
Compositional Invariant Generation
for Timed Systems

L. Aştefănoaei, S. Ben Rayana, S. Bensalem, M. Bozga,
J. Combaz

Verimag Research Report no TR-2013-5

July 11, 2013

Reports are downloadable at the following address
http://www-verimag.imag.fr

Unité Mixte de Recherche 5104 CNRS - Grenoble INP - UJF
Centre Equation
2, avenue de VIGNATE
F-38610 GIERES
tel : +33 456 52 03 40
fax : +33 456 52 03 50
http://www-verimag.imag.fr

http://www-verimag.imag.fr

Compositional Invariant Generation for Timed Systems

L. Aştefănoaei, S. Ben Rayana, S. Bensalem, M. Bozga, J. Combaz

July 11, 2013

Abstract

In this paper we approach the state-explosion problem when model-checking timed systems
with a great number of components. Our solution consists in adapting a rule for composi-
tionally verifying systems of extended finite state machines [3] to timed systems. The main
difficulty is in the lack of information about the relations between local timings. We propose
to strengthen the verification rule with inequalities between local timings which we show to
be invariants of the global system, thus the soundness of the new verification rule is preserved.

Keywords: compositional verification, timed automata, invariants

Reviewers: M. Bozga

Notes: Work supported by the European Integrated Project 257414 ASCENS (www.ascens-ist.eu).

How to cite this report:

@techreport {TR-2013-5,
title = {Compositional Invariant Generation for Timed Systems},
author = {L. Aştefănoaei, S. Ben Rayana, S. Bensalem, M. Bozga, J. Combaz},
institution = {{Verimag} Research Report},
number = {TR-2013-5},
year = {}

}

www.ascens-ist.eu

L. Aştefănoaei, S. Ben Rayana, S. Bensalem, M. Bozga, J. Combaz

1 Introduction

Motivation: We approach the state-explosion problem when model-checking timed systems with a great
number of components. Our solution consists in adapting a rule for compositionally verifying systems of
extended finite state machines [3] to timed systems.
Context: When it comes to formalising a particular verification problem, there are several options for
modelling behaviour and expressing properties, be it LTS, TA, hybrid systems on the part of behaviour, or
be it a specific logic on the part of properties. All of them have certain common concepts which can be
factored out and abstracted into a generic framework s.t. each class can then be seen as an instantiation.
A Generic Approach for Compositional Verification: Given a generic framework (GF) consisting of:

1. an operational level to characterise the behaviour of systems in terms of the behaviour of the consti-
tuting components Bi interacting via a coordination mechanism γ, denoted as ‖γBi

2. a logical level to characterise properties of the system, usually denoted by Φ, of components, CI (Bi),
and of coordination, II (γ),

verify if a given (usually safety) property is satisfied by the whole system in a compositional manner by
means of a rule like:

CI (B1) ∈ Inv(B1) . . . CI (Bn) ∈ Inv(Bn) II (γ) ∈ Inv(‖γBi)
`
(∧
i

CI (Bi) ∧ II (γ)→ Φ
)

‖γBi |= �Φ
(VR).

GF is abstract in the sense that at the operational level components are understood as state machines,
i.e., their behaviour is given in terms of states and state transformers, i.e., transitions s.t. one can further
define a notion of state successor and a notion of reachable set. The properties we work with at the logical
level are understood as invariants (properties that hold in every reachable state). The logical framework
is assumed to be decidable such that CI (Bi), II (γ) can either be effectively computed or proved to be
invariants. In the rule (VR), Inv(Bi) denotes the set of invariants of component Bi, the symbol ` is used to
underline that the logical implication can be effectively proved (for instance with an SMT solver) and the
notation B |= �Φ means that the predicate Φ holds in every state of B . We recall that in general ‖γBi has
a state space which is too big (possibly infinite) to directly exhaustively check in a feasible manner that Φ
holds in every state. This is why it is important to be able to apply a rule such as (VR) which reduces the
verification problem to components and interaction model separately. We note that though CI (Bi), II (γ)
are invariants, we prefer to use the notation CI (B) ∈ Inv(B) to stress that CI (B) can be effectively either
computed as an invariant or proved to be an invariant.

GF is generic in the sense that different instantiations of GF can be obtained by making explicit (ground-
ing) the operational and the logical levels in GF. One example of instantiated GF is BIP +FOL for which
the verification rule is exploited in the tool D-Finder [3].
Goal: Our goal is to present a different instantiation with respect to timed systems.
Challenge: Though the rule (VR) from GF is, by itself, sufficient to prove interesting safety properties in
[3], this is not the case in the context of timed systems, where the rule is quite weak in the sense that it
often raises false alarms (the so called “false positives”). This is mainly due to missing relations between
the clocks of the system. To illustrate this, we consider an abstract scenario where a “controller” compo-
nent serves “worker” components one at a time. For simplicity, Figure 1 depicts an instantiation with only
one worker Worker1 interacting with Controller by synchronising on ports b1 and d1, i.e., the interaction
model γ is given as the set {(a | b1), (c | d1)}. A safety property which the system should fulfil is that
whenever β ≤ α, before synchronising on a and b, the time difference between the clock of the controller
and that of the worker is less or equal than α− β, i.e., Safe = (lc1 ∧ l1)⇒ x− y ≤ α− β.

Verimag Research Report no TR-2013-5 1/17

L. Aştefănoaei, S. Ben Rayana, S. Bensalem, M. Bozga, J. Combaz

lc0x ≥ β

lc1x ≤ α

lc2

x := 0

a, x = α
x:=0

c
x := 0

a

c

Controller

l11

l12

b1, y ≥ β
d1
y := 0

b1

d1

Worker1

Figure 1: An Abstract Example as Illustration for the Weakness of (VR).

The property Safe is, indeed, a global invariant: Controller‖γWorker |= �Safe . However, given that
the component invariants are1:

CI (Controller) = lc0 ∨ (lc1 ∧ x ≤ α) ∨ lc2
CI (Worker1) = l1 ∨ (l2 ∧ y ≥ β)

we can show (by hand or with a solver like Z3 [10] or yices [5]) that the conjunction CI (Controller) ∧
CI (Worker1)∧II (γ)∧¬Safe is satisfiable, and thus (VR) cannot be used. Intuitively, the problem comes
from the fact that the relations between the values of clocks in different components at synchronization time
cannot be derived only from the component invariants alone, because what they offer is just a characterisa-
tion of the local clocks. In this paper, we propose a solution which makes use of additional clocks to store
information about the timings at synchronizations. Furthermore, because of the inherent non-determinism
in the interaction model, at a given time, there may be more interactions which can be fired. The order of
execution of such competing interactions does not reflect at the component level. We look into solving such
conflicting situations by extending our method based on history clocks from component to system level.

2 The Model

2.1 Operational Level
The operational level provides concrete definitions for the notions of components, interaction models,
and systems. As mentioned in the introduction, in the framework of the present paper, components are
timed automata and systems are compositions of timed automata with respect to interaction models where
interactions are sets of ports on which components synchronise. Before detailing these definitions, we note
that the timed automata we use are essentially the ones from [12] however sligthly adapted to embrace a
uniform notation throughout the paper. We note that we restrict to this particular class because we want to
have a common set of examples to compare our compositional approach with model-checking the whole
system in Uppaal.

