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Abstract

Linear invariant generation has been intensively considered as an effective verification method
for concurrent systems. However, none of the existing work on the topic strongly exploits
the structure of the system and the algebra that defines the interactions between its compo-
nents. This not only has an impact on the computation time, but also on the scalability of
the method. In a series of recent work, we developed an incremental approach for generating
boolean invariants for systems described in the BIP component framework. BIP is an expres-
sive modeling formalism including a rich algebra to describe component interactions. The
objective of this paper is to extend and propose new techniques dedicated to the computation
of linear interactions invariants, i.e., invariants that are described by linear constraints and that
relate states of several components in the system. In particular, we propose an incremental
approach that allows to discover and reuse invariants that have already been computed on sub-
parts of the model. Those new techniques have been implemented in DFINDER, a tool for
checking deadlock freedom on BIP systems using invariants, and evaluated on several case
studies. The experiments show that our approach outperforms classical techniques on a wide
range of models.

Keywords: invariant generation, linear invariant, incremental verification, component-based systems

Reviewers: Marius Bozga

Notes: The research leading to these results has received funding from the European Community’s Seventh
Framework Programme [FP7] under grant agreements no 257414 (ASCENS), 288175 (CERTAINTY) and
by ARTEMIS Joint Undertaking [JU] under grant agreement No. 2009-1-100208 (ACROSS).

How to cite this report:

@techreport {TR-2012-15,
title = {Incremental Generation of Linear Invariants for Component-Based Systems},
author = {Saddek Bensalem, Benoit Boyer, Marius Bozga and Axel Legay},
institution = {{Verimag} Research Report},
number = {TR-2012-15},
year = {}

}



Incremental Generation of Linear InvariantsSaddek Bensalem, Benoit Boyer, Marius Bozga and Axel Legay

1 Introduction
Component-based design confers numerous advantages, in particular, an increased productivity through
reuse of existing components. Nonetheless, establishing the correctness of the designed systems remains
an open issue. In contrast to other engineering disciplines, software and system engineering badly ensures
predictability at design time. Consequently, a posteriori verification as well as empirical validation are
essential for ensuring correctness. Monolithic verification [1, 2] of component-based systems is a chal-
lenging problem. It often requires computing for a composite component the product of its constituents
by using both interleaving and synchronization. The complexity of the product system is often prohibitive
due to state explosion. A solution to this problem is to generate an invariant that is an abstraction of the
state-space of the system.

We observed that most of the existing work on generating invariants for component-based systems are
too general and do not strongly exploit the structure of the system and the algebra that defines the inter-
actions between its components. In a series of recent work [3, 4, 5], we proposed novel approaches and
the DFINDER tool [6] for generating invariants for systems described in the BIP framework [7]. BIP is
an expressive modeling formalism equiped with a rich algebra to describe component interactions. Our
techniques start by building invariants for individual components, which can be done with any existing ap-
proach for invariant generation on sequential programs. The novel concept in DFINDER is that the invariant
for the overall system is then obtained by glueing this set of individual invariants with another one that is
an abstraction of the algebra used to define the interactions between the components. By doing so, one
avoid building huge part of the state-space before generating the invariant. One of the major advantages of
our approach is that it allows for the development of incremental techniques such as [5] capable of reusing
invariants that have already been computed on subparts of the model. The incremental approach is particu-
larly useful when multiple instances of the same components (atomic or composite) are used in the system.
In such cases, it allows to factorize some part of the analysis. Thus, local invariants established on some
part of the system can be automatically lifted to all similar parts within the system.

Until now, the DFINDER approach has been limited to invariants that can be represented by boolean
formulas. This has been shown to be convenient in many contexts, going from simple to complex case
studies [8]. However, there are situations where boolean invariants may not be appropriate. Consider the
state variable at_li which monitors that (local) control state li of some process is currently active. Whatever
the transition relation of the system is, DFINDER will only be able to generate invariants of the form e.g.,
at_l1 ∨ at_l2 ∨ at_l3. Such an invariant ensures that one of the control states l1, l2, l3 is active, which
is sometimes sufficient to infer the deadlock freeness. However, such invariants are not precise enough to
prove a mutual exclusion property. Here, an invariant of the form at_l1 + at_l2 + at_l3 ≤ 1 would be
needed, which shows that at maximum one process can be in a critical state at any time.

To reason on such more complex properties, we have to work with invariants capable of counting how
many processes are at a given states. A way to do this is to use linear invariants, i.e., invariants that can
be represented by sets of linear equations. Such invariants have already been studied for a wide range of
models for concurrent systems, and in particular for Petri Nets [9]. The objective of this paper is to propose
new methods for linear invariant generations in BIP. Our methods build on transitions of components that
are abstracted by linear equations and then combined to form a system of equations. We show that each
solution of such system is a linear invariant. Solving systems of linear equations can be done with classical
techniques such as Gauss-Jordan elimination or LU-factorization. However, those approaches that are
general do not exploit the structure of the system under consideration and may scale badly on large size
systems. As a solution to this scalability problem, we propose an online algorithm that processes equations
in the system in an iterative manner based on the structure of the underlying component-based system. As
a second contribution, we proposed an incremental extension of the proposed approach. This approach
uses the incremental framework from [5] with the additional difficulty of combining linear equations rather
than Boolean ones.

