
Model-Based Implementation of
Parallel Real-Time Systems

Ahlem Triki, Jacques Combaz

Verimag Research Report no TR-2013-11

Reports are downloadable at the following address
http://www-verimag.imag.fr

Unité Mixte de Recherche 5104 CNRS - Grenoble INP - UJF
Centre Équation
2, avenue de VIGNATE
F-38610 GIERES
tel : +33 456 52 03 40
fax : +33 456 52 03 50
http://www-verimag.imag.fr

http://www-verimag.imag.fr

Model-Based Implementation of Parallel Real-Time Systems

Ahlem Triki, Jacques Combaz

Abstract

One of the main challenges in the design of real-time systems is how to derive correct and
efficient implementations from platform-independent specifications.

We present a general implementation method in which the application is represented by an
abstract model consisting of a set of interacting components. The abstract model executes
sequentially components interactions atomically and instantaneously. We transform abstract
models into physical models representing their execution on a platform. Physical models
take into account execution times of interactions and allow their parallel execution. They are
obtained by breaking atomicity of interactions using a notion of partial state. We provide
safety conditions guaranteeing that the semantics of abstract models is preserved by physical
models. These provide bases for implementing a parallel execution Engine coordinating the
execution of the components. The implementation has been validated on a real robotic ap-
plication. Benchmarks show net improvement of its performance compared to a sequential
implementation.

Keywords:

Reviewers: Saddek Bensalem, Joseph Sifakis

Notes: Work supported by the European Integrated Project 257414 ASCENS (www.ascens-ist.eu).

How to cite this report:

@techreport {TR-2013-11,
title = {Model-Based Implementation of Parallel Real-Time Systems},
author = { Ahlem Triki, Jacques Combaz },
institution = {{Verimag} Research Report},
number = {TR-2013-11},
year = {2013}
}

www.ascens-ist.eu

Ahlem Triki, Jacques Combaz

1 Introduction
Model-based design allows deriving correct implementations from formal specifications of the application.
It involves successive transformations from abstract models, i.e. platform-independent representations
of the application software, to concrete system models taking into account platform properties such as
hardware architecture constraints and execution times.

A model-based design flow for real-time systems seeks satisfaction of two types of properties. Correct-
ness, that is preservation of the essential properties of the application software. This is usually established
under the assumption that the available resources are sufficient for running the application. Efficiency, that
is the available resources such as memory, time, and energy are used in an optimized manner. A key issue
in this context is the efficient use of the parallelism offered by the platform, e.g. by multi-core architectures.

Existing model-based implementation techniques use specific programming models. Synchronous pro-
grams can be considered as a network of strongly synchronized components. Their execution is a sequence
of non-interruptible steps that define a logical notion of time. In a step each component performs a quantum
of computation. An implementation is correct if the worst-case execution times (WCET) for steps are less
than the requested response time for the system. For asynchronous real-time programs e.g. Ada programs,
there is no notion of execution step. Components are driven by events. Fixed priority scheduling policies
are used for sharing resources between components. Scheduling theory allows to estimate system response
times for known periods and time budgets.

Recent implementation techniques consider more general programming models [7, 8, 3]. The proposed
approaches rely on a notion of logical execution time (LET) which corresponds to the difference between
the release time and the due time of an action, defined in the program using an abstract notion of time. To
cope with uncertainty of the underlying platform, a program behaves as if its actions consume exactly their
LET: even if they start after their release time and complete before their due time, their effect is visible
exactly at these times. This is achieved by reading for each action its input exactly at its release time and
its output exactly at its due time. Time-safety is violated if an action takes more than its LET to execute.

We present a general implementation method for real-time systems based on an abstract timed model.
In this model, the application software is a set of components whose behavior is defined by timed au-
tomata [2]. Using timed automata allows more general timing constraints than LET used in [7, 8, 3], such
as lower bounds, upper bounds, and time non-determinism. Components can synchronize their actions
and communicate through (multiparty) interactions. In addition to interactions, we also consider priorities
which are partial order relations between interactions. Priorities are essential for building correct real-time
systems. They allow direct expression of real-time scheduling policies used for meeting the timing con-
straints of the application. Very often these policies also enforce determinism, which is necessary to have
reproducible execution. The operational semantics of the abstract model assumes a sequential, atomic and
instantaneous execution of the interactions. Following the approach in [1] physical models can be auto-
matically built from the abstract model. A physical model represents the execution of the corresponding
abstract model on a given platform. It takes into account (non zero) execution times of actions by breaking
the atomicity of their execution. In this paper, we show how to build physical models allowing parallel
execution of interaction by extending the approach presented in [4] for untimed models. In such physical
models, interactions can be executed even from partial states, that is, even if one or more components are
still executing. We prove that the semantics of abstract models is preserved by physical models when con-
sidering additional conditions characterizing safe execution. We explain how to compute these conditions
using approximations of the reachable states of the system. The correctness of the physical models requires
also that the platform is sufficiently fast for running the application.

We define an execution engine that implements the operational semantics of physical models. When a
component completes its computation, it sends to the engine its current state. The engine uses a scheduler
that can execute component interactions based on the partial knowledge of the state of the system. From
an initial state of the system, it proceeds as follows.

1. Compute the set of interactions enabled by the non-executing components, i.e. the ones whose state is
known. Some of the enabled interactions may be unsafe to execute as they are potentially in conflict
with other interactions that may be enabled when the execution of busy components completes.

