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Abstract

A grand challenge in complex embedded systems design is developing methods and tools for
modeling and analyzing the behavior of an application software running on a given hardware
architecture. For application software running on multicore or distributed platforms, rigor-
ous performance analysis techniques are essential for determining optimal implementations
with respect to resource management criteria. We propose a rigorous method and a tool chain
that allows to obtain a faithful model representing the behavior of a mixed hardware/software
system from a model of its application software and a model of its underlying hardware archi-
tecture. The system model can be simulated and analyzed for validation of both functional and
extra-functional properties. It also provides a basis for performance evaluation and automated
code generation for target architectures. The method has been implemented as a tool chain
that uses DOL (Distributed Operation Layer [23]) as the frontend for specifying the appli-
cation software and hardware architecture, and BIP (Behavior Interaction Priority [6]) as the
modeling and analysis framework. It is illustrated through the construction of system models
of MJPEG and MPEG2 decoder applications running on MPARM, a multicore architecture.
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1 Introduction
Performance of embedded applications strongly depends on features of the underlying hardware platform.
In contrast to performance of application software running on a single core, getting the maximum through-
put out of multicore processors demands application software to be designed taking parallelism into account
from scratch. This is needed to catch up with the fast growth of computing capacity due to the foreseeable
exponential increase of physical parallelism. But programming, testing and verifying parallel software with
currently existing tools is notoriously hard, even for experts. There are no rigorous techniques for deriving
global model of a given system from models of its application software and its execution platform.

Application software must be programmed for performance, in a platform independent way, exhibiting
all potential parallelism. Its implementation must deal with mapping the specified application-level par-
allelism onto platform-level (threads, cores, processors) on an as-needed/as-available basis. Actually, this
mapping would need to be adapted dynamically as applications must scale up or down according to the
available resources of the execution platform. Moreover, efficiency and correctness are not the only con-
cerns. Programmer productivity, that is, the programmer’s ability to design correct software that gathers
the maximum performance out of an arbitrary multicore platform with ease should not be neglected [3].

Achieving these goals require a design flow based on a single semantic model. The design flow must
be able to generate rigorous models of mixed hardware/software systems, suitable for analysis, design
space exploration and automatic code generation. The main contribution of this paper is deriving a rig-
orous system model combining the application software and the architecture, which can be the basis for
multiple objectives, such as functional verification, performance evaluation and code generation for target
architectures.

We propose a system construction method that is both rigorous and allows a fine analysis of system dy-
namics. It is rigorous because it is based on formal models, have precise semantics and thus can be analyzed
by using formal techniques. A system model is derived by progressively integrating constraints induced
on an application software by the underlying hardware architecture. Both models are described in BIP [6],
which is a formal component based modeling framework. In contrast to ad hoc modeling approaches, the
system model is obtained from a BIP model of the application software and a description of the hardware
architecture, by application of source-to-source transformations that are correct-by-construction [8]. The
final generated model is a mixed software-hardware model which provides the capability using a single
model to simulate and apply formal verification techniques on it using the BIP framework.

Most of the frameworks for mixed HW/SW systems are based on SystemC [10] as a language for
modeling at various levels of abstractions. Various tools and associated design methodologies emerged
e.g., SystemCoDesigner [11], Spade [18], Sesame [9] to cite only a few. All these focus and facilitate the
construction of executable simulation models which, while being claimed cycle-accurate, do not rely on
a formal foundation. For instance, such models cannot be used to check formally the correctness of the
constructed system. There have been attempts on providing formal semantics to System-C models such
as SpecC [21], or using tools like Pinapa [20], however, they remain marginal and difficult to use mainly
because of the complexity of some of the SystemC components (i.e., simulator) and their dependencies on
C++.

One of the main needs for rigorous system model is performance evaluation. Simulation based methods
use ad-hoc executable system models e.g., models in SystemC [10,19]. They provide cycle-accurate results,
but are not adequate for thorough exploration of hardware architecture dynamics and its effects on software
execution. Furthermore, long simulation time is a major drawback. Trace-based co-simulation is used in
Spade [18], Sesame [9]. There exist much faster techniques that work on abstract system models e.g.,
Real Time Calculus [24] and SymTA/S [12]. They use formal analytical models representing a system
as a network of nodes exchanging streams. The dynamics of the execution platform is characterized by
execution times. Nonetheless, these techniques allow only estimation of pessimistic worst-case measures
(delays, buffer sizes, etc) and moreover, they require an abstract model of the application software. Building
these abstract models represent a significant modelling effort and, if done through a manual process, the
results are not guaranteed accurate. Similar drawbacks exists for performance analysis techniques based
on Timed-Automata [22, 16, 2, 13]. These can be used for modeling and solving scheduling problems. An
approach combining simulation and analytic models is presented in [17], where simulation results can be
propagated to analytic models and vice versa through well defined interfaces.
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The paper is structured as follows. Section 2 presents the method and the main steps in the design
flow, with a brief overview of the BIP framework and associated toolbox. The generation of the system
model follows in section 3. Section 4 describes the performance estimation technique applied on the system
model. Finally, experimental results are provided in section 5. In section 6 we conclude and discuss future
work directions.