Our new contributions have been implemented in DFINDER and evaluated on several case studies. The
experiments show how our approaches outperform classical techniques on a wide range of models. Partic-
ularly, our method is as efficient as the one to compute boolean invariants, and it allows for finer state-space
approximations (hence removing more spurious counter-examples). Finally, our results asses that DFINDER
is faster than tools implementing classical mathematical approaches.
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Related Work. The literature on generation of boolean invariants for BIP and comparison with other
works is wide and partly covered in [3, 4, 5]. There exists an huge amount of literature on automatic
generation of linear invariants for different categories of systems and/or programs. In fact, first results have
been obtained in the context of hardware systems (see e.g. [10]). The main difference with our work is that
we exploit a rich component-based design language that is clearly more expressive than classical Boolean
circuts. Work on discovery of linear relations between variables of a sequential program dates back to
early days of program verification [11]. Linear invariants have received particular attention for generation
methods derived from abstract interpretation [12]. In the former, linear constraints are definitely amongst
the most useful, expressive abstract domain for program analysis.

The work on algebraic methods for the generation of so called linear state-invariants for Petri net mod-
els is perhaps the most closest to ours. An introductory survey can be found in [13] while several extensions
for invariant generation under particular constraints is available in [14]. These methods have been imple-
mented since a long time and tools like CHARLIE [9] are widely known in the Petri net community. While
being the most known, these techniques are however neither compositional nor incremental: the invariant
generation problem is directly rephrased as linear algebra problem and solved using standard methods.
Another method for generating linear invariants for Petri nets has been explored in [15]. This method relies
on Farkas lemma as an effective mean for quantifier elimination. Invariant computation is carried transition
by transition, and therefore avoid a global computation phase. Nonetheless, this method is not incremental
and can be applied only once the system has been entirely constructed.

Structure of the paper. Section 2 recalls some basic definitions used throughout the rest of the paper.
Section 3 introduces the component-based framework as well as the basic principles for compositional
and incremental design. Section 4 defines linear invariants and Section 5 presents two novel methods
for, respectively, global and incremental generation. Finally, section 6 review implementation and the
experimental work done to validate the approach.

2 Preliminaries
We denote respectively by Z and Q the sets of integer and rational numbers. We consider homogeneous
linear systems S of the form S ≡

∧m
i=1(

∑n
j=1 aijxj = 0) where xj are integer unknowns and aij ∈ Z are

integer coefficients, for all 1 ≤ j ≤ n, 1 ≤ i ≤ m. Such systems are compactly denoted as Ax = 0 where
A = (aij)1≤i≤m,1≤j≤n ∈ Zm×n is the matrix of coefficients, x = (xj)1≤j≤n is the vector of unknowns
and 0 is the null vector in Zm. A vector of integers u ∈ Zn is a solution of the system if it satisfies Au = 0.
We denote with Sol(S) the set of solutions of the system S . Two systems S1 and S2 are called equivalent
and denoted by S1 ≈ S2 if they have the same set of solutions, that is, Sol(S1) = Sol(S2). For any system
S, the set of solutions contains at least the trivial solution which is the null vector 0n in Zn. Moreover,
if the set Sol(S) contains non-trivial solutions, then it is infinite. In this latter case, we call solution basis
any minimal (w.r.t. inclusion) set of solutions {uk}k∈K ⊆ Sol(S) that allows to generate Sol(S) as linear
combinations with rational coefficients, formally such that Sol(S) =

{∑
k∈K λkuk | λk ∈ Q

}
∩ Zn. We

known from linear algebra that, for any system S, a solution basis with at most n elements always exists.
Such a basis can be effectively computed by using e.g., Gauss-Jordan elimination to transform the system
(with an appropiate renaming of variables) into an equivalent solved (or left-bound) system S ′ of the form
S ′ ≡

∧m′
i=1(a′iixi =

∑n
j=m′+1 a

′
ijxj) where m′ ≤ m, a′ii 6= 0 for all 1 ≤ i ≤ m′. A basis is obtained

immediately from the solved form by selecting the set of solutions {uk}m′+1≤k≤n such that uki is equal
to (1) a′ikL/a

′
ii for all 1 ≤ i ≤ m′, (2) L, if i = k and (3) 0, for all m′ + 1 ≤ i 6= k ≤ n and where

L = lcm{a′ii|1 ≤ i ≤ m′}. For example, the system 2x1 + 3x3 − x4 = 0 ∧ x2 − 5x3 + 2x4 =
0 ∧ 4x1 + x2 + x3 = 0 can be transformed into the left bound form 2x1 = −3x3 + x4 ∧ x2 = 5x3 − 2x4
which gives the basis {u3,u4} where u3 = [−3, 10, 2, 0] and u4 = [1,−4, 0, 2].

3 Component-based Design
In this section, we introduce the underlying concepts for modeling and design of component-based systems.

2/14 Verimag Research Report no TR-2012-15



Incremental Generation of Linear InvariantsSaddek Bensalem, Benoit Boyer, Marius Bozga and Axel Legay

Our component-based framework is a fragment of the BIP framework [7]. The BIP - Behavior, Inter-
action, Priority - framework allows description of complex, heterogeneous systems in a hierarchical and
compositional manner. BIP supports a modeling methodology based on the assumption that components
are obtained as the superposition of three layers, that is:

• behavior, specified as a set of automata extended with C data and functions,

• interactions between the automata, modeled as sets of structured connectors,

• priorities used to schedule among possible interactions.

In this paper, we restrict ourselves to a strict fragment of BIP, that is, without data and without priorities.
In fact, we have previously shown in [3] how data can be taken into account for computing invariants
through abstraction. Regarding priorities, we do not consider them, however, let us remark that priorities
preserve invariant properties and deadlock-freedom [16].

In the rest of the section, we recall the most relevant concepts useful in this context, that is, atomic
components and their parallel composition through interactions. Then, we recap a recent methodology
proposed in [17] for incremental design of component-based systems with BIP.

3.1 Components and Interactions
In our setting, atomic components are labeled transition systems. Transitions’ labels are called ports and
are used to interact with other components.

