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Abstract

We present a new and flexible approach to repair reactive programs with respect to a specification.
The specification is given in linear-temporal logic. Like in previous approaches, we require that a
repaired program satisfies the specification and is syntactically close to the faulty program. In addi-
tion our approach also allows the user to ask for a program that is semantically close by enforcing
that a specific subset of the correct traces is preserved. Our approach is based on synthesizing a
program producing a set of traces that stays within a lower and an upper bound. We provide an
algorithm to decide if a program is repairable with respect to our new notion and synthesize a
repair if one exists. We analyze several ways to choose the set of traces to leave intact and show
the boundaries they impose on repairability.
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Christian von Essen and Barbara Jobstmann

1 Introduction

Debugging a program is often a difficult and tedious task: a programmer has to find the bug, localized the
cause, and repair it. Model checking [8,23] has been successfully used to expose bugs in a program. There
are several interesting approach [7,11,25,31,16,14,1,26] to explain the possible cause of an error. We are
interested in addressing the last debugging step by automatically providing a bug-fix. Automatic program
repair takes a program and a specification and searches for a correct program that satisfies the specification
and is syntactically close to the original program (cf. [2,17,10,13,15,5,28,29,4]).

We are inspired by the work of Jobstmann et al. [17,18] and Chandra et al. [4]. Jobstmann et al. suggest
to repair a program based on a game derived from the program and a formal specification given in Linear-
Temporal Logic (LTL) [20]. The authors allow the repair procedure to replace an arbitrary component (e.g.,
an assignment or an if-condition) and require that the repaired program satisfies the formal specification.
This approach has the benefit that no specific fault model needs to be defined and that expressive repair
statements can be found. However, the automatic repair tool is free to change the original program substan-
tially, especially when given too much freedom. Chandra et al. follow a different approach, they search in
the space of all edits to a program for one edit that repairs failing tests without breaking any passing tests.
We believe that the idea of not breaking correct behaviors is essential for automatically repairing programs.

We show how to generalize this idea to reactive programs with specifications and present the first repair
approach that constructs repairs that are also semantically close to the original program. The key benefits
of our approach are: (i) One can adjust how close the original program and the repair should be. (ii) The
approach is less sensitive than previous approaches to the set of allowed program modifications. E.g., the
approach in [17] constructs degenerated programs if given too much freedom in modifying the program.
Our approach is less likely to construct degenerated programs because it preserves correct behaviors and
their properties. (iii) Finally, since it preserves the core behavior of the program, the need for a complete
specification is reduced.

Contributions. We present an example motivating the need for a new definition of program repair (Sec-
tion 3). We define a new notion of repair for reactive programs and present an algorithm to compute such
repairs (Section 4). The algorithm is based on synthesizing repairs with respect to a lower and an upper
bound on the set of generated traces. We show the limitations of any repair approach that is based on
preserving part of the program’s behavior (Section 5).

2 Preliminaries

Words, languages, and projections. Let AP be the finite set of atomic propositions. We define the al-
phabet over AP (denoted ΣAP) as the set of all evaluations of AP, i.e., ΣAP = 2AP. If AP is clear from
the context or not relevant, then we omit the subscript in ΣAP. A word w is an infinite sequence of let-
ters from Σ. We use Σω to denote the set of all words. A language L is a set of words, i.e., L ⊆ Σω .
Given a word w ∈ Σω , we denote the letter at position i by wi, where w0 is the first letter. We use w..i

to denote the prefix of w up to position i, and wi.. to denote the suffix of w starting at position i. Given
word w ∈ Σω

AP and a set of propositions I ⊆ AP, we define the I-projection of w, denoted by w| I,
as w| I = l0l1 . . . with li = (wi ∩ I) for all i ≥ 0. Given a language L ⊆ Σω

AP and a set I ⊆ AP,
we define the I-projection of L, denoted by L| I, as the set of words with the same I-projection, i.e.,
L| I = {w ∈ Σω

AP | ∃w′ ∈ L : w| I = w′| I}. Note that w|I ∈ L|I for every word w ∈ L. A lan-
guage L ⊆ Σω

AP is called I-deterministic for some set I ⊆ AP if for each word v ∈ Σω
I there is at most

one word w ∈ L such that w| I = v. A language L is called I-complete if for each input word v ∈ Σω
I there

exists at least one word w ∈ L such that w|I = v.

Machines, automata, and formulas. A finite state machine is a tuple M = (Q,ΣI,ΣO, q0, δ, γ), where
Q is a finite set of states, ΣI ⊆ Σ and ΣO ⊆ Σ are the input and the output alphabet, respectively, with
ΣI ∩ΣO = ∅ and ΣI ∪ΣO = Σ, q0 ∈ Q is the initial state, δ : Q×ΣI → Q is the transition function, and
γ : Q×ΣI → ΣO is the output function. A run ρ of M on an input word w ∈ ΣI

ω is the sequence of states
that the machine visits while reading the input word, i.e., ρ = q0q1 · · · ∈ Qω such that δ(qi, wi) = qi+1

for all i ≥ 0. The output word M produces on w (denoted by MO(w)) is the sequence of output letters that
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the machine produces while reading the input word, i.e., for the run q0q1 . . . of M on w, the output word is
MO(w) = l0l1 · · · ∈ Σω

O with li = γ(qi,wi) for all i ≥ 0. We denote by L(M) the language of M, i.e., the
set of combined input/output words L(M) = {(i0∪o0)(i1∪o1) . . . ∈ Σω

AP | i ≥ 0, ij ∈ ΣI
ω, oj = MO(i)}.

