erimac

"y,
" -

Representation of Piecewise Linear
Interval Functions

Rajat Kateja, Goran Frehse

Verimag Research Report n° TR-2012-16

October 2, 2012

Reports are downloadable at the following address
http://www-verimag.imag.fr

Unité Mixte de Recherche 5104 CNRS - Grenoble INP - UJF

Centre Equation
2, avenue de VIGNATE

F-38610 GIERES

tel : +33 456 52 03 40

fax : +33 456 52 03 50
http://www-verimag.imag.fr

.l’lniversitﬁ Grenobl e)\l NIP)‘

ose

Fourler / /
EEEEEEEE

http://www-verimag.imag.fr

Representation of Piecewise Linear Interval Functions

Rajat Kateja, Goran Frehse

October 2, 2012

Abstract

In this report, we propose a breakpoint representation of Piecewise Linear Functions and ex-
tend it to Piecewise Linear Interval Functions. We also propose algorithms to perform basic
operations like scalar multiplication, minimization, pointwise maximum, and intersection us-
ing this representation. Finally we consider floating point issues, which arise while using finite
precision arithmetic, and suggest methods to get conservative results using interval arithmetic.

Keywords:

Reviewers:

How to cite this report:

@techreport {TR-2012-16,
title = {Representation of Piecewise Linear Interval Functions},
author = {Rajat Kateja, Goran Frehse},
institution = {{ Verimag} Research Report},
number = {TR-2012-16},

year = {}

Representation of Piecewise Linear Interval Functions Rajat Kateja, Goran Frehse

EN
BT /

o3 F------

LN
=
g
—
[\
WkE------
N
4

Figure 1: Typical Piecewise Linear Function

1 Piecewise Linear Functions

LetR = Ru {—00, ©0}. A piecewise linear function, over the domain I < R, g: I — R, is a function which
takes a linear form on a finite number of pieces of the domain. Here we define a breakpoint representation
of such functions. A typical piecewise linear function g(z) is shown in Fig. 1.

Any piecewise linear function can be given in breakpoint form as g(x) := (I, P, g, g.-), where

e [=[I~,I%] c Ris the interval on which g(z) is defined.
e Pisasequence p1,pa, ...pn, With p; = (24, y; , yi,y;), where

rieRNIy =g(x:),y; = lim g@)andy = lim g(z).

T TT<T; ToTT>T,
y; is defined only for z; > I, and y;" is defined only for z; < I .

o g = % YV x < x; defined only if I~ = —o0

e g. = % VY z > z; defined only if It = +o0

The meaning of the interval [is clear from its definition. The list P is a list of n points x;,% € {1,2,...n}
which divide the domain in pieces, along with the value of the function g and its left and right limits. In
the later section on operations with the functions using this representation, it will be shown that this list
representation allows easy computation of maximum and minimum of such functions. g; and g, store the
slope of the left-most and right-most piece of the function (on an unbounded domain). These slopes differ-
entiate between functions which have the same right (or left) end of the leftmost (or rightmost respectively)
piece but have different sloping pieces. We require the list of the points to be in strictly increasing order
ie. Yke{1,2,....n}, xx+1 > xx. One point to be kept in mind while using such a representation is that a
function can have more than one representation, because we can always introduce a point in the list which
does not create a new piece of the function, but is just a point in a particular piece itself. As we will see
such ambiguity would not cause any problem in our operations.

Let us represent the function shown in Fig. 1 using the above representation:

o [= (—00,+00)

o P
- p1= (_37_2a _27_2)
- D2 = (—1,1,3, —2)
- ps = (0,0,0,0)

Verimag Research Report n° TR-2012-16 1/9

Rajat Kateja, Goran Frehse Representation of Piecewise Linear Interval Functions

- ps =(0,0,0,0)
- ps =(3,3,4,4)
o g =1
0 g =1

1.1 Operation on Piecewise Linear Functions

Scalar Multiplication Given a piecewise linear function f and its breakpoint representation (¢, Py, fi, fr),
and \ € R, the breakpoint representation of A f is given by (I, APs, Afi, A f,-), with (@, \f = (), Af (@), Af T (2;))
as the entries of the list AP;.