Definition 1 (Timed automaton (TA)). A TA is a tuple (L,P, T,X , tpc) where L is a finite set of locations,
P a finite set of ports, T ⊆ L× (P × C × 2X)×L is a set of edges labeled with an action, a guard, and a
set of clocks to be reset, X is a finite set of clocks, and tpc : L → C assigns a time progress condition2 to
each location. C is the set of clock constraints. A clock constraint is defined by the grammar:

C ::= true | false | x#ct | x− y#ct | C ∧ C
1We assume that clocks may only have positive values. Thus, for simplicity, we do not show in the component invariants inequal-

ities like x ≥ 0.
2To avoid confusion with invariant properties, we prefer to adopt the terminology of “time progress condition” from [4] instead of

“location invariants”.

2/17 Verimag Research Report no TR-2013-5

L. Aştefănoaei, S. Ben Rayana, S. Bensalem, M. Bozga, J. Combaz

with x, y ∈ X , # ∈ {<,≤,=,≥, >} and ct ∈ Z.
Time progress conditions and guards are clock constraints. Time progress conditions are restricted

to constraints as x ≤ ct. Guards are s.t. they are included in the clock invariants, i.e., given an edge(
l, (p, g, r), l′

)
, tpc(l)→ g evaluates to true.

Definition 2 (Semantics of a timed automaton). The semantics of a timed automaton TA = (L,P, T,X, tpc)
is given by the LTS sem(TA) = (Q,Σ,→) where:

• Q ⊆ L×V denotes the states of TA;

• → ⊆ Q× (Σ ∪ R≥0)×Q denotes the transitions according to the rules:

– (l,v)
δ→ (l,v + δ) if

(
∀δ′ ∈ [0, δ)

)
.(tpc(l)(v + δ′)) (time progress);

– (l,v)
p→ (l′,v′) if

(
l, (p, g, r), l′

)
∈ T , g(v) ∧ tpc(l′)(v′), with v′ = v[r] (action step).

V is the set of all clock valuation functions v : X → R≥0. For a constraint C, C(v) denotes the
evaluation of C in v. The notation v + δ represents a new v′ defined as v′(x) = v(x) + δ while v[r]
represents a new v′ defined as:

v′(x) =

{
v(x) x ∈ X \ r
0 x ∈ r.

Because sem(TA) is usually infinite, the finite symbolic representation that has been proposed instead
is the so called the zone graph [12]. The symbolic states in a zone graph are pairs (l, ζ) where l is a location
of TA and ζ is a zone, a conjunction of clock constraints, or equally, a polyhedron. Given a symbolic state
(l, ζ) its successor with respect to a transition t of TA is denoted as succ(t, (l, ζ)) and defined by means of
its timed and its discrete successor:

• time_succ((l, ζ)) = (l,↗ ζ ∩ tpc(l))

• disc_succ(t, (l, ζ)) = (l′, (ζ ∩ g)[r] ∩ tpc(l′)) if t =
(
l, (_, g, r), l′

)
• succ(t, (l, ζ)) = close(time_succ(disc_succ(t, (l, ζ))), c)

where↗, [r], close are usual operators on zones [12]. We briefly recall their meaning: ↗ ζ is the forward
diagonal projection of ζ, i.e., it contains any valuation v′ for which there exists a real δ such that v′ − δ is
in ζ; ζ[r] is the set of all valuations in ζ after applying the resets in r; close(ζ, c) is the set of all valuations
in ζ where one ignores the constraints with constants greater than c.

Given a TA with transitions T , the set of symbolic states reachable from a given symbolic state s is the
set of all possible successors:

Reach(s) = {s} ∪
⋃
t∈T

s′∈succ(t,s)

Reach(s′).

A symbolic execution of a TA starting from a symbolic state s0 is a sequence of symbolic states
s0, s1, . . . , sn, . . . such that for any i > 0 there exists a transition t for which si ∈ succ(t, si−1).

Definition 3 (Interaction Model). Given n components Bi with Pi their sets of ports, an interaction model
γ is a set of sets of ports, i.e., γ ⊆ 2∪iPi .

Definition 4 (Timed System ‖γBi). Given n components Bi = (Li, Pi, Ti,Xi, tpci) with Pi ∩ Pj = ∅,
Xi∩Xj = ∅, for any i 6= j, and an interaction model γ, ‖γBi is the new timed automaton (L,P, Tγ ,X , tpc)
where P = γ, X = ∪iXi, L = ×iLi, tpc(l̄) = ∩itpc(li), Tγ is s.t.:

• for any interaction α ∈ γ s.t. α = {pi | i ∈ I} with I ⊆ {1, . . . , n} and pi ∈ Pi, we have that
l̄
α,g,r−−−→ l̄′ where l̄ = (l1, . . . , ln), g =

⋂
i∈I
gi, r =

⋃
i∈I
ri, and l̄′ is defined as:

l̄′(i) =

{
l′i if li

pi,gi,ri−−−−−→ l′i
li owise

The semantics of the system is given as TA semantics.

Verimag Research Report no TR-2013-5 3/17

L. Aştefănoaei, S. Ben Rayana, S. Bensalem, M. Bozga, J. Combaz

2.2 Logical Level

We recall from the introduction that invariants are state properties which hold in every reachable state
and that we use Inv(B) to denote the set of invariants of B. Next, we recall the definition of inductive
invariants, which, in contrast to the general definition of invariants, is implementable.

Definition 5 (Inductive Invariant). Given a component B with initial state s0 a property I is an inductive
invariant of B if s0 |= I and s |= I implies s′ |= I for any s′ ∈ succ(t, s) and t a transition of B .

Proposition 1. If I is an inductive invariant of a component B and the implication I → Φ is a valid
formula, then Φ is an invariant of B , B |= �Φ.

Given a system consisting of n components Bi and an interaction model γ, the logical level provides
concrete definitions to the notions of component invariants CI (Bi), interaction invariant II (γ). Our
choice3 is to work with component invariants as over-approximations of the state space:

• CI (Bi) =
∨

(l,ζ)∈Reach(s0)

l ∧ ζ where s0 is the initial state of Bi

and interaction invariants as the minimal models satisfying implications about global locations which can
be deduced from interaction models:

• II (γ) =
∧
L(γ)

∨
l∈L(γ)

l where L(γ) is a trap derived from the interaction model γ.

We note that the above are particular choices of invariants we adopt; this means that the method is generic
enough to work with other definitions of invariants as well, for example, for the interaction invariants, one
could use linear invariants instead.

Proposition 2. CI (Bi), II (γ) are inductive invariants of of ‖γBi.

Let GI denote II (γ) ∧
∧
i

CI (Bi). Making use of the fact that the conjunction of invariants is an

invariant we can show that GI is also a global invariant, and furthermore, that it is inductive.