A Büchi automaton is a tuple A = (S,Σ, s0,∆,F) where S is a finite set of states, Σ is the alphabet,
s0 ∈ S is the initial state, ∆ ⊆ S×Σ× S is the transition relation, and F ⊆ S is the set of accepting states.
A run of A on a word w ∈ Σω is a sequence of states s0 s1 s2 . . . ∈ Sω such that (si,wi, si+1) ∈ ∆ for
all i ≥ 0. A word is accepted by A if there exists a run s0 s1 . . . such that si ∈ F for infinitely many i. We
denote by L(A) the language of the Büchi automaton, i.e., the set of words accepted by A. A language that
is accepted by a Büchi automaton is called ω-regular.

We use Linear Temporal Logic (LTL) [20] over a set of atomic proposition AP to specify the desired
behavior of a machine. An LTL formula may refer to atomic propositions, Boolean operators, and the
temporal operators next X and until U. Formally, an LTL formula ϕ is defined inductively as ϕ ::= p | ¬ϕ |
ϕ ∧ ϕ | Xϕ | ϕ U ϕ with p ∈ AP. The semantics of an LTL formula ϕ is given with respect to words
w ∈ Σω

AP using the satisfaction relation |=. As usual, we define it inductively over the structure of the
formula as follows: (i) w |= p iff p ∈ w0, (ii) w |= ¬ϕ iff w 6|= ϕ, (iii) w |= ϕ1 ∧ ϕ2 iff w |= ϕ1 and w |=
ϕ2, (iv) w |= Xϕ iff w1.. |= ϕ, and (v) w |= ϕ1 U ϕ2 iff ∃i ≥ 0 : wi.. |= ϕ2 and ∀j, 0 ≤ j < i : wj.. |=
ϕ1. The Boolean operators ∨,→, and↔ are derived as usual. We use the common abbreviations for false,
true, F, and G, i.e., false := p∧¬p, true := ¬false, Fϕ := true U ϕ, and Gϕ := ¬F¬ϕ. For instance,
every word w with p ∈ wi for some i ≥ 0 satisfies F p. Dually, every word with p 6∈ wi for all i ≥ 0
satisfies G¬p. The language of ϕ, denoted L(ϕ), is the set of words satisfying formula ϕ. For every LTL
formula ϕ one can construct a Büchi automaton A such that L(A) = L(ϕ) [30,19]. Given a machine M
and an LTL-formula ϕ, we say that M satisfies (or implements) ϕ, denoted by M |= ϕ, if L(M) ⊆ L(ϕ).

The following lemma follows directly from the definitions. We will use it in Section 4.

Lemma 1 (Machine languages). The language of a machine is input deterministic and input complete.

Synthesis problem. The synthesis problem [6] asks to construct a system that satisfies a given formal
specification.

Definition 1 (Realizability and Synthesis). Given an LTL formula (or an ω-regular language) ϕ over the
atomic propositions AP partitioned into input and output propositions, i.e., AP = I ∪O, we say that ϕ is
realizable if there exists a finite state machine M with input alphabet ΣI and output alphabet ΣO such that
M |= ϕ.

Theorem 1 (Synthesis Algorithms [3,24,21]). There exists a deterministic algorithm that checks weather
a given LTL-formula (or an ω-regular language) ϕ is realizable, i.e., there exists a machine M such that
M |= ϕ. If ϕ is realizable, then the algorithm constructs M.

3 Example

In this section we give a simple example to motivate our definitions and highlight the differences to previous
approaches such as [17].

Example 1 (Traffic Light). Assume we want to develop a sensor-driven traffic light system for a crossing
of two streets. The system has two sets of lights (called light1 and light2) and two sensors (called
sensor1 and sensor2), one set of lights and one sensor for each street entering the crossing. By default
both lights are red. If a sensor detects a car, then the corresponding lights should change from red to
yellow to green and back to red. As starting point we are given the implementation shown in Figure 1.
It behaves as follows: for each red light, the system checks if the sensor is activated (Line 12 and 18). If
yes, this light becomes yellow in the next step, followed by a green phase and a subsequent red phase.
Assume we require that our implementation is safe, i.e., the two lights are never green at the same time.
In LTL, this specification is written as ϕ = G(light1 6= GREEN∨light1 6= GREEN). The current
implementation clearly does not satisfy this requirement: if both sensors signal a car initially, then the
lights will simultaneously move from red to yellow and to then to green, thus violating the specification.
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1 typedef enum {RED, YELLOW, GREEN} traffic light;
2 module Traffic (clock, sensor1, sensor2, light1, light2);
3 input clock, sensor1, sensor2;
4 output light1, light2;
5 traffic light reg light1, light2;
6 initial begin
7 light1 = RED;
8 light2 = RED;
9 end

10 always @(posedge clock) begin
11 case (light1)
12 RED: if (sensor1) // Repair : if(sensor1 & !(light2 == RED & sensor2))
13 light1 = YELLOW;
14 YELLOW: light1 = GREEN;
15 GREEN: light1 = RED;
16 endcase // case (light1)
17 case (light2)
18 RED: if (sensor2)
19 light2 = YELLOW;
20 YELLOW: light2 = GREEN;
21 GREEN: light2 = RED;
22 endcase // case (light1)
23 end // always (@posedge clock)
24 endmodule // traffic

Fig. 1. Implementation of a traffic light system and a repair

Let us try to repair the given implementation. Following the approach in [17] we introduce a non-
deterministic choice into the program and then use a synthesis procedure to select among these options in
order to satisfy the specification. For instance, we replace Line 12 (in Figure 1) by if(?) and ask the
synthesizer to construct a new expression for ? using the input and state variables. The synthesizer aims to
find a simple expression s.t. ϕ is satisfied. In this case one simple admissible expression is false because
replacing Line 12 with if (false) ensures that the modified program satisfies specification ϕ. While
this suggested repair is correct, it is very unlikely to please the programmer because it repairs “too much”:
it modifies the behavior of the system also on input traces on which the initial implementation was correct.
We believe it is more desirable to follow the idea of Chandra et al. [4] saying that a repair is only allowed
to change the behavior on incorrect execution. In this case the repair suggested above would not be allowed
because it changes the behavior on correct traces, as we will show in the next section.

