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Abstract

Component-based systems (including distributed programs and multiagent systems) involve
a lot of coordination. This coordination is done in the background, and is transparent to
the operation of the system. The reason for this overhead is the interplay between concur-
rency and non-deterministic choice: processes alternate between progressing independently
and coordinating with other processes, where coordination can involve multiple choices of the
participating components. This kind of interactions appeared as early as some of the main
communication-based programming languages, where overhead effort often causes a restric-
tion on the possible coordination. With the goal of enhancing the efficiency of coordination
for component-based systems, we propose here a method for coordination-based on the pre-
calculation of the knowledge of processes and coordination agents. This knowledge can be
used to lift part of the communication or synchronization that appears in the background of
the execution to support the interaction. Our knowledge-based method is orthogonal to the
actual algorithms or primitives that are used to guarantee the synchronization: it only removes
messages conveying information that knowledge can infer.
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1 Introduction

Component-based systems are a generalization of distributed systems. In concurrent languages like CSP
and ADA processes allow binary interactions between processes, often with the choice between outgoing
communication restricted to be deterministic. Modern distributed systems may involve more general multi-
party coordination, e.g., robots that need to coordinate temporarily on a certain task. While such a system
may reveal a behavioral model that is based on interaction primitives, often in the back, there are algo-
rithms that are based on more basic primitives such as asynchronous message passing or shared variables.
Algorithms for obtaining synchronization primitives are complicated and require nontrivial overhead. The-
oretical results also show some inherent restrictions: a well known result on the dinning philosophers [12]
shows that a completely symmetric nonprobabilistic solution cannot exist.

We present here a method for improving the behavior of synchronous interactions by removing some of
the overhead for guaranteeing the correct synchronization of components based on knowledge calculation.
The main principle is based on the observation that such algorithms need to allow for a very general
interaction, but can provide a much more efficient behavior for more limited cases. Analyzing the system
before its execution based on model checking of knowledge properties allows us to utilize the particular
behavior that is actually needed for the implementation of the synchronization. Knowledge, basically,
refers to the facts that hold in all the global states that are consistent with the current local state of some
process. A precalculated knowledge, embedded in the processes, allows exploiting the easier cases of
behavior, when relevant.

Our method is general, independent of the actual synchronization algorithm or primitives used to obtain
it. However, the actual implementation of the method depends on the specific details of the algorithm. We
present its implementation on a well known generic synchronization algorithm called α-core [14].

The paper is organized as follows. Section 2 recalls cellular automata, as the underlying semantic model
for synchronizing systems, and the α-core protocol, as one possible solution for distributed implementation
of such systems. Section 3 presents the key results on exploiting knowledge to reduce the communication
overhead for distributed implementation. We provide techniques for using knowledge independently for
components and coordinators as well as for combining them. Section 4 reports experimental results ob-
tained using a prototype implementation realized on top of the BIP framework [3]. Finally, Section 5
provides conclusions and future work directions.

2 Preliminaries

2.1 Cellular Automata

The model of execution that we want to obtain is that of synchronizing systems. To describe such systems
we are using cellular automata. This model involves several processes, represented as automata with tran-
sitions labeled by action names, where the execution of all the actions that share the same name has to be
synchronized by all processes. Formally, the cellular automata model is defined as follows:

Definition 1. An automaton is a tuple 〈S,A,δ,s0〉 where S is the set of states, A is the set of actions,
δ : S×A→ S is the transition relation, s0 ∈ S is the initial state. An execution of an automaton is a maximal
sequence of states s0 s1 s2 . . . such that for each i≥ 0, there exists a ∈ A such that δ(si,a) = si+1.

Definition 2. A cellular automaton is a set of n automata A i = 〈Si, Ai,δi, si
0〉, i ∈ {1, . . . ,n}, such that the

sets of states are mutually disjoint, and the sets of actions may have common occurrences (corresponding
to interactions).

Example 1. Figure 1 shows a cellular automaton made of three automata. Each automaton A i represents
the ith bit of a binary counter (here modulo 8). The most significant bit is represented by the rightmost au-
tomaton. Interactions are named after the higher bit that changes during the interaction (e.g., s1 corresponds
to the setting of bit 1 and synchronizes A1 and A0, r2 corresponds to the reset of bit 2 and synchronizes
A2, A1 and A0). Each interaction involves either one (s0), two (s1) or three (s2,r2) automata.
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Figure 1: Example of Cellular Automaton
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Figure 2: Global Behavior

We denote by S = S1× . . .×Sn the set of global states of a cellular automaton. A global state g ∈ S is
defined by the state of each automaton A i from the cellular automaton. The state of the automaton A i at
global state g is denoted g[i].

Definition 3. An execution of a cellular automaton is a maximal sequence of global states g0 g1 . . . such
that:

• g0 is the tuple made of initial states: ∀i ∈ {1..n},g0[i] = si
0 .

• For adjacent tuples g j and g j+1 there is an action a ∈ ∪i∈{1..n}Ai such that for each i ∈ {1..n}, either
g j+1[i] = δi(g j[i],a) or a 6∈ Ai and g j+1[i] = g j[i].

It is easy to see that the projection of an execution into a single automaton is a prefix of an execution
of that automaton.