Minimization Given a piecewise linear function f, inf,, f(x) is the greatest lower bound on the values
that f assumes over all x € Iy. For a piecewise linear function f with bounded domain,

inf f(z) = min [min(f~ (), f(2), f*(2))]

ZZEPf

where Py is the list of points in the breakpoint representation of f. The above equality follows from the
fact that minimum of a linear function occurs at its end points, so checking for all the end points of the
linear pieces, taking the infimum value at the end points i.e. the minimum of the actual value and the left
and right limits, and then choosing the minimum among all those values, gives the infimum of f. For a
piecewise linear function on bounded domain, we define min,, f(x), as

ngﬁ@0=£gf@)

Here we have considered only the values actually attained by the function. In case of f having an un-
bounded domain, if f; < 0 or f,. < 0, then min,, f(x) = inf, f(x) = —oo. Else, the previous definitons
give min, f(z) and inf, f(x)

Pointwise Maximum Given breakpoint representations (I 7, Py, f, f») and (I, Py, g1, g») of piecewise
linear functions f and g respectively, the pointwise maximum of the two functions is the piecewise linear
function

h(z) = maz(f(x),g(x))Vaelsnl,.

Its piecewise representation (I, Py, hy, hy) is given by I, = Iy n I, and Py, hy, h, are given by the
following algorithm:

1. Extend the representation of f and g so that Py and P, contain the same points ; € I, N (P u Py).
This extension is easy using the given representation. Denote this list of z;;, i € 1,2, ...,n by XY.

2. For each z; € X9, create the list Q;, = ¢1, ¢2, ..., ¢n With

g = (z,max(y! ", y?"), max(y!, y?), max(y/*, y?"))

3. Create a list of intersection points Ry = 71,73, ... as follows. Let j=1. For each z; € X 0.4 < n, with
(yz?ch — yiﬁ)(yg:l — 1) <0, leta] € (x;,x;41) be the point of intersection of f and g, and set

rj = (@5, f(@7), f(25), f(27))-
Increment j.
4. Merge the two sorted lists @}, and Ry, to get the sorted list Pj,.
5. Ifl; =~

e Set by = min(f1, gi)-

2/9 Verimag Research Report n® TR-2012-16

Representation of Piecewise Linear Interval Functions Rajat Kateja, Goran Frehse

o If (y{L —y{)(fi —q1) > 0, let zp € (—o0, 1) be the intersection point of f and g, insert
po = (o, f(xo), f(x0), f(x0)) as the first entry in the list Py,

6. If [} = 40

e Set h, = max(f,,g,)-

o If (y/= —y97)(fi — 1) <0, letz,,41 € (z,,, +00) be the intersection point of f and g, insert
Pt = (Tnt1, [(@n+1), f(@n+1), f(zne1)) as the last entry in the list P,.

Explanation of Algorithm First we make a combined list of the points which divide the domain of
either f or g, and are also in the domain of h. For each of these points, we compute the maximum function
at that point, and its right and left limit. Next, we consider the possibility that the functions f and g might
intersect in between the points considered above, dividing the domain further into pieces. So for each
interval defined by the adjacent points, we check if one function is above another at one end, and the order
is reversed at the other end. If the check returns true, it means the functions intersect in the interval, the
intersection point is determined and added to the list of points. The left limit, right limit and the value at the
intersection point are all the same because the functions are continuous between any two adjacent points.
If the domain of the function is unbounded on the left, we set h; as the minimum of f; and g;, because as
r — —o0, the function with lower slope would assume higher values. Finally we test the possibility of
intersection of f and g for some x € (—o0, x1), by checking if either function has higher left limit at z1,
and higher slope before x;. If the check is true, it implies an intersection point which is determined and
added to the list. Similar procedure is used if the domain is unbounded on the right.