4 Repair

In this section we first give a repair definition for reactive systems that follows the intuition that a repair can
only change the behavior of incorrect executions. Then, we provide an algorithm to compute such repairs
and show repairs our new approach yields for the traffic light example.

4.1 Definitions

Given a machine M and a specification ϕ, we say a machine M′ is an exact repair of M if (i) M′ behaves
like M on all traces satisfying ϕ and (ii) if M′ fulfills ϕ. This leads to the following definition.

Definition 2 (Exact Repair). A machine M′ is an exact repair of a machine M for a specification ϕ, if (i)
the language of M′ is included in the language of the specification ϕ and (ii) if all the correct traces of M
are included in the language of M′, i.e.,

L(M) ∩ L(ϕ) ⊆ L(M′) ⊆ L(ϕ) (1)
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ϕ M ϕ M

M ′

Fig. 2. Graphical representation of Def. 2

ϕ ψ M ϕ ψ M

M ′

Fig. 3. Graphical representation of Def. 3

Note that the first inclusion defines the behavior of M′ on all input words to which M responses correctly
according to ϕ. Figure 2 illustrates Definition 2: the two circles depict L(M) and L(ϕ). A repair has to (i)
cover their intersection (first inclusion in Definition 2), which we depict with the striped area in the picture,
and (ii) lie within L(ϕ) (second inclusion in Definition 2). One such repair is depicted by the dotted area
on the right.

Example 2 (Traffic Light, cont.). Following our definition the repair suggested in Example 1 (i.e., to replace
if (sensor1) by if (false)) is not a valid repair anymore. The reason is that the original imple-
mentation responds correctly, e.g., to the input trace in which sensor1 is always high and sensor2 is
always low, but the repair produces different outputs. In fact the initial implementation behaves correctly
on any input trace on which sensor1 and sensor2 are never high simultaneously. So, any correct repair
should include this input/output traces. An exact repair according to Definition 2 replaces if (sensor2)
by if (sensor1 \& !(light2 == RED \& sensor2)). This repair retains all correct traces
while avoiding the mutual exclusion problem.

While Definition 2 excludes the undesired repair in our example, it is too restrictive and makes repairing
impossible in other cases, as the following example shows.

Example 3 (Definition 2 is too restrictive). Assume a machine M with one input r and one output g; M
always copies r to g, i.e., M fulfills G(r↔ g). The specification requires that g is eventually high, i.e.,
ϕ = F g. We cannot repair M to satisfy F g. The reason is that Definition 2 requires the repair M′ to behave
like M on all correct input traces. Therefore, as long as M still has a chance to satisfy ϕ, M′ has to mimic
the behavior of M. M is correct on all input traces that have a least one request, i.e., on traces satisfying
F r. So, M has always a chance to satisfy ϕ. Therefore, M′ has to behave like M on every input and thus
violates ϕ.

In order to find a repair, we have to relax the requirement that M′ has to behave like M on all correct
traces. Since there are many possible choices for the set of traces M′ has to mimic, we leave the specific
restriction free in the following definition.

Definition 3 (Relaxed Repair). Let ψ be a language (given by an LTL-formula or a Büchi automaton).
We say M′ is a repair of M with respect to ψ and ϕ if M′ behaves like M on all traces satisfying ψ and M′

fulfills ϕ. That is, M′ is a repair constructed from M iff

L(M) ∩ L(ψ) ⊆ L(M′) ⊆ L(ϕ) (2)

In Figure 3 we give a graphical representation of this definition. The two concentric circles depict ϕ and
ψ. (The definition does not require that L(ψ) ⊆ L(ϕ), but for simplicity we depict it like that.) The over-
lapping circle on the right represents M. The intersection between ψ and M (the striped area in Figure 3)
is the set of traces M′ has to mimic. On the right of Figure 3, we show one possible repair (represented by
the dotted area). The repair covers the intersection of L(M) and L(ψ), but not the intersection of L(ϕ) and
L(M). The repair lies completely in L(ϕ). The choice of ψ influences the existence of an repair. In section
Section 5 we discuss several choices for ψ.

4.2 Algorithm

The following theorem shows that our repair problem can be reduced to the classical synthesis problem.
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Theorem 2. Let ϕ, ψ be two specifications and M, M′ be two machines. Machine M′ satisfies Formula 2

(L(M) ∩ L(ψ)
(a)

⊆ L(M′)
(b)

⊆ L(ϕ)) if and only if M′ satisfies the following formula:

L(M′) ⊆
(
(L(M) ∩ L(ψ))|I → L(M)

)︸ ︷︷ ︸
(i)

∩L(ϕ)︸︷︷︸
(ii)

(3)

For two languages A and B, A → B is an abbreviation for (Σω \A) ∪ B. Intuitively, Formula 3 re-
quires that (i) M′ behaves like M on all input words that M answers conforming to ψ and (ii) M fulfills
specification ϕ.

