x ≥ 1]), and x
is decremented. Finally, the transitions labeled produce and consume do not require synchronization - they
are executed alone (on singleton port interactions) by the respective components.

Definition 5 (composite component semantics) Let C = γ(B1, . . . , Bn) be a composite component. Let
Bi = (Li, Xi, Pi, Ti) and LTS(Bi) = (Qi,Σi,−−→

Bi
) their semantics, for all i = 1, n. The semantics of C

is the labelled transition system LTS(C) = (QC ,ΣC ,−→
C

) where the set of states QC = ⊗ni=1Qi, the set of

labels ΣC = γ and the set of labelled transitions −→
C

is defined by the rule:

COMP

a = ({pi}i∈I , Ga, Fa) ∈ γ Ga({xpi}i∈I) {x′′pi}i∈I = Fa({xpi}i∈I)

∀i ∈ I. (`i,xi)
pi(x

′′
pi

)
−−−−→

Bi
(`′i,x

′
i) ∀i 6∈ I. (`i,xi) = (`′i,x

′
i)

((`1,x1), . . . , (`n,xn))
a−→
C

((`′1,x
′
1), . . . , (`′n,x

′
n))
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For each i ∈ I , xpi above denotes the valuation xi restricted to variables of Xpi .

The rule expresses that a composite component C = γ(B1, . . . , Bn) can execute an interaction a ∈ γ
enabled in state ((`1,x1), . . . , (`n,xn)), iff (1) for each pi ∈ Pa, the corresponding atomic component Bi
can execute a transition labelled by pi, and (2) the guardGa of the interaction holds on the current valuation
of variables exported on ports participating in a. Execution of interaction a triggers first the update function
Fa which modifies variables exported by ports pi ∈ Pa. The new values obtained, encoded in the valuation
x′′pi , are then used by the components’ transitions. The states of components that do not participate in the
interaction remain unchanged.
Any finite sequences of interactions w = a1...ak ∈ γ∗ executable by the composite component start-
ing at some given initial state q0 is named a trace. The set of all traces w from state q0 is denoted by
TRACES(C, q0).

3 Information Flow Security
We explore information flow policies [11, 10, 17] with focus on the non-interference property. In order
to track information we adopt the classification technique and we define a classification policy where we
annotate the information by assigning security levels to different parts of secBIP model (data variables,
ports and interactions). The policy describes how information can flow from one classification with respect
to the other.
As an example, we can classify public information as a Low (L) security level and secret (confidential)
information as High (H) security level. Intuitively High security level is more restrictive than Low security
level and we denote it by L ⊆ H . In general, security levels are elements of a security domain, defined as
follows:

Definition 6 (security domain) A security domain is a lattice of the form 〈S,⊆,∪,∩〉 where:

• S is a finite set of security levels.

• ⊆ is a partial order "can flow to" on S that indicates that information can flow from one security
level to an equal or a more restrictive one.

• ∪ is a "join" operator for any two levels in S and that represents the upper bound of them.

• ∩ is a "meet" operator for any two levels in S and that represents the lower bound of them.

As an example we consider the set S = {L,M1,M2, H} of security levels that are governed by the "can
flow to" relation L ⊆ M1, L ⊆ M2, M1 ⊆ H and M2 ⊆ H . M1 and M2 are incomparable and we note
M1 *M2 and M1 +M2. This security domain is graphically illustrated in figure 3.

H

M2

L

M1

Figure 3: Security domain

Let C = γ(B1, . . . Bn) be a composite component, fixed. Let X (resp. P ) be the set of all variables (resp.
ports) defined in all atomic components (Bi)i=1,n.
Let 〈S,⊆,∪,∩〉 be a security domain, fixed.