We denote by g a−→ g′ if the action a can be executed from global state g and leads to global state
g′. This notation is trivially extended to sequences of interactions, that is for σ = a1a2 · · ·ak we denote by
g σ−→ g′ if there exists global states g1,g2, · · ·gk−1 such that g

a1−→ g1
a2−→ g2 · · ·gk−1

ak−→ g′. We denote by
σ|Ai , the sequence of interactions obtained by removing from σ all occurrences of interactions that are not
in Ai.

The set of executions, i.e. global behavior, of the cellular automaton can be represented as a labeled
transition system A = (S,A,T,g0), where S is the set of global states, A =

⋃
i∈{1..n}Ai is the set of actions

(or labels), T ⊆ S×A× S is the set of valid transitions (as defined by Definition 3) and g0 is the initial
global state.

Example 2. The global behavior of the cellular automaton depicted in Figure 1 is shown in Figure 2. Any
global state g ∈ {0, ...,7} denotes the tuple of local states (g[2]g[1]g[0]) obtained from the representation
of g as a binary number.

Cellular automata are perhaps the simplest model to describe synchronizing systems. Nonetheless,
this model is expressive enough to underlie higher-level frameworks with similar synchronization-based
communication. In particular, we focus hereafter on the relation between cellular automata and the BIP
framework [3], which will be used later in section 4 for concrete experiments. BIP (Behavior-Interaction-
Priority) is a component-based framework which allows the construction of hierarchically structured
component-based systems. In BIP, atomic components are characterized by their interface, that is, a set
of ports (similar to action names) and their behavior, that is, an automaton with transitions labeled by
ports. Components are composed by layered application of interactions and priorities. Interactions express
synchronization constraints between ports of the composed components. An interaction is a set of ports,
every one belonging to a different component, that has to be jointly executed. BIP provides (hierarchical)
connectors as a mean to structure and express sets of interactions in a compact manner. Finally, priorities
are used in BIP to filter amongst the set of enabled interactions. Priorities provide an additional coordi-
nation mechanism to control the system evolution. A significant part of BIP systems can be structurally
represented as cellular automata. That is, any BIP system without priorities can be equally represented as
a cellular automaton by mapping BIP interactions into cellular automata interactions. Since a port may be
involved in several interactions, BIP atomic components can be transformed into automata by duplicating
transitions labeled by a port into a set of transitions labeled by the corresponding interactions.
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2.2 The α-core protocol
The α-core protocol [14] was developed to schedule multiprocess interaction. It generalizes protocols
for handshake communication between pairs of processes. For each multiprocess interaction, there is a
dedicated coordinator on a separate process. To appreciate the difficulty of designing such a protocol, re-
call for example the fact that the language CSP of Hoare [8] included initially an asymmetric construct
for synchronous communication; a process could choose between various incoming messages, but had to
commit on a particular send. This constraint was useful for achieving a simple implementation. Other-
wise, one needs to consider the situation in which a communication is possible between processes, but one
of them may have performed an alternative choice. Later Hoare removed this constraint from CSP. The
same constraint appears in the asymmetric communication construct of the programming language ADA.
The Buckley and Silberschatz protocol [5] solves this problem for the case of synchronous communica-
tion between pairs of processes, where both sends and receives may have choices. Their protocol uses
asynchronous message passing between the processes to implement the synchronous message passing con-
struct. The α-core protocol solves the more general problem of synchronizing any number of processes,
using only asynchronous message passing. Alternative solutions for this problem have been proposed, us-
ing managers [6, 1], a circulating token [11], or a randomized algorithm without managers [9]. Contrarily
to other manager-based solutions, α-core does not need unbounded counters. The version presented below
includes corrections from [10].

In α-core, the following messages are sent from a participant to a coordinator:

PARTICIPATE A participant is interested in a single particular interaction (hence it can commit on it),
and notifies the related coordinator.

OFFER A participant is interested in one out of several potentially available interactions (a non-
deterministic choice).

OK Sent as a response to a LOCK message from a coordinator (described below) to notify that the partic-
ipant is willing to commit on the interaction.

REFUSE Notify the coordinator that the previous OFFER is not valid anymore. This message can respond
to a LOCK message from the coordinator.

Messages from coordinators are as follows:

LOCK A message sent from a coordinator to a participant that has sent an OFFER, requesting the partici-
pant to commit on the interaction.

UNLOCK A message sent from a coordinator to a locked participant, indicating that the current interaction
is canceled.

START Notifying a participant that it can start the interaction.

ACKREF Acknowledging a participant about the receipt of a REFUSE message.

Fig. 3(a) describes the extended state machine of a participant. Each participant process keeps some
local variables and constants:

IS: a set of coordinators for the interactions the participant is interested in.

locks: a set of coordinators that have sent a pending LOCK message.

unlocks: a set of coordinators from which a pending UNLOCK message was received.

locker: the coordinator that is currently considered.

n: the number of ACKREF messages required to be received from coordinators until a new coordination
can start.