Definition 1 (Atomic Component) An atomic component is a transition system B = (L,P, T ), where
L = {l1, l2, . . . , lk} is a set of locations, P is a set of ports, and T ⊆ L× P × L is a set of transitions.

Without loss of generality, we assume that, every port p labels exactly one transition τp ∈ T . Given
τp = (l, p, l′) ∈ T , l and l′ are the source and destination locations for τ . These locations are equally
denoted respectively as •τ and τ•.

l11

l12 l13

p1

q1

r1

P1 p1

q1r1

l41

l42

s t

Lock s

t

l21

l22 l23

p2

q2

r2

P2 p2

q2 r2

l31

l32 l33

p3

q3

r3

P3 p3

q3 r3

p1s p2s
p3s

q1t q2t q3t
r1r2r3

Figure 1: Running example: global composition

Example 1 Figure 1 presents a simplified variant of the Reader-Writers problem with four atomic compo-
nents P1, P2, P3 and Lock. The ports of component P1 are p1, q1, r1. P1 has three locations l11, l12 and
l13 and three transitions τ1 = (l11, p1, l12), τ2 = (l12, q1, l13) and τ3 = (l13, r1, l11).

Atomic components are running in parallel and communicate via interactions, i.e., by synchronization
on ports. Formally, interactions and connectors are defined as follows.

Definition 2 (Interaction, Connector) Let {Bi = (Li, Pi, Ti)}ni=1 be a set of atomic components with
sets of locations and ports pairwise disjoint, that is, Li ∩ Lj = ∅ and Pi ∩ Pj = ∅ for all i 6= j. An
interaction a is a set of ports, that is, a subset of

⋃n
i=1 Pi, such that ∀i = 1, . . . , n. |a ∩ Pi| ≤ 1. A

connector γ is a set of interactions {a1, . . . , am}.

For the sake of simplicity, we write p1p2 . . . pk to denote the interaction {p1, p2, . . . pk}. We also write
a1 ⊕ . . .⊕ am for the connector {a1, . . . , am}.
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Example 2 Graphically, interactions are represented by links between ports. The connector represented
in Figure 1 consists of six binary and one ternary interactions, respectively p1s⊕ p2s⊕ p3s⊕ q1t⊕ q2t⊕
q3t⊕ r1r2r3.

We use parallel composition parameterized by a connector γ to build composite components from
atomic components. Any global step of the composite component corresponds to an interaction a of γ. For
any such interaction a, only those components that are involved in a can make a step. This is ensured by
following a transition labelled by the port used in a. If a component does not participate to the interaction,
then it remains in the same location.

Definition 3 (Composite Component) Given a set of atomic components {Bi = (Li, Pi, Ti)}ni=1 and a
connector γ, we define the composite component B = γ(B1, . . . , Bn) as the transition system (L, γ, T ),
where:

• L = L1 × L2 × . . .× Ln is the set of global states,

• γ is the set of interactions, and

• T ⊆ L × γ × L contains all global transitions τ = ((l1, . . . , ln), a, (l′1, . . . , l
′
n)) obtained by syn-

chronization of sets of transitions {τi = (li, pi, l
′
i) ∈ Ti}i∈I such that {pi}i∈I = a ∈ γ and l′j = lj

if j 6∈ I .

We denote by ` a−→ `′ transitions (`, a, `′) ∈ T . We say that a global state ` is reachable from an initial
global state `0 if there exist a sequence of interactions a1, · · · , ak and global states `1, · · · , `k such that
`0

a1−→ `1
a2−→ · · · ak−→ `k = `.

Moreover, we extend the notation of source and destination to interactions and denote •a = {•τp | p ∈
a} and a• = {τ•p | p ∈ a}.

Example 3 The example given in Figure 1 presents the composite component γ(P1, P2, P3,Lock) where
γ = p1s⊕ p2s⊕ p3s⊕ q1t⊕ q2t⊕ q3t⊕ r1r2r3.

Let us observe also that any composite component B = γ(B1, . . . , Bn) can be equivalently seen as a
1-safe1 Petri net whose set of places is L =

⋃n
i=1 Li, that is, the set of locations of B, and whose transition

relation is given by T .

3.2 Incremental Design
In component-based design, the construction of a composite system is both step-wise and hierarchical. Sys-
tems are usually obtained from atomic components by successive additions of new interactions also called
increments. We have proposed in [17] a methodology to add new interactions to a composite component
without breaking the existing synchronization. This way, properties enforced by synchronization at some
step in the design flow are never lost in successive steps when increments are added.

In our theory, a connector describes a set of interactions and, by default, also those interactions in where
only one component can make progress. This assumption allows us to define new increments only in terms
of existing interactions.

Definition 4 (Increments) Consider a connector γ over atomic components B1, ..., Bn and let δ ⊆ 2γ

be a set of interactions. We say δ is an increment over γ if for any interaction a ∈ δ there exists disjoint
interactions b1, . . . , bn ∈ γ such that

⋃n
i=1 bi = a.

In a dual manner, when increments are used, one has also to make sure that existing interactions in
γ will not break the synchronizations that are enforced by the increment δ. For doing so, we remove
from the original connector γ all the interactions that are forbidden by δ. This is done with the operation
of Layering, which describes how an increment can be added to an existing set of interactions without
breaking synchronization enforced by the increment. Formally, we have the following definition.

1the number of tokens in any place never exceeds one
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Definition 5 (Layering) Given a connector γ and an increment δ over γ, the set of interactions obtained
by combining δ and γ, also called layering (or incremental modification of γ by δ), is given by the set
δγ = (γ 	 δf )⊕ δ where δf = {a | a 6∈ δ ∧ ∃b ∈ δ.a ( b} is the set of interactions forbidden by δ.