Proof. From left to right: We have to show that (i) and (ii) include L(M′). Inclusion in (ii) follows
trivially from (b). It remains to show L(M′) ⊆

(
L(M) ∩ L(ψ)

)
|I → L(M). Let w ∈ L(M′). If w 6∈(

L(M)∩L(ψ)
)
|I , then the implication follows trivially. Otherwise we have to show that w ∈ L(M). From

w ∈
(

L(M) ∩ L(ψ)
)
|I it follows that there is a word w′ ∈ L(M) ∩ L(ψ) (and therefore w′ ∈ L(M))

with w|I = w′|I . From this and from (a) w′ ∈ L(M′) follows. Since L(M′) is input deterministic and since
w ∈ L(M′), we have that w′ = w. Therefore, w ∈ L(M).

From right to left: We have to show (a) and (b) Again, (b) follows trivially from L(M′) ⊆ (ii). It
remains to show (a), i.e., that L(M) ∩ L(ψ) ⊆ L(M′). Let w ∈ L(M) ∩ L(ψ). Let further w′ ∈ L(M′)
such that w|I = w′|I . Such a word must exist because M′ is input complete. We now show w = w′, and
therefore w ∈ L(M′).

Since w ∈ L(M) ∩ L(ψ) and since w′ and w have the same input projection, we know that w′ ∈(
L(M) ∩ L(ψ)

)
|I . From L(M′) ⊆ (i) and from w′ ∈ L(M′), it follows that w′ ∈ L(M). Since w and w′

have the same input projection, w ∈ L(M), and L(M) is input deterministic, it follows that w = w′.

This theorem leads together with [21] to the following corollary, which allows us to use classical syn-
thesis algorithm to compute repairs.

Corollary 1 (Existence of repair). A repair can be constructed from a machine M with respect to specifi-
cations ψ and ϕ if and only if the language(

(L(M) ∩ L(ψ))|I → L(M)
)
∩ L(ϕ) (4)

is realizable.

4.3 Implementation Details

Corollary 1 gives an algorithm to construct repairs based on synthesis techniques (cf. [17]). In order to
compute the language defined by Formula 4, we can use standard automata-theoretic operations. More
precisely, we construct a Büchi automaton Aϕ recognizing ϕ and a Büchi automaton Aψ recognizing ψ.
Note that M is a Büchi automaton, in which all states are accepting. Since Büchi automata are closed under
conjunction, disjunction, projection, and negation, we can construct an automaton for

(
(M×Aψ)|I+M

)
×

Aϕ, where by A × B denotes the conjunction, A + B denotes the disjunction of automata A and B, Ā
denotes the negation, and A|I the projection of automaton A with respect to a set of proposition I . Once
we have a Büchi automaton for the language in Formula 4, we can use Theorem 1 to synthesize a repair.

Since negating on non-deterministic Büchi automata induces an exponential blow-up in the worst
case [9], we show in Lemma 2 how to avoid the negation. Using Lemma 2 we can replace Formula 4
by (

(L(M) ∩ L(¬ψ))|I ∪ L(M)
)
∩ L(ϕ) (5)

This allows us to compute a repair using a synthesis procedure for the automaton
(
(M×A¬ψ)|I+M

)
×Aϕ,

which is much simpler to construct.

Lemma 2. For any machine M and any LTL-formula ϕ, the following equality holds:

Σω \
(

L(M) ∩ L(ϕ)
)
|I =

(
L(M) ∩ L(¬ϕ)

)
|I (6)
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Proof. We first prove the following two equalities:

(i) L(M) ∩
(

Σω \L(ϕ)
)

= L(M) \ L(ϕ)

(ii) For each A ⊆ Σω we have
(

L(M) \A)|I = ¬
(

L(M) ∩A
)
|I

For (i): L(M) ∩
(

Σω \L(ϕ)
)

= {w ∈ Σω | w ∈ L(M) ∧ w ∈ Σω \L(M)} =

{w ∈ Σω | w ∈ L(M) ∧ L 6∈ L(ϕ)} = {w ∈ L(M) | w 6∈ L(ϕ)} = L(M) \ L(ϕ)

For (ii): w ∈
(

L(M) \ A)|I ⇐⇒ ∃w′ ∈ L(M) \ A : w′|I = w|I ⇐⇒ ∃w′ ∈ L(M) : w′|I = w|I ∧w′ 6∈

A
*⇐⇒ ∀w′ ∈ L(M) : w′|I = w|I ⇒ w′ 6∈ A ⇐⇒ ∀w′ ∈ L(M) : w ∈ A ⇒ w′|I 6= w|I ⇐⇒ ∀w′ ∈

L(M) ∩A : w′|I 6= w|I ⇐⇒ 6 ∃w ∈ L(M) ∩A : w′|I = w|I ⇐⇒ w 6∈
(

L(M) ∩A
)
|I

Note that the equivalence marked with (∗) holds because L(M) is input deterministic. Using these two

equalities we prove the desired lemma as follows:
(

L(M)∩ L(¬ϕ)
)
|I =

(
L(M)∩Σω\L(ϕ)

)
|I

(i)
=
(

L(M)\

L(ϕ)
)
|I

(ii)
=¬

(
L(M) ∩ L(ϕ)

)
|I

5 Discussion

In this section we discuss choices for ψ and analyze why a repair can fail.

5.1 Choices for ψ

We present different choices forψ and analyze their strengths and weaknesses: (1)ψ = ϕ, (2) ifϕ = f→ g,
then ψ = f ∧ g, and (3) ψ = ∅.
Exact. Choosing ψ = ϕ is the most restrictive choice. It requires that M′ behaves like M on all words
that are correct in M. While this is in general desirable, this choice can be too restrictive as Example 3 in
Section 4 shows. One might think that the problem in Example 3 is that ϕ is a liveness specification. The
following example shows that choosing ψ = ϕ can also be too restrictive for safety specifications.

