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Abstract

A distributed algorithm is snap-stabilizing if it enables a distributed system to resume a cor-
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Figure 1: Self-stabilizing system

1 Introduction
A distributed system is a set of autonomous entities able to communicate, e.g. concurrent processes exe-
cuted on the same computer, a wired network, or a wireless sensor network. The characteristics of these
systems are the absence of knowledge on the global state of the system, the absence of global time, the
absence of central control, and the non-determinism of computations due to the asynchronism. Numerous
algorithms already exist [8] to solve several kind of problems such as leader election or token-passing.

We consider here resource allocation problems [7], where a small number of entities called resources
should be shared between several processes. The aim is to assign the resources to the processes and
managing the access w.r.t. compatibility constraints. More precisely, we will consider their restrictions to
the neighborhood of a process called local resource allocation where the safety is not defined on the global
state of the system but on the state of the process and its neighbors.

Due to the scale of distributed systems, it is difficult to envision a human maintenance in case of faults.
This is why fault-tolerance is an important requirement. One solution to handle transient faults (i.e. faults
lasting a finite time and which are infrequent) is self-stabilization [10, 11]. An algorithm is self-stabilizing
if it can return in a finite time to a legitimate configuration (A legitimate configuration is a configuration
where the system has a correct behavior. The other configurations are said illegitimate) without external
help after transient faults lead it to an arbitrary state (FIG. 1).

Many variants of self-stabilization have been proposed. For example, in probabilistic self-stabilization
[3, 12], the liveness property is weakened to “return in a legitimate state with probability 1” to mainly
circumvent impossibility results. Another variant strengthens the safety by ensuring that the system will
immediately resume a correct behavior after the end of faults (FIG. 2). This latter approach is called
snap-stabilization [6]. As for self-stabilization, there is a probabilistic variant of snap-stabilization. In
probabilistic snap-stabilization [1], the liveness property is ensured with probability 1.

As no deterministic snap-stabilizing solution is possible in an anonymous network, we introduce two
new probabilistic snap-stabilizing algorithms to solve some local resource allocation problems in the locally
shared memory model under the more general scheduling assumption i.e. the distributed unfair daemon.
These algorithms can solve for example the local group mutual exclusion problem where two neighbors
can concurrently access to the same resource but cannot simultaneously access to two different resources.

2 Model

2.1 Distributed Systems
We consider an undirected (simple) graph G = (V,E) to model the topology of the distributed system. V
is a set of n processes, n ≥ 2. These processes are anonymous. In other words, they execute the same
program and are not distinguishable if they have the same degree (e.g., they have no unique identifiers). E
is a set of edges representing direct communication between processes. If two processes are linked, they
can communicate directly and are said neighbors. The communications are assumed to be bidirectional.
Np is the set of the neighbors of a process p.
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Figure 2: Snap-stabilizing system

2.2 Computational Model
Shared variables: Each process p communicates with its neighbors using a finite number of locally
shared registers, called variables. p can read and write its own variables, but it can only read the variables
of its neighbors. This is the locally shared memory model.

The state of a process is the vector of the values of all its variables. A configuration γ is composed of
a state γ(p) for each process p. γ(p).v is the value of the variable v of p in the configuration γ.

Algorithm: An algorithm A consists of one program per process. The program of a process p is a finite
set of actions of the form:

〈label〉 : 〈guard〉 → 〈statement〉

The statement updates the variables of p. It can be executed only if the guard, a Boolean expression
on the variables of p and its neighbors, is evaluated to true in the current configuration γ. Then, this action
is said to be enabled in γ. If one or more actions of p are enabled in γ, we say that p is enabled in γ. We
note Enabled(γ) the set of all the processes which are enabled in γ.

Daemon: The daemon models the asynchronism of the system.
In a configuration γ, if Enabled(γ) is empty, the configuration is said terminal and the computation

stops. Otherwise, the daemon selects a non-empty subset φ of Enabled(γ). Each process in φ atomically
executes one of its enabled actions. Then, the system reaches a new configuration γ′. The transition from
γ to γ′ is called a step.

If ρ = (γ0, ..., γk) is the finite sequence of configurations that led to the current configuration of the
system, d(ρ) ⊆ Enabled(γk) is the next subset chosen by the daemon.

The sequence r = (γi)i≥0, where γi are configurations, is a run of A under a daemon d if and only
if there exists a sequence of choices of d, (φi)i≥0, such that ∀i ≥ 0, the probability to move from the
configuration γi to the next configuration γi+1 is positive, provided that d has selected the processes in
φi = d(γ0, ..., γi).

Different kinds of daemon exist. They are classified into families according to their fairness. Here we
consider the family of weakest daemons: the distributed unfair daemon family noted Du. It assumes that:
For every run (γi)i≥0 of an algorithm A, ∀i ≥ 0, Enabled(γi) 6= ∅ ⇒ d(γ0, ..., γi) 6= ∅. In other words,
if the current configuration is not terminal (at least one process is enabled), the daemon will select at least
one process.

2.3 Rounds
We consider a run r = (γi)i≥0 of an algorithm A under a daemon d. If a process p is enabled in a
configuration γi but not enabled in γi+1 without executing an action between γi and γi+1, we say that p is
neutralized in the step γi, γi+1.

To evaluate the time complexity of A, we use the notion of round.

2/26 Verimag Research Report no TR-2013-6



Probabilistic Snap-Stabilizing LRA Anaïs Durand, Karine Altisen, Stéphane Devismes

The minimal prefix of r in which every processes that are enabled in γ0 either execute an action or be-
come neutralized is the first round of r, noted r′. Let r′′ be the suffix of r starting from the last configuration
of r′. Then, the first round of r′′ is the second round of r and so on.

2.4 Compatibility [7]

In resource allocations problems, several processes share a smaller number of entities called resource. A
process requests one or several resources. When it gets access to them, it atomically executes a special
code called critical section. Then, it releases the resources. Let Rp be the set of resources that can be
accessed by a process p.

Two resourcesX and Y are said compatible if two neighbors can concurrently access to them. We note
X 
 Y . Otherwise, we note X 6
 Y and X and Y are said conflicting. For every resource X , X 
 ⊥
where ⊥ symbolizes the absence of request. Note that 
 is symmetrical.

It is possible to define a local resource allocation problem with the relation of compatibility.

Example 1 (Local Mutual Exclusion). In the local mutual exclusion problem, two neighbors cannot con-
currently access to the unique resource and a process which requests the resource eventually gets it. So,
there is only one resource X and X 6
 X .

Example 2 (Local Group Mutual Exclusion). In the local group mutual exclusion problem, there are several
resources r0, r1, r2, . . . , rk shared between the processes. Two neighbors can access concurrently to the
same resource but cannot access to different resources at the same time. Then, ∀i ∈ {0, 1, ..., k} , ri 6
 rj
if and only if j 6= i.

Example 3 (Local Readers-Writers). In the local readers-writers problem, the processes can access a file
in two different ways: a read access (the process is said to be a reader) or a write access (the process is a
writer). A writer must access the file in mutual exclusion, but several readers can concurrently access the
file. We represent these two ways of access by two different resources: R for a “read access” and W for a
“write access”. Then, R
 R but R 6
W and W 6
W .

3 Specification

First, we recall the definition of probabilistic snap-stabilization.

Definition 1 (Probabilistic Snap-Stabilization [1]). An algorithm A is probabilistically snap-stabilizing
w.r.t a specification SP = Safe ∩ Live and a family of daemons D if and only if the two following
properties are satisfied:
• Strong Safety: For each run r under a daemon d ∈ D, r ∈ Safe.
• Almost Surely Liveness: For each run r under a daemon d ∈ D, r ∈ Live with probability 1.

3.1 Local Mutual Exclusion Specification

A solution to the local mutual exclusion problem must satisfy the following two properties:
• Safety: Two neighbors cannot use the resource at the same time.
• Liveness: A process which needs the resource eventually gets it.

3.2 Local Resource Allocation Specification

A solution to some local resource allocation problem expressible with the relation of compatibility must
satisfy the following two properties:
• Safety: Two neighbors cannot use two conflicting resources at the same time.
• Liveness: A process which needs a resource eventually gets it.
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3.3 Guaranteed Service Specification

We transform these problems into guaranteed service problems, i.e. a problem where an application re-
quests some process to execute finite tasks. Indeed, in a resource allocation problem, when an application
at a given process p requests some resources, the service consists in ensuring that the application eventually
access to the resources according to the concurrence allowed in the specification of the problem.