Example 4 The connector γ illustrated in Figure 1 can be obtained by successive layering from γ⊥ =
p1 ⊕ q1 ⊕ r1 ⊕ p2 ⊕ q2 ⊕ r2 ⊕ p3 ⊕ q3 ⊕ r3 ⊕ s ⊕ t. That is, γ = δ3δ2δ1γ⊥ where (i) increment
δ1 = {p1s, q1t, s, t} corresponds to synchronization of P1 and Lock on p1s and q1t while leaving open
s and t for further interactions (ii) increment δ2 = {r2r3} corresponds to synchronization of P2 and P3

and (iii) finally, increment δ3 = {p2s, p3s, q2t, q3t, r1r2r3} enforces the remaining interactions between
respectively P2, P3, Lock and P1, P2, P3. This incremental construction is illustrated in Figure 2.

δ1 δ2

δ3

LockP1 P2 P3

p1

q1r1

s

t

p2

q2 r2

p3

q3 r3

p1s
p2s

p3s

q1t

q2t q3t

r2r3

r1r2r3

Figure 2: Running example: Incremental composition

4 Linear Invariants
Let B = γ(B1, . . . , Bn) be a composite component obtained by parallel composition using connector γ
of atomic components {Bi = (Li, Pi, Ti)}ni=1. Let (L, γ, T ) be the transition system associated to B, as
defined by definition 3. Let `0 be an initial global state of B, fixed.

We consider the set At of location variables {at_l | l ∈ L = ∪ni=1Li}. At any global state ` =
(l1, l2, ..., ln) ∈ L, each location variable of At is assigned to a binary value through the valuation function
σ` : At → {0, 1}. This function characterizes the global state ` by mapping to 1 (resp. 0) variables
corresponding to locations (resp. not) in `, formally σ`(at_l) = 1 iff ∈ {l1, l2, ..., ln} and σ`(at_l) = 0
otherwise.

We consider linear equality constraints of the form
∑
l∈L ul · at_l = u0 built from location variables

and with integer coefficients u0, ul ∈ Z for all l ∈ L. By abuse of notation, we interpret (ul)l∈L and
(at_l)l∈L as vectors and we denote more compactly the constraints above as uT · At = u0. Similarly, we
define the particular vector At0 as σ`0(At0) which denotes the initial valuation of variables at `0.

Definition 6 (Linear Invariant) A linear invariant is a linear equality constraint uT · At = u0 which
hold in all reachable global states of the composite component, that is, for all ` reachable from `0 it holds∑
l∈L ul · σ`(at_l) = u0.

Example 5 In the example of Figure 1, the equality constraint at_l12 + at_l22 + at_l32 + at_l41 = 1
is a linear invariant for the composite component with initial global state (l11, l21, l31, l41). This linear
invariant characterises a mutual exclusion property, that is, at most one process P1, P2, P3 is in its critical
location respectively l12, l22, l32 at any time.

If not empty, the set of linear invariants is infinite. For instance, it can be easily checked that if uT ·At =
u0 is a linear invariant, so is (λuT ) · At = (λu0) for any integer coefficient λ ∈ Z. In order to provide a
finite representations of such sets, we introduce the notion of basis of linear invariants, as follows.

Definition 7 (Basis of Linear Invariants) Let I be a set of linear invariants. A finite subset I0 ⊆ I,
I0 = {uTk · At = u0k}k∈K is a basis for I if and only if for all invariant uT · At = u0 ∈ I there exists
rational coefficients (λk)k∈K ∈ Q such that u =

∑
k∈K λkuk and u0 =

∑
k∈K λku0k.
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5 Automatic Generation of Linear Invariants
Consider a composite component B = γ(B1, . . . , Bn) with associated transition system (L, γ, T ) and
initial state `0.

In Section 5.1, we introduce the global method to compute linear invariants from solutions of the
homogeneous system of flow equations which characterizes B. While the theory is a classic, we introduce
a new efficient algorithm to resolve such systems. The efficiency of the algorithm will be demonstrated
in the experimental section. Section 5.2 proposes a new incremental approach that exploits the algorithm
proposed in Section 5.1 together with the architecture of the design. We shall later see that the incremental
approach outpeforms the global one.

5.1 Global Approach
We first introduce characteristic System, that is a system of linear equations representing the interactions
within the BIP model. We then show that solutions of the characteristic systems are indeed linear invariants.
This means that computing linear invariant reduces to solving a system of linear equations. Latter, we
propose an efficient version of the Gauss-Jordan algorithm that exploits the structure of our specification
language.

Definition 8 (Characteristic System) For a finite set of atomic components B1, . . . , Bn synchronized by
a connector γ, the characteristic system SG(γ,B1, . . . , Bn) is defined as the conjunction

SG(γ,B1, . . . , Bn) ≡
∧
a∈γ

(∑
l∈a•

xl −
∑
l∈•a

xl = 0
)

The unknowns xl correspond to locations l ∈ L = ∪ni=1Li. The characteristic system introduces
exactly one flow equation for each interaction a of the system.

Example 6 The characteristic system for Example 1 following the enumeration of interactions p1s, p2s,
p3s, q1t, q2t, q3t, r1r2r3 is:

SG ≡



xl12 +xl42 −xl11 −xl41 = 0
xl22 +xl42 −xl21 −xl41 = 0

xl32 +xl42 −xl31 −xl41 = 0
xl13 +xl41 −xl12 −xl42 = 0

xl23 +xl41 −xl22 −xl42 = 0
xl33 +xl41 −xl32 −xl42 = 0

xl11 +xl21 +xl31 −xl13 −xl23 −xl33 = 0

We are now ready to show that solutions of the characteristic system are indeed linear invariants for the
corresponding model.