Proposition 3. GI is an inductive invariant of ‖γBi.

As for system properties, we are interested in safety properties which we denote by Φ. As an example,
we consider the absence of deadlock. We say that a timed system with an interaction model γ is deadlocked
when no interaction in γ is enabled. We denote such a property as DIS(γ), DIS(γ) =

∧
α∈γ
¬enabled(α).

Intuitively, a symbolic state (l,v) is enabled if there exists an action successor of (l,v + δ). Concretely,
we use the enabledeness predicate as it has been defined by means of operations on polyhedra in [13]:

• enabled(α) =↙ (g ∩ [r]tpc(l′))

where α is an interaction, and g, r, l′ refer to a global transition t =
(
l, (_, g, _), l′

)
corresponding to α and

[r]ζ is the set of valuations v such that v[r] is in ζ.
Recall (V R) from introduction:

` GI → Φ
‖γBi |= �Φ

(VR)

Using Prop. 3 and Prop. 1 (V R) can be shown to be sound.

3To ease the reading, we abuse notation and use l as a place holder for a state predicate “at(l)” which holds in any symbolic state
with location l, i.e., its semantics is given by (l, ζ) |= at(l).

4/17 Verimag Research Report no TR-2013-5

L. Aştefănoaei, S. Ben Rayana, S. Bensalem, M. Bozga, J. Combaz

3 A Method for Compositional TA Verification
In the introduction, we gave an intuition about why (V R) in its genericity is weak: the main problem is that
the information about the relations between the values of local clocks at synchronisation time is not used.
This is a consequence of the fact that the clocks advance at the same rate. The solution we propose consists
in equipping components (and later, interactions) with history clocks for each port; then, at interaction time,
the clocks corresponding to the ports participating in the interaction are reset; finally, new relations between
the history clocks together with inequalities on history clocks automatically computed from γ strengthen
GI .

3.1 Components with History Clocks
Definition 6 (Component with History Clocks). Given a component model B = (L,P, T,X , tpc), its
extension wrt history clocks is a timed automaton Bh = (L,P, Th,X ∪HP , tpc) where:

• HP denotes the set of history clocks associated to ports,HP = {hp | p ∈ P};

• Th =
{(
l, (p, g, r ∪ [hp := 0]), l′

)
|
(
l, (p, g, r), l′

)
∈ T

}
.

We note that there are no restriction on the initial values of the history clocks.
As an illustration, Figure 2 shows the extension with respect to history clocks of the components from

the abstract example in the introduction. The extension preserves the symbolic states of the components,

lc0x ≥ β

lc1x ≤ α

lc2

x := 0

a, x = α
x:=0
ha := 0

c
x := 0
hc := 0

a

c

Controllerh

l11

l12

b1, y ≥ β
hb1 := 0

d1
y := 0
hd1 := 0

b1

d1

Workerh1

Figure 2: The Abstract Example with History Clocks.

and consequently any invariant of the composition of Bh
i corresponds to an invariant of ‖γBi. For the ease

of reading, we abuse notation and use ∃HP to stand for ∃hp1∃hp2 . . . ∃hpn for P = {p1, p2, . . . , pn}.

Proposition 4. Any symbolic execution in Bh
i corresponds to a symbolic execution (where all constraints

on history clocks are ignored) in Bi.

Corrolary 1. If ‖γBh
i |= �I then ‖γBi |= �(∃HP).I .

3.2 Inequalities for Histories
By construction, history clocks are reset when the corresponding ports participate in an interaction. Thus,
all other clocks have greater values. This basic but useful observation we exploit in the following definition.

Definition 7 (Interaction Inequalities for History Clocks). Given an interaction model γ, we derive the
following interaction inequalities E(γ):

E(γ) =
∨
α∈γ

(∧
p,q∈α

hp = hq ≤ minp′∈P(γ	α)hp′ ∧ E(γ 	 α)
)

where γ 	 α = {β \ α | β ∈ γ ∧ β \ α 6= ∅} and P(γ) denotes the set of ports in γ.

Verimag Research Report no TR-2013-5 5/17

L. Aştefănoaei, S. Ben Rayana, S. Bensalem, M. Bozga, J. Combaz

As an illustration, for the abstract example, E(γ)
4
= (ha = hb1) ∧ (hc = hd1).

Proposition 5. E(γ) is an inductive invariant of ‖γBh
i .

Due to the combination of recursion and disjunction, the formulae obtained by Definition 7 can be
large. Much more compact formulae can be obtained by exploiting non-conflicting interactions in γ.

Proposition 6. If γ = γ1∪γ2, where each γi is non-empty and their ports are disjoint, P(γ1)∩P(γ2) = ∅,
then E(γ) ≡ E(γ1) ∧ E(γ2).

Corrolary 2. If the interaction model γ has only disjoint interactions, i.e., for any α1, α2 ∈ γ, α1∩α2 = ∅,
then E(γ) ≡

∧
α∈γ

(∧
p,q∈α

hp = hq

)
.

3.3 (VR) revisited
We propose to strengthen the global invariant GI as defined in Section 2.2 by replacing CI (Bi) with
CI (Bh

i) and by adding E(γ). For ease of reference, we denote the new conjunction II (γ)∧iCI (Bh
i)∧E(γ)

as GI h. As an illustration, for the abstract example, the invariant properties for the components with
history are:

CI (Controllerh) = lc0 ∨ (lc1 ∧ x ≤ α ∧ x = hc ∧ x ≤ ha) ∨ (lc2 ∧ x = ha ∧ hc = ha + α)

CI (Workerh) = (l1 ∧ y ≤ hb1 ∧ y = hd1) ∨ (l2 ∧ hb1 ≤ hd1 ∧ y ≥ β + hb1)

Together with the information from E(γ), the conjunction GI h ∧¬Safe reduces to false, i.e., if GI h is
a global inductive invariant then Safe is also an invariant of the system.We conclude that the analysis with
the auxiliary information derived with the help of history clocks is more precise in general.

We need to show the soundness of the new (V R)h.

Theorem 1. The rule (V R)h:

` (∃HP)GI h → Φ

‖γBi |= �Φ
(V R)h

is sound.

The soundness follows from:

1. GI h is an inductive invariant of ‖γBh
i (by Prop. 3 and Prop. 5)

2. (∃HP)GI h is an inductive invariant of ‖γBi (by Corr. 1)

3. ‖γBi |= �Φ (from hypothesis ` (∃HP)GI h → Φ, together with item. 2 by Prop. 1)

4 Extension: handling conflicting interactions
In the previous section, we showed, on the abstract example, that by introducing history clocks, the calcu-
lated invariant approximates better the global reachable states set of the systems. No false alarm is detected.
However, there are scenarios when the technique is weak. This is the case, for example, when interactions
are conflicting. To illustrate the problem, we extend the abstract example by setting up N workers. For the
ease of reading, let I denote the set {i | 1 ≤ i ≤ N}. There are N interactions conflicting in port a and N
other interactions in port c, i.e., γ = {(a | bi), (c | di) | i ∈ I}. The equation relating history clocks is:

ε(γ) =
∨
k∈I

(
ha = hbk ≤ mini∈I\{k}hbi

)
∧
∨
k∈I

(
hc = hdk ≤ mini∈I\{k}hdi

)
.