Definition 7 (security assignment) A security assignment for componentC is a mapping σ : X∪P∪γ →
S that associates security levels to variables, ports and interactions such that, moreover, the security levels
of ports matches the security levels of interactions, that is, for all a ∈ γ and for all p ∈ P it holds
σ(p) = σ(a).
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In atomic components, the security levels considered for ports and variables allow to track intra-component
information flows and control the intermediate computation steps. Moreover, inter-components communi-
cation, that is, interactions with data exchange, are tracked by the security levels assigned to interactions.
Let σ be a security assignment for C, fixed.
For a security level s ∈ S, we define γ ↓σs the restriction of γ to interactions with security level at most s
that is formally, γ ↓σs= {a ∈ γ | σ(a) ⊆ s}.
For a security level s ∈ S, we define w|σs the projection of a trace w ∈ γ∗ to interactions with security level
lower or equal to s. Formally, the projection is recursively defined on traces as ε|σs = ε, (aw)|σs = a(w|σs )
if σ(a) ⊆ s and (aw)|σs = w|σs if σ(a) 6⊆ s. The projection operator |σs is naturally lifted to sets of traces
W by taking W |σs = {w|σs | w ∈W}.
For a security level s ∈ S, we define the equivalence ≈σs on states of C. Two states q1, q2 are equivalent,
denoted by q1 ≈σs q2 iff (1) they coincide on variables having security levels at most s and (2) they coincide
on control locations having outgoing transitions labeled with ports with security level at most s.
We are now ready to define the two notions of non-interference.

Definition 8 (event non-interference) The security assignment σ ensures event non-interference of γ(B1, . . . , Bn)
at security level s iff,

∀q0 ∈ Q0
C : TRACES(γ(B1, . . . , Bn), q0)|σs = TRACES((γ ↓σs )(B1, . . . , Bn), q0)

Event non-interference ensures isolation/security at interaction level. The definition excludes the possibil-
ity to gain any relevant information about the occurrences of interactions (events) with strictly greater (or
incomparable) levels than s, from the exclusive observation of occurrences of interactions with levels lower
or equal to s. That is, an external observer is not able to distinguish between the case where such higher
interactions are not observable on execution traces and the case these interactions have been actually stati-
cally removed from the composition. This definition is very close to Rushby’s [23] definition for transitive
non-interference. But, let us remark that event non-interference is not concerned about the protection of
data.

L

L

H

H

L

comp3

comp2comp1

l1

l2

l3
l5

b2

c1

a2

c2

b2

d2

a1

b1

a2

l6

l7
d3

b3
b3

b1

c1

a1

d2

c2
d3

l4

Figure 4: Example for event non-interference.

Example 3 Figure 4 presents a simple illustrative example for event non-interference. The model consists
of three atomic components compi,i=1,2,3. Different security levels have been assigned to ports and in-
teractions: comp1 is a low security component, comp2 is a high security component, and comp3 is mixed
security component. The security levels are represented by dashed squares related to interactions, internal
ports and variables. As a convention, we apply high (H) level for secret data and interactions and low(L)
level for public ones. The set of traces is represented by the automaton in figure 5 (a). The set of projected
execution traces at security level L is represented by the automaton depicted in figure 5 (b). This set is
equal to the set of traces obtained by restricted composition, that is, using interaction with security level at
most L and depicted in figure 5 (c). Therefore, this example satisfies the event non-interference condition
at level L.
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(a)

l1l4l7

l3l4l6 l2l5l7

l2l5l6

a1a2

b1c2

a1a2

l3l4l7

l1l4l6

(b)

l1l4l7

l3l4l6 l2l5l7

l2l5l6
τc1

c1 c1

c1

b1c2b1c2
d2d3

τ

τ

(c)

a1a2

b1c2

l1l4l6

l3l4l6

l2l5l6

c1

Figure 5: Sets of traces represented as automata.

Definition 9 (data non-interference) The security assignment σ ensures data non-interference of C =
γ(B1, . . . , Bn) at security level s iff,

∀q1, q2 ∈ Q0
C : q1 ≈σs q2 ⇒

∀w1 ∈ TRACES(C, q1), w2 ∈ TRACES(C, q2) : w1|σs = w2|σs ⇒
∀q′1, q′2 ∈ QC : q1

w1−−→
C

q′1 ∧ q2
w2−−→
C

q′2 ⇒ q′1 ≈σs q′2

Data non-interference provides isolation/security at data level. The definition ensures that, all states reached
from initially indistinguishable states at security level s, by execution of arbitrary but identical traces when-
ever projected at level s, are also indistinguishable at level s. That means that observation of all variables
and interactions with level s or lower excludes any gain of relevant information about variables at higher
(or incomparable) level than s. Compared to event non-interference, data non-interference is a stronger
property that considers the system’s global states (local states and valuation of variables) and focus on their
equivalence along identical execution traces (at some security level).