Theorem 1 Any solution u of SG defines the linear invariant uT · At = uT · At0 of the composite
component B.

PROOF. Regarding the composite component B as its equivalent Petri-Net PN , the characteristic system
of SG is equivalent to the equation CTx = 0, where C is incidence matrix of PN . Each solution denotes
an invariant of PN (c.f. [13]) and thus, an invariant of B �

Theorem 2 Any set of invariants {uTk ·At = uTk ·At0}k∈K constructed from a solution basis (uk)k∈K of
SG is a basis for the set of all linear invariants obtained from SG.

PROOF. Using the solution basis (uk)k∈K , all solutions u can be expressed as a linear combination such
that we have the invariant (

∑
k∈K λku

T
k ) ·At =

∑
k∈K λku

T
k ) ·At0. This invariant is trivially implied by

the set of {uTk ·At = uTk ·At0}k∈K . �
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The common techniques to solve homogeneous systems Ax = 0 are the Gauss-Jordan elimination,
Cholesky-, QR- or LU-factorization. These general well-known algorithms have low polynomial complex-
ity and can be directly applied to solve the characteristic system SG. Nonetheless, naive implementations
may badly scale to realistic systems, in particular, if they do not consider carefully the structure and the
sparsity of the characteristic systems.

To ensure scalability, we developed an online resolution algorithm (Algorithm 1 below) that processes
equations in the characteristic systems iteratively, one by one, while producing an equivalent left-bound
system. It is essentially a variant of Gauss-Jordan that exploits the locality of unknowns as well as the
particular form of equations. In addition to efficiency that will be demonstrated in Table 1, one of the major
advantages of the new algorithm is that its structure can be exploited to derive an incremental version. This
shall be the subject of the next section.

Algorithm 1 Online algorithm for direct resolution of SG

1: LeftB ← ∅ . LeftB ≡
∧
i∈I

(
xi =

defi︷ ︸︸ ︷∑
j∈J

λijxj
)
, I ∩ J = ∅

2: while ¬finished do
3: eq ← READEQUATION()
4: eq ← REWRITE(eq, LeftB) . eq has the form

∑
j∈J kjxj = 0

5: if ¬TRIVIAL(eq) then
6: (x = def )← SOLVE(eq)
7: LeftB ← PROPAGATE(LeftB, x = def )
8: LeftB ← LeftB ∧

(
x = def

)
9: end if

10: end while
11: return LeftB

In the above algorithm, function REWRITE(eq,LeftB) returns the equation eq in which all bounded
unknowns xi are substituted according to their definition def i given by (xi = def i) in LeftB . Function
PROPAGATE is the dual of REWRITE. PROPAGATE(LeftB , x = def ) returns the system LeftB where
all occurences of the free (unbounded) unknowns x are substitued by def . When SOLVE(eq) is called,
eq ≡

∑
kjxj = 0 contains only free unknowns. One of them is selected and the equation is rewritten into

a solved form x = def . The choice is led by prefering the xj with the smallest absolute value for kj .
Our algorithm has been implemented in DFINDER. Experimental results and comparison with similar

tools/methodologies are reported in section 6.

Example 7 Using Algorithm 1, the characteristic system SG given in Example 6 is transformed in left
bound form shown below left. The solution basis extracted from the solved form generates I0 the basis of
linear invariants.

SG ≡



xl12 = xl32 + xl13 − xl33
xl42 = xl41 − xl32 + xl33
xl22 = xl32 + xl23 − xl33
xl11 = xl13
xl21 = xl23
xl31 = xl33

I0 =


at_l13 + at_l12 + at_l11 = 1
at_l23 + at_l22 + at_l21 = 1
at_l33 + at_l32 + at_l31 = 1

at_l41 + at_l42 = 1
at_l12 + at_l22 + at_l32 + at_l41 = 1

5.2 Incremental Approach

The incremental approach allows to organize the computation of linear invariants by following the incre-
mental design process. Actually, incremental design provides a natural and meaningful manner to split the
global characteristic system and to optimize its resolution.

The incremental approach relies on construction and manipulation of incremental characteristic sys-
tems. For a composite component, this characteristic system characterizes both (1) the existing interactions
defined inside and (2) the still open possibilities for further interaction (inside or with extra components).
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Definition 9 (Incremental Characteristic System) For a finite set of atomic componentsB1, . . . , Bn syn-
chronized by a connector γ, the incremental characteristic system SI(γ,B1, . . . , Bn) is defined as the
conjunction

SI(γ,B1, . . . , Bn) ≡
∧
a∈γ

(∑
l∈a•

xl −
∑
l∈•a

xl − ya = 0
)

The main difference with the global characteristic system is that, in addition to unknowns xl associated
to locations l ∈ L = ∪ni=1Li, the incremental system uses unknowns ya associated to interactions a ∈ γ.
These unknowns are used to capture the (still) partial composition through γ. Every unknown ya can be
interpreted as denoting the partial flow realized on interaction a in the current composition by γ. Intuitively,
any further extension of γ through layering will simply add extra constraints on the ya unknowns, and
preserve entirely the existing equations involving xl unknowns.

When the parallel composition is completed, that is, no more interactions are added, the global char-
acteristic system can be obtained from the incremental system simply by substituting with the constant 0
all the unknowns that correspond to the interactions. We define this operation as freezing of interaction
constraints.

Theorem 3 (Freezing) For every composite component γ(B1, . . . , Bn), the characteristic system SG is
obtained from the incremental characteristic system SI as follows:

SG ≈ (∃ya)a∈γ
(
SI ∧

∧
a∈γ

ya = 0
)

PROOF. The proof is trivial: the substitution of each unknown ya by 0 in SI gives syntactically the
system SG. �

This equivalence allows to establish that linear invariants are preserved through freezing. If u is a
solution of the incremental characteristic system which assigns 0 to all ya unknowns then, its restriction
u|L to xl unknowns is a solution of global characteristic system. Such solutions u of incremental systems
are called hereafter invariant-generating. By using observation above and theorem 1 it holds that u|L
defines a linear invariant for the composite component γ(B1, ..., Bn) for any invariant-generating solution
u of SI(γ,B1, ..., Bn).