In a guaranteed service problem, three properties must be ensured:
1. If an application requests continuously a process to execute the service (here, requests some re-

sources), then the process eventually starts a computation.
2. Every started service eventually ends by a decision at its initiator, allowing it to get back a result.

Here, it is the execution of the critical section.
3. Every result obtained from any computation of the service is correct w.r.t. the service. In this case, if

the critical section is executed, this execution satisfies the safety property of the problem.

To formalize these properties, we use the following predicates, where p ∈ V , s and s′ are possible
states of p and γ0, ..., γt are some configurations of the system:
• Request(s) means that the state s indicates to p that some application requests an execution of the

service.
• Start(s, s′) means that p starts a computation of the service by switching its state from s to s′.
• Result(s, s′) means that p executes the decision event to get back the result of a computation by

switching its state from s to s′.
• CorrectResult(γ0 . . . γt, p) means that the computed result is correct w.r.t the service, i.e. the

execution of the critical section is in local mutual exclusion.

Then we have the following specification: S = Safe ∩ Live where Safe and Live are defined as
follows for r = (γi)i≥0:

• r ∈ Safe if and only if ∀k ≥ 0,∀p ∈ V, (Result(γk(p), γk+1(p))∧∃l < k, Start(γl(p), γl+1(p)))⇒
CorrectResult(γ0 . . . γk, p).

• r ∈ Live if and only if the two following conditions are ensured:

– ∀k ≥ 0,∀p ∈ V,∃l > k, (Request(γl(p))⇒ Start(γl(p), γl+1(p))).
– ∀k ≥ 0,∀p ∈ V, (Start(γk(p), γk+1(p))⇒ (∃l > k,Result(γl(p), γl+1(p)))).

3.4 Guaranteed Service Local Mutual Exclusion Specification

To specify the guaranteed service local mutual exclusion problem, CorrectResult is instantiated as fol-
lows:

CorrectResult(γ0 . . . γk, p) ≡ Computing(γk(p))⇒ (∀q ∈ Np,¬Computing(γk(q)))

Computing(s) is a predicates. It means that p is allowed to execute its critical section.

3.5 Guaranteed Service Local Resource Allocation Specification

To specify the guaranteed service local resource allocation problem, CorrectResult is instantiated as
follows:

CorrectResult(γ0 . . . γk, p) ≡Computing(γk(p))⇒ (∀q ∈ Np,¬Computing(γk(q))

∨ γk(p).request
 γk(q).request)

Computing(s) is a predicates. It means that p is allowed to execute its critical section.
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Sleeping
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Fault

request() 〈CS〉

Figure 3: Automaton of the interface between the application and the algorithm

3.6 Interface between the application and the algorithm
The interface between the application and the algorithm can be represented by the automaton on FIG. 3.

When a process is Sleeping, if the application requests it and if it switches its state from s to s′, then
Request(s) ∧ Start(s, s′) is true and it goes to Required. When the critical section 〈CS〉 is executed by
switching from the state t to t′, Result(t, t′) is true and the process comes back to Sleeping. Some faults
can occur and put it in Fault, but the process will come back to Sleeping in a finite number of steps.

If the application requests continuously the process, even if it is currently in Fault, it eventually goes
to Sleeping, then to Required and executes the critical section.

4 First Probabilistic Snap-Stabilizing Algorithm For Local Mutual
Exclusion Problem

This algorithm is composed of two parts: the core of the algorithm (ALGO. 2) and a synchronization
scheme called unison (ALGO. 1).

4.1 Unison
The unison proposed in [5] is a self-stabilizing algorithm that synchronizes the processes with logical
clocks. As it is impossible to exactly synchronize processes under a distributed unfair daemon, the syn-
chronization property is weakened to synchronize with a difference of at most one between the clocks of
two neighbors. Let make a review of the scheme in [5].

Each process has an integer variable called clock. In a legitimate configuration, i.e. when AllCorrect
is true for each process, and when the process has the smaller clock among its neighbors, it increments its
clock by using the actionNA. This ensures that a process can only make a finite number of incrementations
of its clock before an incrementation of the clocks of its neighbors. In an illegitimate state, the goal is to
propagate a reset to re-synchronize the system and resume a correct behavior. When a process detects the
error, it resets its clock to−α by the actionRA. Then the process re-synchronizes with its neighbors during
the reset phase using the action CA.

4.2 Synchronization Between the Two Parts of the Algorithm
The local mutual exclusion algorithm (ALGO. 2) uses this scheme and executes the actions of the synchro-
nization scheme plus its own actions during a NA action when it is possible. More precisely, ALGO. 2 can
be re-written using ALGO. 1 the following way:
• CA and RA actions remain identical.
• For all action Ai : guardi ⇒ stmti of ALGO. 2, it is replaced by:

Ai : NormalStepp ∧ guardi ⇒ cp := ϕ(cp); stmti;
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Algorithm 1 General synchronization scheme [5]
Constants
N : an upper bound on the size of the network

Variables
cp ∈ X = {−α, . . . , 0, . . . ,K − 1}, α ≥ N − 2, K ≥ N

Functions

ϕ : x→

{
(x+ 1) if x < 0

(x+ 1) (mod K) otherwise
Predicates
Correctp(q) ≡ (ϕ(cp) = cq) ∨ (cp = cq) ∨ (cp = ϕ(cq))
AllCorrectp ≡ ∀q ∈ Np, Correctp(q)
NormalStepp ≡ (cp ≥ 0) ∧ (∀q ∈ Np, cq ≥ 0 ∧ (ϕ(cp) = cq ∨ cp = cq))
ConvergenceStepp ≡ (cp < 0) ∧ (∀q ∈ Np, (cq ≤ 0) ∧ (cp ≤ cq))
ResetInitp ≡ (cp > 0) ∧ ¬UnisonCorrectp

Actions
NA : NormalStepp → cp := ϕ(cp);
CA : ConvergenceStepp → cp := ϕ(cp);
RA : ResetInitp → cp := −α;

• NA action is replaced by:

NA : NormalStepp ∧ ¬guard0 ∧ ¬guard1 ∧ · · · ∧ ¬guardk ⇒ cp := ϕ(cp);

4.3 Local Mutual Exclusion Algorithm

States: Each process has four states. A node in the state:
• IDLE is not using the resource and is not requesting it.
• TRY wants the resource, but does not get it already. It may be in competition with its neighbors.
• WIN wants the resource and will get it if it is the only one in this state in the neighborhood.
• IN is using the resource.

Actions in a legitimate configuration: There are two kinds of actions. First, let study the actions when
the system is in a legitimate configuration.

When a node needs the resource, it jumps from the state IDLE to the state TRY (FIG. 4) using the
action Req. Then with probability p ∈ (0, 1) it stays in the state TRY and with probability 1− p, it jumps
to the state WIN (FIG. 5) executing the action Rand.

If it is the only one in the state WIN and if no one in its neighborhood is in the state IN , it can get the
resource (FIG. 6) with the action Enter. Otherwise, it tries one more time (FIG. 5) using the actionRand.

When a node has gotten the access to the resource, it comes back to the state IDLE and executes its
critical section (FIG. 7) executing the action Rel.

Global view: To sum up, if the node wants the resource, it goes to the state TRY and cannot come back
to the state IDLE without going first to the state IN and getting the resource. Moreover, when a node
is in the state TRY , it must compete with its neighbors which also want the resource and it can get it
immediately.