α: the coordinators that asked for interactions and subsequently refused.
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Figure 3: State machines

The actions according to the transitions are written as a pair en→ action, where en is the condition
to execute the transition, which may include a test of the local variables, a message that arrives, or both
of them (then the test should hold and the message must arrive). We denote the reception of a message
MSG from process p by p?MSG. The action is a sequence of statements, executed when the condition
holds. The statement p!MSG means “send message MSG to process p”. In addition, each transition is
enabled from some state, and upon execution changes the state according to the related extended finite state
machine. The participant’s transitions, according to the numbering of Fig. 3(a) are:

1. |IS > 1| → { foreach p ∈ IS do p!OFFER}

2. |IS = 1| → { locker:=p, where IS = {p}; locker!PARTICIPATE; locks, unlocks:= /0}

3. p?LOCK→{locker:=p; locks, unlocks:= /0; p!OK }

4. p?LOCK→{locks:=locks∪{p}}

5. locks 6= /0∧ p?UNLOCK→{locker:=q for some q ∈ locks; q!OK; locks:=locks\{q}; unlocks:=unlocks∪{p}}

6. locks = /0∧ p?UNLOCK→{ foreach q ∈ unlocks∪{p} do q!OFFER}

7. p?START→ {α:=IS \ (unlocks∪{locker}); foreach q ∈ α do q!REFUSE; n := |α|; start participating in the
joint action managed by locker}

8. p?LOCK→{} 9. p?UNLOCK→{} 10. p?ACKREF→{n:=n−1}

11. n = 0→{ Let IS be the new set of interactions required from the current state. }

For a coordinator, whose extended finite state machine appears in Fig. 3(b), we have the variables
waiting, locked, shared and α, holding each a set of processes, and n is a counter for the number of pro-
cesses that indicated their wish to participate in the interaction. The constant C holds the number of pro-
cesses that need to participate in the interaction (called, the cardinality of the interaction), and the variable
current is the participant the coordinator is trying to lock. The transitions, according to their numbering
from Fig. 3(b) are as follows:

1. n <C∧ p?OFFER→{n:=n+1; shared:= shared∪{p} }

2. n <C∧ p?PARTICIPATE→{n:=n+1; locked:= locked∪{p} }

3. p?REFUSE→ { if p ∈ shared then n:=n−1; p!ACKREF; shared:=shared \{p}}

4. n =C∧ shared = /0→{ foreach q ∈ locked do q!START; locked, shared:= /0; n:=0}

5. n =C∧ shared 6= /0→{current:= min(shared); waiting:=shared \{current}; current!LOCK}

6. waiting 6= /0∧ p?OK→ {locked:=locked ∪ {current}; current:=min(waiting); waiting:=waiting \ {current };
current!LOCK}

7. waiting = /0 ∧ p?OK → {locked:=locked ∪ {current}; foreach q in locked do q!START;
locked, waiting, shared:= /0; n:=0}

8. p?REFUSE → {α:=(locked ∩ shared) ∪ {current, p}; foreach q ∈ α \ {p} do q!UNLOCK; p!ACKREF;
shared:=shared \α; locked:=locked \α; n:=n−|α|}

9. p?OK→{}
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2.3 Correctness
In order to prove the correctness of constructions such as the α-core protocol, we need to define what is a
distributed execution of the cellular automaton 〈A1, ..,An〉. For an automaton A i, we denote P (A i) the pro-
cess implementing the α-core participant for A i. Similarly, for an interaction a j, we denote by C (a j) the α-
core coordinator for a j. The obtained distributed system is denoted by P (A1)| . . . |P (An)|C (a1)| . . . |C (am).
We formally represent an execution of the distributed system as a trace consisting in interactions of the cel-
lular automaton, emission of messages and reception of messages. An interaction a from the original
cellular automaton appears in the trace whenever transition 4 or 7 in the coordinator C (a) is executed. We
say that a trace is a distributed execution if it is maximal and:

• for any two distinct processes p and q, the ith message received by q from p is the ith message sent
by p to q, and the reception occurs after the emission in the trace.

• the projection of the trace on one process (participant or coordinator) is a valid execution of the
corresponding extended state machine.

We assume that the α-core protocol is correct, which is stated formally in Lemma 1.

Lemma 1 (Correctness of α-core). Let 〈A1, ..,An〉 be a cellular automaton, A the set of its interactions,
and A its global behavior. Any execution σ of the distributed system P (A1)| . . . |P (An)|C (a j)| . . . |C (am)

restricted to A is a correct execution µ = σ|A of 〈A1, ..,An〉, that is for any prefix µ′ of µ, we have g0
µ′−→ g′.

3 Knowledge-Based Optimization
Synchronization algorithms such as α-core impose a lot of overhead in order to guarantee correct inter-
action. We want to utilize knowledge in order to reduce the overhead in coordination messages. Knowl-
edge appears naturally in distributed systems, as it represents what a process knows from its obseravtions.
Halpern and Moses [7] defined a logic to reason about knowledge. Van der Meyden [13] introduced knowl-
edge with perfect recall. Knowledge has been applied to control distributed discrete event systems [15] and
to implement priorities between multiparty interactions [2, 4]. However, the previous works assume a con-
flict resolution mechanism. We propose here a knowledge-based optimization of such a mechanism, which
has not been done, at least to our knowledge. Based on [2], we construct a support automaton, which is a
controller that either supports or blocks actions, based on precalculated knowledge. There are two kinds of
controllers here. The first type is for each process of the system, and the second is per each α-core synchro-
nizing process. The support automaton for a system automaton can reduce overhead by calculating when
a component can actually commit to an interaction (offer a PARTICIPATE call to α-core), which requires
less confirmation messages than simply declaring its participation (by the alternative OFFER call). In this
case, the knowledge gathered in the precalculated stage can distinguish between the cases when one has an
alternative possibility of coordination or does not. While we could benefit from syntactically distinguishing
between these cases based on the code of the system, the use of knowledge, and in particular, knowledge
of perfect recall [13], can distinguish the cases where syntactically there can be alternative collaborations,
but at this stage of the executions, the alternatives are not available.