Example 4 Figure 6 presents an extension with data variables of the previous example from figure 4. We
consider the following two tracesw1 = 〈a1a2,b2b3, c2b1, d2d3, c1, a2a1〉 andw2 = 〈a1a2, b2b3, c2b1, c1, a2a1〉
that start from the initial state ((l1, u = 0, v = 0), (l4, x = 0, y = 0), (l6, z = 0, w = 0)). Although the
projected traces at level L are equal, that is, w1|σL = w2|σL = 〈a1a2, c2b1, c1, a1a2〉, the reached states
by w1 and w2 are different, respectively ((l2, u = 4, v = 2), (l5, x = 3, y = 2), (l6, z = 1, w = 1)) and
((l2, u = 4, v = 2), (l5, x = 2, y = 2), (l7, z = 1, w = 0)) and moreover non-equivalent at low level L.
Hence, this example is not data non-interferent at level L.

L

L

H

H

w: low
z: highL

u: low
v: high

y=y+1

u=0
v=0

[y>0]

x: low
y: high

u=u+2

x=x+1

y=0
x=0

v=v+1

y=y+x
v=2v w=w+1x=x+1

comp1
comp3

comp2

z=x

z=0
w=0

l1

l2

l3

l4

l5

b2

a2 b2a1

b1

c2
c1

d2

c1

c2

a1

b3

d3
b1

d2

d3
b3a2

l6

l7

Figure 6: Example for data non-interference.
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Definition 10 (secure component) A security assignment σ is secure for a component γ(B1, . . . , Bn) iff
it ensures both event and data non-interference, at all security levels s ∈ S.

4 Verification

The verification technique of non-interference proposed for secBIP models is using the so-called unwinding
conditions. This technique was first introduced by Goguen and Meseguer for the verification of transitive
non-interference for deterministic systems [17]. The unwinding approach reduces the verification of infor-
mation flow security to the existence of certain unwinding relation. This relation is usually an equivalence
relation that respects some additional properties on atomic execution steps, which are shown sufficient to
imply non-interference. In the case of secBIP, the additional properties are formulated in terms of individ-
ual interactions/events and therefore easier to handle.
Let C = γ(B1, . . . , Bn) be a composite component and let σ be a security assignment for C.

Definition 11 (unwinding relation) An equivalence ∼s on states of C is called an unwinding relation for
σ at security level s iff the two following conditions hold:

1. local consistency
∀q, q′ ∈ QC : ∀a ∈ γ : q

a−→
C
q′ ⇒ σ(a) ⊆ s ∨ q ∼s q′

2. output and step consistency
∀q1, q2, q′1 ∈ QC : ∀a ∈ γ :

q1 ∼s q2 ∧ q1
a−→
C
q′1 ∧ σ(a) ⊆ s⇒

∃q′2 ∈ QC : q2
a−→
C
q′2∧

∀q′2 ∈ QC : q2
a−→
C
q′2 ⇒ q′1 ∼s q′2

The existence of unwinding relations is tightly related to non-interference. The following two theorems
formalize this relation for the two types of non-interference defined. Let C be a composite component and
σ a security assignment.

4.1 Event Non-Interference

In this section we give a formal theorem proof of event non-interference based on the unwinding technique.

Theorem 1 (event non-interference) If an unwinding relation ∼s exists for the security assignment σ at
security level s, then σ ensures event non-interference of C at level s.