Let us take the case where the node must compete with only one of its neighbors (this can be generalized
to any number of nodes in competition). Thanks to the synchronization scheme, if a node is activated, it
can be activated at most one time again until all its neighbors increment their clocks. So each node will be
activated infinitely often. Hence the node which “tries” to obtain the resource will be activated infinitely
often in order to play for winning. Due to the probability law, it will win after a while with probability 1
and get the resource.
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Algorithm 2 Local mutual exception algorithm
p ∈ (0, 1)
Inputs
〈critical section〉: code of the critical section
?p.request(): function from the application

Outputs
!p.get()
!p.release()

Variables
sp ∈ {IDLE, TRY,WIN, IN}

Predicates
NeighborInp ≡ ∃q ∈ Np, sq = IN
NeighborWinp ≡ ∃q ∈ Np, sq = WIN
RequestStepp ≡ ?p.request() ∧ (sp = IDLE)
ReleaseStepp ≡ (sp = IN) ∧ ¬NeighborInp
RandomStepp ≡ ¬NeighborInp ∧ ((sp = TRY ∧ ¬NeighborWinp)

∨(sp = WIN ∧NeighborWinp))
EnterStepp ≡ (sp = WIN) ∧ ¬NeighborInp ∧ ¬NeighborWinp
ResetWinStepp ≡ (sp = WIN) ∧NeighborInp
ResetStateStepp ≡ (sp = IN) ∧NeighborInp

Actions
Req : RequestStepp → sp := TRY ;
Rel : ReleaseStepp → !p.get(); 〈critical section〉; !p.release(); sp := IDLE;

Rand : RandomStepp → sp :=

{
TRY ; with probability p

WIN ; with probability 1− p

Enter : EnterStepp → sp := IN ;
RstW : ResetWinStepp → sp := TRY ;
RstI : ResetStateStepp → sp := IDLE;

Request IDLE

IDLEIDLE

IDLE TRY

IDLEIDLE

IDLE

Figure 4: Req rule
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TRY

TRYIDLE

TRY

p

TRY

TRYIDLE

TRY

1−
p WIN

TRYIDLE

TRY

WIN

WINIDLE

TRY

p

TRY

WINIDLE

TRY

1−
p WIN

WINIDLE

TRY

Figure 5: Rand rule

WIN

TRYIDLE

TRY IN

TRYIDLE

TRY

Figure 6: Enter rule

IN

TRYIDLE

IDLE IDLE

TRYIDLE

IDLE

Figure 7: Rel rule
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WIN

INIDLE

IDLE TRY

INIDLE

IDLE

Figure 8: RstW rule

IN

INIDLE

IDLE IDLE

INIDLE

IDLE

Figure 9: RstI rule

Actions in an illegitimate configuration: Transient faults can occur and affect the memory of the pro-
cesses. Two actions are then used to recover :
• If a node is in the state WIN while one of its neighbors is using the resource, it comes back to the

state TRY (FIG. 8) using the action RstW .
• If a node is in the state IN while one of its neighbors is also using the resource, it comes back to the

state IDLE (FIG. 9) using the action RstI .

4.4 Example (FIG. 10)
Let see a small example of the execution of the algorithm in a synchronous context for more simplicity.

Two processes, which are neighbors, are requested to get the resource (FIG. (a)) and will compete to
get it (FIGS. (b), (c), (d)). One of them will get it first (FIG. (e)). When it executes its critical section and
releases the resource (FIG. (f)), the second will be able to use it (FIG. (g)).

In FIG. (f), we call x the process which released the resource and y the process which wants the
resource. If x is requested again, the unfair daemon has no constraints and can select only x until it wins
against y and gets the resource again. This situation could occur and could be repeated endlessly if ALGO. 1
is not take into account. But, the unison ensures that x can only “play” a finite number of time until a try
of y. So, y will have a chance to get the resource.

4.5 Instantiation of the specification by the algorithm:
ALGO. 2 instantiates the guaranteed service predicates as follows:
• Request(s) ≡ s.request(), where request() is a function of the application.
• Start(s, s′) ≡ s.s = IDLE ∧ s′.s = TRY , i.e. p executes Req by switching its state from s to s′.
• Result(s, s′) ≡ s.s = IN ∧ ¬s.NeighborIn ∧ s′.s = IDLE, i.e. p executes Rel by switching its

state from s to s′.
• Computing(s) ≡ s.s = IN

4.6 Proof
Assume an execution of the system under a daemon d, where the requests are set and with any initial
configuration γ0.

Definition 2 (Synchronized). The clocks in a configuration γ are synchronized and we note Synchronized(γ)
if and only if ∀p ∈ V,∀q ∈ Np, UnisonCorrect(p, q, γ).

UnisonCorrect(p, q, γ) is true if (γ(p).c = ϕ(γ(q).c)) ∨ (γ(p).c = γ(q).c) ∨ (ϕ(γ(p).c) = γ(q).c).
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Request

Request

IDLE

IDLEIDLE

IDLE

(a) Two neighbors are requested to get the resource.

TRY

TRYIDLE

IDLE

(b) They must compete and “flip a coin”
to choose if they stay in the state TRY
or jump to the state WIN .

WIN

WINIDLE

IDLE

(c) They have to try again.

TRY

WINIDLE

IDLE

(d) One of them wins because it is the
only one in its neighborhood being in the
state WIN .

TRY

INIDLE

IDLE

(e) It can take the resource. The other
must wait.

TRY

IDLEIDLE

IDLE

(f) The process which has get the access
to the resource executes its critical sec-
tion and releases it.

IN

INIDLE

IDLE

(g) The other process can take the re-
source.

Figure 10: Small example
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Definition 3 (Locally correct). A process p in a configuration γ is locally correct if and only if ∀q ∈
Np, (γ(p).s = IN ∨ γ(p).s = WIN)⇒ γ(q).s 6= IN . We note LocallyCorrect(p, γ).

Lemma 1. In a step from γ to γ′, if a process p is locally correct in γ then p is locally correct in γ′.

Proof. Let p ∈ V and γ a configuration where p is locally correct. We prove that p is still locally correct
in the configuration γ′ after the execution of a step.

Assume that p is not locally correct in γ′. Then, there are two cases:

1. γ′(p).s = IN ∧ ∃q ∈ Np, γ
′(q).s = IN .

There is no action to jump from the state IDLE or the state TRY to the state IN (in one step).
Hence, γ(p).s and γ(q).s are different from IDLE and TRY .

Let study the other cases:

(a) γ(p).s = IN : If γ(q).s = IN then p is not locally correct in γ. It is a contradiction. If
γ(q).s = WIN then the only action that q can make to jump to the state IN is Enter, but this
action is enabled only if @n ∈ Nq, γ(n).s = IN . It is a contradiction.

(b) γ(p).s = WIN : If γ(q).s = IN then p is not locally correct in γ. It is a contradiction. If
γ(q).s = WIN , q can only make the action Enter to jump into the state IN , but this action
is enabled only if @n ∈ Nq, γ(n).s = WIN . It is a contradiction.

2. γ′(p).s = WIN ∧ ∃q ∈ Np, γ
′(q).s = IN .

There is no action to jump in one step from the states IDLE or TRY to IN and there is no action
to jump from the states IDLE or IN to WIN in one step. Hence, γ(p).s 6= IDLE ∧γ(p).s 6= IN
and γ(q).s 6= IDLE ∧ γ(q).s 6= TRY .

Let study the other cases:

(a) γ(p).s = TRY : The only action that p can make to go to the state WIN is Rand but this
action is enabled only if @n ∈ Np, γ(n).s = WIN ∨ γ(n).s = IN . This is a contradiction.

(b) γ(p).s = WIN : See the case 1b.

Hence, p is locally correct in γ′.

Lemma 2. If p executes an action from γ to γ′ and p is not locally correct in γ then p is locally correct in
γ′.

Proof. If p is not locally correct in γ, there are two cases:

1. γ(p).s = IN ∧ (∃q1 ∈ Np, γ(q1).s = IN): The only action that can execute p is RstI . So
γ′(p).s = IDLE and p is locally correct in γ′.

2. γ(p).s = WIN ∧ (∃q2 ∈ Np, γ(q2) = IN): The only action that can execute p is RstW . So
γ′(p) = TRY and p is locally correct in γ′.

Definition 4 (Legitimate configuration). A configuration γ is legitimate if and only if Synchronized(γ)∧
(∀p ∈ V,LocallyCorrect(p, γ)).

Lemma 3. The set of legitimate configurations is closed.

Proof. Let γ be a legitimate configuration and γ′ a configuration reachable from γ in one step. We prove
that γ′ is legitimate.

Assume that γ′ is illegitimate. The synchronization scheme is self-stabilizing [5] so ∀p ∈ V,∀q ∈
Np, UnisonCorrect(p, q, γ

′). Then, ∃p ∈ V,¬LocallyCorrect(p, γ′). As γ is legitimate, p is locally
correct in γ. But, by Lemma 1, LocallyCorrect(p, γ)⇒ LocallyCorrect(p, γ′). It is a contradiction.

Hence, γ′ is legitimate.
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Corollary 1. A run (γi)i≥0 where γ0 is legitimate two neighbors cannot be in IN simultaneously.