The main advantage of incremental systems is that they are easily transformed through layering. That
is, there exist a strong relationship between the incremental systems, before and after layering, as stated by
the following theorem.

Theorem 4 (Layering) Given composite component γ(B1, . . . , Bn) and δ an increment of γ, it holds that

SI(δγ,B1, . . . , Bn) ≈ (∃yb)b∈γ∩δf
(
SI(γ,B1 · · ·Bn) ∧

∧
a∈δ

(
ya −

∑
bk∈γ,tkbk=a

ybk = 0
))

PROOF. By definition of layering, δγ = (γ	δf )⊕δ. The incremental characteristic system S(δγ,B1, ..., Bn)
is therefore equal to SI((γ 	 δf )⊕ δ,B1, ..., Bn) and can be rewritten as:∧

a∈γ	δf

(∑
l∈a•

xl −
∑
l∈•a

xl − ya = 0
)
∧
∧
a∈δ

(∑
l∈a•

xl −
∑
l∈•a

xl − ya = 0
)

The first conjunction term can be obtained by applying existential quantification of unknowns (yb)b∈γ∩δf
on the conjunction over the set of interactions γ:∧

a∈γ	δf

(∑
l∈a•

xl −
∑
l∈•a

xl − ya = 0
)
≡ (∃yb)b∈γ∩δf

( ∧
a∈γ

(∑
l∈a•

xl −
∑
l∈•a

xl − ya = 0
))

The existential quantification can be safely extended over both conjunction terms, as quantified unknowns
do not occur (yet) in the second term. But now, regarding this second term, any interaction a of the
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increment δ can be written as a disjoint union a = tkbk where interactions bk ∈ γ, for all k. It follows
that •a = tk•bk, a• = tkb•k hence, we can rewrite for any a ∈ δ the sums

∑
l∈a•

xl −
∑
l∈•a

xl =
∑

bk∈γ,tkbk=a

(∑
l∈b•k

xl −
∑
l∈•bk

xl
)

=
∑

bk∈γ,tkbk=a

ybk

The above facts can be used together and prove the result. �

A direct consequence of the above theorem is that linear invariants are preserved by layering. That is,
any invariant-generating solution u of SI(γ,B1, ..., Bn) can be extended to an invariant-generating solution
u′ of SI(δγ,B1, ..., Bn) such that u|L = u′|L. In fact, ones can easily check that, whenever ya unknowns
are set to 0, incremental systems put less constraints on xl unknowns after layering than before, and hence,
invariant-generating solutions are preserved. Consequently, linear invariants discovered at any step of the
composition are preserved through layering operations.

Finally, the incremental system can also be split on disjoint union of components, as stated by the
following proposition.

Proposition 1 (Disjoint Union) Let B1 = γ1({Bi}i∈I1), B2 = γ2({Bi}i∈I2) be disjoint composite com-
ponents, that is, I1 ∩ I2 = ∅. Then, it holds:

SI(γ1 ⊕ γ2, {Bi}i∈I1∪I2) ≈ SI(γ1, {Bi}i∈I1)
∧
SI(γ2, {Bi}i∈I2)

PROOF. Using Definition 9, we obtain the characteristic system of the component (γ1⊕γ2)({Bi}i∈I1∪I2).
In this system, we split the main conjunction in the system by unfolding independently the two connectors
γ1 and γ2:

SI(γ1 ⊕ γ2, {Bi}i∈I1∪I2) ≈∧
a∈γ1

(∑
l∈a•

xl −
∑
l∈•a

xl − ya = 0
)
∧
∧
a∈γ2

(∑
l∈a•

xl −
∑
l∈•a

xl − ya = 0
)

Using Definition 9, we rewrite each subterm to obtain the equivalence SI(γ1⊕γ2, {Bi}i∈I1∪I2) ≈ SI(γ1, {Bi}i∈I1∪I2)∧
SI(γ2, {Bi}i∈I1∪I2). The interactions in γ1 are only defined over the component set {Bi}i∈I1 . For any in-
teraction a ∈ γ1, each unknown xl in the sets •a or a• corresponds to the location l. This location belongs to
a component of {Bi}i∈I1 that is separated from {Bi}i∈I1 : the characteristic systems SI(γ1, {Bi}i∈I1∪I2)
and SI(γ1, {Bi}i∈I1) are equivalent. We similarly deduce that SI(γ2, {Bi}i∈I1∪I2) ≈ SI(γ2, {Bi}i∈I2).
After rewritting terms using equivalence relation, the conclusion is immediate. �

This proposition allows to infer that invariant-generating solutions are preserved by disjoint union, and
consequently, any linear invariant discovered locally for γ1({Bi}i∈I1) and γ2({Bi}i∈I2) is also an invariant
for the composite (γ1 ⊕ γ2)({Bi}i∈I1∪I2).