Let 〈A1,A2, ...,An〉 be a cellular automaton and A = (S,A,T,g0) its associated global behavior as
defined in section 2.1.

3.1 Knowledge for participants
Let A i = 〈Si,Ai,δi,si

0〉 be a participant. As in [13, 2], we define the knowledge with perfect recall of this
participant as the facts it can infer based on its local history. Recall that we denote by σ|Ai the sequence of
interactions obtained by removing from the sequence σ all occurrences of interactions that are not in Ai.

Definition 4 (Indistinguishability of execution sequences for A i). Two sequences of interactions σ and σ′

are indistinguishable by A i, denoted σ≡i σ′, iff σ|Ai = σ′|Ai .
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Definition 5 (Knowledge with perfect recall). Let σ be a sequence of interactions , A i be a participant and
ϕ be a predicate. After executing σ, A i knows ϕ if ϕ holds after any execution σ′ that is indistinguishable
by A i from σ. Formally, A i knows ϕ after executing σ if ϕ(g) holds for every state g in {g ∈ S|∃σ′, σ′ ≡i

σ∧g0
σ′−→ g}.

In order to compute the knowledge with perfect recall of the participant A i, we build its support au-
tomaton Ki as in [2]. The support automaton Ki will follow the execution of observable interactions for A i,
that is, all interactions in Ai. The remaining interactions in U i = A\Ai are not observable by Ki. Informally,
the state reached in Ki after any sequence σ ∈ A∗ summarizes all the global states that can be reached in A
after any sequence σ′ ∈ A∗ such that σ and σ′ are indistinguishable by A i. Formally, Ki is defined as the
deterministic automaton 〈Si,Ai,δi,s0i〉 where:

• The set of states Si = 2S correspond to subsets of the global states S.

• The transition function δi is defined as δi(s,a) = {g′ | ∃g ∈ s, ∃σ ∈ A∗, g σ−→ g′ and σ|Ai = a}.
Informally, for any state s, its successor s′ through interaction a contains the set of global states g′

that are reached in A from global states g in s by executing any sequence of unobservable interactions
and exactly one a.

• The initial state s0i = {g ∈ S|∃σ ∈ (U i)∗, g0
σ−→ g}. Informally, s0i contains all global states reach-

able in A by executing any sequence of unobservable interactions starting from the initial global state
g0.

Example 3. We illustrate the construction above on each automaton of the binary counter example from
Figure 1. For A0, we have K0 = A , since A0 observes all interactions. The support automata obtained for
A1 and A2 are depicted in Figure 4. Even if by construction, the state /0 might be reachable, we do not
consider it. Note that K2 is the same as A2 up to the name of the states.

{0, 1} {2, 3}s1

{4, 5}
s2

{6, 7} s1
r2

K1

{0, 1, 2, 3}

{4, 5, 6, 7}
s2r2

K2

Figure 4: Support automata for partici-
pants A1 and A2 of Figure 1.

The support automaton is used to reduce coordination
overhead in α-core as follows. For every A i, the support au-
tomaton Ki = 〈Si,Ai,δi,s0i〉 is embedded in the corresponding
participant behavior. For our application, there is no need to
explicitly keep track of the set of global states correspond-
ing to the states of Ki. Therefore, once the automaton Ki is
constructed, states in Si can be replaced by elements of any
arbitrary finite domain. The participant uses one extra lo-
cal variable s to record the state of the support automaton.
This variable is initialized as s0i. Then, this variable is up-
dated when the participant executes an interaction (transition
7) and is used to filter the set IS before entering the active
state (transition 11). The original transitions 7 and 11 are therefore modified into transition 7′ and 11′ as
follows:

7′. p?START→{α:=IS\unlocks\{locker}; foreach q ∈ α do q!REFUSE; n := |α|; start participating in the joint
action a managed by locker; s := δi(s,a) }

11′. n = 0→{ Let IS be the required interactions; IS := IS∩{a ∈ A|δi(s,a) 6= /0} }

That is, the optimization restricts the sending of offer messages for interactions that are enabled ac-
cording to the support automaton. Clearly, this restricts the number of exchanged messages. Moreover, in
cases where no conflict exists in the filtered behavior (such as in the binary counter example, the size of the
IS set is always reduced to 1), OFFER messages are replaced by PARTICIPATE messages, thus removing
the need for further locking by coordinators.

Example 4. As an example, from the state 1 in A1, two interactions (s2 and r2) are possible. In K1 this
state is split in two states that separate the case where s2 is possible from the case where r2 is possible.
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Proposition 1. The executions of the distributed implementation with knowledge-optimized participants
are the same as the executions of the original automaton.

Proof. We denote by PKi(A i) the optimized implementation of participant for A i using support automata
Ki. The modifications of the α-core participant as presented in 3.1 restrict the offer sent to interactions that
simultaneously possible in A i and Ki, that is to interactions of 〈A i,Ki〉, thus PKi(A i) = P (〈A i,Ki〉).

Since by construction, the cellular automaton obtained by composing the Ki has the same global be-
havior than the original cellular automaton, composing the 〈A i,Ki〉 yields the same behavior. Then, the
Lemma 1 allows us to conclude.