Lemma 4. A system in an illegitimate configuration converges to a legitimate configuration in at most
O(n) rounds.

Proof. The unison satisfies the following properties: If the system is in an illegitimate configuration, the
clocks synchronize in at most O(n) rounds [4]. Moreover, in at most D + 1 rounds a process increments
its clock [2] (where D is the diameter of the network).

So, after the synchronization of the clocks in at most O(n) rounds, each not locally correct process p
increments its clock and executes an action that leads it to become locally correct (Lemma 2) in at most
D + 1 rounds. Then p stays locally correct (Lemma 1). Therefore, in at most D + 1 rounds, all processes
are locally correct.

To conclude, in at most O(n), the system is in a legitimate configuration.

Lemma 5. A system in an illegitimate configuration converges to a legitimate configuration in at most
O(Dn3) steps, where D is the diameter of the network.

Proof. The synchronization scheme satisfies the following properties: It converges in at most O(Dn3)
steps [9] and a process will increment its clock after at most 2D(n− 1) + 1 steps [2].

Then the proof is the same than the proof for Lemma 4.

Definition 5 (Annoying neighbor). In a configuration γ, let p be a process such that γ(p).s = TRY ∨
γ(p).s = WIN . A neighbor q ∈ Np of p is said annoying for p if γ(q).s = IN ∨ γ(q).s = WIN .
Otherwise, q is said non-annoying for p. We note Annoyingp(γ) the set of annoying neighbors of p in γ.

Lemma 6. In a legitimate configuration, with a positive probability, a non-annoying neighbor will stay
non-annoying after a step.

Proof. In a configuration γ, if q ∈ Np is not an annoying neighbor for p then there are two cases:

• γ(q).s = IDLE: q executes Req and goes to the state TRY . Otherwise, q stays in IDLE.

• γ(q).s = TRY : If ∃x ∈ Nq, γ(x).s = IN ∨ γ(x).s = WIN , then q stays in the state TRY and
only increments its clock, else executing Rand, q stays in the state TRY with probability p > 0.

Lemma 7. In a legitimate configuration, with a positive probability, an annoying neighbor will become
non-annoying after at most two steps.

Proof. In a configuration γ, if q ∈ Np is an annoying neighbor for p then there are two cases:

• γ(q).s = IN : q executes Rel and jumps to the state IDLE. Then, with a positive probability, it
stays non-annoying (Lemma 6).

• γ(q).s = WIN : If @x ∈ Nq, γ(x).s = WIN , q executesEnter, goes to the state IN and then goes
to the state IDLE executing Rel. Else, q goes to the state TRY with probability p > 0 executing
Rand and stays in this state with probability p > 0 executing Rand another time.

Lemma 8. In a configuration γ such that Synchronized(γ) is true, after four incrementations of the clock
of p, its neighbors increment at least 2 times their clocks.

Proof. Let p ∈ V and a run r = (γi)i≥0 under a daemon d. Assume that γk is a configuration where p
makes an incrementation of its clock and let γk(p).c = t. We try to increment the clock of q as seldom as
possible.

Let q ∈ Np. Examine the different cases:
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• If ϕ(γk(p).c) = γk(q).c:

p:

q:

γk

t

t+ 1

γk+1

t+ 1

γk+2

t+ 2

γk+3

t+ 2

γk+4

t+ 3

γk+5

t+ 3

γk+6

t+ 4 (4++)

(2++)

In this case, q must increment its clock at least 2 times.

• If γk(p).c = γk(q).c:

p:

q:

γk

t

t

γk+1

t+ 1

γk+2

t+ 1

γk+3

t+ 2

γk+4

t+ 2

γk+5

t+ 3

γk+6

t+ 3

γk+7

t+ 4 (4++)

(3++)

In this case, q must increment its clock at least 3 times.

Lemma 9. In a configuration γ such that Synchronized(γ) is true, after four incrementations of the clock
of p, its neighbors increment at most 4 times their clocks.

Proof. Let p ∈ V and a run r = (γi)i≥0 under a daemon d. Assume that γk is a configuration where p
makes an incrementation of its clock and let γk(p).c = t. We try to increment the clock of q as often as
possible.

Let q ∈ Np. Examine the different cases:

• If ϕ(γk(p).c) = γk(q).c:

p:

q:

γk

t

t+ 1

γk+1

t+ 1

γk+2

t+ 2

γk+3

t+ 2

γk+4

t+ 3

γk+5

t+ 3

γk+6

t+ 4

γk+7

t+ 4 (4++)

(3++)

In this case, q can increment its clock at most 3 times.

• If γk(p).c = γk(q).c:

p:

q:

γk

t

t

γk+1

t+ 1

γk+2

t+ 1

γk+3

t+ 2

γk+4

t+ 2

γk+5

t+ 3

γk+6

t+ 3

γk+7

t+ 4

γk+8

t+ 4 (4++)

(4++)

In this case, q can increment its clock at most 4 times.

Lemma 10. If a process is requested to use the resource in a legitimate configuration, it will almost surely
execute its critical section in a finite time.
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Proof. Let p ∈ V . We exhibit a run r = (γi)i≥0 which occurs with positive probability and for which p
is served after 6 local steps (i.e. the execution of 6 actions by p). Assume that γ0 is legitimate and that
γ0(p).s = TRY .

γ0

γ0(p).s = TRY

γk

γk(p).s = TRY
with proba. ≥ 0

| Annoyingp(γk) |= 0

with proba. ≥ 0

γk′

γk′(p).s = WIN
with proba. 1 − p

| Annoyingp(γk′−1) |= 0

with proba. ≥ 0

γk′′

γk′′(p).s = IN

| Annoyingp(γk′′−1) |= 0

with proba. ≥ 0

4 local steps of p 1 local step of p 1 local step of p

We note γk the configuration after which p executed four actions. Using Lemmas 8 and 9, all the
neighbors of p executed between two and four actions between γ0 and γk. Using Lemma 7, an annoying
neighbor becomes non-annoying after the execution of at most two steps with a positive probability and
then stays non-annoying with a positive probability (Lemma 6). Moreover, if p has annoying neighbors, it
deterministically stays in TRY . Otherwise, it stays in TRY with probability p > 0 by executing Rand.
So with a positive probability, | Annoyingp(γk) |= 0 and γk(p).s = TRY .

We note γk′ the configuration after γk and after which p executed a new action. Using Lemma 6,
| Annoyingp(γk′−1) |= 0 with a positive probability. Then p executes between γk′−1 and γk′ the action
Rand and γk′(p).s = WIN with probability 1− p > 0.

We note γk′′ the configuration after γk′ and after which p executed a new action. Using Lemma 6,
| Annoyingp(γk′′−1) |= 0 with a positive probability. Then p executes between γk′′−1 and γk′′ the action
Enter and γk′′(p).s = IN .

So after s = k′′ steps, there is a positive probability (let call it p′) that p is served. s is a constant fixed
by the daemon and unison. Then:

P (p is not served after s steps) = 1− P (p is served after s steps)
≤ 1− p′

P (p is not served after 2s steps) ≤ (1− p′)2

...
P (p is never served) = lim

x→∞
P (p is not served after xs steps)

≤ lim
x→∞

(1− p′)x = 0 since p′ is positive

P (p is served) = 1− P (p is never served) = 1

Theorem 1. ALGO. 2 satisfies the probabilistic snap-stabilizing guaranteed service local mutual exclusion
specification.

Proof. Let r = (γi)i≥0 under a daemon d.

• r ∈ Safe: ∀k ≥ 0,∀p ∈ V , ifResult(γk(p), γk+1(p)), then γk(p).s = IN∧¬γk(p).NeighborIn∧
γk+1(p).s = IDLE. Then, Computing(γk(p)) ∧ ∀q ∈ Np,¬Computing(γk(q)).

So CorrectResult(γ0 . . . γk, p) is true by definition.