2. Among the enabled interactions, determine the subset of enabled interactions that are safe to exe-

Verimag Research Report no TR-2013-11 1/12

Ahlem Triki, Jacques Combaz

cute. Safe interactions preserve the semantics of the application software. If all components have
completed, the state of the system is fully known and all the enabled interactions are safe.

3. If the set of safe interactions is empty, wait for more components to complete their execution and
go to 1. Otherwise, select a safe interaction according to a real-time scheduling policy (e.g. Earliest
Deadline First) and execute it.

The rest of the paper is structured as follows. Section 2 explains how to build physical models and
discusses the problem of their correctness. Section 3 defines the implementation method in terms of an
execution engine. It also provides experimental results for a robotic case study showing the interest of the
approach. The last section concludes the paper.

2 Modeling Parallel Real-time Systems

2.1 Preliminaries

We consider discrete-time models, that is, time is represented using the set of non-negative integers
denoted by N. We assume that time progress is measured by clocks. Clocks are non-negative integer
variables increasing synchronously. A clock can be reset (i.e. set to 0) independently of other clocks.
Given a set of clocks X, a valuation v : X → N is a function associating with each clock x its value
v(x). Given a subset of clocks X′ ⊆ X and a clock value l ∈ N, we denote by v[X′ 7→ l] the valua-
tion that coincides with v for all clocks x ∈ X\X′, and that associates l to all clocks x ∈ X′. It is defined by:

v[X′ 7→ l](x) =

{
l if x ∈ X′

v(x) otherwise.

Guards are used to specify when actions are enabled. We consider simple constraints on clocks X
which are atomic formulas of the form x ∼ k, where x ∈ X, k ∈ N, and ∼ is a comparison operator such
that ∼∈ {≤,≥}. They are used to build general constraints defined by the following grammar:

c := true | false | x ≤ k | x ≥ k | c ∧ c | c ∨ c | ¬c.

We simplify ¬(x ≤ k) into x ≥ k + 1, and ¬(x ≥ k) into x ≤ k − 1 This allows putting any constraint
c into the following disjunctive form: c = c1 ∨ c2 ∨ . . . ∨ cn such that expressions ci are conjunctions of
simple constraints. The evaluation of a clock constraint c for a valuation v of clocks X denoted by c(v), is
obtained by replacing each clock x by its value v(x).

A guard g is a clock constraint c with an urgency type τ ∈ { l,d,e }, denoted by g = [c]τ . Urgency
types are used to specify the need for an action to progress when it is enabled (i.e. when its clock constraint
is true) [6] . Lazy actions (i.e. non-urgent) are denoted by l, delayable actions (i.e. urgent just before they
become disabled) are denoted by d, and eager actions (i.e. urgent whenever they are enabled) are denoted
by e.

The predicate urg[g] that characterizes the valuations of clocks for which the guard g = [c]τ is urgent
is defined by:

urg[g](v) ⇐⇒

false if g is lazy, i.e. if τ = l
c(v) ∧ ¬c(v + 1) if g is delayable, i.e. if τ = d
c(v) if g is eager, i.e. if τ = e.

We denote by G(X) the set of guards over a set of clocks X.
Given guards g1 = [c1]

τ1 and g2 = [c2]
τ2 , the conjunction of g1 and g2 is denoted by g1 ∧ g2 and is

defined by g1 ∧ g2 = [c1 ∧ c2]max τ1,τ2 , considering that urgency types are ordered as follows: l < d < e.
Henceforth, given a guard g = [c]τ and a valuation v, we also write g(v) for the expression c(v).

2/12 Verimag Research Report no TR-2013-11

Ahlem Triki, Jacques Combaz

2.2 Abstract Models
DEFINITION 1 (abstract model) An abstract model is a timed automaton M = (A,Q,X,−→) such that:

• A is a finite set of (observable) actions. In addition to actions A, we consider internal action β. We
denote by Aβ the set of actions A ∪ {β}

• Q is a finite set of control locations
• X is a finite set of clocks
• −→⊆ Q × (Aβ × G(X) × 2X) × Q is a finite set of labeled transitions. A transition is a tuple

(q, a, g, r, q′) where a is an action executed by the transition, g is a guard over X and r is a subset of
clocks that are reset by the transition. We write q

a,g,r−→ q′ for (q, a, g, r, q′) ∈−→.

An abstract model describes the platform-independent behavior of the system. Timing constraints, that
is, guards of transitions, take into account only user requirements (e.g. deadlines, periodicity, etc.). The
semantics assumes timeless execution of actions.

DEFINITION 2 (abstract model semantics) An abstract model M = (A,Q,X,−→) defines a transition
system TS. States of TS are pairs (q, v), where q is a control location of M and v is a valuation of the
clocks X.

• Actions. We have (q, v)
a−→ (q′, v[r 7→ 0]) if q

a,g,r−→ q′ in M and g(v) is true.

• Time steps. For a waiting time δ ∈ N, δ > 0, we have (q, v)
δ−→ (q, v + δ) if for all transitions

q
a,g,r−→ q′ of M and for all δ′ ∈ [0, δ[, ¬urg[g](v + δ′).