6/17 Verimag Research Report no TR-2013-5

L. Aştefănoaei, S. Ben Rayana, S. Bensalem, M. Bozga, J. Combaz

lc0x ≥ β

lc1x ≤ α

lc2

x := 0

a, x = α
x:=0
ha := 0

c
x := 0
hc := 0

a

c

Controllerh

l11

l12

b1, y ≥ β
hb1 := 0

d1
y := 0
hd1 := 0

b1

d1

Workerh1

· · ·

ln1

ln2

bn, y ≥ β
hbn := 0

dn
y := 0
hdn := 0

bn

dn

Workerhn

Figure 3: The Abstract Example with N Workers

In the following, we want to check if the system is deadlock-free. We point out that for a precise system,
β and α are fixed. By varying those values, we study a family of systems in order to probe the accuracy
of the method. We note that, for the system, there is a value βlimit such that for every β > βlimit, there
is a real deadlock state. We may show that βlimit = N × α. In some way, when the controller attains lc1
state, at least one worker i should have stayed at least β − α time in li1. In fact, the workers are employed
sequentially. When a worker makes its loop, all the others remain at lj1, j 6= i. When β = βlimit, the
oldest worker in making a loop attains exactly yoldest = βlimit at loldest1 , when x = α. If β > βlimit, its
impossible that yoldest ≥ β. Transition boldest and, subsequently, all bi are disabled whereas a is urgent
(x = α). This induces a real deadlock state.{

β ≤ βlimit ⇒ deadlock freedom
β > βlimit ⇒ real deadlock

We show next that in such a scenario with conflicts the basic method returns false alarms in the case
where the real execution is deadlock free, i.e., when β ≤ βlimit. To do this, we consider the more general4

safety property ¬DIS, where DIS is as follows:

DIS =
∧
i∈I

(
¬(lc1 ∧ li1 ∧ x ≤ α ∧ yi − x ≥ β − α) ∧ ¬(lc2 ∧ li2)

)
We recall the subformulae in the invariants for the controller and for workers which are significant for

the reasoning:

CI(Controllerh) = lc0 ∨ (lc1 ∧ hc = x ≤ ha ∧ x ≤ α) ∨ (lc2 ∧ ha = x ≤ hc)
CI(Workerhi) =

(
li1 ∧ yi = hdi ≤ hbi

)
∨
(
li2 ∧ yi = hdi ≥ hbi + β

)
We can show that for any N there exists a substitution (more precisely, infinitely many) θ which makes

true both GI h and DIS. For instance, when N is 3, θ is as follows:

θ = {lc1, l11, l12, l13, y3 = α, x = α, y1 = y2 =
3α

2
,

(hc = hd3 = α) ≤ (hd1 = hd2 =
3α

2
) ≤

(ha = hb3 = 2α) ≤ (hb1 = hb2 = 3α)}

It can be shown that GI hθ evaluates to true, i.e.:(
CI(Controllerh)

∧
1≤i≤3

CI(Worker i) ∧ II (γ) ∧ ε (γ)
)
θ ≡ >

4We note that the property Safe a priori introduced is, in fact, a subformula of DIS.

Verimag Research Report no TR-2013-5 7/17

L. Aştefănoaei, S. Ben Rayana, S. Bensalem, M. Bozga, J. Combaz

Further, DIS is also satisfied and thus a false deadlock is detected because at l11 we have that y3 − x = 0 <
β − α = α and at li1 we have that y1 = y2 and y1 − x = α

2 < β − α = α.
The above solution is the outcome of the following scenario: if Worker3 has already executed one

loop, then the sequence of interactions involved is (b3 | a) , (d3 | c). However, with the corresponding
equalities and inequalities of E(γ), with the local invariants and the interaction invariant, nothing forbids
the following ordering:

hc = hd3 ≤ min(hd1 , hd2) ≤ hb3 = ha ≤ min(hb1 , hb2) (1)

The clocks order in Ineqs. (1) does not correspond to any real execution because transition d2 or d1
cannot occur between transitions b3 and d3. Such a relation cannot be deduced from the component invari-
ants because there is no information about the time difference (hd2 − hd3). As a general remark, di cannot
occur between bj and dj , j 6= i. The values

∣∣hdj − hdi∣∣ are, in fact, bounded below: if we consider the
port c, we can check that at least α time units pass between two consecutive occurrences of c transition.
We deduce that

∣∣hdj − hdi∣∣ ≥ α for any i 6= j. It can be shown that by adding these differences, no false
alarms are being raise, i.e., we obtain exactly the same results on deadlock as in the real execution: when
a real deadlock exists (β > βlimit), we detect it and when the system is deadlock-free, there is no false
alarm.

The above reasoning suggests a generic way to strengthen GI h with information about the differences
between the timings of the interactions themselves. To effectively implement this, we attach history clocks
and corresponding resets to interactions at the system level:

Definition 8 (Interaction History Clock). Given a system ‖γBi, its extension wrt history clocks for inter-
actions is ‖γhBh

i , Bγ where:

• Bγ is an auxiliary TA having one location l with no invariant, and for each interaction α in γ a clock
hα, i.e., Bγ = ({l∗}, Pγ , T,Hγ , ∅) where:

– the set of ports Pγ = {pα | α ∈ γ}
– the set of clocksHγ = {hα | α ∈ γ}
– T = {(l∗, pα,>, hα := 0, l∗)}

• γh = {(pα | α) | α ∈ γ} with (pα | α) denoting {pα} ∪ {p | p ∈ α}.

In a similar manner as in Section 3.2, it can be shown that any invariant of Bγ‖γhBh
i corresponds

to an invariant of ‖γBi by first showing that any execution of Bγ‖γhBh
i corresponds to an execution

of ‖γBi. For the ease of reading, we abuse notation and use ∃Hγ to stand for ∃hα1
∃hα2

. . . ∃hαn
for

γ = {α1, α2, . . . , αn}.

Proposition 7. Any execution in Bγ‖γhBh
i corresponds to an execution in ‖γBi.

Corrolary 3. If Bγ‖γhBh
i |= � I then ‖γBi |= � ∃HP∃Hγ .I .

Recall that for component history clocks we added inequalities. We extend the def of E to talk about
interaction history clocks.

Definition 9 (E∗).

E∗(γ) =
∧
p∈P

hp = minα∈γ|phα.

where γ|p = {α | p ∈ P(α)} and δp is the minimum time between two consecutive occurences of p.

The next proposition makes the relation between E(γ) and E∗(γ) explicit.

Proposition 8. The following equivalence holds: ∃Hγ .E∗(γ) ≡ E(γ).

Next, we add “separations” for conflicting ports.