• r ∈ Live with probability 1:

– ∀k ≥ 0,∀p ∈ V , if γk(p).s 6= IDLE, p is computing a service and cannot answer to a new
request. But, in a finite time, p will almost surely end its current computation and come back
to the state IDLE (Lemma 10). Then, after a finite time, p will be selected by the daemon
to execute an action in a configuration γl (with l ≥ k). If the application still request the
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IN IN TRY

(A) (B) (C)

(a) (C) has only one neighbor in IN so it can execute Rand

IN IN WIN

(A) (B) (C)

(b) And then it can enter into IN using Enter

IN IN IN

(A) (B) (C)

(c) But the safety is violated for (B)

Figure 11: Example for the local 2-exclusion problem

resource, the guard of Req is true (γl(p).s = IDLE ∧ γl(p).request()) and the result is
γl+1(p).s = TRY . So Start(γl(p), γl+1(p)) is true.

– ∀k ≥ 0,∀p ∈ V , if Start(γk(p), γk+1(p)) then γk+1(p).s = TRY . Using Lemma 10, in a
finite time, p will almost surely compute its critical section, i.e. execute Rel. Then, ∃l > k
such as the guard of Rel is true (γl(p).s = IN ∧ ¬γl(p).NeighborIn) and the result of the
execution of Rel is γl+1(p).s = IDLE. So Result(γl(p), γl+1(p)) is true.

5 Generalization To Some Other Local Resource Allocation Prob-
lems

In this section, we introduce a generalization of our algorithm to some other local resource allocation
problems.

ALGO. 3 is the generalization of the algorithm of local mutual exclusion to the problems expressible
with 
. Each process p as a variable requestp which is an input from the application. In this variable, there
is the resource requested by the application. Instead of checking if there are neighbors in IN or WIN , a
process checks if the requests of its neighbors in IN or WIN are compatible with its own request.

Note that a process p such that sp 6= IDLE and requestp = ⊥ is not considered as an error even
if this situation cannot occurs in the normal behavior of the algorithm. If this case occur after a fault, p
will have the same behavior as a process which requests a resource without annoying its neighbors because
∀R,⊥
 R.

5.1 Local l-Exclusion and Local k-Out-Of-l-Exclusion
ALGO. 3 does not solve the local l-exclusion and the local k-out-of-l-exclusion problems. These problems
need that a process can have a view of the configuration of the system at distance 2.

For example, FIG. 11 is an example of what happens with the local 2-exclusion problem. In FIG. (a),
(C) has only one neighbor in IN so it can go to WIN (FIG. (b)) and then to IN (FIG. (c)). But (B)
already had a neighbor in IN . With (C) there is 3 nodes in IN in its neighborhood, so the safety is
violated.

In order to enter in IN , (C) must know that (B) has no other neighbors in IN or wait for an autho-
rization of (B) to enter.

5.2 Instantiation of the specification by the algorithm:
ALGO. 3 instantiates the guaranteed service predicates as follows:
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Algorithm 3 Generalization
p ∈ (0, 1)
Inputs
〈critical section〉: code of the critical section
?requestp ∈ Rp: input from the application

Outputs
!p.get()
!p.release()

Variables
sp ∈ {IDLE, TRY,WIN, IN}

Predicates
CompatibleWithInp ≡ ∀q ∈ Np, (sq = IN)⇒ (requestp 
 requestq)
CompatibleWithInAndWinp ≡ ∀q ∈ Np, (sq = IN ∨ sq = WIN

⇒ requestp 
 requestq)
RequestStepp ≡ ?requestp 6= ⊥ ∧ (sp = IDLE)
ReleaseStepp ≡ (sp = IN) ∧ CompatibleWithInp
RandomStepp ≡ (sp = TRY ∧ CompatibleWithInAndWinp)

∨(sp = WIN ∧ ¬CompatibleWithInAndWinp)
EnterStepp ≡ (sp = WIN) ∧ CompatibleWithInAndWinp
ResetWinStepp ≡ (sp = WIN) ∧ ¬CompatibleWithInp
ResetStateStepp ≡ (sp = IN) ∧ ¬CompatibleWithInp

Actions
Req : RequestStepp → sp := TRY ;
Rel : ReleaseStepp → !p.get(); 〈critical section〉; !p.release();

requestp = ⊥; sp := IDLE;

Rand : RandomStepp → sp :=

{
TRY ; with probability p

WIN ; with probability 1− p

Enter : EnterFromWinStepp → sp := IN ;
RstW : ResetWinStepp → sp := TRY ;
RstI : ResetStateStepp → requestp = ⊥; sp := IDLE;
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• Request(s) ≡ s.request() 6= ⊥, where request() is a function of the application.
• Start(s, s′) ≡ s.s = IDLE ∧ s′.s = TRY , i.e. p executes Req by switching its state from s to s′.
• Result(s, s′) ≡ s.s = IN ∧ s.CompatibleWithIn ∧ s′.s = IDLE, i.e. p executes Rel by

switching its state from s to s′.
• Computing(s) ≡ s.s = IN

5.3 Proof of the Generalization
We go back over the definitions and proofs of lemmas that change due to the generalization. The other
definitions, lemmas or proofs stay identical.

Definition 6 (Locally correct). A process p in a configuration γ is locally correct if and only if ∀q ∈
Np, (γ(p).s = IN ∨ γ(p).s = WIN)⇒ γ(p).CompatibleWithIn. We note LocallyCorrect(p, γ).

Lemma 11. In a step from γ to γ′, if a process p is locally correct in γ then p is locally correct in γ′.

Proof. Let p ∈ V and γ a configuration where p is locally correct. We prove that p is still locally correct
in the configuration γ′ after the execution of a step.

Assume that p is not locally correct in γ′. Then, there are two cases:

1. γ′(p).s = IN ∧ ¬γ′(p).CompatibleWithIn.

Then ∃q ∈ Np, γ
′(q).s = IN∧γ′(p).request 6
 γ′(q).request. There is no action to jump from the

state IDLE or the state TRY to the state IN (in one step). Hence, γ(p).s and γ(q).s are different
from IDLE and TRY .

Note that as p and q cannot execute their critical section between γ and γ′, their requests do not
change so γ(p).request = γ′(p).request and γ(q).request = γ′(q).request. As γ′(p).request 6

γ′(q).request, then γ(p).request 6
 γ(q).request.

Let study the other cases:

(a) γ(p).s = IN : If γ(q).s = IN then p is not locally correct in γ. It is a contradiction. If
γ(q).s = WIN then the only action that q can make to jump to the state IN is Enter, but
this action is enabled only if @n ∈ Nq, γ(n).s = IN ∧ γ(p).request 6
 γ(n).request. It is a
contradiction.

(b) γ(p).s = WIN : If γ(q).s = IN then p is not locally correct in γ. It is a contradiction.
If γ(q).s = WIN , q can only make the action Enter to jump into the state IN , but this
action is enabled only if @n ∈ Nq, γ(n).s = WIN ∧ γ(p).request 6
 γ(n).request. It is a
contradiction.

2. γ′(p).s = WIN ∧ ¬γ′(p).CompatibleWithIn.

Then ∃q ∈ Np, γ
′(q).s = IN ∧ γ′(p).request 6
 γ′(q).request. There is no action to jump in one

step from the states IDLE or TRY to IN and there is no action to jump from the states IDLE or
IN to WIN in one step. Hence, γ(p).s 6= IDLE ∧ γ(p).s 6= IN and γ(q).s 6= IDLE ∧ γ(q).s 6=
TRY .

Note that for the same reasons than in case 1, γ(p).request 6
 γ(q).request.

Let study the other cases:

(a) γ(p).s = TRY : The only action that p can make to go to the state WIN is Rand but this
action is enabled only if @n ∈ Np, (γ(n).s = WIN ∨ γ(n).s = IN) ∧ γ(p).request 6

γ(q).request. This is a contradiction.

(b) γ(p).s = WIN : See the case 1b.

Hence, p is locally correct in γ′.

Lemma 12. If p is not locally correct in γ and executes an action then p is locally correct in the new
configuration γ′.
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Proof. If p is not locally correct in γ, there are two cases:

1. γ(p).s = IN ∧ ¬γ(p).CompatibleWithIn: The only action that can execute p is RstI . So
γ′(p).s = IDLE and p is locally correct in γ′.

2. γ(p).s = WIN ∧ ¬γ(p).CompatibleWithIn: The only action that can execute p is RstW . So
γ′(p) = TRY and p is locally correct in γ′.

Definition 7 (Annoying neighbor). In a configuration γ, let p be a process such that γ(p).s = TRY ∨
γ(p).s = WIN . A neighbor q ∈ Np of p is said annoying for p if (γ(q).s = IN ∨ γ(q).s = WIN) ∧
γ(p).request 6
 γ(q).request. Otherwise, q is said non-annoying for p. We note Annoyingp(γ) the set
of annoying neighbors of p in γ.