Proof: We shall prove TRACES(γ(B1, . . . , Bn), q0)|σs = TRACES((γ ↓σs )(B1, . . . , Bn), q0) by double
inclusion. "⊇" inclusion: Independently of the unwinding relation, by using elementary set properties it
holds that TRACES((γ ↓σs )(B1, . . . , Bn), q0) = TRACES((γ ↓σs )(B1, . . . , Bn), q0)|σs ⊆ TRACES(γ(B1,
. . . , Bn), q0)|σs . "⊆" inclusion: This direction is an immediate consequence of Lemma 1 hereafter. It
states that for every trace w in TRACES(γ(B1, . . . , Bn), q0) its projection w|σs is also a valid trace in
TRACES(γ(B1, . . . , Bn), q0). But, this also means thatw|σs is a valid trace in TRACES((γ ↓σs )(B1, . . . , Bn), q0)
which proves the result. �

Lemma 1 In the conditions of theorem 1, for every trace w in TRACES(γ(B1, . . . , Bn), q0), for every
state q such that q0

w−→
C
q, the projected trace w|σs is also a valid trace in TRACES(γ(B1, . . . , Bn), q0) and

moreover, for every state q′ such that q0
w|σs−−→
C

q′ it holds q ∼s q′.
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Proof: The lemma is proved by induction on the length of the trace w. For the empty trace w = ε
verification is trivial: ∼s holds for the initial state q0 ∼s q0 and ε = ε|σs . By induction hypothesis, let
assume the property holds for traces of length n. We shall prove the property for traces of length n + 1.
Let w′ = wa be an arbitrary trace of length n + 1, let w be its prefix (trace) of length n and let a be the
last interaction. Consider states q, q1 such that q0

w−→
C

q
a−→
C

q1. By the induction hypothesis we know that

w|σs is a valid trace and for all states q′ such that q0
w|σs−−→
C

q′ it holds q ∼s q′. We distinguish two cases,

depending on the security level of a:

∼s
q0 q q1

w a

q′
w|σs

∼s
a q′1

σ(a) ⊆ s

q0 q q1
w a

q′
w|σs

σ(a) * s

∼s

Figure 7: Proof illustration for lemma 1

• σ(a) * s: In this case, w′|σs = w|σs hence, w′|σs is a valid trace as well, reaching the same states q′.
Moreover, since a is invisible for s, the unwinding condition (1) ensures that q ∼s q1. By transitivity,
this implies that q1 ∼s q′, which proves the result.

• σ(a) ⊆ s: In this case, w′|σs = w|σs a. From the unwinding condition (2), since q ∼s q′ and a is
visible and enabled in q then, a must also be enabled in q′. Therefore, w|σs can be extended with a
from state q′ to some q′1 hence, w′|σs is indeed a valid trace. Moreover, since q ∼s q′ the unwinding
condition (2) ensures also that q1 ∼s q′1, which proves the result.

�

4.2 Data Non-Interference
Based on the unwinding technique, we formally give a verification of data non-interference.

Let C = γ(B1, . . . , Bn) be a composite component and let σ be a security assignment for C.

Theorem 2 (data non-interference) If the equivalence relation ≈σs is also an unwinding relation for the
security assignment σ at security level s, then σ ensures data non-interference of C at level s.

Proof: Let us consider two equivalent states q1 ≈σs q2. The first condition for data non-interference
requires that, for any trace w1 from q1 there exists a trace w2 from q2 having the same projection at level
s, that is, w1|σs = w2|σs .
We shall prove a slightly stronger property, namely, the trace w2 can be chosen such that, the successors q′1
and q′2 of respectively q1 by w1 and q2 by w2 are moreover equivalent, that is, q′1 ≈σs q′2. The proof is by
induction on the length of the trace w1. The base case: for the empty trace w1 = ε we take equally w2 = ε
we immediately have q′1 = q1 ≈σs q2 = q′2. The induction step: we assume, by induction hypothesis that
the property holds for all traces w1 such that |w1| ≤ n and we shall prove it for all traces w′1 such that
|w′1| = n+ 1. Let a be the last interaction executed in w′1, that is, w′1 = w1a with |w1| = n. Let q′′1 be the
state reached from q1 by w1. From the induction hypothesis, there exists a trace w2 that leads q2 into q′′2
such that w1|σs = w2|σs and moreover q′′1 ≈σs q′′2 . We distinguish two cases, depending on the security level
of a:

• σ(a) 6⊆ s: since ≈σs is unwinding and q′′1
a−→
C

q′1 it follows that q′′1 ≈σs q′1. In this case, we take

w′2 = w2 and q′2 = q′′2 which ensures both w′1|σs = w1|σs = w2|σs = w′2|σs and q′1 ≈σs q′′1 ≈ q′′2 = q′2.
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• σ(a) ⊆ s: since ≈σs is unwinding and q′′1 ≈σs q′′2 and q′′1
a−→
C

q′1 there must exists q′2 such that

q′′2
a−→
C

q′2 and moreover, for any such choice q′1 ≈σs q′2. Hence, in this case, the trace w′2 = w2a

executed from q2 and leading to q′2 satisfies our property, namely w′1|σs = w1|σs a = w2|σs a = w′2|σs
and q′1 ≈σs q′2.

