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Abstract

Using the advances of the modern microelectronics technology, the safety-critical systems,
such as avionics, can reduce their costs by integrating multiple tasks on one device. This
makes such systems essentially mixed-critical, as this brings together different tasks whose
error probability requirements may differ by an order of magnitude 106. In the context of
mixed-critical scheduling theory, we studied the problem of scheduling a finite set of jobs.
In this work we propose an algorithm which is proved to dominate OCBP, one of the best
scheduling algorithms for this problem. We show through empirical studies that our algorithm
can reduce the set of non-schedulable instances by a factor of 2.5 or, under certain assumptions,
by a factor of 4.5, when compared to OCBP.
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1 Introduction
Mixed-critical systems (MCS) integrate tasks with significantly asymmetric safety requirements on a single
assemble of processing resources. For example, in avionics systems, different maximal tolerated error
counts range from 10−9 per hour for the autopilot to 10−3 for the communication during the flight. Mixing
the asymmetric safety requirements is of a significant importance for the scheduling of mixed-critical tasks
on modern microelectronic devices, because the hardware technology improvements enable low cost and
low weight by integrating exponentially growing (in transistor count) amount of processing power on a
single device – a system-on-chip.

These technological developments and ever growing importance of embedded computers in avion-
ics and other safety-critical areas have called into existence a special mixed-critical (MC) real-time (RT)
scheduling theory, that has been developed at least since 2007 [1]. This theory is distinguished by treating
the asymmetric safety requirements by adequate scheduling methods, which lead to much more efficient
resource usage compared to classical scheduling approaches [2]. In particular, MCS-aware scheduling
methodologies were demonstrated in [3] to significantly outperform traditional pragmatic approaches such
as reservation-based techniques. The latter a widely adopted approach in safety-critical systems that has
an important disadvantage in that it provides a symmetric isolation in timing or space, being redundant in
that it equally isolates not only high-critical from low-critical tasks but also vice versa. Differently from
this, the new theory performs a paradigm shift towards asymmetric isolation, as pointed out in [2]. Some
previous literature achieves this goal by on-demand best-effort priority switching in favor of highly critical
tasks [2], others assume that lower-critical tasks are soft real-time [4].

In this paper, we follow an important major branch of the MCS scheduling theory, the certification-
cognizant mixed-critical scheduling, assuming that all tasks are hard real-time and assuming the certifica-
tion prescribed by safety-critical standards such as DO-178B[5]. Although this approach tries to follow
these prescriptions in a rather simple pragmatic way, it faces NP-complete problems even under basic as-
sumptions [3]. In particular, simple polynomial fixed-priority per job scheduling policies, such as EDF [6]
(earliest-deadline-first), do not guarantee optimal schedulability. This is unfortunate, because a significant
part of theory and practice (RTOS) is dedicated to supporting such policies, and therefore they remain of
big importance for MCS. The Own-Criticality Based Priority (OCBP) [7] is theoretically the best among
all fixed-priority scheduling algorithms for MCS. Recent extensions of the fixed-priority policy perform a
switch between different priority tables for different modes, showing in practice a significant improvement
of schedulability, while still reusing a lot in terms of implementation and theory from the classical fixed
job priority scheduling [8, 9]. However, to the best of our knowledge none of such extended fixed-priority
policies has ever been theoretically proven to dominate OCBP, despite their extra degree of freedom – to
switch the priority tables.

Our main contribution is to fill this gap by proposing a new mode-switched priority assignment algo-
rithm – mixed critical EDF (MCEDF) – that we theoretically prove to dominate OCBP. Another contri-
bution is a thorough empirical evaluation of the two algorithms through extensive simulations. Previous
works, in fact, evaluate OCBP only by specifying sufficient analytical conditions for schedulability [3] or
by running experiments only for periodic jobs [9]. Our empirical comparison to OCBP suggests that the
probability of a schedulability failure reduces by roughly one half when applying MCEDF. Finally our last
contribution is to show how one can improve the schedulability of the mode-switched policies even further
by splitting jobs into smaller subjobs. The empirical results suggest that the probability of schedulability
failure can further be halved after such a load-preserving transformation, while mode-unaware algorithms
like OCBP cannot take any advantage of it by construction.

Following a significant volume of previous MC scheduling work (e.g., [3, 7, 10, 11]) in this paper
we do not work directly with periodic/sporadic-task models and consider the basic problem of single-
core scheduling for a finite set of jobs whose exact arrival times are known a priori. As argued in [10],
this assumption applies without restrictions when generating schedules for time-triggered architecture, an
important major paradigm for designing safety-critical systems, in particular, in automotive and avionics
application domains [12]. Moreover, when applied at run-time, it can be readily imported into computing
the dynamic priorities for sporadic tasks [13]. Therefore, this approach is worth considering in many
practically relevant RT scheduling contexts.

This paper is organized as follows. In Section 2 we introduce the MC scheduling problems, giving the
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problem definition and a basic taxonomy. In Section 3 we present a new algorithm, show its dominance
over OCBP, discuss the characterization of schedulability. The experimental results presented in Section 4
evaluate how often OCBP may fail to schedule an instance while MCEDF can. Section 5 compares the
MCEDF to related work. Section 6 summarizes the paper and indicates the directions for future work.