In an abstract model, time can progress only if no transition is urgent. Urgency corresponds to priorities
induced by the timing constraints: urgent transitions have priority over time progress. We denote by
wait(q, v) the maximal waiting time allowed at (q, v). Notice that it satisfies wait(q, v+δ) = wait(q, v)−δ
for all δ ∈ [0,wait(q, v)], and is formally defined as follows:

wait(q, v) = min
({

δ ≥ 0
∣∣∣ ∨
q
ai,gi,ri−→ qi

urg[gi](v + δ)
}
∪ { +∞ }

)
.

Given an abstract model M = (A,Q,X,−→), a finite (resp. an infinite) execution sequence of M from
an initial state (q0, v0) is a maximal sequence of observable actions and time-steps (qi, vi)

σi
; (qi+1, vi+1),

σi ∈ A ∪ N and i ∈ { 0, 1, 2, . . . , n } (resp. i ∈ N), such that ; is the transitive closure of −→ for

β-transitions, that is, (qi, vi)
σi
; (qi+1, vi+1) if (qi, vi)

β

−→∗ (q′i, v′i)
σi−→ (q′′i , v

′′
i)

β

−→∗ (qi+1, vi+1).

EXAMPLE 1 Consider an abstract model M = (A,Q, {x},−→) with two actions A = {sync1, p}, two
states Q = {q1, q2}, a single clock x, and two transitions −→= { (q1, sync1, ∅, {x}, q2), (q2, p, [10 ≤
x ≤ 20]d, ∅, q1)} (see Figure 1). It can be easily shown that the execution sequences of M from the

initial state (q2, 0) that are an infinite repetition of the sequence (q2, 0)
δ1−→ (q2, δ1)

p−→ (q1, δ1)
δ2−→

(q1, δ1 + δ2)
sync1−→ (q2, 0), where 10 ≤ δ1 ≤ 20.

q2q1

{x}sync1

p [10 ≤ x ≤ 20]d

Figure 1: Example of abstract model

DEFINITION 3 (composition of abstract models) Let Mi = (Ai,Qi,Xi,−→i), 1 ≤ i ≤ n, be a set of
abstract models. We assume that their sets of actions and clocks are disjoint, i.e. for all i 6= j we have

Verimag Research Report no TR-2013-11 3/12

Ahlem Triki, Jacques Combaz

Ai ∩ Aj = ∅ and Xi ∩ Xj = ∅. A set of interactions γ is a subset of 2A, where A =
⋃n
i=1 Ai, such that

any interaction a ∈ γ contains at most one action of each component Mi, that is, a = { ai | i ∈ I } where
ai ∈ Ai and I ⊆ { 1, 2, . . . , n }. The composition of the abstract models Mi, 1 ≤ i ≤ n, by using a set
of interactions γ, denoted by γ(M1, . . . ,Mn), is the composite abstract model M = (γ,Q,X,−→γ) such
that Q = Q1 ×Q2 × . . .×Qn, X =

⋃n
i=1 Xi, and −→γ is defined by the rules:

a = {ai}i∈I ∈ γ g =
∧
i∈I

gi r =
⋃
i∈I

ri ∀i ∈ I . qi
ai,gi,ri−→i q′i ∀i 6∈ I . q′i = qi

(q1, . . . , qn)
a,g,r−→γ (q′1, . . . , q

′
n)

∃i ∈ {1, . . . , n} . qi
β,gi,ri−→i q

′
i ∀j 6= i . q′j = qj

(q1, . . . , qn)
β,gi,ri−→γ (q′1, . . . , q

′
n)

A composition M = γ(M1, . . . ,Mn) of abstract models Mi, 1 ≤ i ≤ n, can execute two type of
transitions: interactions a = {ai}i∈I ∈ γ which corresponds to synchronizations of actions ai of models
Mi, i ∈ I , and internal actions β of the models Mi. An interaction a = {ai}i∈I ∈ γ is enabled from a
state of M if all actions ai are enabled.

In a composite model M = γ(M1, . . . ,Mn), many interactions can be enabled at the same time
introducing a degree of non-determinism in the behavior of M . In order to restrict non-determinism,
we introduce priorities that specify which interaction should be executed among the enabled ones. A
priority on M = γ (M1, . . . ,Mn) is a relation π ⊆ γ × Q × γ such that for all q the relation
πq = { (a, a′) | (a, q, a′) ∈ π } is a partial order. We write aπqa′ for (a, q, a′) ∈ π to express the
fact that a has weaker priority than a′ at state q. That is, if both a and a′ are enabled at state q, only the
action a′ can be executed. Thus, priority aπqa′ is applied only when the conjunction of the guards of a and

a′ is true. Let q
a,g,r−→γ q

′ and q
a′,g′,r′−→γ q′′ be transitions of M such that g = [c]τ and g′ = [c′]τ

′
. Applying

priority aπqa′ boils down to transforming the guard g of a into the guard gπ = [c ∧ ¬c′]τ and leaving the
guard g′ of a′ unchanged.

Henceforth, we denote by enq(a) the predicate characterizing the valuations of clocks for which an
interaction a is enabled at state q. It is defined by:

enq(a) =

false if @(q, a, g, r, q′) ∈−→γ∨

(q,a,[c]τ ,r,q′)∈−→γ

c otherwise.