2 Piecewise Linear Interval Functions

Let IR be the set of all intervals in R. A piecewise linear interval function over I < R is a function
f: 1 —1TR,suchthat 3 f~(x) and f*(z), both piecewise linear functions defined on I, with

fl@)=[f (@), f (@) Yz el

We interpret f as the set of functions bounded pointwise by the lower and upper bound function, i.e.,
[fI=Af (@) < f(2) < fF@)Vael}
with all f” defined over the domain I. We denote the graph of f as
[Fl2 = {(z,y) : y € f(2)},
which forms a polygon. An interval function is connected if
1oy <y <w3€l, suchthat f(z1) # &, f(x2) = & and f(x3) # &.
We claim the following holds for piecewise linear interval functions:
L. If [f]2 is a connected polygon, then f is connected.

2. If 3 f' € [f] such that f” is continuous and f is connected, then [f]5 is a connected polygon.

Note that the smallest enclosure of a set of continuous functions may be a disconinuous interval function.

2.1 Operation on Piecewise Linear Interval Functions
Scalar Multiplication Given a piecewise linear interval function f(z) = [f~(z), fT(z)] and X € R,

A7 (x), \fF(2)], ifA=0,

(@) = {[)\f+(a:),)\f‘(x)], if A < 0.

Verimag Research Report n° TR-2012-16 3/9

Rajat Kateja, Goran Frehse Representation of Piecewise Linear Interval Functions

f(@)

Figure 2: Intersection of f and g, resulting in a disconnected interval function.

Range of Minimum Given an interval function f = [f~, f1], define the range of the minimum of f as
P 1= {min f/(2) : 1" € [},
where min, f’(z) is the minimum of f’(z) over the domain Iy. Now Vz € Iy, f' € [f]
min f~(2) < () < ()
= min f(x)< min f(z).

Also ming f~(x) € Tpin, hence min, f~ (x) is the lower bound of r,,;,. Similarly, min, f*(z) is the
upper bound of r,,;,. Hence
Tmin = [min f~(z), min f(x)].

Intersection Given two piecewise linear interval functions, f and g, their intersection is the function h
such that

7] = [T~ [9] < [Pl2 = [f]2 ~ [9]2
< h(z) = [maz(f~ (), g~ (z)), min(f*(z), 9" (2))]
with I, = [f N Ig.
The intersection of two connected interval functions may result in a disconnected interval function as
illustrated in Fig. 2. There, we have piecewise linear interval functions f and g, with g lowerbounded by

—oo and upperbounded by ¢ Yz, and we want to find their intersection. This leaves us with a disconnected
interval function with two connected parts.

Obtaining a Set of Connected Interval Functions from an arbitrary Interval Function Given an
interval function f, we define

Split(f) := {f1, s - fn}

such that each f; is a connected interval function on its domain. Note that a interval function f is dicon-
nected iff in certain intervals of the domain f* < f~. If f is a piecewise linear interval function on a
bounded domain, then Split(f) is computed by the follwing algorithm:

1. Extend the representation of f~ and f* so that P;— and P+ contain the same points x; € (Py- U
P+). This extension is easy using the given representation. Denote this list of x;, i € 1,2,...,n by
X0,

4/9 Verimag Research Report n® TR-2012-16

Representation of Piecewise Linear Interval Functions Rajat Kateja, Goran Frehse

2. Now we will look at consecutive intervals (z, zr+1) and for each such interval check if the image
of a subinterval is null, i.e. check for an suninterval where f* < f~. For each x; € X" check the
conditions

R;: Ifxi<f+,ylf_7<yzf+f and €]