2 Scheduling in Mixed Critical Systems

2.1 Background
Consider a set of hard real-time jobs where different jobs have different levels of criticality, i.e., different
tolerated levels of error rate. A common approach is to model different criticality requirements by giving
different worst-case execution times (WCETs) for the same job. Indeed, one can imagine that a job’s
execution time can be bounded by, say, 20 Kcycles with a probability (1 − 10−6) and by 30 Kcycles
with a probability (1 − 10−9). Usually the most safety-critical tasks of an embedded system should pass
a so-called formal certification procedure, where one ensures the highest safety probabilities by using
much more pessimistic WCET estimation algorithms than those normally be used in hard RT practice and
by adding an extra safety margin into the computed WCET. Every highly critical job gets a vector of at
least two WCET values, one for normal safety assurance, to assess the resource sharing with jobs that do
not have the highest safety requirements, and the other one, a higher value, for extra high assurance, to
ensure certification [1]. This approach for mixed-critical RT systems is called certifiable or certification-
cognizant [3, 10], and it is this approach that we follow in this paper.

We consider dual-criticality systems, having two levels of criticality, the high level, denoted as ‘HI’,
and the low level, denoted as ‘LO’. Already two criticality levels elevate the complexity of the classical
uniprocessor scheduling problem from polynomial to NP-complete [3]. Generalization of the proposed
algorithm to more criticality levels is future work. One important remark is that both HI and LO jobs are
hard real-time, so both must complete their executions before the deadlines. But only HI jobs undergo
certification. This means that the designer is confident that the jobs will never exceed their LO WCET, but
he or she must prove to the certification authorities that the HI jobs will meet the deadlines even under the
unlikely event that some jobs would execute at their HI WCET, calculated by very pessimistic certification
tools. This necessity thus comes from certification needs (i.e., legal constraints) and not from engineering
considerations. For this reason, upon the hypothetical event in which some jobs violate their LO WCET,
the certification-cognizant scheduling lets the LO jobs miss their deadlines or even be aborted, which helps
us to certify the timeliness of the HI jobs at the least resource requirements.

2.2 MC Scheduling Formalism
In a dual-criticality MCS, a job Jj is characterized by a 5-tuple Jj = (j, Aj , Dj , χj , Cj), where:

• j ∈ N+ is a unique index

• Aj ∈ Q+ is the arrival time

• Dj ∈ Q+ is the deadline, Dj ≥ Aj

• χj ∈ {LO,HI} is job’s criticality level

• Cj ∈ Q2
+ is a vector (Cj(LO), Cj(HI)) where Cj(χ) is the WCET at criticality level χ.

The index j is technically necessary to distinguish between the jobs with the same parameters. We
assume that Cj(LO) ≤ Cj(HI). We also assume that the LO-criticality jobs are forced to terminate after
Cj(LO) time units of execution, so (χj = LO) ⇒ Cj(LO) = Cj(HI). An instance J of the MC-
scheduling problem is a set of K jobs with indexes 1 . . .K. A scenario of an instance J is a vector of exe-
cution times of all jobs: (c1, c2, . . . , cK). If at least one cj exceedsCj(HI), the scenario is called erroneous.
The criticality mode of a scenario (c1, c2, . . . , cK) is the least critical χ such that cj ≤ Cj(χ), ∀j ∈ [1,K].
A scenario is basic if for each j = 1, . . . , n there exists lj ≤ χj such that the execution time of Jj is exactly
Cj(lj).
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A (preemptive) schedule of a given scenario is a mapping from physical time to J∪{ε}, where ε denotes
no job. Every job should start no earlier than Aj and run for no more than cj time units. The online state
of a run-time scheduler at every time instance consists of the set of completed jobs, the set of ready jobs,
i.e., jobs that have arrived in the past and did not complete yet, the progress of ready jobs, i.e., how much
each of them has executed so far, and the current criticality mode, χmode, initialized as χmode = LO and
switched to ‘HI’ as soon as a HI job exceeds Cj(LO). A schedule is feasible if the following conditions
are met:

Condition 1. If all jobs run at their LO WCET, then both critical and non-critical jobs must complete
before their deadline.

Condition 2. If at least one job runs at its HI WCET, then all critical jobs must complete before their
deadline.

An instance J is clairvoyantly schedulable if for each non-erroneous scenario, when it is known in
advance (hence clairvoyantly), one can specify a feasible schedule.

Based on the online state, a scheduling policy deterministically decides which ready job is scheduled
at every time instance. A scheduling policy is optimal (or correct) for the given instance J if for each non-
erroneous scenario it generates a feasible schedule. We assume without loss of generality that the schedul-
ing policies are monotonic, i.e., never postponing any jobs when getting less workload. One can check
optimality of such policies by simulating them for all basic scenarios i.e., those whose execution times are
a WCET at one of the levels, i.e., where cj ∈ {Cj(LO), Cj(HI)} [3]. A mode-switched scheduling policy
uses χmode in the scheduling decisions, otherwise it is mode-ignorant. An instance J is MC-schedulable
if exists an optimal scheduling policy for it. A fixed-priority scheduling policy is a mode-ignorant mono-
tonic policy that can be defined by a priority table PT , which is a K-sized vector specifying all jobs (or,
optionally, their indexes) in a certain order. The position of a job in PT is its priority, the earlier a job
is to occur in PT the higher the priority it has. Among all ready jobs, the fixed-priority scheduling pol-
icy always selects the highest-priority job in PT . If no such PT exists, the scheduling policy is called
dynamic-priority.