DEFINITION 4 (priority) Given a composite model M = (γ,Q,X,−→γ), the application of a priority π
to M defines a new model πM = (γ,Q,X,−→π) such that −→π is defined by the rule:

q
a,g,r−→γ q

′ g = [c]τ gπ =
[
c ∧ ¬

∨
aπqa′

enq(a′)
]τ

q
a,gπ,r−→ π q

′

EXAMPLE 2 Consider an abstract model M = πγ(M1,M2,M3) such that:

• abstract models M1, M2, and M3 are provided by Figure 2,

• interactions γ = {a1, a2, a3} are defined by a1 = {sync1, sync2, sync3}, a2 = {p, q} and a3 =
{r, s},

• priority π is such that a2πqa3 for any control location q of M .

From the initial state (q11 , q
1
2 , q

1
3 , 0), it can be easily shown that the execution sequences of M have the

following form: ((q11 , q
1
2 , q

1
3), 0)

a1−→ ((q21 , q
2
2 , q

2
3), 0)

5−→ ((q21 , q
2
2 , q

2
3), 5)

a3−→ ((q21 , q
3
2 , q

1
3), 5)

δ2−→
((q21 , q

3
2 , q

1
3), 5 + δ2)

a2−→ ((q11 , q
1
2 , q

1
3), 5 + δ2)

a1−→ ((q21 , q
2
2 , q

2
3), 0), where 5 ≤ δ2 ≤ 15. Notice that

control location err cannot be reached inM2 due to the application of priority a2πqa3 for q = (q21 , q
2
2 , q

2
3).

4/12 Verimag Research Report no TR-2013-11

Ahlem Triki, Jacques Combaz

q11 q12 q13

a2πa3

γ = {a1 = {sync1, sync2, sync3}, a2 = {p, q}, a3 = {r, s}}

M3
M1

sync1
{x}

p

[10 ≤ x ≤ 20]d
sync2

err

M2

q32

q

r q22
q

sync3
{y}

s

[y ≥ 5]e

q21 q23

Figure 2: Example of composition of abstract models with priorities

2.3 Building physical models
Abstract models are platform-agnostic representations of applications in which action execution is atomic
and instantaneous. Physical models represent the behavior of the application software running on a plat-
form. They take into account the fact that action execution may take non-zero time. To this purpose we
break atomicity of actions and introduce execution times. The transition of an action a of an abstract
model is replaced by a sequence of two consecutive transitions of the corresponding physical model (see
Figure 3). The first transition marks the beginning of the execution of action a, and the second transition
marks its completion. These transitions are separated by a partial state denoted by ⊥. The execution time
of the action corresponds to the waiting time at state ⊥.

q q′
a rg ⊥t−→ q ⊥t q′

βa g r

Transition
t = (q, a, g, r, q′) in M .

Corresponding sequence of
transitions in M⊥.

Figure 3: Transformation of transitions of the abstract model.

DEFINITION 5 (physical model) LetM = (A,Q,X,−→) be an abstract model. We define the associated
physical model as the timed automaton M⊥ = (A,Q ∪Q⊥,X,−→⊥) such that:

• Q⊥ is the set of partial states such that there is one partial state for each transition of M , that is,
Q⊥ = { ⊥t | t ∈−→ }

• −→⊥ is defined by the rule:

q
a,g,r−→ q′ t = (q, a, g, r, q′)

q
a,g,r−→⊥ ⊥t ⊥t

β,[true]l,∅−→⊥ q′

In the physical model M⊥, we assume arbitrary execution times for actions, ranging from 0 to +∞,
which is modeled by the guard [true]l for β-transitions. Notice that M⊥ can be further constrained if
bounds of the execution times of actions are known. For instance, if we know an estimate WCET (a) of
the worst-case execution time [11] of an action a, the associated timing constraint is [xa ≤ WCET (a)]d

instead of [true]l, where xa is a clock that is reset whenever a is started. This allows us to statically check
the correctness of the application running on the platform, but this is beyond the scope of this paper.

In a physical model M⊥, the execution of an action a by a transition t = (q, a, g, r, q′) is followed by
a lapse of time δ(a) ∈ N at the partial state ⊥t, before a β-transition is executed:

(q, v)
a
; (⊥t, v[r 7→ 0])

δ(a)
; (q′, v[r 7→ 0] + δ(a)). (1)

This corresponds to the following execution sequence in the abstract model M , if such a sequence is
feasible:

(q, v)
a
; (q′, v[r 7→ 0])

δ(a)
; (q′, v[r 7→ 0] + δ(a)). (2)

Verimag Research Report no TR-2013-11 5/12

Ahlem Triki, Jacques Combaz

Notice that the time step δ(a) ofM⊥ in (1) may not be a time step ofM in (2) if δ(a) > wait(q′, v[r 7→ 0]),
meaning that the physical model violates timing constraints defined in the corresponding abstract model. In
this case, we say that the considered execution sequence is not time-safe. We compare execution sequences
of abstract and physical models based on the usual notion of weak simulation [10]. It can be shown that if
all execution sequences of M⊥ are time-safe, then M⊥ is weakly simulated by M , considering that a state
of the form (⊥t, v) of M⊥, t = (q, a, g, r, q′), is simulated by the state (q′, v) of M .