- +
Livi: Ifxipn>17, Z/ZerlJr < yzf+1+' @

3. Now let a condition being true be representated as condition and being false be represented as
condition. The following sub-routine is to find out the subintervals as explained above. For each i,
the following four cases arise:

e R; and L; 11 : In the entire interval f* > f~ and hence no action is to be performed.

e R; and L;, : Create an interval (Zstart, Tend) to be deleted from the domain and set g4t =
x; and Teng € (74, Ti41) to be the intersection point of £~ and f7.

e R; and L;y4; : Create an interval (Zs¢qrt, Tend) to be deleted from the domain and set x g4t
(4, ;1) to be the intersection point of f~ and f* and Tepg = @41

m

e R; and L;; : Create an interval (Tstart, Tend) to be deleted from the domain and set szt =
e and Tend = Tit1-

4. Remove all the intervals (Zstqrt, Tenq) from the domain I, to get a sequence I, Io, ... of disjoint
domains.
- +
5. For each z; € X0, if yf > yzf , delete x; from the domain I;, with z; € I; (there is exactly one

such interval) breaking it into two disjoint domains.
6. Set f; = f over I;.

7. Return the set Split(f) = {f1, fo, ---}.

Suppose the given function f has p pieces. From the above algorithm, it is clear that each of the p
intervals can give rise to a maximum of one subinterval to be deleted. This implies that a maximum of p
intervals would be deleted from the domain, giving rise to maximum of p + 1 disjoint domains after step 4.
In step 5 each domain can leaad to a maximum of two domains. Hence the cardinality of the set Split(f)
cannot exceed 2(p + 1).

3 Floating Point Issues

To save memory and gain speed, we use floating point representations. So we have to consider that certain
values are not representable. While operating on piecewise linear interval functions, appropriate rounding
strategies can guarantee that we always get a conservative result.

For computations, we use interval arithmetic. In the following discussion, every value is to be consid-
ered as an interval, for example x = [z, T], where both = and T are floating point representable and they
are the nearest floating point representable numbers satisfying z < = < Z. Representable numbers give
rise to degenerate intervals with the same lower and upper limit.

We assume that the breakpoint representations of functions f~ and f* are given such that they are
representable. While computing with these functions, we might end up having arbitrary functions, whose
breakpoint representation are not representable. For such situations, we introduce the following notation.
For an arbitrary (not necessarily representable) function g with breakpoint representation (14, Py, g;, gr), let
the breakpoint representation of g be (I, Py, 71, g.), with the list P, = (x;,y;, yi, y;); and the breakpoint

representation of g be (14, Py, gi, gr), with the list Py = (z;, 57 Ui E)Z Then,

g € llg,91l-

Verimag Research Report n° TR-2012-16 5/9

Rajat Kateja, Goran Frehse Representation of Piecewise Linear Interval Functions

3.1 Scalar Multiplication

For conservative operations, define scalar multiplication of a function f, with a real \ as:

[N~ (@), AfT ()], ifA=0,

(@) = {[Af*(x),kf(m)], if A < 0.

3.2 Range of Minimum

Based on the assumption that the given functions f~ and f* are representable in floating point, the range
of minimum is also representable in floating point, because the range of minimum takes values from the
representation itself. Hence there is no need to modify its definition to accommodate floating point issues.

3.3 Extending Breakpoint Representation

While taking the intersection of two functions and while finding the split of a function, we need to extend
the representation of certain functions to include more points in their list. While extending lower bound
functions, extension must always be done to lower values, and while extending upper bound functions,
extension must be done to higher values. For example, if .., is to be added to the list of lower bound
function, it must be added as (e, Yrrow? Yonews y; o). Where as if &, is to be added to the list of an

upper bound function, it must be added as (Znews Yanew s Yrnow s Yinew)-

3.4 Crossing Test

To find pointwise maximum of two functions (which is used to find intersection), there are checks to see
if the two functions cross each other in a particular interval. Once the extension of functions has been
done correctly to incorporate floating point issues, these checks can be easily implemented by checking for
inequalities. For example to check if f and g cross in the interval (z1, z2), we need to check the following
condition

f(x1) = g(ar) and f(22) < g(22)

or vice-versa with f and g interchanged. Since all the four values are representable and the extension was
done conservatively, checking for inequalities does not create any complications.