2.3 Optimal Priority Assignment

For the ‘ordinary’ non-MC scheduling, the fixed priority policy is sufficient and the EDF (earliest-deadline
first) priority assignment algorithm is optimal for any schedulable instance [6]. In the MC scheduling,
for some schedulable instances no fixed priority tables PT are optimal (we will see examples later) [7].
Nevertheless, when an optimal PT exists, it will be computed by the own criticality-based priority (OCBP)
algorithm [7]. It is based on the so called “Audsley approach” [14], where the priorities are assigned by
repeatedly assigning the lowest priority to a job that can be conservatively proven to meet its deadline even
when executing at the lowest priority. The job that has got the lowest priority assigned is removed from
the working set of jobs, as it has no impact on the behavior of the higher-priority jobs, and then the process
is repeated until no jobs remain in the working set. If at some step, no job can be selected for the lowest
priority in the set, then the instance is considered non-schedulable.

OCBP selects the lowest-priority job Ji using the following criterion: when having the lowest priority
in the working set, job Ji still meets its deadline in the scenario cj = Cj(χi) , i.e., the basic scenario with
the WCET at the level that is ‘own’ for Ji. This is checked by simulating the scheduling with any priorities
for the other jobs in the subset provided that they are higher than Ji. The correctness is due to the following
lemma [3]:

Lemma 2.1. The execution time available for a job Ji in a fixed priority scheduling algorithm depends on
the arrival and execution times of jobs Jj with a priority higher than Ji, but not on their relative priority
assignment.

The following example shows how OCBP works:

Example 2.1. Let J be described by the following table:
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Job A D χ C(LO) C(HI)
1 0 3 LO 2 2
2 3 4 LO 1 1
3 3 5 HI 1 1
4 0 6 HI 1 4

At the first iteration OCBP tries to find a job to assign the lowest priority. We check job J1 first. We simulate
the execution of J assuming that J1 has the lowest priority, under the hypothesis that every job executes
for its C(LO) (since χ1 = LO). At time 0, only J1 and J4 are ready. So J4 executes for 1 time unit and
then J1 executes for 2 time units. At time 3 J1 completes meeting its deadline. So the lowest priority can
be assigned to J1.

In the next step we reiterate the algorithm on the instance J′ = J \ J1. We first check J2. At time 0,
only J4 is ready, so it executes for 1 time unit. Then the CPU is idle for 1 time unit, until at time 3 J2 and
J3 arrive. J3 has higher priority, so it executes for 1 time unit, completing its execution at time 4. We can
now schedule J2, but it already missed its deadline. So now we check whether job J3 can have the lowest
priority instead. Since χ3 = HI , J4 now has a WCET of 4. At time 0, J4 will be scheduled, and it will
execute for 3 time units. At time 3 J2 and J3 arrive. The fixed priority policy, followed by OCBP, keeps the
same priority of jobs in the HI mode and does not drop the LO job J2. Since J3 has the lowest priority,
at time 3 only J2 and J4 compete for the CPU. J4 and J2 will then execute for a total of 2 time units (for
lemma 2.1 we do not care about their order), terminating at time 5. In this case J3 will miss its deadline.
We then check J4 for the lowest priority. At time 0, J4 will be scheduled and it will execute until time 3.
Then we have to execute J2 and J3 for 2 time units. At time 5 we can schedule J4 again, that will execute
for another time unit, terminating at time 6, thus meeting its deadline.

At the third iteration we will do the same for instance J′′ = J′ \ J4. By the same reasoning as above,
job J2 cannot have the lowest priority also in this case. But J3 can be delayed by 1 time unit due to J2. J2
meets its deadline when it has the highest priority. Thus, we obtain the following priority table for J:

PT = (J2, J3, J4, J1)

3 MCEDF Algorithm

3.1 Fixed Priority per Mode
A fundamental limitation of the default fixed-priority scheduling is that it is by definition mode-ignorant,
so it cannot change the priority of jobs or drop them when switching to the HI criticality mode. The
proposed algorithm computes the priority table for the scheduling policy which we call fixed priority per
mode (FPM). This (mode-switched) scheduling policy has two priority tables: PTLO and PTHI. The former
includes all jobs. The latter includes only the HI jobs. As long as the current mode is LO, this policy
performs the fixed priority scheduling according to PTLO. After the switch to the HI mode, this policy
drops all pending LO jobs and applies priority table PTHI. (Optionally the LO jobs can be still executed at
the lowest priority if their tardy completion is still desired.)

One can always use the EDF priority assignment for PTHI because scheduling after the mode switch is
a single-criticality problem, for which the EDF is optimal. Therefore, the priority assignment reduces to
computing PTLO, in sequel denoted simply as PT .

3.2 MCEDF
Our proposed mixed-criticality earliest deadline first (MCEDF) algorithm computes the priority table PT
for FPM. An outline is given in Figure 1. Initially, we order the jobs in the EDF order (this is done by
subroutine JobsOrderedByEDF ). We first check schedulability of the basic LO scenario of the initial pri-
ority order PT . By optimality of EDF for single priority, if a job misses a deadline, then the instance is not
schedulable. Past this point, the initial PT satisfies Condition 1 and this remains invariant of the algorithm,
whereas it calls subroutine ImproveHIJobs , which is a best-effort procedure for trying to satisfy Condi-
tion 2. This is done by increasing the priority of HI jobs. Finally, the subroutine anyHIscenarioFailure
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1: Algorithm: MCEDF
2: Input: job instance J
3: Output: priority vector PT
4: PT ← JobsOrderedByEDF (J);
5: if LOscenarioFailure(PT,J) then
6: return (FAILURE-NON-SCHEDULABLE-INSTANCE)
7: end if
8: PT ← ImproveHIJobs(PT,J)
9: if anyHIscenarioFailure(PT,J) then