Example 4. Let M be a machine that has one input r and one output g; M always outputs ¬g, i.e., M fulfills
G(¬g). Assumeϕ = F(¬r)→ G(g) = G(r)∨G(g). Applying Formula 5, we obtain (G(¬g)∧¬(G(r)∨G(g)))|I1 ∧
(G(r)∨G(g)) = (F(¬r)∧G(g))∨(G(r)∧G(¬g)). This formula is not realizable because a machine does
not know if the environment will always send a request (G(r)) or if the environment will eventually stop
sending a request (F(¬r)). A correct machine has to respond differently in these two cases. So, M cannot
be repaired if ψ = ϕ.

Assume-Guarantee. It is very common that the specification is of the form f → g (as in the previous
example). Usually, f is an assumption on the environment and g is the guarantee the machine has to
satisfy if the environment meets the assumption. Since we are only interested in the behavior of M if the
assumption is satisfied, it is reasonable to ask the repair to mimic only traces on which the assumption and
the guarantee is satisfied, i.e., choosing ψ = f ∧ g.

Example 5 (Example 4 continued). Recall Example 4, we decompose ϕ into assumption F¬r and guaran-
tee G g. Now, we can see that M is only correct on words on which the assumption is violated, so the repair
should not be required to mimic the behavior of M. If we set ψ = F¬r∧G g, then L(M) ∩ L(ψ) = ∅ and
M′ is unrestricted on all input traces.

Unrestricted. If we choose ψ = ∅ the repair is unrestricted and the approach coincides with the work
presented in [17]. In the appendix, we discuss another choice for ψ that guarantees that a repair can be
found if there exists a repair with ψ = ∅. The notion is based on automata-based game theory.

We also show in the appendix how to relax the requirement on a repair using a probabilistic satisfaction.
The idea is that instead of asking M′ to mimic all traces in L(ψ)∩L(M), we ask M′ to maximize the number
of traces that mimic M by maximizing the probability to produce the same traces as M.

1 LTL is not closed under projection. We use LTL only to describe the corresponding automata computations.
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5.2 Reasons for Repair Failure

In the following we discuss why a repair attempt can fail. The first and simplest reason is that the specifica-
tion is not realizable. In this case, there is no correct system implementing the specification and therefore
also no repair. However, a machine can be unrepairable even with respect to a realizable specification. The
existence of a repair is closely related to the question of realizability (Corollary 1). Rosner [27] identified
two reasons for a specification ϕ to be unrealizable.

1. Input-Completeness: if ϕ is not input-complete, then ϕ is not realizable. For instance, consider spec-
ification G(r) requiring that r is always true. If r is an input to the system, the system cannot choose
the value of r and therefore also not guarantee satisfaction of ϕ.

2. Causality/Clairvoyance: certain input-complete specifications can only be implemented by a clair-
voyant system, i.e., a system that has knowledge about future inputs (a system that is non-causal).
For instance, if the specification requires that the current output is equal to the next input, written as
G(o↔ X i), then a correct system needs a look-ahead of size one to produce a correct output.

The following lemma shows that given an input-complete specification ϕ, input-completeness will not
cause our repair algorithm to fail.

Lemma 3 (Input-completeness). If ϕ is input-complete, then
(
(L(M) ∩ L(ψ))|I → L(M)

)
∩ L(ϕ) is

input-complete.

Proof. Let wI ∈ ΣI
ω . If wI ∈ (L(M) ∩ L(ψ))|I , then there is a word w ∈ L(M) ∩ L(ψ) such that

w|I = wI . Therefore we have found a word for wI . If not, then a word for wI exists because ϕ is input
complete.

A failure due to missing causality can be split into two cases: the case in which the repair needs finite
look-ahead (see Example 6 below) and the case in which it needs infinite look-ahead (see Example 7
below). The example show that even if the specification is realizable (meaning implementable by a causal
system), the repair might not by implementable by a causal system.

Example 6. Consider the realizable specification ϕ = g ∨ X r and a machine M that keeps g low all the
time, i.e., M satisfies G(¬g). If input r is high in the second step, M satisfies ϕ. An exact repair (according
to Definition 2) needs to set g to low in the first step if the input in the second step is high, because it has
to mimic M in this case. On the other hand, it the input in the second step is low, g needs to be set to high
in the first step. So, any exact repair has to have a look-ahead of at least one, in order to react correctly.

The following example shows a faulty machine and a (realizable) specification for which a correct
repair needs infinite look-ahead.

Example 7. Consider a machine M with input r and output g that copies the input to the output. Assume
we search for a repair such that the modified machine satisfies the specification ϕ = GF g requiring that
g is high infinitely often. Machine M violates the specification on all input sequences that keep r low
from some point onwards, i.e., on all words fulfilling F(G r). Recall that a repair M′ has to behave like
M on all correct inputs. In this example, M′ has to behave like M on all finite inputs, because it does not
know whether or not the input word lies in F(G r) without seeing the word completely, i.e., without infinite
look-ahead.

Theorem 3 (Possibility of repair). Assume that we cannot repair machine M with respect to a realizable
specification ϕ. Then, a repairing machine needs either finite or infinite look-ahead.

Proof. Follows from [27], Corollary 1, and Lemma 3.