The second condition for data non-interference requires that, for any tracesw1 andw2 with equal projection
on security level s, that is w1|σs = w2|σs , any successor states q′1 and q′2 of respectively q1 by w1 and q2 by
w2 are also equivalent at level s. This property is proved also by induction on |w1| + |w2|, that is, on the
sum of the lengths of traces w1, w2. The base case: for empty traces w1 = w2 = ε we have that q′1 = q1
and q′2 = q2 and hence trivially q′1 ≈σs q′2. The induction step: we assume, by induction hypothesis that
the property holds for any traces w1, w2 such that |w1|+ |w2| ≤ n and we shall prove it for all traces w′1,
w′2 such that |w′1| + |w′2| = n + 1. We distinguish two cases, depending on the security levels of the last
interactions occurring in w′1 and w′2.

w1

w2q1

q1
a1q′′1

q′′2

q′1
≈σs

≈σs≈σs

w1

w2q1

q1

a2

a1q′′1

q′′2

q′1

q′′2

≈σs ≈σs ≈σs

Figure 8: Proof illustration for theorem 2

• at least one of the last interactions in w′1 or w′2 has a security level not lower or equal to s. W.l.o.g,
consider that indeed w′1 = w1a1 and σ(a1) 6⊆ s. This situation is depicted in figure 8, (left).

Let q′′1 be the state reached from q1 after w1. Since w′1|σs = w′2|σs and σ(a1) 6⊆ s it follows that
w1|σs = w′1|σs = w′2|σs . The induction hypothesis holds then for w1 and w′2 because |w1| + |w′2| =
n − 1 and hence we have that q′′1 ≈σs q′2. Moreover, q′1 is a successor of q′′1 by interaction a1. Since
the security level of a1 is not lower or equal to s, and ≈σs is an unwinding relation at level s, it
follows from the local consistency condition that q′′1 ≈σs q1. Then, by transitivity of ≈σs we obtain
that q′1 ≈σs q′2.

• the last interactions of both tracesw′1 andw′2 have security level lower or equal to s. That is, consider
w′1 = w1a1 andw′2 = w2a2 with σ(a1) ⊆ s, σ(a2) ⊆ s. This situation is depicted in figure 8, (right).

Let q′′1 and q′′2 be the states reached respectively from q1 by w1 and from q2 by w2. Since σ(a1) ⊆
s,σ(a2) ⊆ s we have w′1|σs = w1|σs a1, w′2|σs = w2|σs a2. From the hypothesis, w′1|σs = w′2|σs , it
follows that both a1 = a2 and w1|σs = w2|σs . Therefore, the induction hypothesis can be applied for
traces w1, w2 because |w1|+ |w2| = n− 2 and hence, we obtain q′′1 ≈σs q′′2 . But now, q′1 and q′2 are
immediate successors of two equivalent states q′′1 and q′′2 by executing some interaction a = a1 = a2,
having security level lower or equal to s. Since, ≈σs is an unwinding relation at level s, it follows
from the step consistency condition that successors states q′1 and q′2 are also equivalent at level s,
hence, q′1 ≈σs q′2.

�

4.3 Sufficient Conditions
The two theorems above can be used to derive a practical verification method of non-interference using
unwinding. We provide hereafter sufficient syntactic conditions ensuring that indeed the unwinding rela-
tions ∼s and ≈s exist on the system states. These conditions aim to efficiently simplify the verification
and reduce it to local constrains check on both transitions (inter-component verification) and interactions
(intra-component verification). Especially, they give an easy way to automate the verification.