A correct implementation must execute only time-safe sequences. Time-safety violations occur in a
physical model when the execution time of an action is larger than what is allowed by the timing con-
straints of the corresponding abstract model. Correct implementations are obtained for platforms that are
sufficiently fast for executing the application without violating time-safety. In this case, the physical model
preserves the semantics of the abstract model as shown in [1]. When this cannot be ensured for a given
platform, we propose to detect time-safety violations at run-time and to stop the system in order to prevent
the application from incorrect executions.

2.3.1 Composition.

In Definition 5, physical models M⊥ represent the behavior of a single abstract model M running on a
platform. In [1] the physical model of a composition M = πγ(M1, . . . ,Mn) of abstract models Mi is
M⊥. That is, each execution of an interaction a = {ai}i∈I ∈ γ is split into two transitions executed
sequentially, one for the beginning of the execution of a, and the other one for its completion. The time
elapsed between the execution of these transitions corresponds to the execution time of a. Notice that
during this time all the components M1, . . . , Mn are waiting for the completion of interaction a, even the
ones that are not participating to a (i.e. components Mi, i /∈ I), that is, in M⊥ interactions are executed
sequentially. We propose a different definition for physical models that can execute interactions in parallel.

Given a composition πγ(M1, . . . ,Mn) of abstract models Mi, 1 ≤ i ≤ n, the physical model M‖ =
πγ(M⊥1 , . . . ,M

⊥
n) is computed in two steps.

1. For each component Mi we compute its corresponding physical model M⊥i representing the execu-
tion of Mi on a dedicated execution platform.

2. The physical model M‖ is obtained by composing physical models M⊥i , 1 ≤ i ≤ n, with respect to
interactions γ and priority π.

In the physical model M‖, the execution of an interaction a = {ai}i∈I of the abstract model M can be
decomposed as follows. First, the beginning of the execution of a is represented by a single transition in
M‖, as in M⊥. Second, each component M⊥i completes by executing its internal β-transition. In contrast
to M⊥ in which the completion of a corresponds to a single β-transition, in M‖ components complete
asynchronously and independently. This allows to start new interactions even if one or more components
are still executing.

EXAMPLE 3 Consider the abstract model M = πγ(M1,M2,M3) of Example 2. Figure 4 shows the
corresponding physical model M‖ = πγ(M⊥1 ,M

⊥
2 ,M

⊥
3). Consider that execution times for actions

sync1, sync2, and sync3, are respectively 4, 7, and 12. Consider also that the execution time is 5 for
actions p, q, r, and s.

It can be easily shown that M‖ admits the single execution sequence: ((q11 , q
1
2 , q

1
3), 0)

a1−→
((⊥t121 ,⊥t122 ,⊥t123), 0)

4−→ ((q12 ,⊥t121 ,⊥t123), 4)
3−→ ((q21 , q

2
2 ,⊥t123), 7)

a2−→ ((⊥t211 ,⊥t2e2 ,⊥t123), 7)
5−→

((q11 , err, q
1
3), 12). Notice that this execution sequence leads to a state that is not reachable in M due to

priority a2πqa3. Since a3 is disabled at partial state (q21 , q
2
2 ,⊥t123), the priority cannot apply to a2 which

is executed. That is, the physical model M‖ is not correctly implementing the semantics of the abstract
model M .

2.3.2 Correctness.

Consider a composition M‖ = πγ(M⊥1 , . . . ,M
⊥
n) of physical models M⊥i = (Ai,Qi ∪ Q⊥i ,Xi,−→i

), i ∈ {1, . . . , n} and the corresponding abstract model M = πγ(M1, . . . ,Mn). Given a state (q, v) of

6/12 Verimag Research Report no TR-2013-11

Ahlem Triki, Jacques Combaz

q11

q21

β

⊥
t211

β

p

M⊥1

{x}

γ = {a1, a2, a3}

a2πa3

β

q23

q13
β sync3

⊥
t123⊥

t213

{y}

M⊥3

[10 ≤ x ≤ 20]d ⊥
t2e2

β

M⊥2

sync1

⊥
t121

q12
β

qr

err⊥
t122

⊥
t232

q

⊥
t312

sync2

q32

β

q22

β
s

[y ≥ 5]e

Figure 4: Physical model of Example 2.

M‖, q = (q1, . . . , qn), a component Mi is busy at (q, v) if it is in a partial state qi ∈ Q⊥i . Otherwise, Mi

is said to be ready. We say that a state (q, v) is partial if at least one component is busy, otherwise (q, v) is
said global.

As shown in Example 3, the physical model M‖ may violate the semantics of M due to incorrect
execution from partial states. From global states, the transitions executed in M and M‖ are the same. We
consider that M‖ is correct if it can be weakly simulated by M , considering that partial states (q, v) of M‖

are related through the simulation relation to global states (qg, v) of M , such that qg is the control location
reached from q after all busy components complete. Notice that the uniqueness of qg comes from the fact
that the execution of β-transitions is deterministic and confluent [4].

Consider the execution of an interaction a inM‖ = πγ(M⊥1 , . . . ,M
⊥
n) from the partial state (q, v), and

the corresponding global state (qg, v) in M . As explained in [4], if a is enabled at (q, v), it is also enabled
at (qg, v). However, in order to respect the semantics of the abstract model M , a should be disabled due to
priority π if there exists an interaction b enabled at state (qg, v) such that aπqgb. The priority π is defined
only on global states qg . Thus, a should be blocked if enabledness of interaction b cannot be decided at
(q, v). Notice also that the application of priority aπqgb depends on the global state qg .