Lemma 13. In a legitimate configuration, with a positive probability, a non-annoying neighbor will stay
non-annoying after a step.

Proof. In a configuration γ, if q ∈ Np is not an annoying neighbor for p then there are four cases:

• γ(q).s = IDLE: q executes Req and goes to the state TRY . Otherwise, q stays in IDLE.

• γ(q).s = TRY : If ∃x ∈ Nq, (γ(x).s = IN ∨ γ(x).s = WIN) ∧ γ(q).request 6
 γ(x).request,
then q stays in the state TRY and only increments its clock, else executingRand, q stays in the state
TRY with probability p > 0.

• γ(q).s = WIN ∧ γ(p).request 
 γ(q).request: q cannot execute its critical section in one step
(because it must go to the state IN first). So its request and the request of p do not change after a
step. Then q stays non-annoying.

• γ(q).s = IN ∧ γ(p).request
 γ(q).request: q executes Rel and goes to the state IDLE.

Lemma 14. In a legitimate configuration, with a positive probability, an annoying neighbor will become
non-annoying after at most two steps.

Proof. In a configuration γ, if q ∈ Np is an annoying neighbor for p then there are two cases:

• γ(q).s = IN ∧γ(p).request 6
 γ(q).request: q executes Rel and jumps to the state IDLE. Then,
with a positive probability, it stays non-annoying (Lemma 13).

• γ(q).s = WIN ∧ γ(p).request 6
 γ(q).request: If @x ∈ Nq, γ(x).s = WIN ∧ γ(q).request 6

γ(x).request, q executes Enter, goes to the state IN and then goes to the state IDLE executing
Rel. Else, q goes to the state TRY with probability p > 0 executing Rand and stays in this state
with probability p > 0 executing Rand another time.

Lemma 15. If a process is requested in a legitimate configuration, it will almost surely execute its critical
section

Proof. Same arguments as in the proof of Lemma 10.

Theorem 2. ALGO. 3 satisfies the probabilistic snap-stabilizing guaranteed service local resource alloca-
tion specification.

Proof. Let r = (γi)i≥0 under a daemon d.
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• r ∈ Safe: ∀k ≥ 0,∀p ∈ V , if Result(γk(p), γk+1(p)) is true, then there is γk(p).s = IN ∧
γk(p).CompatibleWithIn∧γk+1(p).s = IDLE. Then, by definition, Computing(γk(p))∧∀q ∈
Np,¬Computing(γk(q)) ∨ (γk(p).request() 
 γk(q).request()).

So CorrectResult(γ0 . . . γk, p) is true.

• r ∈ Live with probability 1:

– ∀k ≥ 0,∀p ∈ V , if γk(p).s 6= IDLE, p is computing a service and cannot answer to a new
request. But, in a finite time, p will almost surely end its current computation and come back
to the state IDLE (Lemma 15). Then, if γk(p).request() 6= ⊥, after a finite time, p will be
selected by the daemon to execute an action in a configuration γl (with l ≥ k). If the application
still request the resource, the guard of Req is true (γl(p).s = IDLE ∧ γl(p).request() 6= ⊥)
and the result is γl+1(p).s = TRY . So Start(γl(p), γl+1(p)) is true.

– ∀k ≥ 0,∀p ∈ V , if Start(γk(p), γk+1(p)) then γk+1(p).s = TRY . Using Lemma 15, in a
finite time, p will almost surely compute its critical section, i.e. execute Rel. Then, ∃l > k
such as the guard of Rel is true (γl(p).s = IN ∧ γl(p).CompatibleWithIn) and the result of
the execution of Rel is γl+1(p).s = IDLE. So Result(γl(p), γl+1(p)) is true.

6 Second Probabilistic Snap-Stabilizing Algorithm For Local Mu-
tual Exclusion Problem

This algorithm is a parallel composition [13] of: a coloring module (ALGO. 4) and a synchronization
module (ALGO. 5).

6.1 The Coloring Module (ALGO. 4)

The algorithm proposed in [3] is a probabilistic self-stabilizing algorithm for the vertex coloring problem.
In other words, it assigns colors to the nodes in such a way that two neighbors do not have the same color.

In this algorithm, when a process has the same color as one of its neighbors, it changes its color using
the action CCA. To choose its new color, it draws one in the set of colors that are not used by its neighbors
plus its own color with uniform probability.

Here we will use ∆ + 1 colors where ∆ is an upper bound on the degree of the network.

Algorithm 4 Coloring Module [3]
Constants

∆: an upper bound on the degree of the network
C = {0, ...,∆}: set of possible colors
Cp: set of colors of the neighbors of p

Variables
cp ∈ C

Functions
random : S (a set of colors)→ a color in S chosen with uniform probability

Predicates
ChangeColorp ≡ ∃q ∈ Np, cp = cq

Actions
CCA : ChangeColorp → cp := random((C\Cp) ∪ {cp});
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6.2 The Synchronization Module (ALGO. 5)

The synchronization module is a slighty updated version of the synchronization scheme used in ALGO. 1.
We assume that we have a strict total order� on the colors used by ALGO. 4.

In ALGO. 1, several neighbors can have the same clock, can be enabled to execute NA action and can
be selected by the daemon. Then, these processes execute a synchronous step. To avoid this, we use the
colors of ALGO. 4 to differentiate these processes and simulate a local sequential behavior. When a process
executes aGA action, none of its neighbors do simultaneously; it can thus, if requested, executes its critical
section.

Algorithm 5 Synchronization Module (Updating Version of [5])
Inputs
cp: from ALGO. 4
〈 critical section 〉

Constants
N : an upper bound on the size of the network

Variables
tp ∈ X = {−α, . . . , 0, . . . ,K − 1}, α ≥ N − 2, K ≥ N

Functions

ϕ : x→

{
(x+ 1) if x < 0

(x+ 1) (mod K) otherwise
�: strict total order on the colors in C

Predicates
Correctp(q) ≡ (ϕ(tp) = tq) ∨ (tp = tq) ∨ (tp = ϕ(tq))
UnisonCorrectp ≡ ∀q ∈ Np, Correctp(q)
ColoringCorrectp ≡ ∀q ∈ Np, cp 6= cq
CanGop ≡ ColoringCorrectp ∧ (∀q ∈ Np, (ϕ(tp) = tq) ∨ (tp = tq ∧ cp � cq))
ConvergenceStepp ≡ (tp < 0) ∧ (∀q ∈ Np, (tq ≤ 0) ∧ (tp ≤ tq))
ResetInitp ≡ (tp > 0) ∧ ¬UnisonCorrectp

Actions
GA : CanGop → 〈 critical section 〉; tp := ϕ(tp);
CA : ConvergenceStepp → tp := ϕ(tp);
RA : ResetInitp → tp := −α;

6.3 Synchronization Between the Two Parts of the Algorithm

When ALGO. 4 has not converged, the processes execute in parallel the actions of ALGO. 4 and ALGO. 5.
Assume that a process p is selected by the daemon. If the guard of RA is true and the guard of CCA is
true, p executes these two actions in the same step. If CCA is true and no actions of ALGO. 5 is enabled,
p executes only CCA. Finally, if one of the action of ALGO. 5 is enabled but not CCA, p executes only
this action.

When ALGO. 4 has converged, its actionCCA is (by definition) never enabled. Afterwhile,ColoringCorrect
is true and ALGO. 5 plays alone.

6.4 Example

FIG. 12 is an example of execution of ALGO. 5 after convergence of vertex coloring and unison. The
colors are represented by integers and we assume that� is the natural order on the integers. The clock is
represented in the top of the node and its color is in the bottom. The enabled nodes are circled twice.

On FIG. (a), (A) is enabled because it has the same clock as its neighbors but its color is the smaller.
Even if (C) is not a neighbor of (A), (C) is not enabled because its color is bigger than the one of its
neighbor (B) which has the same clock.
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(a) The only process enabled is (A). It is circled twice.
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(b) Then (B) and (D) are enabled. As they are not neighbors,
they can execute their critical section simultaneously.
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(c) Then (C) and (E) are enabled.
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(d) Finally, (A) is enabled again.

Figure 12: Example of execution. The top of the process represents its clock, the bottom its color. We
assume the natural order on the colors.