3.2 Knowledge for coordinators

Coordinators of the α-core can also gain information about the global context by recording the offers re-
ceived from different components. That is, new offers are issued by participants only at the initial state and
after every successful participation in an interaction. Therefore, offer reception provides to coordinators
some (indirect and definitely incomplete) information about the evolution of the system. Nonetheless, this
information can be exploited in order to avoid some useless coordination of the α-core protocol. For exam-
ple, a coordinator may detect that some offers are obsolete (their locking will always be refused) or stable
(on the contrary, their locking will always be accepted by the corresponding participant).

The construction of the support automata for coordinators is a bit more intricate than for participants.
We want to benefit from the same approach by constructing a controller that is based on the precalculation
of knowledge. However, such calculation can be quite intricate if it takes into account the structure of the
α-core algorithm. The complication is due to the above mentioned difference in observation, that is, offers
vs. interactions. The starting point of the construction is the global behavior A . Clearly, A does not mention
explicitly the sending/reception of offers by participants/coordinators. But, communication of offers can
still be inferred from A knowing the behavior of the α-core protocol. We present hereafter a systematic
construction that allows to progressively refine A such that to make visible (relevant) offers communication
for any selected coordinator. The construction involves (1) offer generation, as response to execution of
(conflicting) interaction, (2) asynchronous offer reception by the coordinator, (3) determinization into a
support automaton to be used by the coordinator.

Let a be a fixed interaction. We construct the support automaton Ka by applying a sequence of trans-
formations on the global behavior A = (S,A,T,g0) as follows:

Offer generation: We construct the labelled transition system A ′ = (S,2{a,1..n},T ′,g0) by replacing
labels of each transition, so that they contain information about the offers concerning a. For an interaction
a′ and a global state g′, we denote by I(a′,g′) = {i | a,a′ ∈ Ai∧∃s′′ ∈ Si, δi(g′[i],a) = s′′} the set of indices
of automata that can participate in a after executing a′. Intuitively, this corresponds to set of offers that the

coordinator for a will receive after execution of a′. We relabel the transition g a′−→ g′ by g
{a}∪I(a,g′)−→ g′ if

a′ = a and by g
I(a′,g′)−→ g′ otherwise. It might be the case that some transitions have /0 as label after this step,

which means that they have no observable effect on the a-coordinator and thus are unobservable.
Asynchronous offer reception: We construct the labelled transition system A ′′ =

(S′′,{a, /0,1, ...,n},T ′′,g′′0) obtained by breaking transitions in A ′ such that there is at most one ac-
tion (either a or offer reception i) per transition. Formally, we take S′′ = S×{0,1,2}n, that is, a state of
A ′′ is defined by a global state g of the cellular automaton and a vector ~v of n integers in {0,1,2}. For
any participant i, the value vi gives the number of pending offers, that is, potentially sent by i and not yet
received by the coordinator. Given the specific behavior of the α-core, the number of pending offers is
always between 0 and 2. For a given set of indices I ⊆ {1, ...,n}, we denote by 1I the characteristic vector
of I that is 1 if i ∈ I and 0 otherwise. We define the initial state g′′0 = (g0,1I(a,g0)). Transitions in T ′′ are
constructed from the following rules, where I denotes an arbitrary index set:

g
{a}∪I−→ g′ ∈ T ′

(g,~0) a−→ (g′,1I)

g I−→ g′ ∈ T ′ ∀i ∈ I, ~vi ≤ 1

(g,~v) /0−→ (g′,~v+1I)

~vi > 0

(g,~v) i−→ (g,~v−1{i})
Projection and determinization: Finally, we construct the support automaton Ka =

(Sa,{a,1, ...,n},δa,ga0) as the deterministic automaton constructed from A ′′ by eliminating /0 ac-

Verimag Research Report no TR-2012-20 7/14



Saddek Bensalem, Marius Bozga, Doron Peled and Jean Quilbeuf

tions which are unobservable. The construction is essentially the same as the one introduced in section 3.1
for participants and is not repeated here.

The previous construction guarantees that whenever an offer from participant A i is received by the
coordinator, the action i is possible from the current state of the support automata. This is stated in Lemma
2.

Lemma 2. For any distributed execution σ, its restriction σ|{a,1,..,n} to actions observable by Ka is the
trace of an execution of Ka.

Proof. Let σ be a distributed execution of P (A1)| . . . |P (An)|C (a1)| . . . |C (am). Lemma 1 ensures that σ

restricted to the original actions of the cellular automaton is an valid sequence of actions µ of the cellular
automaton, that is there exists an execution g0,g1, . . . of the global behavior A such that ∀k ≥ 1, gk−1

µk−→
gk.

We show by induction that the prefix σk of σ such that σ = σk.µk.σ
′ yields a valid path in A ′′ when

restricted to observable actions. More precisely, we show that g′′0
σk|{a,1,..,n}−→ (gk−1,v) with for each participant

i involved in µk, either vi = 1 and there is a pending offer sent by i to the coordinator of a that has been
used by µk, or vi = 0 and there is no pending offer.

With k = 1, i.e. before the first interaction happens, the initial state of A ′′ is (g0,v) with vi = 1 for any
participant i that can initially execute a. Therefore, for each participant i involved in µ1, either the offer is
received by the coordinator for a before µ1 takes place and vi is set to 0 or vi remains set to 1 and there is a
pending offer from i that has been used by µ1.