Similarly, a time step δ enabled inM‖ at partial state (q, v) can be disallowed inM at the corresponding
global state (qg, v) if δ > wait(qg, v), i.e. if an interaction a involving busy components is urgent at state
(qg, v + δ′) s.t. δ′ < δ.

To preventM‖ from incorrect execution, we define the predicate safe(q,v)(σ) characterizing the states
from which execution of an interaction σ ∈ γ or of a time step σ ∈ N will not violate global state semantics.
Clearly, for global states (q, v) we have safe(q,v)(σ) = true (i.e. the behavior of M‖ is already safe for
global states). For an interaction a, a partial state (q, v) and its corresponding global state (qg, v), the
predicate safe must satisfy:

safe(q,v)(a) ⇒ @b ∈ γ . aπqgb ∧ (qg, v)
b
; (q′, v′). (3)

For a time step δ, safe must also satisfy:

safe(q,v)(δ) ⇒ δ ≤ wait(qg, v). (4)

Any predicate safe satisfying the conditions (3) and (4) ensures correct execution in M‖. Ideally,
safe should be obtained by using equivalence instead of implication in (3) and (4), corresponding to the
less restrictive predicate allowing the maximal parallelism in the system. However, its computation requires
the knowledge of the reachable global state (qg, v) from any partial state (q, v), which cannot be obtained
in practice for real systems. The next section explains how to over-approximate safe, i.e. compute safe∗

such that safe∗ ⇒ safe.

3 Parallel Real-Time Implementation
We use concepts presented in the previous section to implement a parallel real-time execution engine for
BIP programs. The BIP—Behavior / Interaction / Priority—framework [5] is intended for the design and

Verimag Research Report no TR-2013-11 7/12

Ahlem Triki, Jacques Combaz

analysis of complex, heterogeneous embedded applications. BIP is a highly expressive, component-based
framework with rigorous semantics. It allows the construction of complex, hierarchically structured models
from atomic components characterized by their behavior and their interfaces (communication ports). Such
components are abstract models extended with variables. Transitions are labeled by ports, boolean guards
on variables, and timing constraints that may involve expressions on variables. Transition execution may
assign new values to variables, computed by user-defined functions (in C). Atomic components are com-
posed by layered application of interactions and priorities. Interactions express synchronization constraints
and define the transfer of data between the interacting components. Priorities are used to filter amongst
possible interactions and to steer system evolution so as to meet performance requirements e.g., to express
scheduling policies. Priorities define partial orders between interactions that can change dynamically. They
are provided as sets of rules including boolean guards on components variables.

3.1 Computing Timing Constraints of Interactions
The execution engine which is responsible for the coordination between components, computes enabled
interactions on-line. To decide which interactions are enabled at a given state, it expresses their guards
based on a single global clock t. This clock measures the absolute time elapsed since the system has been
started and is never reset. It is used to express timing constraints on local clocks of components in the
following manner. It uses a valuation w : X → N in order to store the absolute time w(x) of the last
reset of a clock x with respect to the clock t. The valuation v of the clocks X can be computed from the
current value of t and w by using the equality v = t−w. Henceforth, states (q, v) are represented as tuples
(q, w, t), where w : X → N is a clock valuation giving the most recent reset times and t ∈ N is the value
of the current (absolute) time.

Given a state s = (q, w, t), the engine computes guards g = [cτ] of interactions a as follows. It
rewrites simple constraints x ∼ k, ∼∈ {≤,≥}, involved in c using the global time t and reset times w,
i.e. x ∼ k ≡ t ∼ k + w(x). This allows reducing any conjunction of simple constraints into an interval
constraint l ≤ t ≤ u. By using the disjunctive form defined in Section 2.1 we can put c in the following
form:

c =

n∨
i=1

li ≤ t ≤ ui, (5)

such that ui + 1 < li for all i ∈ {1, . . . , n− 1}. We associate to a its next activation time nexts(a) which
is the next value of the global time for which a is enabled, and its next urgency time deadlines(a) which
is the next value of the global time for which a is urgent. They are computed from (5) as follows:

nexts(a) = min1≤i≤n nexts([li ≤ t ≤ ui]τ)
deadlines(a) = min1≤i≤n deadlines([li ≤ t ≤ ui]τ),

such that for gi = [li ≤ t ≤ ui]τ , nexts(gi) and deadlines(gi) are defined by:

nexts(gi) =

{
max { t, li } if t ≤ ui
+∞ otherwise,

deadlines(gi) =

ui if t ≤ ui ∧ τ = d
li if t < li ∧ τ = e
t if t ∈ [li, ui] ∧ τ = e
+∞ otherwise.

We denote by γq the set of interactions enabled at control location q. The function wait defined in Sec-
tion 2.2 satisfies t+ wait(s) = mina∈γq deadlines(a).

3.2 Execution Engine Algorithm
The execution engine behaves as a controller for the application (see Figure 5). It detects time-safety
violation during the execution and allows execution of safe interactions only, based on the predicate safe
of Section 2.3.2. As explained in Section 2.3.2, given the current control location q the evaluation of safe
depends on the guards of interactions enabled at global control location qg reachable from q. It also depends

8/12 Verimag Research Report no TR-2013-11

Ahlem Triki, Jacques Combaz

on the priority πqg that applies at qg . This requires knowing what will be the validated guards after the
completion of the busy components. This is not possible in general, since they may depend on the values of
the variables of the busy components. Hence, when necessary they are over-approximated in the following
way. Clock constraints x ∼ k are approximated to true whenever k cannot be evaluated statically (e.g. if
k is an expression involving non-constant variables). Boolean guards are also approximated to true if they
involve expressions that cannot be evaluated statically.