10: return (FAILURE-MCEDF-SCHEDULABILITY)
11: end if

Figure 1: The MCEDF algorithm for computing priorities

1: Algorithm: MonotonicImproveHIJobs
2: In/out: priority vector PT
3: Input: job instance J
4: i← 2
5: while i ≤ K do
6: Swapped ← False
7: if i ≥ 2 ∧ χPT [i] = HI ∧ χPT [i−1] = LO then
8: if CanSwap(i, i− 1, PT,J) then
9: PT ← Swap(i, i− 1, PT );

10: Swapped ← True
11: end if
12: end if
13: if Swapped then
14: i← i− 1
15: else
16: i← i+ 1
17: end if
18: end while

Figure 2: Deadline-monotonic improvement for Condition 2 – the “bubble-sort”

evaluates if Condition 2 is met. In this case the algorithm succeeds. The check is done by simulation over
basic scenarios, using a similar approach as described in the proof of Theorem 2 in [3]. The latter shows
how this can be done in polynomial time and this method, in fact, applies to all monotonic scheduling
policies, of which FPM is an example.

The reminder of this subsection is dedicated to the HI job priority improvement procedure. In terms
of schedulability, this procedure is constrained by meeting the LO scenario deadlines, postponing the HI
scenario checks until the final check of the MCEDF. The simpler variant of the HI job priority improvement
is shown in Figure 2. This procedure increases the priorities of the HI jobs w.r.t. the LO jobs, while the
relative priorities between the jobs of the same criticality level, LO or HI, remain deadline-monotonic. This
is done in a manner similar to a bubble-sort in the PT array. We visit the HI jobs in decreasing priority
order, and try to raise each HI job (‘raising a bubble’) by repeatedly swapping priority with the adjacent
priority LO job. Subroutine CanSwap(i, i − 1, . . .) simulates the fixed priority schedule PT with entries
i and i − 1 swapped and returns whether all deadlines are met. Subroutine Swap performs the actual
swapping.

Example 3.1. Let J be the instance defined by the following table:
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Figure 3: The possible execution of the Job set

Figure 4: The blocking of the deadline-monotonic improvement

Job A D χ C(LO) C(HI)
1 0 5 HI 2 3
2 0 6 HI 1 2
3 0 4 LO 2 2

The algorithm of Figure 2 will first give EDF priorities to the jobs, thus generating the following priority
table:

PT = (J3, J1, J2)

then it will check condition of line 7 on J1 and J3. Since the condition holds, it will check if the swap is
possible by checking by simulation if J3 will met its deadline in a LO scenario. In this case J1 will execute
for 2 time units, thus terminating at time 2, and then J3 will execute for other 2 time units, thus terminating
at 4. Since there is no deadline miss, we will perform the swap, thus obtaining:

PT = (J1, J3, J2)

Since there are no other possible swap, the algorithm terminates. Figure 3 shows that using this priority
order all deadlines are met in all the possible scenarios of the instance.

As sketched in Figure 4, the fact that a LO job PTi−1 cannot be moved behind the HI job PTi in the
priority table still does not always exclude the possibility that a tighter-deadline LO job PTi−1−n can be
moved behind a looser-deadline HI job PTi+m, whose completion time would thereby improve, which can
be crucial for the HI-scenario schedulability. In the bubble sort-like procedure, the job pair (PTi−1, PTi)
would block this possibility, whereas OCBP would not exclude this assignment, as it evaluates all jobs for
the lower position in the priority table.

To increase MCEDF effectiveness, we allow more swapping between HI and LO jobs, as long as they
are adjacent in busy intervals. A busy interval for subinstance J′, J′ ⊆ J is a maximal time interval (τ1, τ2]
where the set of ready jobs is never empty. (Note that the interval is half-open because the jobs arriving
at time t count ready only for the time instances strictly later than t). For convenience, we apply the term
‘busy interval’ also to the subset of jobs running in that interval.

Obviously, if two jobs are in different busy intervals then the relation between their priorities makes
no difference for the schedule. Swapping in different busy intervals independently eliminates the blocking
problem described in Figure 4. This statement is supported by the following (easy to prove) lemma stated
informally below.
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1: Algorithm: ImproveHIJobs
2: In/out: priority vector PT
3: Input: job instance J
4: IvList ← ListLOBusyIntervals(J)
5: for J′ ∈ IvList do
6: PT ′ ← (PT | J′)
7: PT ′ ← MonotonicImproveHIJobs(PT ′,J′)
8: if |J′| > 3 then
9: PT ′ ← ImproveHIJobs(PT ′, J′ \ {last(PT ′)})

10: end if
11: (PT | J′)← PT ′

12: end for

Figure 5: Generalized improvement for Condition 2 used in MCEDF

Lemma 3.1. Given an instance {PT1, . . . , PTi+m} with a priority table PT that is deadline-monotonic
per criticality level. Suppose (Fig. 4) that a LO job PTi−1 cannot be moved behind the HI job PTi in the
priority table whereas LO job PTi−1−n can be moved behind a HI job PTi+m, and it would improve the
completion time of the latter. Then there must be at least two distinct busy intervals of this subinstance:
one with jobs PTi and PTi−1 and the other one with PTi−1−n and PTi+m.

The busy intervals are also shown in Fig. 4 and it is obvious that the basic bubble-sort improvement
would succeed in moving PTi−n−1 if applied to the second interval. Informally this lemma states that
if we isolate the smallest subinstance {PT1, . . . PTj} that includes all the jobs involved in the blocking
then all “blocking” job pairs (PTi−1, PTi) will be isolated into separate busy intervals of this subinstance,
which eliminates these obstacles for improving the priority of the lowest-priority HI job.