After the execution of the critical section and the incrementation of its clock by (A), (B) and (D) are
enabled (FIG. (b)). (A) cannot be enabled another time because its clock is bigger than the ones of its
neighbors.

On FIG. (c), (C) and (E) are enabled. And finally, (A) is enabled again on FIG. (d).

6.5 Instantiation of the specification by the algorithm
The predicates of the specification are instantiated the following way:
• Request(s) ≡ s.request()
• Start(s, s′) ≡ s′.UnisonCorrect() ∧ s′.ColoringCorrect()
• Result(s, s′) ≡ ϕ(s.t) = s′.t
• Computing(s) ≡ s.CanGo

6.6 Proof
Assume an execution of the system under a daemon d, where the requests are set and with any initial
configuration γ0.

Definition 8 (Legitimate configuration of the synchronization module). A configuration γ is legitimate for
the synchronization module if and only if ∀p ∈ V, γ(p).UnisonCorrect.

Lemma 16. If the system is in an illegitimate configuration of the synchronization module, it converges in
a finite time to a legitimate configuration.

Proof. The correction actions CA and RA are identical to the original algorithm. In a finite number of
actions CA and RA, the system comes back to a legitimate state of the unison [9]. So, if the system is
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an illegitimate configuration of the synchronization module, it converges in a finite time to a legitimate
configuration and the convergence time is identical to the one of [5].

Definition 9 (Legitimate configuration). A configuration γ of the system is legitimate if and only if ∀p ∈
V, γ(p).UnisonCorrect ∧ γ(p).ColoringCorrect. Otherwise γ is illegitimate.

Lemma 17. In every configuration of a run r = (γi)i≥0, at least one process is enabled.

Proof. As the coloring module is self-stabilizing [3] and the synchronization module converges in a finite
time (Lemma 16), there is no deadlock in an illegitimate configuration.

Let γ a legitimate configuration. Assume that there is no process enabled in γ. Let X be the set of
processes that are not enabled in γ but would be enabled in the original algorithm of unison [5]. X 6= ∅
since unison has no deadlock. Let q0 ∈ X . Then ∃q1 ∈ Nq0 , γ(q0).t = ϕ(γ(q1).t) ∨ (γ(q0).t = γ(q1).t ∧
γ(q1).c� γ(q0).c). By assumption, q1 is not enabled. So ∃q2 ∈ Nq1 , γ(q1).t = ϕ(γ(q2)).t ∨ (γ(q1).t =
γ(q2).t ∧ γ(q2).c� γ(q1).c) etc.

This way, we construct a sequence (qi)i≥0 of process such that qi is the process that “prevents” qi−1
of being enabled. As γ(qi).t = ϕ(γ(qi+1).t) ∨ γ(qi+1).c � γ(qi).c, qi = qj if and only if i = j. Then
| (qi)i≥0 |≤ n. So the last process of the sequence is enabled. It is a contradiction.

Lemma 18. The set of legitimate configurations is closed.

Proof. Let γ be a legitimate configuration and γ′ a configuration reachable from γ in one step.
The coloring module is self-stabilizing [3] so ∀p ∈ V, γ′(p).ColoringCorrect. The unison is self-

stabilizing [5] and the only difference between NA of the original algorithm and GA is that the guard of
GA has an additional constraint. There are no consequences on the self-stabilization of the algorithm. So
∀p ∈ V, γ′(p).UnisonCorrect.

Lemma 19. In a run (γi)i≥0 where γ0 is legitimate, two neighbors cannot execute their critical section
concurrently.

Proof. Using Lemma 18, if γ0 is legitimate then ∀i ≥ 0, γi is legitimate. The only action in which a
process executes the critical section is GA.

Let p, q ∈ V two neighbors (q ∈ Np). Assume that there is a configuration γi such that p and q
evaluate the guard of GA to true. If p evaluates the guard of GA to true then ∀n ∈ Np, ϕ(γi(p).t) =
γi(n).t ∨ (γi(p).t = γi(n).t ∧ γi(p).c � γi(n).c). In particular, ϕ(γi(p).t) = γi(q).t ∨ ((γi(p).t =
γi(q).t ∧ γi(p).c � γi(q).c). With the same argument on q, we have ϕ(γi(q).t) = γi(p).t ∨ ((γi(q).t =
γi(p).t ∧ γi(q).c� γi(p).c).

Let examine the different cases:

• If ϕ(γi(p).t) = γi(q).t then γi(p) 6= γi(q).t and γi(p).t 6= ϕ(γi(q).t). It is a contradiction.

• If γi(p).t = γi(q).t ∧ γi(p).c � γi(q).c, γi(q).c 6� γi(p).c because� is a strict total order on the
colors and γi is a legitimate configuration so γi(p).c 6= γi(q).c. It is a contradiction.

Lemma 20. A system in an illegitimate configuration converges to a legitimate configuration in expected
O(∆n) rounds where ∆ is the degree of the system.

Proof. The coloring module converges in expected O(∆n) rounds [3]. The unison converges in O(n)
rounds [4]. As the two modules converge in parallel, the system converges in the time of the longer, i.e. the
system converges in expected O(∆n) rounds.

Lemma 21. A system in an illegitimate configuration converges to a legitimate configuration in expected
O(Dn3) steps where D is the diameter of the system.

Proof. The coloring module converges in expectedO(∆n) steps [3] (where ∆ is the degree of the network).
The unison converges in O(Dn3) steps [9]. As the two modules converge in parallel, the system converges
in the time of the longer, i.e. the system converges in expected O(Dn3) steps.
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Lemma 22. In a run r = (γi)i≥0 where γ0 is legitimate, a process p will execute its critical section in a
finite time.

Proof. Thanks to the unison and the coloring, there is a total order on the neighbors. Indeed, it is possible
to sort a process and its neighbors by the value of their clocks. Then the processes which has the same
clock value are sorted by their color using�.

Let p ∈ V . Assume that p never executes its critical section in r. Then ∃q ∈ Np such that q executes
infinitely often its critical section.

If q executes its critical section in γk then ∀n ∈ Nq, (ϕ(γk(q).t) = γk(n).t) ∨ (γk(q).t = γk(n).t ∧
γk(q).c� γk(n).c). In particular, it is true for n = p. Let examine the two cases:

• ϕ(γk(q).t) = γk(p).t: Then, γk+1(q).t = γk+1(p).t. If γk+1(q).c 6� γk+1(p).c then q cannot exe-
cutes its critical section until p increments its clock and p can only increment its clock by executing
GA and so by executing its critical section (contradiction). Otherwise, after the next time that q
executes its critical section (let this configuration be γk′ ), γk′(q).t = ϕ(γk′(p).t). Then q cannot
execute its critical section until p increments its clock (contradiction).

• γk(q).t = γk(p).t ∧ γk(q).c � γk(p).c: Then γk+1(q).t = ϕ(γk+1(p).t) so q cannot execute its
critical section until p increments its clock (contradiction).

Theorem 3. The algorithm satisfies the probabilistic snap-stabilizing guaranteed service local mutual ex-
clusion specification.

Proof. Let a run r = (γi)i≥0 under a daemon d.

• r ∈ Safe: ∀k ≥ 0, ∀p ∈ V , if ∃l < k, Start(γl(p), γl+1(p)) then by Lemma 18, ∀i ≥ l +
1, γi(p).UnisonCorrect() ∧ γi(p).ColoringCorrect().

In particular, γk(p).UnisonCorrect() ∧ γk(p).ColoringCorrect(). Then the only action that p
can execute to increment its clock when the unison and the coloring have converged is GA. So,
if Result(γk(p), γk+1(p)), then γk(p).CanGo. By Lemma 19, two neighbors cannot concurrently
execute GA so ∀q ∈ Np, ¬γk(q).CanGo. In conclusion, CorrectResult(γ0 . . . γk, p) is true.

• r ∈ Live:

– ∀k ≥ 0,∀p ∈ V , in a finite time, the unison and the coloring converge (Lemma 20). Hence,
∃l > k,Request(γl(p))⇒ Start(γl(p), γl+1(p)).

– ∀k ≥ 0,∀p ∈ V , if Start(γk(p), γk+1(p)) then γk+1 is a legitimate configuration. Hence, by
Lemma 22, in a finite time p will execute its critical section by executing GA (and increments
its clock) so ∃l > k, ϕ(γl(p).t) = γl+1(p).t.