For given state s = (q, w, t), the execution engine computes the next interaction to be executed as
follows.

2. Compute
enabled safe interactions

Restrict 3.Check
Time-safety t = trfor notify

1.Wait

time-safety violated for partial state

4.Update 5.Schedule
interactions

for global statetime-safety violatedstop

notify when one Parallel Real-Time Execution Engine notify
components

Platform

component completes

no safe interaction

actual time tr

. . .
Application Software M⊥nM⊥2M⊥1

Figure 5: Architecture of Parallel Real-time Engine

1. It waits for notification from components finishing their execution. Components send their enabled
ports (transitions), on which they are willing to interact, with their guards.

2. Based on the received notifications, it computes the set of interactions γq enabled at q. Notice that
they involve only ready components. They correspond to the application of the operational semantics
of interactions γ.

It restricts guards of enabled interactions to enable only safe execution. This is achieved by applying
the operational semantics of priority π, using the approximated guards for the priority rules and for
the interactions involving busy components, which guarantees (3).

3. It checks if time-safety is violated, i.e. if tr > deadlines(a) for an interaction a, where tr is the
current value of the actual time. Notice that for interactions involving busy components, to guarantee
(4) we compute deadlines based on approximated guards and considering delayable guards as eager.

If time-safety is violated for some enabled interaction a ∈ γq the execution is stopped1. If time-
safety is violated for an interaction involving busy components, the engine goes to 1 to wait for the
completion of more components in order to determine whether time-safety is actually violated or
not.

4. It updates the global time t with the actual time tr, i.e. t := tr.

5. It chooses an enabled interaction a among the safe ones, that is, such that nexts(a) < +∞ and
nexts(a) ≤ mina′∈γ deadlines(a′). The choice of a can be based on a given real-time scheduling
policy (e.g. EDF). The chosen interaction a is executed as soon as possible, i.e. at the global time
nexts(a).

If no such interaction exists, either s is a global state and there is a deadlock, or s is a partial state
and the engine goes to step 1.

1Actually, instead of stopping the application any recovery policy can be considered when time-safety is violated.

Verimag Research Report no TR-2013-11 9/12

Ahlem Triki, Jacques Combaz

3.3 Use Case: A Robotic Application
We made experiments on the marXbot platform [9], a miniature mobile robot composed of 3 main modules.
The base module providing rough-terrain mobility thanks to treels (combination of tracks and wheels). It
embeds also 16 infrared proximity sensors for detection of obstacles. The rotating distance scanner module
including 4 infrared long range sensors is used to build 2D map of its environment. And finally, the module
of the main processor which is an ARM11 running Linux-based operating system and communicating
through CAN bus with 10 micro-controllers (dsPIC33) managing sensors and actuators.

We consider an experimental setup for an obstacle avoidance scenario. Initially, the robot moves
straight and turns whenever it detects an obstacle.

Priorities :

free

obstacle

obstacleL

obstacle

obstacleP

freeL

obstacleL

freeP

freeP

free

obstaclePfreeP freeL obstacleLArbiter

obstacle

free

newValues newValues

obstaclePfreeP

freeLfreeP

obstacleLobstacleP

newValues

AvoidObstLRange

newValues

freeP obstacleP AvoidObstProxy

speed

fr
ee
P

o
b
sP

free

obstacle

speed

speed
free

obs speed

freeobstacle

freeobstacle

CtrlMotorRight

CtrlMotorLeft

free

free
L

obs
L

obstacle

πfreeP obsL freeL obsL obsPπ obsP π

freeL

[x = P]e

{x}
[x = P]e

{x}
αL≤thresholdLαP≤thresholdP

αL≥thresholdLαP≥thresholdP

Figure 6: The obstacle avoidance application.

We used BIP to implement the application, which is composed of (see Figure 6):

• Components AvoidObstProxy and AvoidObstLRang responsible for reading the values of the
proximity and long range sensors. If one of these components detects the presence of an obstacle, it
transmits its direction to component Arbiter through interaction obs. Otherwise, it sends message
free indicating the absence of obstacle.

• From messages received from AvoidObstProxy and AvoidObstLRang, Arbiter computes the
new direction of the robot, which is sent to components CtrlMotorLeft and CtrlMototRight
which are the controllers of the motors

• CtrlMotorLeft and CtrlMototRight determine the speed to apply to the left and right treels,
based on the direction received from Arbiter.

To avoid collisions, we give priority to obstacles detected by AvoidObstProxy over the ones detected
by AvoidObstLRang, which is implemented by rule obsL π obsP . We also give priority to presence of
obstacles over than their absence, corresponding to rules freeP π obsL and freeL π obsP .

Using BIP, we generated C++ code for the main processor. We compared the application running with
the parallel Engine proposed in Section 3, with the same application running with the sequential Engine
of [1]. Its performance is measured by varying the period used for reading sensors in AvoidObstProxy
and AvoidObstLRang. For each tested period, we ran the application 5 times under similar conditions.
As shown in Figure 7, with the sequential Engine the minimal period for a correct operation of the robot is
130 ms. For smaller periods time-safety may be violated which stops the application. The minimal period
with the parallel Engine is 60 ms, which drastically improved the reactivity of the robot.