Now, we assume that for any k′ < k, the induction hypothesis holds. In particular, we know that the
execution of σ until µk−1 brings A ′′ in the state (gk−1,v′′) such that for all i involved in µk−1, v′′i ≤ 1. If
µk−1 6= a, the unobservable transition /0 corresponding to µk−1 is possible from that state. If µk−1 = a, all
offers from participants in a have been received and therefore v′′ = 0 and the transition labeled by a is
possible. We denote (gk,v′) the state reached after executing the step corresponding to µk−1 in A ′′.

We shall now show that all offers received before the occurrence of µk are accepted. Let i in {1, ..,n} be
a participant in a, by induction hypothesis, before the last interaction µki involving i, A ′′ is at state (gki ,v

ki),
where vki is either 1 and there is a pending offer used by µki has not been received by the coordinator for a or
0 otherwise. Executing the transition corresponding to µki will bring A ′′ in state (gki ,v) where vi = vki

i +1
only if i can participate in a after executing µki . Note that between the execution of two interactions, the
participant i sends at most one new offer to the coordinator of a (excluding offers that are re-sent) since it
needs to receive an ACKREF message from the coordinator before sending the new offer. Thus, at state
(gki ,vi), vi correspond to the maximum number of offer possibly received from i. It can be 2 if there is
both a pending offer and a new offer, 1 if there is only one of them, or 0 otherwise. Furthermore, if i is
also involved in µk any a pending offer used by the last interaction involving i, µki has been received by
the coordinator for a, otherwise, no ACKREF message could have been sent to i and i would not have been
able to do µk. This implies that if v′i = 1, then there is a pending offer that was used by µk and shows the
induction hypothesis.

Example 5. In Figure 5, we present the different steps leading to the construction of Ks1 . To obtain the
automaton A ′, we relabel the transitions in A . For instance, the transition 0

s0−→ 1 in A brings A0 in a
state where it can take part in s1. From the s1-coordinator point of view, this corresponds to receiving an
offer from A0. Thus, the transition is relabelled by {0} in A ′. In the non-deterministic automaton A ′′,
each state is labelled by a couple (g,~v), where g is a global state from A , and ~v = v0v1 is a vector where
vi is the number of offers to receive from A i. The dotted transitions correspond to unobservable actions.
Note that we depicted only the half of A ′′, the other half (corresponding to states 3,4,5,6) shows the same
pattern between states (3,10) to (6,00) as between states (7,10) and (2,00). Finally, the determinized and
minimized version of A ′′ is the automaton Ks1 . It states that between two executions of s1, two offers from
A0 and one offer from A1 are to be received, in any order.

The coordinator for interaction a observes the offers sent from all participants in a and computes the
set of known stable and obsolete components (or offers). We say that a component (offer) A i is stable
at state s in Ka iff for all paths starting at s, a transition labelled by i cannot be reached without going
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through a transition labelled by a. Whenever an offer from A i is stable, the coordinator knows that A i

can not send a new offer until the interaction a takes place. More precisely, A i can only participate in a
and the information received from A i is up to date. If stable, A i can be considered as if it were locked.
In a dual manner, we say that a component (offer) A i is obsolete at state s in Ka iff for all paths starting
at s, a transition labelled by a cannot by reached without going through a transition labelled by i. In this
case, the coordinator knows that it has to receive a new offer from A i before starting the interaction. This
information can be used to avoid tentative executions based on obsolete offers.

Example 6. Let us consider the support automaton for the coordinator of s1 in the binary counter. At state
C, the coordinator may have received two offers from A0 and A1 and the default behavior is to attempt
execution for interaction s1. However, the offer from A0 is obsolete. Using the support automaton, the
coordinator can therefore detect this situation and silently remove that offer, which avoids the execution
attempt. At state D, both A0 and A1 are stable and there is no need to lock them before executing s1.

The above optimizations are implemented as follows. The coordinator for a follows the automaton Ka
when receiving offers1 (transitions 1 and 2) and executing a (transitions 4 or 7, from Figure 3(b)). Formally,
the coordinator uses an extra variable s tracking the state of the support automaton. The transitions 1,2,4
and 7 of the coordinator are modified into transitions 1’,2’,4’ and 7’ as follows:

1′. n <C∧ p?OFFER→{n:=n+1; shared:= shared∪{p}; s := δa(s, p); update() }

2′. n <C∧ p?PARTICIPATE→{n:=n+1; locked:= locked∪{p}; s := δa(s, p); update() }

4′. n =C∧ shared = /0→{ foreach q ∈ locked do q!START; locked, shared:= /0; n:=0; s := δa(s,a) }

7′. waiting = /0 ∧ p?OK → {locked:=locked ∪ {current}; foreach q in locked do q!START;
locked, waiting, shared:= /0; n:=0; s := δa(s,a); }

The update function above is used to modify the shared and locked sets, given the current support automa-
ton state s as follows:
foreach p ∈ shared

if p ∈ stablea(s) { shared := shared \ {p }; locked := locked ∪ { p } }
if p ∈ obsoletea(s) { shared := shared \ {p}; n = n -1; p!LOCK; p!UNLOCK }
Since a component can now be considered as locked even if it sent an OFFER message, it may receive

a START message while waiting to be locked. Therefore, we add a transition 12 from the waiting to the
sync state, as depicted in Figure 3(a). We also modify transition 7 into transition 7′ as follows:

7′. p?START→ {α:=IS \ unlocks \ { p }; foreach q ∈ α do q!REFUSE; n := |α|; start participating in the joint

action managed by p }

12. p?START→ {α:=IS \ unlocks \ {p}; foreach q ∈ α do q!REFUSE; n := |α|; start participating in the joint
action managed by p}

1Here we consider only new offers that we need to distinguish from offers sent when participant executes transition 6. This can be
done by using a new message name for offers that are re-sent.
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Figure 5: Construction of the support automaton for the coordinator of s1.
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Proposition 2. The executions of the distributed implementation with knowledge-optimized coordinators
are included in the executions of the original automaton.