Characterization based on possible machines. Another way to look at a failed repair attempt is from the
perspective of possible machines. Recall, in Figure 3 we depict a correct repair M′ as a circle covering
the set of words in the intersection of M and ψ. In Figure 4 we use the same graphical representations to
explain two reasons for failure. Figure 4(a) depicts several machines M′ realizing ϕ. A repair of M has to be
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ϕ M

M ′

M ′

M ′

M ′

(a) M includes bad traces

ϕ M

(b) M cuts several valid machines

Fig. 4. Two reasons for unrepairability

one of the machines realizing ϕ. As observed in [12], there are words satisfying ϕ that cannot be produced
by any correct machine (depicted as red crosses in Figure 4(a)). E.g, recall the specification ϕ = g ∨ X(r)
in Example 6. The word in which g is low initially and r high in the second step satisfies ϕ but will not
be produced by any correct (causal) machine because the machine cannot rely on the environment to raise
r in the second step. If the machine we are aiming to repair includes such a trace, a repair attempt with
ψ = ϕ will fail. In this case, we can replace ϕ (or ψ) by the strongest formula that is open-equivalent2

to ϕ in order to obtain a solvable repair problem. However, even if ϕ is replaced by its strongest open-
equivalent formula, the repair attempt might fail for the reason depict in Figure 4(b). We again depicts
several machines M′ realizing ϕ. M shares traces with several of these machines, but no machine covers
the whole intersection of ϕ and M. In other words, an implementing machine would have to share the
characteristics of two machines.

6 Future Work and Conclusions

Future Work. We will follow two orthogonal directions to make it possible to repair more machines. The
first one increases the computational power of a repair machine. Every machine M′ repairing M has to
behave like M until it concludes that M does not respond to the remaining input word correctly. As shown
in Example 6, M′ might not know early enough if M will fail or succeed. Therefore, studying repairs with
finite look-ahead is an interesting direction. The second direction studies relaxed notion of set-inclusion
in order to express how “close” two machines are. It is possible to measure the distance between a repair
M′ and a machine M quantitatively, e.g,. by measuring how often they differ on average, or when the last
point in time is where a different output occurs. For instance, this allows to implement a “supverisor” that
occasionally overwrites the output of M′ to fulfill a liveness specification.

Conclusion. In this paper, we presented a new theoretical notion of repair that guarantees that a subset
of the previously correct executions stays unchanged. We showed several ways to choose the traces that
should stay unchanged by a repair. We also analyzed the limits of this repair definition in general. We
proposed an algorithm to automatically (i) decide if a repair is possible and (ii) find a repair if one exists.

We believe that our framework will prove useful in practice because it implicitly includes liveness
conditions. This makes writing specifications of programs easier and also allows to encode liveness spec-
ifications into the code using classic assertions. Furthermore, our notion is close to how repair is done in
practice. This implies that the limits we identified in this paper are also relevant to how repair is done
in practice. In particular it shows that the current program repair practice cannot be extended to liveness
conditions in general.

2 Two formulasϕ andϕ′ are open-equivalent any machineM implementingϕ also implementsϕ′ and vice versa [12].
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Appendix

Alternative Choices for ψ

In the following we assume that the reader is familar with automata-based game theory.
Winning Region. Another sensible choice is the set of traces that will not force us into a situation where
we can lose even if we modify the output. In other words, M′ is able to stay in a position in which it can
still win the game it plays against the environment to fulfill ϕ.

Example 8. Consider the following formula.

ϕ = (i ∧ X i→ ((o ∧ X o) ∨ (¬o ∧ X¬o))) ∧ (i ∧ X¬i→ (¬o ∧ X¬o))

as specification over input alphabet ΣI = {i} and output alphabet ΣO = {o}. It requires on input ii . . .
either output oo . . . or output ¬o¬o . . . . On input i¬i it requires output ¬o¬o. Consider further M writing
o constantly as machine we need to repair. The machine is correct on input words starting with ii and words
starting with ¬i. It is incorrect on all words starting with i¬i. If we choose ψ = ϕ, then a repairing machine
M′ constructed from M has to behave like M on input words starting with ii, i.e., has to write oo. It follows
that M′ has to begin its output with o if the input begins with i. Therefore, M′ has to start its answer to i¬i
with o, violating ϕ.

The problem for M′ stems from having to output o on input i. If the environment now chooses to
generate ¬i, then M′ loses. In other words, when writing o as answer to i, M′ leaves its winning region. If
ψ recognizes all input-output-words such that M stays in the winning region of ϕ, then this allows M′ to
answer ¬o¬o on input ii, therefore it can fulfill ϕ. On input ¬i . . . , it still behaves like M.

Staying in the winning region is not always enough to allow a repair, as the following example shows.

Example 9. Let ϕ = F g and M copy its input to its output.
In this case, the input-output-words that allow M′ to stay in the winning region are all words: at any

point, a request signal might come, so M′ still has to behave like M on all traces.

The last example is a liveness specification. Choosing ψ as the winning region allows us to always
repair a machine with respect to a safety-specification, as the following theorem shows. This is of practical
interest, because assertions inserted into a program always correspond to a safety-specification.

Theorem 4. Let ϕ be a realizable safety specification and let ψ be the set of words that allow to stay in
the winning region of a game constructed from ϕ. Then M can be repaired w.r.t. ϕ.

Proof. Let S be a safety-automaton recognizing the set words input-output words that stay in the winning
region of a game constructed from ψ. We now have that an input-output words fulfills ϕ if and only if it
stays inside S, because ϕ is a safety specification.