The generalized priority improvement subroutine is based on this observation and is described in Fig-
ure 5. First we split the instance into busy intervals. Then for every interval, we extract from PT the
subvector PT ′ of jobs belonging to the current busy interval, preserving their relative order, this is denoted
(PT | J′). Then we invoke the individual bubble-sort improvement for the given interval. After this we
remove the lowest priority job from the interval and fix its priority assignment (note here a similarity to
OCBP). As argued earlier, if this lowest priority job is a HI job, its priority cannot be improved anymore.
Removing the lowest-priority job isolates a smaller subinstance of the remaining jobs of that interval and
thus may reveal further busy interval fragmentation of the remaining jobs. Therefore we apply the same
procedure recursively for the finer busy intervals. Finally, we reinsert the jobs of J′ in the updated order
into the original subset of entries in PT .

The instance of Example 2.1 illustrates the blocking problem, as it may not be solved with a simple
monotonic improvement. In fact in this example, there are two busy intervals: (0, 3] with jobs {J1, J4} and
(3, 5] with jobs {J2, J3}. The bubble sorting will not change the priority table (J1, J2, J3, J4), because
job pair J2, J3 cannot be swapped. In this case, HI job J4 will start at time 2 and may miss its deadline
if executed in HI scenario, being preempted by J3. With the new procedure, priorities in the interval
{J1, J4} will be swapped by a bubble sort applied to this interval individually, and we get a correct priority
assignment: (J4, J2, J3, J1). The reader can check that with this priority assignment all deadlines will be
met.

However, in Example 2.1 we have shown that this instance is OCBP-schedulable. So, taking the busy
intervals into account is a necessary feature for our algorithm to be at least as powerful as OCBP. In the
next subsection, we claim that, in fact, it dominates OCBP.

Another important property of MCEDF is described below.

Lemma 3.2. The priority table computed by MCEDF can be reordered without impact on the behavior but
letting the HI jobs occur in EDF order w.r.t. each other.

Reordering the priorities as described in this lemma is in fact part of the proof for a different claim
presented in Appendix A. Section 5 explains the practical meaning of such a reordering.
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3.3 Dominance over OCBP
In this subsection we provide the theoretical evidence that MCEDF dominates over OCBP. The set of jobs
described in Example 3.1 is MCEDF schedulable, while we will show that is non-OCBP schedulable.

Reminding that if all the arrival time are equal to 0, we can check the following condition[7] for job Jj ,
instead of doing simulation: ∑

Ji:pr(Ji)>pr(Jj)

C(χj) ≤ Dj

no job can get the last priority, since we have for J1: 3 + 2 + 2 > 6, for J2: 3 + 2 + 2 > 6, for J3:
2 + 2 + 1 > 4.

Thus the dominance is given by the following:

Theorem 3.3. If an instance is OCBP schedulable, then it is schedulable by the MCEDF algorithm.

Proof. See Appendix A.

3.4 Characterization
The characterization of a scheduling algorithm means defining certain metrics that estimate the schedulabil-
ity of problem instances under different scheduling algorithms. Sometimes they are used to conservatively
evaluate the schedulability of an instance. Instead, MCEDF executes an exact schedulability test offline,
in subroutine anyHIscenarioFailure. Thus, in our work, the characterization metrics are only used as
convenient indicators of algorithm performance, but not for a schedulability test.

One metric, proved useful for mixed-critical systems is speedup factor. A scheduling algorithm has a
speedup factor s if any instance that is clairvoyantly schedulable on a unit-speed processor is also schedu-
lable by the algorithm on a processor of speed s. We know from [7, 3] that OCBP has a speedup factor of
(
√

5 + 1)/2 ≈ 1.62, and that this value is optimal, i.e., no non-clairvoyant scheduling algorithm can have a
smaller speedup factor. From this observation and due to dominance of MCEDF over OCBP we know that
MCEDF also has the optimal speedup factor.

The most common and well-known characterization metric is the utilization – i.e., the percentage of
CPU cycles utilized by all tasks, but it is usually defined only for the infinite sets of jobs produced by
periodic tasks, where the intervals between the jobs of the same task are equal. When the intervals between
the jobs are arbitrary, the utilization generalizes to load, i.e., the maximal ratio between the processing de-
mand and the processing capacity. Baruah et al. [15] defined the load metrics for mixed-critical scheduling
problems and applied these metrics for the OCBP algorithm. The authors determine the load a CPU can
experience in a LO and in a HI scenario as shown below:

LoadLO(J) = max
0≤t1<t2

∑
Ji: t1≤Ai∧Di≤t2

Ci(LO)

t2 − t1

LoadHI(J) = max
0≤t1<t2

∑
Ji: χi=HI ∧ t1≤Ai∧Di≤t2

Ci(HI)

t2 − t1
An instance can only be schedulable if the processor is not overloaded. Hence, a necessary condition

for MC schedulability is:
LoadLO(J) ≤ 1 ∧ LoadHI(J) ≤ 1 (1)

This is also a sufficient condition for clairvoyant scheduling, but not for the online policies, [15], because
they do not ‘know’ in advance the time instance of an occasional mode switch, which may interleave the
processing demands of LO and HI scenario such the result might exceed the available processing capacity.