Example 8 Following the incremental composition used for the example illustrated in Figure 2, the in-
cremental characteristic systems constructed at different steps of the design are given in the table below.
For each increment (a subdivision of the table) we discover some linear invariants. The computation steps
associated to the increments δ1 and δ2 gives an invariant at_li1 + at_li2 + at_li3 = 1 for each component
Pi and the invariant at_l41 +at_l42 = 1 for the component Lock. The next step corresponds to the disjoint
union: we merge the two characteristic systems, and we collect the invariants obtained form each one. For
the last increment δ3, we obtain the invariant at_l12 +at_l22 +at_l32 +at_l41 = 1. This invariant ensures
the mutual exclusion property in the system. When Lock is activated at_l42 = 1 and hence at_l41 = 0, the
invariant ensures that exactly one of the Pi reached its location at_li2.
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BIP Model Matrix A

Name |γ| |L| avg(γ) Matrix Size Fill factor
Voting Srv 18 29 2 522 17%
Philo(n) 5n 6n 2.2 30n2 4/(5n)
Smokers(n) 12n 9n 2.25 108n2 1/(2n)
ReadWrite(n) 33n 23n 2 759n2 1/(16n)
ATM(n) 39n 36n 0.6 1404n2 1/(3n)
Gas Station(n) 40n 43n 2.5 1720n2 1/(16n)

Table 1: Matrix sparsity for the characteristic systems SG

SG(γ, P1, P2, P3,Lock)

∃yp1s∃yp2s∃yp3s∃yq1t∃yq2t∃yq3t∃yr1r2r3
yp1s = 0 yp2s = 0 yp3s = 0 yr1r2r3 = 0
yq1t = 0 yq2t = 0 yq3t = 0

SI(δ3(δ1(γ⊥
1 ⊕ γ⊥

Lock)⊕ δ2(γ⊥
2 ⊕ γ⊥

3 )), P1, P2, P3,Lock)

∃yr1∃yp2∃yq2∃yp3∃yq3∃ys∃yt∃yr2r3
yp2s = yp2 + ys yp3s = yp3 + ys yr1r2r3 = yr1 + yr2r2
yq2t = yq2 + yt yq3t = yq3 + yt

SI(δ1(γ⊥
1 ⊕ γ⊥

Lock), P1,Lock)

∃yp1∃yq1
yp1s = yp1 + ys
yq1t = yq1 + yt

SI(γ⊥
1 , P1)

xl12 − xl11 = yp1
xl13 − xl12 = yq1
xl11 − xl13 = yr1

∧
SI(γ⊥

Lock,Lock)

xl42 − xl41 = ys
xl41 − xl42 = yt

∧
SI(δ2(γ⊥

2 ⊕ γ⊥
3 ), P2, P3)

∃yr2∃yr3
yr2r3 = yr2 + yr3

SI(γ⊥
2 , P2)

xl22 − xl21 = yp2
xl23 − xl22 = yq2
xl21 − xl23 = yr2

∧

SI(γ⊥
3 , P3)

xl32 − xl31 = yp3
xl33 − xl32 = yq3
xl31 − xl33 = yr3

6 Implementation, Experiments and Results
We split the section in two parts. First we show the power of algorithm 1; second we demonstrate the
efficiency of our incremental approach.

6.1 On Algorithm 1
As we have seen in previous sections, linear invariant generation relies on methods to compute the set of
solutions of a given homogeneous system of linear equations. As we observed in Section 5, complexity
of standard algorithms for solving such systems is O(mn2), for systems of size m × n. Most of classical
algorithms such as Gauss-Jordan elimination may reach this complexity. This is especially the case when
considering dense systems. However, in the context of our work, we observed that characteristic systems
are usually sparse. The reason is that interactions synchronize few components, and therefore the asso-
ciated equations involve few locations. In many cases, bigger is the composition (which implies a large
number of components and locations), lower is the fill factor of the characteristic system. Given a compo-
sition with |γ| interactions of atomic components totalizing |L| locations, the matrix A for SG has size of
|γ| × |L|. If avg(γ) denotes the average number of components used per interaction, the fill factor of A is
2 · avg(γ)/|L|. Table 1 illustrates the fill factor for some common BIP examples. This particular structure
is exploited by the global online Algorithm 1.

6.2 On Computing Linear Invariants
DFINDER. We have implemented the techniques proposed in this paper as an extension of DFINDER, a
tool capable of checking deadlocks of programm written in the BIP language. DFINDER originally im-
plements efficient symbolic techniques for computing Boolean invariants ψ of the interactions between
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components [6]. As shown in Figure 3, ψ can then be combined with the invariant φi of each constituent
component to deduce a global invariant for the complete system (see [17] for a proof). At the same time,
the tool also computes all the potential deadlock states denoted by DIS. If the formula ∧iφi ∧ Ψ ∧DIS
is unsatifiable, then the system is deadlock free. In the other case, the solutions denote some suspicious
counter examples that can be reused by the tool to refine automatically the analysis. For the purpose of this
work, we have implemented new techniques based on linear invariants in order to compute ψ.