Definition 12 (security conditions) Let C = γ(B1, . . . , Bn) be a composite component and let σ be a
security assignment. We say that C satisfies the security conditions for security assignment σ iff:
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(i) the security assignment of ports, in every atomic component Bi is locally consistent, that is:

– for every pair of causal transitions:

∀τ1, τ2 ∈ Ti : τ1 = `1
p1−→ `2, τ2 = `2

p2−→ `3 ⇒
`1 6= `2 ⇒ σ(p1) ⊆ σ(p2)

– for every pair of conflicting transitions:

∀τ1, τ2 ∈ Ti : τ1 = `1
p1−→ `2, τ2 = `1

p2−→ `3 ⇒
`1 6= `2 ⇒ σ(p1) ⊆ σ(p2)

(ii) all assignments x := e occurring in transitions within atomic components and interactions are
sequential consistent, in the classical sense:

∀y ∈ use(e) : σ(y) ⊆ σ(x)

(iii) variables are consistently used and assigned in transitions and interactions, that is,

∀τ ∈ ∪ni=1Ti ∀x, y ∈ X : x ∈ def(fτ ), y ∈ use(gτ ) ⇒
σ(y) ⊆ σ(pτ ) ⊆ σ(x)

∀a ∈ γ ∀x, y ∈ X : x ∈ def(Fa), y ∈ use(Ga) ⇒
σ(y) ⊆ σ(a) ⊆ σ(x)

(iv) all atomic components Bi are port deterministic:

∀τ1, τ2 ∈ Ti : τ1 = `1
p−→ `2, τ2 = `1

p−→ `3 ⇒
(gτ1 ∧ gτ2) is unsatisfiable

The first family of conditions (i) is similar to Accorsi’s conditions [4] for excluding causal and conflicting
places for Petri net transitions having different security levels. Similar conditions have been considered
in [13, 15] and lead to more specific definitions of non-interferences and bisimulations on annotated Petri
nets. The second condition (ii) represents the classical condition needed to avoid information leakage in
sequential assignments. The third condition (iii) tackles covert channels issues. Indeed, (iii) enforces the
security levels of the data flows which have to be consistent with security levels of the ports or interactions
(e.g., no low level data has to be updated on a high level port or interaction). Such that, observations of
public data would not reveal any secret information. Finally, conditions (iv) enforces deterministic behavior
on atomic components.
The relation between the syntactic security conditions and the unwinding relations is precisely captured by
the following theorem.

Theorem 3 (unwinding theorem) Whenever the security conditions hold, the equivalence relation ≈σs is
an unwinding relation for the security assignment σ, at all security level s.

The following corollary is the immediate consequence of theorems 1, 2 and 3.

Corollary 1 Whenever the security conditions hold, the security assignment σ is secure for the component
C.

5 Application
We illustrate the secBIP framework to handle information flow security issues for a typical example, the
web service reservation system introduced [16]. A businessman, living in France, plans to go to Berlin for a
private and secret mission. To organize his travel, he uses an intelligent web service who contacts two travel
agencies: The first agency, AgencyA, arranges flights in Europe and the second agency, AgencyB, arranges
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flights exclusively to Germany. The reservation service obtains in return specific flight information and
their corresponding prices and chooses the flight that is more convenient for him.

In this example, there are two types of interference that can occur, (1) data-interference since learning
the flight price may reveal the flight destination and (2) event interference, since observing the interaction
with AgencyB can reveal the destination as well. Thus, to keep the mission private, the flight prices and
interactions with AgencyB have to be kept confidential.
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Figure 9: Reservation Web Service composition

The modeling of the system using secBIP involves two main distinct steps: first, functional requirements
modeling reflecting the system behavior, and second, security annotations enforcing the desired security
policy. The model of the system has four components denoted: Travel_A and Travel_B who are instances
from the same component and correspond respectively to AgencyA and AgencyB, and components Reser-
vation and Payment. To avoid figure 9 cluttering, we did not represent the interactions with Travel_A
component. Search parameters are supplied by a user through the Reservation component ports dests and
dates to which we associate respectively variables (from, to) and dates. Next, through search interaction,
Reservation component contacts Travel_B component to search for available flights and obtains in return a
list L of specific flights with their corresponding prices. Thereafter, Reservation component selects a ticket
ti from the list L and requests the Payment component to perform the payment.