The following sufficient condition for an instance to be schedulable by the OCBP algorithm is proven
in [15]:

Load2LO(J) + LoadHI(J) ≤ 1
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Due to the dominance over OCBP (Theorem 3.3) we can state that it can be applied to MCEDF as well.
The characterization above proved useful for the fixed-priority policy. However, we would like to

stress that a shortcoming of LoadLO and LoadHI is that they ignore a phenomenon which we call the WCET
uncertainty. This phenomenon makes a practically realizable policy inferior to a clairvoyantly schedulable
one. The latter ‘knows for certain’ whether and when a mode switch will occur at runtime, whereas an
ordinary policy is ‘uncertain’ about this. By definition, this knowledge can be exploited online only by
mode-switched policies. The job WCET uncertainty can be measured as ∆Cj = Cj(HI) − Cj(LO)
(positive only for the HI jobs). In [11] it is proposed to consider a new set of job deadlines for the LO
scenario: D′j = Dj −∆Cj . It was noticed in [11] that in the LO scenario the jobs should meet deadlines
D′j , otherwise deadlines Dj are missed in in a HI scenario. Therefore in [11] the metric LoadLO is replaced
by a new metric LoadMIX, defined as the one equal to LoadLO after substituting D′j into Dj :

LoadMIX(J) = max
0≤t1<t2

∑
Ji:t1≤Ai∧D′

i≤t2

Ci(LO)

t2 − t1
The necessary condition (1) is thus rewritten to:

LoadMIX(J) ≤ 1 ∧ LoadHI(J) ≤ 1 (2)

In fact, in [11] a dynamic-priority scheduling approach is proposed, for which the condition (2) is claimed
sufficient for schedulability. However, should this claim ever be true then (2) would be a necessary and
sufficient condition, and we would thus have a polynomial-to-compute exact check for an NP-complete
decision problem, which already raises doubts about this claim. Indeed, this sufficiency claim is erroneous
and (2) is only a necessary but not a sufficient schedulability check. The table below gives a counter-
example for the sufficiency of (2):

Job A D χ C(LO) C(HI)
1 0 20 LO 10 10
2 0 40 HI 5 10
3 0 40 HI 15 30

It is easy to check that this instance satisfies (2). Lemma 2 in [3] implies that if all jobs arrive simulta-
neously then the MC-schedulability can be checked by enumerating all possible FPM priority assignments.
If we choose J1 as the one with the highest priority we will not have enough time to execute both J2 and
J3 if they both show an HI behavior. If we choose J3, then J1 would miss its deadline. And if we choose
J2 then if we execute J1 next, J3 will not have enough time for its HI WCET, while if we execute J3, then
J1 will miss its deadline.

LoadMIX is a better indicator of schedulability than LoadLO, especially for mode-switched policies. To
demonstrate this, consider splitting, a transformation of a job instance into a new instance where a HI job
is equally divided into a certain number (called split factor) of equal smaller jobs, whose total execution
times Cj(LO) and Cj(HI) add up to that of the original job. Obviously, the splitting does not impact
LoadLO and LoadHI, but it reduces the uncertainty and LoadMIX. Therefore, for mode-switched policies,
such as MCEDF, the splitting can translate an unschedulable instance into a schedulable one. An infinitely
large splitting of all HI jobs can bring the optimality of a mode-switched policy infinitely closer to that
of the clairvoyant scheduling. For some instances, a finite splitting is enough to equate the clairvoyant
scheduling. Mode-ignorant policies, such as OCBP, cannot take any advantage of the reduced uncertainty
by construction. These observations are confirmed in our experiments in Section 4.

The following example demonstrates the effect of splitting. It has LoadMIX = 1.66 . . .:

Job A D χ C(LO) C(HI)
1 0 6 LO 5 5
2 0 12 HI 2 12

This instance is not schedulable because the necessary condition (2) is broken and due to uncertainty of the
execution mode. If J1 executes first then J2 starts at time 5. In the LO mode there would be no problem,
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but J2 misses its deadline should it ‘decide’ to execute in the HI mode, for 12 time units. Otherwise , if J2
starts first, then even in the HI mode it meets its deadlines (and the LO job J1 can be dropped), but there
is a problem in the LO mode, as J2 would delay J1 by two time units, leading to a missed deadline. The
clairvoyant scheduler would know the mode in advance and make the proper choice accordingly.

It is easy to check that after splitting J2 into two jobs, the instance becomes MCEDF-schedulable.

Job A D χ C(LO) C(HI)
1 0 6 LO 5 5
2 0 12 HI 1 6
2 0 12 HI 1 6

The scheduler can execute J3 until completion first getting from it the online knowledge of the mode that
was missing in the previous case. If job J3 runs in LO mode, J2 can follow, starting at time 1, and then J2
can run from time 6 even until time 12 in the HI mode. If job J3 will run the HI mode, J1 will be skipped,
and J3 together with J2 meet the deadline. Compared to the instance before the split, LoadMIX reduces
from 1.66 . . . to 1, whereas LoadLO = 0.833 . . . and LoadHI = 1 stay constant, not showing any advantage
of the split instance w.r.t. to the original one.

Note that the splitting may have some practical significance. This depends on the WCET tools, in
particular, by what extent the sum of WCETs may change by the splitting of code into blocks. Note that
despite the fact that the arrival times of all subjobs are equal, their code blocks are not restricted to be
data-independent of one another. This is due to the fixed priority per job scheduling policy, which has the
property that the jobs with equal arrival times never preempt each other but instead execute in a sequential
priority-driven order and the sequential blocks of the job code can be assigned to the subjobs in the same
order.

4 Implementation and Experiments

We evaluated the schedulability performance of MCEDF relative to OCBP in experiments with randomly
generated job instances of 20 jobs 1 each having arrival/deadline/execution times being integers, simulating
CPU clock cycle count of some imaginary machine. Every job instance was generated for a target LO and
HI load pair.