3.5 Intersection Points

There are two procedures for which intersection of piecewise linear functions is required, and both require
different types of representations of intersection points to keep the result conservative. Here we discuss
them one by one:

Intersection To find the intersection of two pointwise linear interval functions f and g, we need to
find the maximum of the two lowerbound functions, and the minimum of the two upperbound functions.
Here we describe the procedure for maximum of the two lowerbound functions. Suppose we need to find
h = max(f~,g~). The only case which might create a problem is when we have to add an extra point
i.e. when the lowerbounds intersect in some interval. Now assume that f~ and ¢ intersect in the interval
(a,b). For simplicity of notation, use yf * =m, yJ * = p, ylf " =nandy;] =g, ie. f~ goesfrom
A = (a,m)to B = (b,n) and g~ goes from C' = (a,p) to D = (b, q). Since the functions intersect, we
have (p — m)(¢ — n) < 0. Consider the case with m > p and n < ¢. Let the actual point of intersection
be F = (2',y’). We now explain two methods to add representable point(s) to the representation of h:

e Adding two points: Using the notation as described above, we can represent the two lines as

+n—m
=m
y b

(z —a)

6/9 Verimag Research Report n® TR-2012-16

Representation of Piecewise Linear Interval Functions Rajat Kateja, Goran Frehse

Ya

A = (a,m) D = (b, q)

(NN
—_ (NN
9 1
i
i
i
i
Ll

\
' T
x

C = (a,p) B = (b, n)

Figure 3: Illustration of conservative intersection to find maximum of two lower bounds using two points

y=p+z_2(z—a).

Equating the two y for intersection and solving for z gives

o = lg=n) +b(m —p)
m—-p+q—mn

Till this stage, all the values a, b, m, n, p and q are known in their floating point representation. Now
interval arithmetic can be used to calculate the above expression and obtain an inteval [z] containing
the actual intersection point a’. Next this [z] can be susbtituted in the two line equations to obtain
[yf] and [y,] from the f and g line equation respectively. Next, define y = max(y¢, y,). Then the
points (z,y,y,) and (Z,y,v,y) can be added to the representation of h. This method is similar
to the one described in [1] where first the lines are parametrised from their end points, then solved
for parameters and finally the parameters are plugged back in the equations to get intersection point.
Here on the other hand, we directly compute the intersection point. The method is illustrated in Fig.
3.

e Adding a single point: We look for a representable point F' = («, 3) to add to the representation of h.
To remain conservative, the point F' must be such that slope(AFE) > slope(AF') and slope(ED) <
slope(F D). Using the above notation, these conditions can be written as

n—m>ﬂ—m

=
b—a a—a

q—p<q—5

b—a b—a’

Combining the two equations, we get

n—m_ (B—m)(b-a)
=

¢—p = (a=a)(g=p)
Using this inequality, for a given representable «, we will get an inequality of the form 3 < (’. Then
we know that all such points («, 8') can be added to the representation keeping it conservative. To
decide upon a single point from all such available points, we look to minimize the cost function de-
fined as the infinity norm betwen the curve obtained by choosing a point and the original intersection
curve. Choice of infinity norm as the cost function is justified because the infinty norm relates to
the maximum distance between the two functions. Choosing the maximum of all 8’ and adding that
point to the representation minimizes the cost function. Next instead of considering all the possible
representable numbers « between a and b, we consider only z and T from [x] as found in above
methods because those are the closest points to the actual intersection. Also, the farther we go from
the actual solution, the lower would be 3 and hence the infinity norm would also be more. This
method is illustrated in Fig. 4.