All the search parameters from, to, dates, as well as the flights list L are set to low since users are not
identified while sending these queries. Other sensitive data like the selected flight ti, the price variable p
and the payment parameters (identity id, credit card variable cna and code number cno) are set to high.
Internal ports dests and dates as well as search, fly_list, accept interactions are set to low since these
interactions (events) do not reveal any information about the client private trip. However, the select_fly
interaction must be set to high since the observation of the selection event from AgencyB allow to deduce
deduce the client destination. In the case of a selected flight from AgencyA, the select_fly interaction
could be set to low since, in this case, the destination could not be deduced just from the event occurrence.

We recall that any system can be proven non-interferent iff it satisfies the syntactic security conditions
from definition 12. Indeed, these conditions hold for the system model depicted in Figure 9. In particular,
it can be easily checked that all assignments occurring in transitions within atomic component as well as
within interactions are sequential consistent. For example, at the select_fly interaction we assign a low
level security item from the flight list L to a high security level variable ti, formally ti = L[i]. Besides, the
security levels assignments to ports exclude inconsistencies due to causal and conflicting transitions, in all
atomic components.
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6 Discussion and Related work
Non-interference properties have been already studied using different model-based approaches. Recently,
[27] adapted an MDS method for handling information flow security using UML sequence diagrams. Ad-
ditionally, Petri-nets have been extensively used for system modeling and information flow security verifi-
cations tools such as InDico [5] have been developed. A component-based model has been proposed in [3]
and used to study implementation issues of secure information flows. Our presented work on secBIP is dif-
ferent in several respects. First, secBIP is a formal framework. Unlike UML, system’s runtime behavior is
always meaningfully defined and can be formally analyzed. Moreover, secBIP provides a system construc-
tion methodology for complex systems. Indeed, big systems are functionally decomposed into multiple
sub-components communicating through well-defined interactions. Such a structural decomposition of the
system is usually not available on Petri-nets models.
Furthermore, secBIP handles both event and data-flow non-interference, in a single semantic model. To the
best of our knowledge, these properties have never been jointly considered for component-based models.
Nevertheless, the need to consider together event and data flow non-interference has been already tackled
in the existing literature. The bottom line is that preserving the safety of data flow in a system does not
necessarily preserve safe observability on system’s public behavior (i.e., secret/private executions may
have an observable impact on system public events). The issue has been recently considered in [4], for data
leaks and information leaks in business processes based on system’s data-flows and work-flows. Also, [6]
showed that formal verification of the system’s event behavior is not sufficient to guarantee specific data
properties. Also, [14] attempted to fill the gap between respectively language-based and process calculus-
based information security and make an explicit distinction between preventing the data leakage through the
execution of programs and preventing secret events from being revealed in inter-process communications.
Compared to Security-typed programming languages [2, 32] and operating systems [18, 33, 12] enforc-
ing information flow control, secBIP is a component-based modeling approach where non-interference is
verified at a more abstract level. Thus, secBIP can be written in different languages independently from a
specific platform.
Finally, it is worth mentioning that a lot of classical approaches fall short to handle information flow
security [31] for real systems. For secBIP we privilege a very pragmatic approach and provide simple
(syntactic) sufficient conditions allowing to automate the verification of non-interference. These conditions
allow to eliminate a significant amount of security leakages, especially covert channels, independently from
system language or the execution platform. However, these conditions can be very restrictive in some cases.
The system designer may be interested to relax the non-interference properties, however, these extensions
are out of the scope of the current paper.

7 Conclusion and future work
We present a MDS framework to secure component-based systems. We formally define two types of
non-interference, respectively event and data non-interference. We provide a set of sufficient syntactic
conditions formulated to simplify non-interference verification. These conditions are extensions of security
typed language rules applied to our model. The use of our framework has been demonstrated to secure a
web service application.
This work is currently being extended in two directions. First, we are investigating additional security
conditions allowing to relax the non-interference property and control when and where downgrading can
occur. Second, we are working towards the implementation of a complete design flow for secure systems
based on secBIP. As a first step, we shall implement the verification method presented for annotated secBIP
models. Then, use these models for generation of secure implementations, that is, executable code where
the security properties are enforced by construction, at the generation time.
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