The method to generate a job instance was as follows. First we randomly generated a tentative instance,
not paying attention to the target loads. This was done by repeatedly generating a new sporadic task, i.e.
sequence of jobs arriving one after another at random arrival intervals (thus modeling a realistic situation
where our algorithm would be applied at run time for jobs generated by sporadic tasks). For every job, both
the job deadline and the arrival interval were uniformly distributed in a range 5K-25K (kilocycles), and the
job’s criticality level was set to HI (i.e., χ = HI) with a probability 50%. Every sporadic task produced
just enough jobs to fill a random interval from 0 to a bound in range 15K-100K. The WCET Cj(LO) of
each job was uniformly distributed between 0 and the relative deadline, each HI job had a Cj(HI) obtained
by scaling the value Cj(LO) by a random factor [1..1000]. New sporadic tasks were invoked until all tasks
together have produced more than 20 jobs, and then jobs were randomly removed until only 20 remained.
To finalize the job instance generation, the algorithm calculated the loads of the tentative instance and
scaled the execution times to obtain the target load in the final instance.

When scaling the loads, we took care that when Cj(HI) would have to be scaled below Cj(LO), it is
instead set to Cj(LO). This could result in imprecise final LoadHI. As a result, there was a load scaling
problem, as the scaling sometimes failed to approximate the target load with the specified precision. In this
case we cancelled the generated instance and made another attempt to generate it until multiple attempts
produced no satisfactory load scaling result within a timeout. Due to this the job generation process itself
took a considerable time in the experiments. Nevertheless one or a few seconds were typically only required
for very low LoadHI (≤ 0.2) combined with a high Load LO (> 0.9). We limited the timeout for repeating
the attempts by 10 s per one experiment, resulting in up to 6000 attempts on a 1.2 GHz machine.

1 Note that the instance size was restricted by the job generation algorithm and not by the scheduling algorithm.
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(a) Density of Generated Jobs (b) non OCBP-schedulable 14%

(c) non MCEDF-schedulable 5% (d) non MCEDF-schedulable after split 3%

Figure 6: Experimental results
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We ran multiple job generation experiments, ranging each target of Load LO and LoadHI from 0.0025
to 1 with step 0.0025. We only selected the ‘overloaded’ targets i.e., those lying at or above the parabola
Load2LO(J) + LoadHI(J) = 1, yielding instances where OCBP could potentially fail. By looking at the
loads below 1 we compare both OCBP and MCEDF to the clairvoyant scheduler, which can schedule
all such points and which gives an upper bound on the best scheduling performance. Per each target,
ten experiments were run, generating the points lying near the target with tolerance 1%. Fig 6(a) gives
the contour graph of the density of the generated points in grayscale. The horizontal axis is Load LO, the
vertical is LoadHI. The grid follows the parabolic lines of equal Load2LO(J) +LoadHI(J). The total number
of experiments was 537460, whereas we failed to generate 2.7% (14427) of points due to the load scaling
problem, all these missing points are at the right bottom corner in Fig 6(a).

Around 14% (77005) of points showed failure for OCBP. In those 14%, roughly 5% (28806) were
not schedulable by MCEDF as well, whereas 9% (48199) were schedulable by MCEDF. Thus, MCEDF
proved to reduce the set of non-schedulable instance by almost one third. The density distributions in
Figure 6 suggest that MCEDF is less sensitive to high loads.

For the 5% (28806) non-MCEDF schedulable jobs we ran additional experiments. We split all HI jobs
by factors 2, 3 and 4. This kept the load the same but reduced the uncertainty. After splitting the instances
remained to be non-OCBP schedulable (as OCBP cannot make profit of less uncertainty) but the number
of non-MCEDF schedulable instances has reduced, and it came to 3% (16991). So if we can accept this
load-preserving transformation, we go from original 14% to 3% non-schedulability due to MCEDF. Note
that 2% (11812) became schedulable after split, while in the most of cases, 1.5% (7877), split factor 2
was sufficient. So assuming that in practice we can split the HI jobs into a few sub-jobs such that both
WCET values scale, then we can in many cases obtain a schedulable instance. That the fragmentation of
jobs would preserve the same total WCET is likely to be optimistic assumption for the WCET tools, but
still doing this is worth a try.

5 Discussion and Related Work

MCEDF uses the flexibility of FPM to be dominant over fixed priority algorithms. The main advantage
of MCEDF over other non fixed priority solutions is that this algorithm can be implemented on existing
systems that support fixed priority algorithms with minimal modification. In fact, due to Lemma 3.2, we
can always use one priority table and signal to the LO jobs to speedily return when the HI mode is active.

To the best of our knowledge no FPM algorithm that are theoretically dominant over OCBP has been
proposed in the past. The priority assignment of [13] applies OCBP to compute PTLO, thus having equiv-
alent schedulability. [8] proposes a low-overhead online computation of priorities. [9] presents a high
performance priority computation that dominates OCBP empirically. Note that [8, 9] are not directly ap-
plicable to the problem studied in this paper as they are restricted to the periodic job model.

FPM provides better results than fixed priority, but in general dynamic priority may be necessary for
optimality. Consider the following example instance Jd:

Job A D χ C(LO) C(HI)
1 0 5 HI 2 3
2 1 3 HI 1 2
3 0 3 LO 1 1

No FPM policy would schedule Jd, a dynamic-priority one is required. (Nevertheless the time instances
for job preemption can be restricted to job arrivals and the mode switch [3].) The only correct scheduling
policy for Jd is to execute J1 for 1 time unit, then J2. If J2 terminates after 1 time unit, we execute J3 and
then J1 again, otherwise we drop J3 and execute J1. It is easy to see that this schedule is not fixed priority
(J1 changes its priority w.r.t. J3).