Verimag Research Report n° TR-2012-16 7/9

Rajat Kateja, Goran Frehse Representation of Piecewise Linear Interval Functions

y/\

A = (a,m) D = (b, q)

C = (a,p) B = (b, n)

\
' T
x

Figure 4: Illustration of conservative intersection to find maximum of two lower bounds using one point

Here are some observations regarding the above methods:

1. The difference in adding just one point or a two points is not very drastic when the space complexities
to store the results are considered. Suppose we have two k piece functions, if we add a single point
for intersection, we end up with a worst case 2k piece function, when each piece has an intersection
point. Now suppose this 2k piece function is intersected with another 2k piece function, we end
up with worst case 4k piece function, which on further intersection with another 4k piece function
would result in 8%k piece function. So after n intersections we end up with worst case 2"k piece
function. On the other hand, if we add two intersection points for each intersection, upon the first
intersection of two k piece functions, we get a worst case 3k piece functions. Advancing as before
after n intersections, we would end up with a worst case 3"k piece function. So both the methods
have exponential complexities with respect to the number of intersections. The only difference is in
the base of the exponential functions.

2. From the discussion on intersections, it is clear that slopes are used a lot in such computations. To
calculate slopes from the two given end points, we need interval arithmetic. So it might seem that we
can make the computations easier and resolve floating points issues if we represent the functions by
one end point and slope of a piece instead of two end points of the piece. Agreed that this approach
will resolve some floating point issues in intersection computations, but the downside is as follows.
The calculations for the other end point would now involve interval arithmetic, and the end points
are required for each piece for crossing tests, whereas the intersection point computations are not
always necessary for each piece. So it is better to represent functions by the end points, because they
are used more frequently than slopes.

Splitting While splitting an arbitrary piecewise linear interval function f to connected piecewise linear
interval functions, we need to find intersection points of f~ and f*, to break the domain into intervals.
We need to identify how we want to store the result as per our requirements. There can be two cases as
explained below:

e Here we interpret a conservative result as one in which no part of the domain on which the function
is disconnected must be present in the Split, even if some part of the domain where the function was
connected is lost. Hence to keep the results conservative, we store the intervals to be deleted, i.e.
(Tstart, Tend) @S (Tstart, Tend). The reasoning is as follows: Suppose the function is connected on
the intervals (—00, Zgqr¢) and (Zenq, 00), then the interval to be deleted would be (Zsiqrt, Tend)-
If the interval is made smaller by representing it as (Tszart, Tend), We get that the function f is
connected on the intervals (—00, Tsar¢) and (Zend,), while clearly on the intervals (i1t Tstart)
and (Zend, Tend), the functions is not connected. So to get conservative results, we make the intervals
to be deleted larger by storing them as (Zstart, Tend)-

8/9 Verimag Research Report n® TR-2012-16

Representation of Piecewise Linear Interval Functions Rajat Kateja, Goran Frehse

e In this case, we interpret a conservative result as the one which does not loose any part of the funci-
ton which was connected, even if some part of disconnected function appears in the domain of some
function of the Split. To achieve this result, we store the intervals to be deleted as (Tszart, Tend)-
The explanation is similar to the previous one. Here we can tolerate some part of the domain
((zstart Tstart) and ((Tend, Tena)) on which the function is disconnected so that we do not loose
the parts of the domain ((Zstart, Tstart) and (Tend, Tena)) Where the function is connected.

References

[1] Marina L. Gavrilova and Jon G. Rokne. Reliable line segment intersection testing. Computer-Aided
Design, 32(12):737-745, 2000. 3.5

Verimag Research Report n® TR-2012-16 9/9

	Piecewise Linear Functions
	Operation on Piecewise Linear Functions

	Piecewise Linear Interval Functions
	Operation on Piecewise Linear Interval Functions

	Floating Point Issues
	Scalar Multiplication
	Range of Minimum
	Extending Breakpoint Representation
	Crossing Test
	Intersection Points