Then
(
(L(S) ∩ L(M))|I → L(M)

)
∩ L(ϕ) is realizable by M′ defined as follows. As states we choose

the combined state space of S × M×ϕ. M′ behaves like M until M suggests to move outside of S. In
that case, M′ starts to play a strategy to win ϕ. If an input trace is such that its combined input-output
word of M is in S, then the combined input-output word is also in ϕ; therefore the output of M′ is correct.
Otherwise the combined input-output word lies outside of L(S)∩L(M), and M′ is therefore free to choose
its output independently from M. The output changes once M suggests a move that would lead outside of
S. Because M′ chooses the new output while we are still in S, i.e., still in the winning region of ϕ, the
combined input-output word lies in ϕ.

Probabilistic ψ

Markov Chains and Markov Decision Processes. The first inclusion in Definition 3 strictly defines the
set of traces of a machine M a repaired machine M′ has to include. We can relax this requirement using
probabilities. Using Markov Decision Processes allows us to ask for the machine that agrees most of the
time with M and for the machine that agrees on the most traces with M. We will first define Markov
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Decision Processes. For extensive explanation and analysis of Markov Decision Processes, we refer the
reader to [22]. We then continue with an example showing where relaxing ψ with probabilities makes
sense. Afterwords we define the Markov Decision Processes necessary to gain the desired optimal repaired
machines.

Let D(S) := {p : S → [0, 1] |
∑
s∈S p(s) = 1} be the set of probability distributions over a finite

set S. A Markov decision process (MDP) is a tuple Λ = (L,L0, Ω, Ω̃, p), where L is a finite set of states,
L0 ⊆ L ∈ D(L) is the initial distribution, Ω is a finite set of actions, Ω̃ : L → 2Ω is the enabled action
function defining for each state l the set of enabled actions in l, and p : L × Ω → D(L) is a probabilistic
transition function. For technical convenience we assume that every state has at least one enabled action.

Sample Runs, Strategies, and Rewards. A (sample) run ρ ofΛ is an infinite sequence of tuples (l0, a0)(l1, a1) · · · ∈
(L×Ω)ω of states and actions such that for all i ≥ 0, (i) ai ∈ Ω̃(li) and (ii) p(li, ai)(li+1) > 0. We write
Ω for the set of all runs, and Ωl for the set of runs starting at state l.

A strategy (or policy) is a function d : (L × Ω)∗L → D(Ω) that assigns a probability distribution to
all finite sequences in (L × Ω)∗L. A strategy must refer only to enabled actions, i.e., for all sequences
w ∈ (L×Ω)∗, states l ∈ L, and actions a ∈ Ω, if d(w l)(a) > 0, then action a has to be enabled in l, i.e.,
a ∈ Ω̃(l). An MDP together with a state l and a strategy d defines a probability space PdΛ,l that uniquely
defines the probability of every measurable set of runs starting in l.

Given a reward function r : L × Ω → R, we call the expected value EΛ,d[r] of r under Λ and d the
average reward.

Given an MDP Λ strategy d is called optimal for reward r if EΛ,d[r] = mind′ EΛ,d[r], where d′ ranges
over all possible strategies.

Letter-Optimal Solutions. One intuitive solution to the repair problem is a machine that “modifies the
least possible output letters on average”, where we assume that input is uniformly distributed. If ϕ is a
safety condition, then we are certain that we can win by staying in the winning region. Therefore, our task
is twofold: (1) stay in the winning region and (2) minimize the number of times M′ chooses an output that
differs from the output of M on average. This can be achieved using Markov Decision Processes, as the
following example illustrates.

Example 10 (Probabilisticψ). Letϕ = G(r→ g), and let M fulfill G((g↔X¬g)), i.e., the machine signals
g in every second step. If we choose ψ to recognize the winning region of ϕ, then a repairing machine can
output G(g), once M′ violates its specification, thus choosing an output that differs from that of M infinitely
often.

Another option is to “reward” M′ whenever it copies the behavior of M. To calculate such a machine
M′, we build an MDP from the winning region of ϕ and M. In each state, the non-deterministic choice
allows to choose one element from ΣO. The transition occurs then after a uniform probabilistic choice
over ΣI happens. The MDP grants a reward whenever the output chosen at a state is equal to the output M
chooses at this state.

In this example, an optimal strategy (i.e., the strategy that maximizes the grant) will give a grant in every
second step and whenever r is signaled. The following definition provides such an MDP with rewards.

Definition 4 (Letter-Optimal MDP). Let A = (S,Σ, s0,∆,F) be a realizable, deterministic safety au-
tomaton, and let M = (Q,ΣI,ΣO, q0, δ, γ) be a machine not fulfilling an LTL-formula ϕ.

Then we define the Letter-Optimal MDP Λ as follows. Let Λ = (Q×S×ΣI, L0,ΣO, Ω̃, p) be an
MDP, where L0(q0, s0, i) = 1/|ΣI | for all i ∈ ΣI | and 0 for all other states, Ω̃(q, s) = {o ∈ ΣO | ∃ s′ :
(s, i∪ o, s′) ∈ ∆}, i.e., the set of outputs allowed by the safety automaton in state s for input i. Further, the
probability function is defined as

p((q, s, i), o)(q′, s′, i′) =

{
1
|ΣI | δ(q, i) = q′ ∧(s, i ∪ o, s′) ∈ ∆

0 otherwise

As reward function, we define r((q, s, i), o) = 1 if γ(q, i) = o, and 0 otherwise.

We have to show that the p(q, s) is a probability distribution over Q×S×ΣI. To that end, note that q′

is defined by δ(q, i) and that s′ is defined by (s, i ∪ o, s′) ∈ ∆ because A is deterministic.
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Trace-Optimal Solutions. Another intuitive solution to the repair problem is a machine that “modifies the
least traces on average”, where we again assume that input is uniformly distributed.