Proof. We denote by CKa(a) the modified coordinator for a, and by P ′(A i) the modified par-
ticipant for A i, as presented in Section 3.2. We have to show that an execution of
P ′(A1)| . . . |P ′(An)|CKa1

(a1)| . . . |CKam (am) is non-blocking and correct in the sense of Lemma 1.
We have shown in Lemma 2 that the support automaton Ka can always perform one of its observable

action when it occurs. This property still holds in the optimized version since the modifications to α-core
presented in Section 3.2 do not modify the emission of offers, nor the need to receive all offers before
executing a.

We focus on the update function, which modifies the behavior of α-core as follows:

• If an offer from A i is stable, it is treated as a PARTICIPATE message. This induces a new behav-
ior: directly replying START to an OFFER message, which is accepted by the modified participant
P ′(A i). Furthermore, stability ensures that the participant cannot receive more that one START mes-
sage. Thus this modification is non-blocking.

By reordering receptions of the LOCK messages, (i.e. adding transmission delays), we can build
an execution of the standard α-core with the same visible actions, thus execution of the modified
version is correct.

• If an offer from i is obsolete, then it is discarded using the α-core mechanisms, that is by removing it
from the shared set and by sending a LOCK, UNLOCK sequence to avoid the participant to wait for
a LOCK. Obsolescence ensures that the participant will take part in an other interaction. Thus this
modification is non-blocking.

By reordering arrival of OFFER and REFUSE messages, we can build an execution of the standard
α-core with the same visible actions, thus execution of the modified version is correct.

3.3 Combining knowledge for participants and coordinators
Optimization for participants and coordinator can be combined. In this case, the construction of the support
automata for coordinators has to be done on the system obtained using the support automata for participants.
In particular, the relabelling step depends on the actual offers sent by participants and thus on their support
automata.

4 Experimental Results
We present experimental results for computing and using the support automata for participants as presented
in Section 3.1.

Examples The first example presented in Figure 6 is a variation of the classical dining philosophers
problem. Each philosopher Philoi may eat during the interaction eati involving its two neighbor forks.
Then Philoi clean first its left fork, then its right fork through interactions clnLi and clnRi respectively. We
denote philoN an instance with N philosophers.
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l7cm

Average number of
states

Number of interactions
during 60s

Name Components in A i in Ki Standard Optimized
philo3 6 2.5 3 1129 2251
philo4 8 2.5 3 1811 2499
philo5 10 2.5 3 2261 4448
philo6 12 2.5 3 2624 4542
philo7 14 2.5 3 3093 4603
ms232 5 2.6 3 1491 1504
ms233 5 3 4.6 1128 1129
ms342 7 2.7 3.1 642 1885
ms343 7 3.1 4.9 1278 1265
ms344 7 3.6 7 1256 1251

tp3 3 3 6 750 1499
tp6 6 3 15 750 1500
tp6’ 6 3 16 1498 1557
tp9 9 3 24 750 1509
tp9’ 9 3 28 1497 3725
tp12 12 3 33 749 1513

Table 1: Results: average size of original and support automaton and performance of the obtained imple-
mentation, for each test instance.

The second example is called Master/Slave. We assume a set of N masters and M slaves. Each master
wants to perform a task for which it needs two slaves that it can chose amongst a pool of size K. We denote
msNMK such an instance. If the slave j is in the pool of the master i, then the interaction acqi

j allows
master i to acquire slave j, which brings the slave in state i so that it remembers that i acquired it. On
completion on the task, the master i releases simultaneously the two acquired slaves j1 and j2 through the
reli

j1, j2 interaction. Figure 8 shows respectively, the behavior of masters and slaves.
The third example models a transmission protocol that propagates values amongst a chain of memories.

At every time, each memory node stores a single value. A fragment of this example is shown in Figure
9. The rule is to propagate (copy) the new value (from the left) only if the memory on the right has
already copied the local value. Propagation steps are implemented as ternary interactions denoted by
mvi,v1,v2 , which correspond to the case where memory i changes its value from v1 to v2. As an example,
the interaction mvi,1,0 in the Figure 9 changes the value in Nodei from 1 to 0 if Nodei+1 already changed
its value to 1 and the next value (in Nodei−1) is 0. For our experiment, the memories form a ring, thus
the sequence of values seen by each memory depends only on the initial state of the system. Note that
propagation is enabled at places where the ring contains two consecutive nodes holding the same value.
We denote by tpN (resp. tpN′) an example with N nodes and one (resp. two) enabled propagations.

Building support automata for participants. We implemented the support automaton computation for
each participant by using analysis tools of the BIP framework. In Table 4, we present the results of this
analysis by giving the average number of states in the original automata and in the support automata. This
gives an indication on the size needed to store the knowledge, and the memory needed for execution of
the support automata. For the philoN instances, the support automaton of philosophers is the same as the
original automaton. For the forks, there is only one additional state, as shown in Figure 7. The added
state allows to distinguish who acquired the fork (left or right) and to send only one offer accordingly, thus
avoiding unneeded conflict resolution.