Expression Analysis

satisfiability
Φ∧Ψ∧DI S

Model

Abstraction
Φi

generation
DI S

generation

Ψ
generation

BIP

DI SΦiΨ

Predicate-
abstraction

DL free
false DL

suspects

CEX
generation

Analysy is

feasibility
check

predicates

true

CEX

Omega

Yices

BDD

Figure 3: Structure of the D-Finder tool

Experiments. Table 2 represents a set of experiments. All of the experiments have been conducted
with incremental approach as we observed that it clearly outperforms the global one. All our experiments
were done with a 2.4GHz Core 2 Duo CPU with 8GB of RAM (a laptop running Mac OS X 10.6). We
generated linear invariants for various case studies, including the Gas Station [18], a derived version of the
Smoker [19], the Automatic Teller Machine (ATM) [20] and the classical Dinning Philosopher problem.
Regarding the Gas Station example, we assume that every pump has 10 customers. Hence, if there are
50 pumps in a Gas Station, then we have 500 customers and the number of components including the
operator is thus 551. In the ATM example, every ATM machine is associated to one user. Therefore, if we
have 10 machines, then the number of components will be 22 (including the two components that describe
the Bank). Each example is parametrized by scale, which denotes its “size”; location denotes the total
number of control locations |L|; interaction is for the total number of interactions |γ|. The computation
time is given in minutes and the memory usage is given in kilo- or MegaBytes. The timeout, i.e., “-” is one
hour. We implemented the methods described in Section 5 within DFINDER. Alternatively we implemented
GAUSS a standard Gauss-Jordan elimination and we used CHARLIE, a general Petri-net analyzer [9]. We
observe that the approach based on Algorithm 1 is always faster, and the consumed memory by DFINDER is
negligible compared to the other approaches. We also observe that CHARLIE fails to analyze the Petri-nets
generated from the BIP models. It generates a particular set of invariants so-called semi-linear positive
invariants that require an important complexity. They allow to check several kinds of properties (structural,
coverability, reachability, . . . ), but for the reachability analysis they are however equivalent to the linear
invariants.

Preciseness. We also observe that our technique generates invariants that are coarser than Booleans
ones, which decreases the risk of introducing counter examples. Figures 4(a), 4(b) and 4(c) give the accu-
racy of the generated invariants (for both the Boolean and the linear one) for the Dining Philosopers, the
Gas Station and the ATM, with for each system with different sizes. On these figures, the value 60% means
that the reachable states of the system are 60% of all the states characterized by the invariants. It dualy
means that these same invariants catch 40% of unreachable states. Notice that an accuracy of 0% (i.e. no
reachable state contained) is never reached since the generated invariants are sound and always denote all
the reachable states. But for some of the Boolean invariants, the approximation is so imprecise that the
result is really close to 0% in the figures.

The above examples have differents types of interactions between the consituent componenents, and
this has an impact on the preciseness. In the Dining Philosophers, one can see that all the interactions
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(a) Dining Philosophers (b) Gas Station

(c) ATM

Figure 4: Preciseness for some examples

are there in order to introduce mutual exclusion mecanisms. As explained below, the linear invariants are
really adequate to express such properties as they can be encoded by linear equations. For such an example,
the result is of clear interest. Indeed, the generated linear invariants exactly denotes the set of reachable
states. For the same reason, we also obtain an excellent precision (90%) with the linear invariants for
Readers/Writers example.

On the contrary, the approximation for the Gas Station example is coarser. Indeed, the relation between
the consumers and the pumps is quite well-suited (e.g. ressemble a mutual exclusion principle), but the
overall behavior of the station is guaranteed by an operator that relies on global self-loops. Such interactions
are more expressive than linear equation. This means that they can only be approximated by such equations.
Additionally, each new pump added to the system is connected to the operator with interactions over the
self-loops that deteriorates the precision of the approximation.

In Figure 4(c), the ATM example contains also some interactions defined over self-loops. But there are
used to define some timers in some of the compenents. As such, they do not define strong synchronisations
between the compenents. This means that there impact is smaller than for the Gas Station. Consequently,
this justifies that for each ATM added in the system, the 60% of accuracy does not decrease so much.

Globally, we clearly observe that the linear invariants drastically increase the accuracy of the verifica-
tion compared to the boolean invariants. But as explained in [6], Boolean invariants are sufficient to prove
the deadlock freeness of a system. Moreover, if the linear invariants are more accurate than the boolean
invariants, the approximated states of the linear invariants are not always a subset of those of the boolean
invariants: the conjunction of the linear and boolean invariants increase the precision of the analysis for the
cases with self-loops like in the Gas Station example.
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Component information Time (m’ss) Memory (Bytes)
scale locations interactions CHARLIE GAUSS DFINDER CHARLIE GAUSS DFINDER

DINING PHILOSOPHERS

500 philos 3000 2500 8’40 0’03 >0’01 143M 120M 0.9M
1000 philos 6000 5000 74’42 0’13 0’01 468M 596M 1.0M
2000 philos 12000 10000 - 0’73 0’04 - 2.4G 1.2M
6000 philos 36000 30000 - - 1’40 - - 1.8M
9000 philos 54000 45000 - - 9’15 - - 2.0M

ATM
50 machines 1812 1656 - 0’14 >0’01 - 73M 1.6M

100 machines 3612 3306 - 1’38 0’01 - 238M 2.8M
200 machines 7212 6606 - 12’41 0’03 - 940M 4.0M
400 machines 14412 13206 - - 0’13 - 3.6G 6.4M
500 machines 18012 16506 - - 0’31 - - 7.2M

GAS STATION

50 pumps 2152 2000 - 1’17 0’01 - 69M 2.5M
100 pumps 4302 4000 - 14’58 0’04 - 271M 3.3M
200 pumps 8602 8000 - - 0’14 - - 4.7M
500 pumps 21502 20000 - - 2’30 - - 8.7M
700 pumps 30102 28000 - - 3’40 - - 11.4M

READERS - WRITERS

50 writers 1152 1650 3’15 1’06 >0’01 150M 54M 2.2M
100 writers 2322 3300 19’50 8’12 0’02 937M 212M 2.6M
200 writers 4642 6600 - 65’43 0’06 - 847M 3.2M
500 writers 11502 16500 - - 0’37 - - 5.0M

1000 writers 23002 33000 - - 3’22 - - 7.5M
2000 writers 46002 66000 - - 17’40 - - 9.7M

SMOKERS

300 smokers 906 901 0’17 0’30 0’01 90M 14M 1.4M
600 smokers 1806 1801 1’31 3’11 0’01 229M 52M 2.3M

1500 smokers 4506 4501 - 55’00 0’06 395M 319M 3.1M
6000 smokers 18006 18001 - - 1’51 - - 6.8M
9000 smokers 27006 27001 - - 4’37 - - 9.3M

Table 2: Execution time for some examples
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