The parallel Engine executes each component using a thread, allowing AvoidObstProxy and
AvoidObstLRang to wait in parallel for new values of the sensors sent by the microcontrollers. In contrast,

10/12 Verimag Research Report no TR-2013-11

Ahlem Triki, Jacques Combaz

40 60 8020 100 160

100

80

60

40

20

sensing period in ms

ti
m

in
g
 c

o
n

st
ra

in
t

v
io

la
ti

o
n
 r

at
e

%

sequential

parallel

140120

Figure 7: Time-safety violations for an execution with the parallel Engine and the sequential Engine.

the sequential Engine treats the interaction with the microcontrollers sequentially leading to the addition of
the waiting times.

4 Conclusion
We have presented an implementation method for real-time applications. It is based on a general abstract
timed model, a platform-independent representation in which the application is a set of components subject
to timing constraints, multi-party interactions, and priorities. Abstract models assume sequential, atomic
and instantaneous execution of interactions between the components. We formally defined physical mod-
els describing the execution of abstract models on a given platform. They take into account (non zero)
execution times of interactions, and allow their parallel execution by breaking their atomicity.

In real-time systems, priorities are essential for the expression of scheduling policies and resource
management. We show that special care should be taken to preserve global state semantics when executing
interactions subject to priorities in parallel. Global state semantics assume a perfect knowledge of the
system state. In parallel execution, the execution Engine has only a partial knowledge of the system’s state.
We provide a condition for safe parallel execution of enabled interactions. The condition guarantees that
despite partial state knowledge, if an interaction is enabled at a partial state then it will remain enabled
in the global state reached after all the executing components have completed their execution. We have
implemented a parallel execution Engine that correctly schedules the execution of interactions based on an
approximation of the safety condition. The approach has been validated on a real robotic application for
which we generated C++ code. We provided benchmarks for this application showing net improvement of
performance with respect to a sequential implementation.

References
[1] Tesnim Abdellatif, Jacques Combaz, and Joseph Sifakis. Model-based implementation of real-time

applications. In Luca P. Carloni and Stavros Tripakis, editors, EMSOFT, pages 229–238. ACM, 2010.
1, 2.3, 2.3.1, 3.3

[2] Rajeev Alur and David L. Dill. A theory of timed automata. Theor. Comput. Sci., 126(2):183–235,
1994. 1

[3] Christophe Aussaguès and Vincent David. A method and a technique to model and ensure timeliness
in safety critical real-time systems. In ICECCS, pages 2–12. IEEE Computer Society, 1998. 1

[4] Ananda Basu, Philippe Bidinger, Marius Bozga, and Joseph Sifakis. Distributed semantics and im-
plementation for systems with interaction and priority. In Kenji Suzuki, Teruo Higashino, Keiichi
Yasumoto, and Khaled El-Fakih, editors, FORTE, volume 5048 of Lecture Notes in Computer Sci-
ence, pages 116–133. Springer, 2008. 1, 2.3.2

Verimag Research Report no TR-2013-11 11/12

Ahlem Triki, Jacques Combaz

[5] Ananda Basu, Marius Bozga, and Joseph Sifakis. Modeling heterogeneous real-time components in
BIP. In SEFM, pages 3–12. IEEE Computer Society, 2006. 3

[6] Sébastien Bornot, Gregor Gößler, and Joseph Sifakis. On the construction of live timed systems. In
Susanne Graf and Michael I. Schwartzbach, editors, TACAS, volume 1785 of LNCS, pages 109–126.
Springer, 2000. 2.1

[7] Arkadeb Ghosal, Thomas A. Henzinger, Christoph M. Kirsch, and Marco A. A. Sanvido. Event-
driven programming with logical execution times. In Rajeev Alur and George J. Pappas, editors,
HSCC, volume 2993 of LNCS, pages 357–371. Springer, 2004. 1

[8] Thomas A. Henzinger, Benjamin Horowitz, and Christoph M. Kirsch. Giotto: a time-triggered lan-
guage for embedded programming. Proc. of the IEEE, 91(1):84–99, 2003. 1

[9] Stephane Magnenat. Software integration in mobile robotics, a scienc to scale up machine intelli-
gence. PhD thesis, 2010. 3.3

[10] Robin Milner. Communication and concurrency. PHI Series in computer science. Prentice Hall,
1989. 2.3

[11] Reinhard Wilhelm, Sebastian Altmeyer, Claire Burguière, Daniel Grund, Jörg Herter, Jan Reineke,
Björn Wachter, and Stephan Wilhelm. Static timing analysis for hard real-time systems. In Gilles
Barthe and Manuel V. Hermenegildo, editors, VMCAI, volume 5944 of LNCS, pages 3–22. Springer,
2010. 2.3

12/12 Verimag Research Report no TR-2013-11

	Introduction
	Modeling Parallel Real-time Systems
	Preliminaries
	Abstract Models
	Building physical models
	Composition.
	Correctness.

	Parallel Real-Time Implementation
	Computing Timing Constraints of Interactions
	Execution Engine Algorithm
	Use Case: A Robotic Application

	Conclusion