Example 11. We assume the same setup as in Example 8, i.e.,

ϕ = (i ∧ X i→ ((o ∧ X o) ∨ (¬o ∧ X¬o))) ∧ (i ∧ X¬i→ (¬o ∧ X¬o))

and the machine writes o constantly.
Our goal is to minimize the number of traces that receive a change. We therefore assign to each trace a

payoff, either 1 or 0. An unchanged trace gets payoff 1, while a changed trace gets payoff 0. To “count” the
number of changed traces in a set of traces, we take the average payoff of all traces in that set. If all traces
are changed, then the payoff is 0; if no traces are changed, then the payoff is 1. If half of the traces have
changed, then the payoff is 0.5.

The minimal number of traces a repaired system has to change is all traces that start with i, i.e., 50% of
all possible traces. The following definition provides an MDP whose optimal strategy provides a machine
that is correct for a safety specification and has a minimal number of changed traces.

Definition 5 (Word-Optimal MDP). Let A = (S,Σ, s0,∆,F) be a realizable, deterministic safety au-
tomaton, and let M = (Q,ΣI,ΣO, q0, δ, γ) be a machine not fulfilling an LTL-formula ϕ.

Then we define the Word-Optimal MDP Λ as follows. Let Λ = ((Q∪{⊥} × S×ΣI, {(q0, s0, i) |
i ∈ ΣI},ΣO, Ω̃, p) be an MDP, where L0(q0, s0, i) = 1/|ΣI | for all i ∈ ΣI | and 0 for all other states,
Ω̃(q, s) = {o ∈ ΣO | ∃ s′ : (s, i ∪ o, s′) ∈ ∆}, i.e., the set of outputs allowed by the safety automaton in
state s for input i. Further, the probability function is defined as

p((q, s, i), o)(q′, s′, i′) =



1
|ΣI | q 6= ⊥ ∧ γ(q, i) = o∧

q′ = δ(q, i) ∧ (s, i ∪ o, s′) ∈ ∆
1
|ΣI | q 6= ⊥ ∧ γ(q, i) 6= o∧

q′ = ⊥ ∧ (s, i ∪ o, s′) ∈ ∆
1
|ΣI | q = ⊥ ∧ q′ = ⊥ ∧ (s, i ∪ o, s′) ∈ ∆

0 otherwise

As reward function, we define r((q, s, i), o) = 1 if q 6= ⊥, and 0 otherwise.

If the strategy for an MDP makes a choice that differs from the choice of M, then the first component
of the state of the MDP goes to ⊥ immediatly, signalling that we “left” the machine. On the other hand,
if the strategy for an MDP never differs from the choice of M, then the first component of the states of a
trace will always be an element of Q. Therefore, the reward we chose will provide an average payoff of
1 if the behavior of M is never left, and a payoff of 0 if the behavior differs at least once. In that sense,
the reward function “counts” changed and unchanged traces. An optimal, i.e., maximizing strategy for Λ
therefore changes the minimal number of traces.

In this section we provide more examples and solutions that our repair mechanism provides.

Read-Write Lock Example.
A read-write lock can be implemented using a semaphore and a lock. In read-write locks there can be

arbitrarily many readers to some datastructure. But if a thread wants to write to the data-structure, then
it tries to acquire a write-lock. Once it tries to acquire a write-lock, an implemenation can stop granting
access to new readers. It then waits until all readers have left the data-structure, grants the write-lock, and
only starts granting read- or write-locks, once the write-lock is releases.

Consider the following implementation attempt.

struct rw_lock {semaphore sem(N_THREADS)};

write_lock(rw_lock) {
for i from 1 to N_THREADS {

sem--;
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}
}

read_lock(rw_lock) {
sem--;

}

release_read_lock(rw_lock) {
sem++;

}

release_write_lock(rw_lock) {
for i from 1 to N_THREAD {

sem++;
}

}

THREAD_i {
while (*) {

if (*) {
read_lock(lock);
....;
release_read_lock(lock);

} else {
write_lock(lock);
....;
release_write_lock(lock);

}
}

}

Our specification demands that if whatever happens in . . . is bounded, then there is no deadlock. The
implementation fails this specification. Consider a run in which 2 threads simultaneously try to acquire the
write-lock. The system can no grant one half of the locks to one thread, the rest of the locks to the other
thread. Because neither thread has all locks, none can proceed. Because none can proceed. Because none
can proceed, no thread is releasing a lock. Therefore we are in a deadlock.

We now add an additional mutex, because we suspect that we somehow have to lock the writer locking
function, but we don’t know how and when exactly. Therefore we modify the implementation to look as
follows.

struct rw_lock {semaphore sem(N_THREADS)};
mutex m;

write_lock(rw_lock) {
if (?) lock(m);
for i from 1 to N_THREADS {

sem--;
}

if (?) unlock(m);
}

read_lock(rw_lock) {
if (?) lock(m);
sem--;
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if (?) unlock(m);
}

release_read_lock(rw_lock) {
if (?) lock(m);
sem++;
if (?) unlock(m);

}

release_write_lock(rw_lock) {
if (?) lock(m);
for i from 1 to N_THREAD {

sem++;
}

if (?) unlock(m);
}

We leave the actual condition when to acquire and release the lock free. Our repair method will only
activate the condition in function write_lock. If any other lock is added, the change modifies runs
that were fulfilling the specification before. Only the traces where two or more threads try to acquire the
writer-lock are affected.
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