8/17 Verimag Research Report no TR-2013-5

L. Aştefănoaei, S. Ben Rayana, S. Bensalem, M. Bozga, J. Combaz

Definition 10 (Separation for interactions). Given an interaction model γ and a conflicting port p, the
induced separation, S(γ, p), is: ∧

α,β∈γ|p
α6=β

| hα − hβ |≥ δp.

where δp is the minimal time elapse between 2 consecutive executions of p in the “parent” component.
Further, let S(γ) be

∧
p∈P(γ)

S(γ, p).

Hypothesis 1. The initial values of the history clocks assoc. with interactions inBγ is s.t. it satisfies S(γ).
This is just a technical convention to simplify the proof.

Next, we show that the new formulae are in fact inductive invariants.

Proposition 9. Both E∗(γ), S(γ) are inductive invariants of Bγ‖γhBh
i .

We strengthen GI h to:

GI ∗ = II (γ) ∧i CI (Bh
i) ∧ E∗(γ) ∧ S(γ)

and consequently, the new (V R)∗ is:

` (∃Hγ)GI ∗ → Φ

‖γBi |= �Φ
(V R)∗

Similarly as it has been shown for the basic method in Section 3.3, the soundness of the new rule (V R)∗

follows from the fact that GI ∗ is a global inductive invariant of ‖γhBh
i , Bγ . This is, indeed, the case

because GI ∗ is a conjunction of invariants, which themselves are inductive.

Theorem 2. The rule (V R)∗ is sound.

Remark 1. By Corollary 3 we have that ∃HP∃Hγ .GI ∗ is an invariant of ‖γBi. To get some intuition
about what information brings such an invariant, we consider an abstraction of the previous example. Let
r be a port in a controller component and let ri be the ports in worker components s.t. ri interact (and thus
conflict) on r. The subformula of GI ∗ which interests us is the conjunction of E∗ and S. We have:

E∗(γ) = ∧ihri = hri|r ∧ hr = mini(hri|r)

S(γ) =
∧
i,j
i6=j

| hri|r − hrj |r |≥ δr

and consequently:

∃Hγ .E∗(γ) ∧ S(γ) ≡
∧
i,j
i 6=j

| hri − hrj |≥ δr.

Remark 2. By definition, separations consider all possible combinations between interactions and this
may lead to big formulae. We could, nevertheless, exploit the inherent symmetry in the scenario: real
executions correspond to fixing a permutation of the interactions from the non-deterministic γ; we can
show that there is an isomorphism between real executions (the controller maps to the controller, and i-th
worker maps to j-th worker); thus, in particular scenarios as the one we considered, it is enough to show
that the safety prop holds for one a priori chosen ordering.

Verimag Research Report no TR-2013-5 9/17

L. Aştefănoaei, S. Ben Rayana, S. Bensalem, M. Bozga, J. Combaz

idlei
tryi

xi > T

Processi

id = i

CSi waiti

xi ≤ T

id = 0
xi := 0

xi := 0

id := i

seti

reqi

enteri

Figure 4: Fischer Protocol- Process automaton

5 Case Studies

5.1 Fischer protocol
A well-known example of real-time systems is the Fischer protocol for mutual exclusion. This example
is well-studied in real-time verification context. The system consists of a number of processes sharing a
resource. Two or more processes should not share the resource, thus be at the critical state at the same
time. In the literature, each process is modeled as a timed automaton, and the assignment of the resource
is decribed by a shared variable.

The concept behind Fischer protocol is that each process can affect his own identifier number to the
global variable. After T time units, if the global variable is not equal to a different identifier number, the
process can enter the critic state and use the resource. The waiting time is constrained by local clocks.
Each process Pi with identifier number i has a local clock xi .

To simplify, we deal with an acyclic version of the protocol, where a process that enters the critical state
does not return to the request state again. We propose to check if in the first loop, two different processes
can be present in the critical state, which would correspond to a false alarm.

Figure 4 describes the mutual exclusion process.

5.1.1 Fischer protocol model without global variable

To model Fischer protocol in our framework without resorting to the shared variable, we propose an ad-
ditional component replacing it. The mutual exclusion between two processes is represented in Figure. 5
which contains, in addition, the corresponding history clocks. The figure shows the case of only two
concurrent processes. For N processes, the interaction model is

γ =
{

(enteri|eqi), (tryi|eq0), (setprocessi , setidi) i = 1 · · ·N
}

The equations relating the history clocks are calculated using Eq. 7:

• Conflicting interactions on port eq0 are: xeq0|xti, i = 1, N

Eq0 =
∧

i=1,N

(xeq0 = xti ∧ (xeq0 ≤ xtj),∀ j 6= i)

• There is no conflicting interactions on ports eqi, setidi , setprocessi , and enteri :

Eqeqi = (xeqi = xeni)

Eqseti = (xsi = xspi)

10/17 Verimag Research Report no TR-2013-5

L. Aştefănoaei, S. Ben Rayana, S. Bensalem, M. Bozga, J. Combaz

try1

se
t

2

se
t

1

enter2enter1

se
t

2

se
t

1

set2
S1

eq0eq1

Id Variable

xs2 := 0

xeq1 := 0

set2

xsp2 := 0

x2 := 0

try2

xs2 := 0
set2

S2

xs1 := 0
set1

xs1 := 0

xs2 := 0
set2

S0

try2

set1
xs1 := 0

Process 1 Process 2

xen1 := 0
x1 > T

set1
x1 := 0

xsp1 := 0

eq1

x2 ≤ T

idle2 req2

eq2

eq0
xeq0 := 0

xeq2 := 0

eq2

set1

wait2
x2 > T
xen2 := 0

x2, xt2 := 0

enter2
CS1

enter1

try1

x1, xt1 := 0

CS2wait1

x1 ≤ T
req1idle1

Figure 5: Fischer protocol modeled without the global variable

The equation which we finally derive from γ is

E(γ) = Eq0 ∧ (
∧

i=1,N

Eqeqi) ∧ (
∧

i=1,N

Eqseti)

5.1.2 Results

The local invariants of the processes components and the local invariant of the global Variable component
are joined to the intercation invariant in order to obtain the global system invariant. Without History clocks,
it is equal to:

GI = (
∧

i=1,N

CIPi
) ∧ CIId−V ariable

where CIPi
is the component invariant of process Pi and CIId−V ariable is the component invariant of

the global variable. If history clocks are considered, the global invariant becomes:

GIh = (
∧

i=1,N

CIhPi
) ∧ CIhId−V ariable ∧ E(γ)

This compositional calculation of the global system invariant is used to detect the violation of the
required safety property; two processes cannot be in the critical state at the same time:

SP = ∀i, j (CSi ∧ CSj ⇒ i = j)

The SAT- solver gives the following results:

GI ; SP

GIh ⇒ SP

We note that, in this case study, there is no use of the interaction invariant. The component invariants
and the equality constraints between history clocks are sufficient. We deduce that the proposed method
eliminates false alarms. It approximates sufficiently the global reachable states of the system, relatively to
this safety property (SP).