In [11], an idea for a dynamic priority scheduling is proposed. In this work however the algorithm per-
formance is evaluated experimentally using (2) as a sufficient condition for schedulability with their tech-
nique. However we showed in Section 3.4 that this condition is not even sufficient for MC-schedulability.
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6 Conclusions and Future Work
This paper presents a new real-time scheduling algorithm for mixed-critical systems, fitting into the context
of real-time scheduling approach that supports the formal certification of safety-critical systems. In this
context, even the basic problem of uniprocessor scheduling for a finite number of jobs without resource
sharing is NP-complete and cannot be solved in general by classical fixed-priority per job scheduling poli-
cies. In this paper, we present a scheduling algorithm that can be implemented as an extension of fixed
priority scheduler, enjoying the advantages of relative ease of practical implementation and theoretical
analysis of such schedulers. We both prove in theory and demonstrate in practice that the proposed algo-
rithm dominates and significantly outperforms an algorithm that is optimal among all basic fixed-priority
scheduling algorithms for this problem. In addition, our algorithm can take advantage of reduced uncer-
tainty about worst-case execution time per job that can result from fragmentation of jobs into smaller jobs.

In future work we plan to extend this algorithm for mixed-critical sporadic tasks and to introduce sup-
port for more than two levels of criticality. Also, it is necessary to investigate the mixed-critical scheduling
of task graphs and dataflow graphs, where the jobs have mutual data dependencies. For this variant of
scheduling problem, it is important to extend the research from single-core to multicore systems and to
manage the access conflicts at shared memory and on-chip interconnection framework. Where purely an-
alytical techniques would fall short due to complexity of the problem, we plan to apply compositional
verification techniques to ensure hard-real time and safety guarantees. Also we plan to apply our method-
ology to real-life avionics applications.
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A Proof of Theorem 3.3
Proof. Suppose that we have an OCBP-schedulable instance J. In the proof we show that MCEDF can be
modified without impact on the schedulability to produce the same priority table PT as OCBP for instance
J. This table will be used by MCEDF only before the mode switch, thus having exactly the same behavior
as OCBP in this case. After the mode switch OCBP manages to meet HI job deadlines without dropping
the LO jobs, and MCEDF will surely be able to do the same because it drops the LO jobs and applies the
optimal algorithm – EDF – for the remaining HI jobs.

The modified MCEDF has higher complexity while preserving the original MCEDF schedule. The
schedule is preserved because, when compared to the default MCEDF, the modified variant of MCEDF
only changes the relative priorities of two jobs in PT when they lie in different busy intervals of the basic
LO scenario. This implies that the LO scenario schedule remains the same, and for the FPM policy it
means that the complete schedule remains the same.

Consider the priority table PT computed by MCEDF. Observe that by construction all jobs meet their
deadlines in the LO scenario. Let us split the basic LO scenario schedule of MCEDF into busy intervals.
There are 2 cases:

Case 1: There is a busy interval in which the lowest priority job is a LO job In this case, for MCEDF,
we modify PT by moving arbitrary such LO job Jj to the end of PT . Obviously, it remains to be
the lowest-priority job in its busy interval, so the MCEDF behavior is not changed. As for OCBP,
observe that to evaluate whether a LO job can be assigned the lowest priority, OCBP also uses the
basic LO scenario. Therefore, by Lemma 2.1, OCBP can select the same job Jj for the lowest
priority as the MCEDF.

Case 2: The lowest-priority job in every busy interval is a HI job MCEDF selects the latest-deadline
job among all HI jobs in the instance – Jj – and moves it to the end of PT . Observe that the
MCEDF priority improvement in every busy interval is deadline-monotonic per criticality level and
hence it assigns the lowest priority inside the busy interval to either a latest-deadline HI job or to the
latest-deadline LO job among all jobs in the busy interval. Therefore, Jj will be the lowest-priority
in its busy interval. Therefore, by the same argument as in Case 1, the MCEDF schedule remains the
same after this modification of the priority table PT .

Now what remains to be proved for Case 2 is that OCBP can select the HI job Jj as the lowest-
priority job. For this we just need to prove that OCBP cannot select any LO job in this case. If
so, then in OCBP instance there must be a selectable HI job which completes the last among all HI
jobs in the maximal HI scenario (i.e., with execution times Cj(HI)) and still meets its deadline. The
latest deadline HI job Jj if selected for the least priority cannot complete later and thus will meet its
deadline, thus being selectable.
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We prove that no LO job can be selected by OCBP in Case 2 by contradiction. Consider any busy
interval. Let a LO job be selectable in this busy interval for the lowest priority, then the latest-
deadline LO job in the same busy interval Jj′ would be selectable as well. Just after the monotonic
improvement of Figure 2 was calculated for this busy interval, let p′ be the final position of Jj′ in the
priority table PT ′ for that interval. Let Ji be the latest priority job in the given busy interval, which
is a HI job by construction of Case 2. Then we have that the final priority table looks like:

(. . . Jj′ , PT ′(p′ + 1), PT ′(p′ + 2), . . . , Ji)

where Jj′ are followed by HI jobs until the end of the priority table. At some point the monotonic
improvement of Figure 2 has evaluated the possibility to swap the jobs PT (p′ + 1) and Jj′ and it
has failed. This could only happen if after this swap Jj′ misses its deadline in the LO scenario.
Because the completion time is monotonic in the priority, from this we can conclude that Jj′ misses
its deadline in the LO scenario when moved in the end of the priority table. However, this is in
contradiction with our current hypothesis that in OCBP could select Jj′ as the least-priority job.

Due to this contradiction, we conclude that OCBP can select Jj in Case 2, thus making the same
choice as the modified MCEDF. This completes the proof.
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