7 Generalization To Some Other Local Resource Allocation Prob-
lems

We introduce a generalization of this algorithm to the local resource allocation problems expressible with
the relation 
.

The coloring module is identical to ALGO. 4. In the synchronization module (ALGO. 6), each process
has an additional variable request which expresses the resource required. A process can execute its critical
section if its clock is the smaller in its neighborhood and if its color is smaller or its request compatible
with the ones of its neighbors which have the same clock.
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Algorithm 6 Generalization of the Synchronization Module
Inputs
cp: from ALGO. 4
〈 critical section 〉
requestp: from the application

Constants
N : an upper bound on the size of the network

Variables
tp ∈ X = {−α, . . . , 0, . . . ,K − 1}, α ≥ N − 2, K ≥ N

Functions

ϕ : x→

{
(x+ 1) if x < 0

(x+ 1) (mod K) otherwise
�: total order on the colors in C

: resource compatibility

Predicates
Correctp(q) ≡ (ϕ(tp) = tq) ∨ (tp = tq) ∨ (tp = ϕ(tq))
UnisonCorrectp ≡ ∀q ∈ Np, Correctp(q)
ColoringCorrectp ≡ ∀q ∈ Np, cp 6= cq
CanGop ≡ ColoringCorrectp ∧ (∀q ∈ Np, (ϕ(tp) = tq) ∨ (tp = tq∧

(cp � cq ∨ requestp 
 requestq)))
ConvergenceStepp ≡ (tp < 0) ∧ (∀q ∈ Np, (tq ≤ 0) ∧ (tp ≤ tq))
ResetInitp ≡ (tp > 0) ∧ ¬UnisonCorrectp

Actions
GA : CanGop → 〈 critical section 〉; requestp := ⊥; tp := ϕ(tp);
CA : ConvergenceStepp → tp := ϕ(tp);
RA : ResetInitp → tp := −α;

7.1 Instantiation of the specification by the algorithm

The predicates of the specification are instantiated the following way:
• Request(s) ≡ s.request()
• Start(s, s′) ≡ s′.UnisonCorrect() ∧ s′.ColoringCorrect()
• Result(s, s′) ≡ ϕ(s.t) = s′.t
• Computing(s) ≡ γk(p).CanGo

7.2 Proof

We go back over the proofs of lemmas that change due to the generalization. The others definitions, lemmas
or proofs stay identical.

Lemma 23. In every configuration of a run r = (γi)i≥0, at least one process is enabled.

Proof. As the coloring module is self-stabilizing [3] and the synchronization module converges in a finite
time (Lemma 16), there is no deadlock in an illegitimate configuration.

Let γ a legitimate configuration. Assume that there is no processes enabled in γ. Let X be the set of
process that are not enabled in γ but would be enabled in the original algorithm of unison [5]. X 6= ∅
since unison has no deadlocks. Let q0 ∈ X . Then ∃q1 ∈ Nq0 , γ(q0).t = ϕ(γ(q1).t) ∨ (γ(q0).t =
γ(q1).t ∧ γ(q1).c � γ(q0).c ∧ γ(q0).request 6
 γ(q1).request). By assumption, q1 is not enabled.
So ∃q2 ∈ Nq1 , γ(q1).t = ϕ(γ(q2)).t ∨ (γ(q1).t = γ(q2).t ∧ γ(q2).c � γ(q1).c ∧ γ(q1).request 6

γ(q2).request) etc.

This way, we construct a sequence (qi)i≥0 of process such that qi is the process that “prevents” qi−1
of being enabled. As γ(qi).t = ϕ(γ(qi+1).t) ∨ γ(qi+1).c � γ(qi).c, qi = qj if and only if i = j. Then
| (qi)i≥0 |≤ n. So the last process of the sequence is enabled. It is a contradiction.
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Lemma 24. In a run (γi)i≥0 where γ0 is legitimate, two neighbors cannot executes their critical section
concurrently if their requests are conflicting.

Proof. Using Lemma 18, if γ0 is legitimate then ∀i ≥ 0, γi is legitimate. The only action in which a
process executes the critical section is GA.

Let p, q ∈ V two neighbors (q ∈ Np). Assume that there is a configuration γi such that p and q eval-
uate the guard of GA to true and γi(p).request 6
 γi(q).request. If p evaluates the guard of GA to true
then ∀n ∈ Np, ϕ(γi(p).t) = γi(n).t ∨ (γi(p).t = γi(n).t ∧ (γi(p).c � γi(n).c ∨ γi(p).request 

γi(n).request)). In particular, ϕ(γi(p).t) = γi(q).t ∨ ((γi(p).t = γi(q).t ∧ (γi(p).c � γi(q).c ∨
γi(p).request 
 γi(q).request)). With the same argument on q, we have ϕ(γi(q).t) = γi(p).t ∨
((γi(q).t = γi(p).t ∧ (γi(q).c� γi(p).c ∨ γi(q).request
 γi(p).request)).

Let examine the different cases:

• If ϕ(γi(p).t) = γi(q).t then γi(p) 6= γi(q).t and γi(p).t 6= ϕ(γi(q).t). It is a contradiction.

• By assumption, γi(p).t = γi(q).t ∧ γi(p).request
 γi(q).request is not possible.

• If γi(p).t = γi(q).t ∧ γi(p).request 6
 γi(q).request ∧ γi(p).c � γi(q).c, γi(q).c 6� γi(p).c,
because� is a total order on the colors and γi is a legitimate configuration so γi(p).c 6= γi(q).c, and
γi(q).request 6
 γi(p).request by assumption. It is a contradiction.

Lemma 25. In a run r = (γi)i≥0 where γ0 is legitimate, a process p will execute its critical section in a
finite time.

Proof. Thanks to the unison and the coloring, there is a total order on the neighbors. Indeed, it is possible
to sort a process and its neighbors by the value of their clocks. Then the processes which have the same
clock value are sorted using�.

Let p ∈ V . Assume that p never executes its critical section in r. Then ∃q ∈ Np such that q executes
infinitely often its critical section.

If q executes its critical section in γk then ∀n ∈ Nq, (ϕ(γk(q).t) = γk(n).t) ∨ (γk(q).t = γk(n).t ∧
(γk(q).c � γk(n).c ∨ γk(q).request 
 γk(n).request)). In particular, it is true for n = p. Let examine
the two cases:

• ϕ(γk(q).t) = γk(p).t: Then, γk+1(q).t = γk+1(p).t. If γk+1(q).c 6� γk+1(p).c∧γk+1(q).request 6

γk+1(p).request then q cannot executes its critical section until p increments its clock and p can
only increment its clock by executing GA and so by executing its critical section (contradiction).
Otherwise, after the next time that q executes its critical section (let this configuration be γk′ ),
γk′(q).t = ϕ(γk′(p).t). Then q cannot execute its critical section until p increments its clock (con-
tradiction).

• γk(q).t = γk(p).t ∧ γk(q).c � γk(p).c: Then γk+1(q).t = ϕ(γk+1(p).t) so q cannot execute its
critical section until p increments its clock (contradiction).

Theorem 4. The algorithm satisfies the probabilistic snap-stabilizing guaranteed service local resource
allocation specification.

Proof. The proof is similar to the one of Theorem 3.

8 Conclusion
We have proposed two probabilistic snap-stabilizing algorithms to solve the local mutual exclusion prob-
lem and their generalizations to some other local resource allocation problems e.g. local readers-writers
problem etc. in any anonymous network. These algorithms are correct under a distributed unfair daemon.
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In the first one, each time a process requests a resource, it must compete with its neighbors to determine
which one (or ones according to the problem) will be served first. In the second one, a synchronization
scheme and a coloring are used to simulate a local sequential execution.

The perspectives of our work is the generalization of these algorithms to local resource allocation
problems that are not expressible with the relation of compatibility e.g. local l-exclusion. Such kind
of problems needs a vision at distance 2 of the configuration of the network. This would require heavy
mechanisms and would not fit in the scheme of our solutions.

To study if these algorithms satisfy the maximal concurrency, i.e. if they allows maximum number of
processes to concurrently execute their critical section, would be interesting. This property allows us, for
example, to dismiss algorithms which solve the mutual exclusion problem (where only one process can
execute its critical section at a given time) as a solution of the local mutual exclusion problem (where two
processes can concurrently execute their critical section if they are not neighbors).
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