5.2 Temperature Control Case Study
As a second case study, we adapt the temperature control example from [3]. There, a BIP model is de-
scribed where the passing of time and the evolution of temperature are implemented by means of variables.
Figure 5.2 shows a semantically equivalent RT-BIP model which replaces tick and temperature variables
by clocks. The interaction model is given by γ =

{
(resti | heat), (cooli | cool) | i ∈ {0, 1}

}
, thus the

Verimag Research Report no TR-2013-5 11/17

L. Aştefănoaei, S. Ben Rayana, S. Bensalem, M. Bozga, J. Combaz

l00

l01

l02

ini
t0 := ct

cool0
t0 ≥ ct
h0
c :=0

rest0
t0:= 0
h0
r:=0

rest0

cool0

Rode0

lc0

lc1t ≤ 900

lc2t ≤ 450

Controller

ini
t := 0

cool
t = 900
t:=0
hc:=0

heat
t = 450
t := 0
hh:=0

heat

cool

l10

l11

l12

ini
t1 := ct

cool1
t1 ≥ ct
h1
c :=0

rest1
t1:= 0
h1
r:=0

rest1

cool1

Rode1

Figure 6: RT-BIP model of TC

corresponding equations we can derive from γ are:

E(γ) = ((hh = h0r ≤ h1r) ∨ (hh = h1r ≤ h0r)) ∧ ((hc = h0c ≤ h1c) ∨ (hc = h1c ≤ h0c)).

The safety property we are interested in is the absence of deadlock:

DIS =
∧

i∈{0,1}

(¬(lc1 ∧ li1 ∧ t ≤ 900 ∧ ti − t ≥ ct− 900) ∧ ¬(lc2 ∧ li2 ∧ t ≤ 450)).

For ct ≥ 1800 we can check that Controller‖Rode0‖Rode1 is deadlock free, i.e., Controller‖Rode0‖Rode1 6|=
�DIS, however this is not the result after applying (V R) when we obtain false alarms:

CI (Rodehi) = (li1 ∧ hic ≥ ti = hir ≥ 0) ∨ (li1 ∧ ti ≥ ct ∧ hic = hir ≥ ti − ct)∨
(li2 ∧ ti − ct ≥ hic ≥ 0 ∧ hir = ti) ∨ (li2 ∧ ti − ct ≥ hic ≥ 0 ∧ hir ≥ ti − ct)

CI (Controllerh) = (lc1 ∧ hh ≥ hc − 450 = t ∈ [0, 900]) ∨ (lc1 ∧ hh = hc ≥ t ∈ [0, 900])∨
(lc2 ∧ hc = t ∈ [0, 450] ∧ hh ≥ 900− t) ∨ (lc2 ∧ hc = t ∈ [0, 450] ∧ hh ≥ ct− t)

⇒
∃θ.(CI (Controllerh) ∧ CI (Rodeh1) ∧ CI (Rodeh2) ∧ II (γ) ∧ E(γ) ∧ DIS)θ ≡ >

where a solution θ is, for example:

θ =
{
lc1, l

1
1, l

0
1, t = 900, t1 = 901, t0 = 900, (hh = h0r = 900) ≤ (h1r = 901) ≤ (hc = h0c = 1350) ≤ (h1c = 1351)

}
which is s.t. it satisfies each CI (Rodehi), CI (Controllerh), E(γ), and II (γ), and DIS because at li1 t

i−t <
ct − 900. This solution is the outcome of the following hypothetical scenario: assume Rode0 has already
executed one loop, i.e., the sequence of interactions observed so far is: (cool0 | cool), (rest0 | heat), with
the corresponding inequalities in E(γ) being hh = h0r ≤ h1r ∧ hc = h0c ≤ h1c and clock constraints:

• hh = t = hc − 450 ∈ [0, 900]

• h0c ≥ h0r = t0

• h1c ≥ h1r = t1

and thus nothing forbids an arrangement like:

hh = h0r ≤ h1r ≤ hc = h0c ≤ h1c (2)

12/17 Verimag Research Report no TR-2013-5

L. Aştefănoaei, S. Ben Rayana, S. Bensalem, M. Bozga, J. Combaz

which does not, in fact, correspond to any real execution (rest1 cannot be executed between cool0 and
rest0). Ineqs. (2) is possible precisely because there is no information about the time difference h1r − h0r .
To synthesise this info, as Marius suggested, remove a conflict, e.g., heat | resti, by “splitting” heat into
heati s.t. heati | resti:

CI (Controller∗) = · · · ∧ (lc1 ∧ t = hh0
= hc − 450 ∈ [0, 900] ∧ (3)

hh1
≥ t+ 1350) (4)

this provides enough info to forbid Ineqs. (2):

h1r ≥ h0r + 1350 using (3), h1r = hh1 , h
0
r = hh0 from E(γ)

hc ≤ 1350 from (4)

1350 + h0r ≤ h1r ≤ hc ≤ 1350 using (1), (4), (5) (5)

Ineqs. (5) lead to a contradiction.
The above information can be automatically obtained from the conjunction of E∗ and S introduced in

Section 4:

E∗(γ) =
∧

i∈{0,1}

(hir = hri|h ∧ h
i
c = hci|c) ∧ hh = mini(hri|h) ∧ hc = mini(hci|c)

S(γ) =| hr1|h − hr0|h |≥ δh ∧ | hc1|c − hc0|c |≥ δc

and thus, by eliminating the quantifiers, ∃Hγ .E∗(γ) ∧ S(γ) is equivalent to:

| h1r − h0r |≥ 1350 ∧ | h1c − h0c |≥ 1350

by using that the time elapse between consecutive cool and resp. heat is 1350.

5.3 Evaluation

Size (nb rodes) Dt-Finder Dt-Finder with Separations (GI∗) Uppaal
2 - 7 cex true true
> 7 cex true -

Table 1: Comparison between Dt-Finder and Uppaal

In Table 1, II (γ) is the linear interaction invariant: lc0 + lc1 +

n−1∑
0

lri2 = 1 and GI∗ stands for:

CI (Controller∗) ∧i CI (Rodehi) ∧ II (γ) ∧ E(γ) ∧i hπ(i)r − hπ(i−1)r ≥ 1350.

6 Related Work
Formal verification of timed systems encounters state -space-explosion problems, mainly when it comes to
timed systems. To formally address this issue, the assume guarantee [9, 8, 11] approach was proposed in
order to to deduce global properties of the system based on features of the separate composing subsystems.
However, some assumptions should be made and it is a challenge to find the appropriate decomposition
and the related assumptions[6]. Yet, it is challenging to offer automated techniques supporting this pattern.

Attempting to reduce the state space explosion, authors in [7] precede composition with an abstraction
module. Composition is applied to the abstracted timed automata. Finding a safe abstraction condition
makes the method restricted to fully deterministic automata. Compositional logic has also been conducted
as part of timed interface theory [1]. It permits to verify if two interfaces are compatible and shows a

Verimag Research Report no TR-2013-5 13/17

L. Aştefănoaei, S. Ben Rayana, S. Bensalem, M. Bozga, J. Combaz

method to compose them. This framework differs from ours in that we try to automatically calculate
a global invariant of the composite system, permitting to approach the global reachable state and check
satisfaction of different properties.