In the Master/Slave example, the automaton describing a master is very generic. The corresponding
support automaton contains all the possible sequences for acquiring two slaves and then releasing them.
In particular, after having acquired two slaves, there is only one possible release interaction, thus only one
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Figure 8: Master Slave example
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Figure 9: Three consecutive nodes of the transmission protocol.
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Figure 11: Dining philosophers: messages per interaction,
optimized version.

offer is sent. Finally, in the transmission protocol example, the size of each support automaton is much
larger since it depends on the number of nodes in the chain, that is on the sequence of values seen by each
node. If two propagations are possible, then the size of the support automaton is slightly increased, since
the two propagations may conflict.

Performance of distributed implementation. Using the BIP component framework, we built a trans-
formation that replaces multiparty interactions by the α-core protocol. We obtain a distributed BIP model
representing participants and coordinators communicating through asynchronous message passing. From
this model, we generate a set of C++ programs communicating through Unix sockets. We ran the obtained
code for both standard α-core and knowledge-optimized α-core on a UltraSparcT1 allowing parallel exe-
cution of 24 processes. In Table 4, we provide the number of interactions executed during 60 seconds of
execution (not including initialization) for both standard and optimized version of each test instance. On the
dining philosopher instances, the optimized version is up to twice faster than the standard version. On the
Master/Slave instances, except for one, the performance is the same for both versions. On the transmission
protocol instances, we have a speedup of at least two, except for the tp6′ example.

In order to evaluate the distributed execution of standard vs. optimized versions, we compare the
average number of messages needed to perform an interaction for the three examples. For the dining
philosophers, these average numbers are shown in Figures 10 and 11. We can observe a reduction of
approximatively 25%, mainly because some OFFER messages from the fork participants are transformed
in PARTICIPATE messages. In turn, this reduces the number of participants to lock, and thus the number
of messages. For the Master/Slave, the average number of messages needed to complete one interaction
for standard and optimized α-core are shown in Figures 12 and 13. Here the number of conflicts depends
on the size of the pool of slaves assigned to each master. Since there are many conflicts, the number of
offers sent to execute an interaction is quite big. Recall that on this example, performance of both versions
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Figure 15: Transmission protocol: messages per interaction,
optimized version.

is comparable. However, the number of exchanged message is smaller in the optimized version, because
less offers are sent. For the transmission protocol, the average number of messages exchanged to execute
one interaction for standard and optimized executions is shown in Figures 14 and 15. For the non-primed
versions, since there is no dynamic conflict, each participant sends only PARTICIPATE messages and each
coordinator can directly answer a START message. This reduces drastically the number of exchanged
messages (6 per interaction, since they are ternary interactions). For the primed version, in some cases a
node may participate in two interactions and thus send two OFFER messages, which is still much less than
in the original version.

5 Discussion
An architecture for component-based system can provide a very powerful tool for distributed software
development. It assumes some underlying mechanism that provides support for the components to interact
and to choose from several alternative actions. It is highly beneficial to develop code at this level, rather than
to consider the lower level architecture that uses message passing, or shared variables. On the other hand,
obtaining this level of abstraction is expensive: the overhead needed to allow both multiparty interaction
and non-deterministic choice requires some nontrivial amount of lower level message exchange.

In this paper we looked at a technique to reduce the overhead needed for supporting high level ar-
chitecture for component-based systems, such as the BIP systems. Observing a popular algorithm for
interaction coordination, the α-core protocol, we remarked that additional information about the amount
of overhead makes a lot of difference. The coordination protocol distinguishes the case where there is no
non-deterministic choice; then, there are fewer messages sent, as an intent to participate in an interaction is
a committed intention. It is often not known in advance how many conflicting choices there are: syntacti-
cally, there can be several, but at runtime, there are quite fewer cases available (enabled) at each particular
instance. Our method is based on performing a preliminary model checking analysis of the system for
detecting such situations. When we find that the local situation admits no non-deterministic choice at any
possible global situation, we can employ the more efficient case of committing to an interaction.

This analysis is based on the knowledge of a process, regarding all the possible global states consistent
with its local situation. We apply this optimization in two cases: locally at the process level, where the
knowledge of the process may be used to transfer a seamingly non-deterministic case into a committing
case, and at the level of a process of the coordination algorithm. The latter case is very powerful, as a coor-
dinator process has, to some extent, a more global view, having received requests from different processes.
Experiments show that rather than using simple memoryless knowledge, we are required to use history-
based knowledge. The reason is that it is the cases where different instances of non-deterministic choice
during runtime, rather than a history independent case, are the interesting ones. This can be explained intu-
itively by the fact that the history independent case actually hides a coding error, where not committing to
an interaction although there are no alternatives should have been replaced by a commitment to the single
possible interaction.
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We performed experiments on three different examples. Our experiments show a considerable im-
provement in the number of messages needed to be exchanged. It is important to note that due to the use of
history-based knowledge, additional memory is needed to encode the possible histories. In the worst case,
the amount of added memory is quite nontrivial, exponential in the size of the system, for each process.
However, our experiments show a much better and balanced memory consumption. We intend to conduct
further experiments and to apply the knowledge-based technique for reducing message passing in a more
aggressive way.
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