The idea of adding new local clocks to automata was proposed in [2], trying to alleviate the reachability
checking of timed systems. The idea is to desynchronize local clocks and minimize the exploration of
interleaving and independant transitions. Then, resynchronization is carried out through added reference
clocks, one in each automaton. These clocks measure the local time that has advanced in each automaton
since the start time whereas our history clocks indicate the time that has advanced from every interaction.
Besides, we propose to apply our idea to a composition rather than exploration framework.

7 Conclusion and Future Work
Although theoretical methods have been introduced for compositional reasoning, mainly the assume-
guarantee approach, they are still unpractical to implement due to the lack of automatism. In this paper,
we presented a fully automated technique to generate compositionally global invariants of timed systems
and have shown its soundness on several case studies. In the future, we intend to manage data invariants
issue, which characterizes typically scheduling scenarios. The proposed method could also be extended to
statistical model checking of probabilistic timed systems.

References
[1] L. D. Alfaro, T. A. Henzinger, and M. Stoelinga. Timed interfaces, 2002. 6

[2] J. Bengtsson, B. Jonsson, J. Lilius, and W. Yi. Partial order reductions for timed systems, 1998. 6

[3] S. Bensalem, M. Bozga, J. Sifakis, and T.-H. Nguyen. Compositional verification for component-
based systems and application. In Proceedings of the 6th International Symposium on Auto-
mated Technology for Verification and Analysis, ATVA ’08, pages 64–79, Berlin, Heidelberg, 2008.
Springer-Verlag. (document), 1, 1, 5.2

[4] S. Bornot and J. Sifakis. An algebraic framework for urgency. Information and Computation,
163:2000, 1998. 2

[5] B. Dutertre and L. de Moura. The Yices SMT solver. Technical report, SRI International, 2006. 1

[6] G. S. A. Jamieson M. Cobleigh and L. A. Clarke. Breaking up is hard to do: An evaluation of
automated assume-guarantee reasoning. 2008. 6

[7] H. E. Jensen, K. G. Larsen, and A. Skou. Scaling up uppaal automatic verification of real-time
systems using compositionality and abstraction. In FTRTFT, pages 19–30, 2000. 6

[8] C. B. Jones. Specification and design of (parallel) programs. pages 321–332, 1983. 6

[9] J. Misra and K. M. Chandy. Proofs of networks of processes. page 4:417–426, 1981. 6

[10] L. Moura and N. Bjørner. Efficient e-matching for smt solvers. In Proceedings of the 21st inter-
national conference on Automated Deduction: Automated Deduction, CADE-21, pages 183–198,
Berlin, Heidelberg, 2007. Springer-Verlag. 1

[11] A. Pnueli. In transition from global to modular temporal reasoning about programs. page 123–144,
1984. 6

[12] S. Tripakis. The analysis of timed systems in practice. PhD thesis, Joseph Fourier University, 1998.
2.1, 2.1

[13] S. Tripakis. Verifying progress in timed systems. In In ARTS’99, pages 299–314. Springer-Verlag,
1999. 2.2

14/17 Verimag Research Report no TR-2013-5

L. Aştefănoaei, S. Ben Rayana, S. Bensalem, M. Bozga, J. Combaz

A Proofs
Calculation of DIS The equation:

enabled(α) = {(l,v) | (∃l′)(∃δ ≥ 0).tpc(l)(v + δ) ∧ (l,v + δ)
α→ (l′,v + δ)} (6)

is equivalent to:

enabled(α) =↙ (g ∩ [r]tpc(l′)). (7)

Proof.

enabled(α) = {(l,v) | (∃l′)(∃δ ≥ 0).tpc(l)(v + δ) ∧ (l,v + δ)
α→ (l′,v + δ)}

Eq. (6) ≡
(replacing the trans by its cond and abstracting away the info about locs)

{v | (∃δ ≥ 0).(g ∩ [r]tpc(l′))(v + δ) ∧ (∀0 ≤ δ′ < δ).
(
tpc(l)(v + δ′)

)
} ≡

(using Lemma 3)

{v | (∃δ ≥ 0).(g ∩ [r]tpc(l′))(v + δ) ∧
(
tpc(l)(v + δ)

)
} ≡

↙
(
g ∩ [r]tpc(l′) ∩ tpc(l)

)
≡

(using g ⊆ tpc(l))

enabled(α) =↙ (g ∩ [r]tpc(l′))

Eq. (7) (for a global transition t =
(
l, (_, g, _), l′

)
corresponding to α)

Lemma 3. If ζ is closed convex and ζ(v) then (∀0 ≤ δ′ < δ).ζ(v + δ′) ≡ ζ(v + δ).

Proof. To ease the reading, we adopt the notation v ∈ ζ instead of ζ(v).
“⇒”:

v ∈ ζ ∧ (∀0 ≤ δ′ < δ).ζ(v + δ′)⇒

(by choosing δn = δ − δ

n
and using that ζ is closed)

(∀n ≥ 1).(v + δn ∈ ζ)⇒ lim
n→+∞

(v + δn) ∈ ζ ⇒ v + δ ∈ ζ

“⇐”:

v ∈ ζ ∧ (v + δ ∈ ζ)⇒
(by choosing v1 = v + δ,v2 = v and using that ζ is convex)

(∀λ ∈ [0, 1)).
(
λ(v + δ) + (1− λ)v ∈ ζ

)
≡

(∀λ ∈ [0, 1)).(v + λδ ∈ ζ) ≡ (∀0 ≤ δ′ < δ).(v + δ′ ∈ ζ)

Proof of Proposition 4. Let X be the set of clocks in Bi and recall that ζ|X is the zone containing only the
constraints in ζ which have variables in X , where |X is the zone operator for projection on X . It suffices to
note that any symbolic state (l, ζh) in the reachability set Reach(sh0) of Bh

i with initial state s0 = (l0, ζ
h
0)

is equivalent with (up to HP) a symbolic state (l, ζh|X) in the reachablity set of Bi, Reach(s0), with initial
state s0 = (l, ζh0|X

).

Verimag Research Report no TR-2013-5 15/17

L. Aştefănoaei, S. Ben Rayana, S. Bensalem, M. Bozga, J. Combaz

Proof of Proposition 5. By induction on the length of global execution paths. It suffices to recall that when
an interaction α takes place at a global state s, all hp with p ∈ α are reset to 0, thus their value at any
successor of s are smaller than any hq , with q ∈ P(γ) \ α, and consequently smaller than the minimum
among hq . Also, the values of the history clocks not being reset are unchanged, thus satisfy E(γ 	 α) by
induction.

Proof of Proposition 6. By induction on the number of interactions in γ. In the base case, γ has 2 interac-
tion, each γi consists of precisely one interaction αi.

E(γ) =
(∧
i,j

hα1(i) = hα1(j) ∧ hα1(0) ≤ mink(hα2(k)) ∧ E({α2})
)

∨(∧
i,j

hα2(i) = hα2(j) ∧ hα2(0) ≤ mink(hα1(k)) ∧ E({α1})
)

≡

(
using E({αi})

4
=
(∧
i,j

hαi(i) = hαi(j)

))
E({α1}) ∧ E({α2}) ∧

(
hα1(0) ≤ mink(hα2(k)) ∨ hα2(0) ≤ mink(hα1(k))

)
≡

(using totality of ≤, hα1
(0) ≥ hα2

(0) ∨ hα2
(0) ≥ hα1

(0))

E(γ1) ∧ E(γ2)

where we used α(i) to denote the i-th port in α.
“P(n)⇒ P(n+1)”: for the ease of reading, we introduce eq(α) and leq(α) to denote

∧
i 6=j

hα(i) = hα(j) and

respectively hα(0) ≤ minβ 6=αkhβ(k).

E(γ) =
∨
α∈γ1

eq(α) ∧ leq(α) ∧ E((γ1 ∪ γ2)	 α) ∨
∨
α∈γ2

eq(α) ∧ leq(α) ∧ E((γ1 ∪ γ2)	 α) ≡(
using γ2 	 α = γ2 for α ∈ γ1(resp. for γ2)and by ind. for γ′ = (γ1 	 α) ∪ γ2

)
E(γ2) ∧

(∨
α∈γ1

eq(α) ∧ leq(α) ∧ E(γ1 	 α)
)
∨ E(γ1) ∧

(∨
α∈γ2

eq(α) ∧ leq(α) ∧ E(γ2 	 α)
)

≡(
using eq(α) ∧ E(γ1 	 α) = E(γ1) (and resp. for γ2) by ind.

)
E(γ1) ∧ E(γ2) ∧

(∨
α∈γ1

leq(α) ∨
∨
α∈γ2

leq(α)) ≡

E(γ1) ∧ E(γ2) ∧
∨
α∈γ

leq(α) ≡

(using totality of ≤ and disjointness of γi)
E(γ1) ∧ E(γ2)

Proof of Proposition 7. The reasoning is similar to the one in the proof of Proposition 4. It suffices to note
that any reachable state (l̄, ζh) in ‖γhBh

i , Bγ corresponds to a reachable state (l̄ \ l∗, ζh|X) in ‖γBi where
we recall that l∗ is the unique location in Bγ and X is the set of clocks in ‖γBi.

Proof of Proposition 8. By induction on the number of interaction in γ.
In the base case, γ = {α}, we have the following equivalences:

E(γ) =
∧
p,q∈α

hp = hq ≡ ∃hα.
(∧
p∈α

hp = hα
)
≡

∃Hγ .
(∧
p∈P(γ)

hp = minα∈γ|phα
)
≡ ∃Hγ .E∗(γ).

16/17 Verimag Research Report no TR-2013-5

L. Aştefănoaei, S. Ben Rayana, S. Bensalem, M. Bozga, J. Combaz

In the inductive case, we assume that ∃Hγ .E∗(γ) ≡ E(γ) holds for any γ of size smaller than k and we
show that it also holds for a γ of size k+ 1. To do this, we fix γ as the set {α1, α2, . . . , αn}, an arbitrary α
as α1. Further, we denote α∗i = αi \ α, for any i > 1 and γ′ = γ 	 α, that is, γ′ = {α∗2, . . . , α∗n}. Clearly,
the size of γ′ is less than n. We have the following equivalences:

E(γ) ≡ (assumming it is α the interaction for which the corr. conj makes E(γ) true)∧
p,q∈α

hp = hq ≤ minr∈P(γ′)hr ∧ E(γ′) ≡

(by the induction hypothesis)∧
p,q∈α

hp = hq ≤ minr∈P(γ′)hr ∧ ∃Hγ′ .E∗(γ′) ≡

∃hα.
(∧
p∈α

hp = hα ∧ hα ≤ minr∈P(γ′)hr
)
∧ ∃Hγ′ .E∗(γ′) ≡

∃hα∃Hγ′ .
(∧
p∈α

hp = hα ∧ hα ≤ minr∈P(γ′)hr ∧
∧

r∈P(γ′)

hr = minβ∈γ|rhβ
)
≡

∃hα∃Hγ′ .
(∧
p∈α

hp = hα ∧ hα ≤ minr∈P(γ′)minβ∈γ′|rhβ ∧
∧

r∈P(γ′)

hr = minβ∈γ′|rhβ
)
≡

(hα is ≤ than any clock hβ for any β containing an arbitrary r, so it is the min among all β ∈ γ′)

∃hα∃Hγ′ .
(∧
p∈α

hp = hα ∧ hα = minβ∈γ′hβ ∧
∧

r∈P(γ′)

hr = minβ∈γ′|rhβ
)
≡

(by introducing new vars hαi
and corr. eqs)

∃Hγ∃Hγ′ .
(∧
p∈α

hp = hα ∧ hα = minβ∈γ′hβ ∧
∧

i∈{2,...,n}

hα∗i = hαi ∧
∧

r∈P(γ′)

hr = minβ∈γ′|rhβ
)
≡

(any β in γ′ corresponds to a αi)

∃Hγ .
(∧
p∈α

hp = hα ∧ hα = minβ∈γhβ ∧
∧

r∈P(γ′)

hr = minβ∈γ|rhβ
)
≡

∃Hγ .
(∧
p∈α

hp = minβ∈γhβ ∧
∧

r∈P(γ′)

hr = minβ∈γ|rhβ
)
≡

(using P(γ) = P(γ′) ∪ α)

∃Hγ .
(∧
r∈P(γ)

hr = minβ∈γ|rhβ
)
≡ ∃Hγ .E∗(γ)

Proof of Proposition 9. By induction on the length of computations. The base case follows by Hypothe-
sis 1. For the inductive case, let s = (l̄, ζ) be the state reached after i steps, α be an interaction which can
be executed from s, s′ = (l̄′, ζ ′) be the successor state, and p be an arbitrary port. We make a case analysis
depending on wether p ∈ α.

1. p ∈ α: then both hp and hα have been reset. Consequently, on the one hand, their values at s′ are
such that hp = hα = minβ∈γ|p , on the other hand, for any hβ , | hβ − hα | evaluates to the value of
hβ at s and is thus greater or equal than δp by induction. The difference | hβ − hβ′ | is preserved for
any β′ 6= α, thus, greater or equal than δp by induction.

2. p 6∈ α: then it suffices to note that α 6∈ γ|p and thus both hp = minβ∈γ|phβ and | hβ − hβ′ |≥ δp
are preserved from s to s′ and hold by induction.

Verimag Research Report no TR-2013-5 17/17

	Introduction
	The Model
	Operational Level
	Logical Level

	A Method for Compositional TA Verification
	Components with History Clocks
	Inequalities for Histories
	(VR) revisited

	Extension: handling conflicting interactions
	Case Studies
	Fischer protocol
	 Fischer protocol model without global variable
	 Results

	Temperature Control Case Study
	Evaluation

	Related Work
	Conclusion and Future Work
	Proofs