2 Design Flow
The flow of our method is illustrated in Figure 1. The method takes three inputs: (i) the application soft-
ware, (ii) the hardware architecture and (iii) the mapping. We consider application software defined using
the Kahn process network model [15]. They consists of a set of deterministic processes communicating
through FIFO channels by executing atomic read/write operations. The behavior of each process is a se-
quential program. We consider hardware architectures described as interconnections of computational and
communication devices such as processors, buses and memories. Finally, we consider mappings that as-
sociate application software elements to hardware architecture, that is, processes to processors and FIFO
channels to memories.

In this paper, we will focus on the generation of the system model. We will also describe one of its
utilities, i.e., performance evaluation. The first stage of the method is the construction of the system model
in BIP. The system model represents the application mapped on the hardware architecture. The system
model is obtained by the three following steps:

1. the construction of a BIP model by automatic translation from the application software,

2. the construction of a BIP model by automatic translation from the hardware architecture,

3. the construction of the system model by source-to-source transformation of the previous two models
and their composition according to the mapping.

The second stage of the method is performance evaluation realized on the system model. We provide
a simulation-based technique allowing the accurate estimation of real-time characteristics (response times,
delays, latencies, throughputs, etc.) and particular indicators about the use of resources (bus conflicts,
memory conflicts, etc.).

The performance evaluation method combines native (BIP) simulation of the system model with online
code profiling on the target hardware architecture. That is, the (simulated) processing time required by
the application code is computed during simulation, on demand, using the application object code for the
target architecture and the processor weight table. The later provides the raw execution times for elementary
(assembler) instructions.

The method is completely automated and has been implemented in a tool. The tool uses as inputs
Distributed Operation Layer (DOL) [23] specifications, that is, the application software, the hardware
architecture and the mapping are described using the concrete formalisms available in the DOL framework.
The method is realized using the BIP framework [6, 7] and the associated toolbox1.

The BIP Component Framework

Our method is entirely supported by the BIP language and its associated toolset and design flow [5]. The
BIP language is a notation which allows building complex systems by coordinating the behavior of a set
of atomic components. Behavior is described as automata or Petri nets extended with data and functions
described in C/C++. Transitions are labelled with ports (action names), guards (enabling conditions on the
state of a component) as well as functions (computations on local data). The description of coordination
between components is layered. The first layer describes the interactions between components by using
connectors. An interaction is a set of strongly synchronized ports. It is labelled with guards (enabling
conditions) and data transfer functions (data exchange) between interacting components. The second layer

1http://www-verimag.imag.fr/Download.html
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Figure 1: The Flow for System Model Construction and Performance Evaluation

describes dynamic priorities between interactions and is used to express scheduling policies. The combi-
nation of interactions and priorities characterizes the overall architecture of a component. It confers BIP
strong expressiveness that cannot be matched by other languages [7]. BIP has clean operational semantics
that describe the behavior of a composite component as the composition of the behaviors of its atomic
components. This allows a direct relation between the underlying semantic model (transition systems) and
its implementation.

3 Deriving System Model

We use the DOL framework [23] as frontend to describe the input specification. The input specification
includes the application software, the hardware architecture and the mapping. The construction of the
system model in BIP from the input DOL specification is done in three steps, as described in the following
subsections.

3.1 Construction of Application Software Model in BIP

An application software in DOL [23] is a process network that consists of three basic entities: SW-Process,
SW-Channel, and SW-Connection, organized as described by the following abstract grammar:
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Application-Software ::= SW-Process+ . SW-Channel+ . SW-Connection+

SW-Process ::= (SW-InPort)∗ . (SW-OutPort)∗ . SW-Behavior
SW-Channel ::= SW-RecvPort . SW-SendPort . SW-Channel-Behavior

SW-Connection ::= SW-Read-Connection
| SW-Write-Connection

SW-Write-Connection ::= SW-OutPort . SW-RecvPort
SW-Read-Connection ::= SW-SendPort . SW-InPort

SW-Behavior ::= a-C-program
SW-Channel-Behavior ::= FIFO-Param+

Each software process P has input ports P.InPorti, output ports P.OutPortj and behavior P.Behavior.
Each channel C has a single input port C.RecvPort and a single output port C.SendPort. A write connection
between output port j of a process P and a channel C is a pair (P.OutPortj , C.RecvPort). A read connection
between input port i of process P and a channel C is a pair (C.SendPort, P.InPorti). We assume that ports
of channels are uniquely associated with ports of processes and vice versa.

Process behaviour is described using C programs with a particular structure (see figure 3 for a concrete
example). In general, the behaviour of a process P is defined by an initial call of the P init() function
followed by an endless loop calling the P fire() function. Communication is realized by using two particular
primitives, namely write and read for respectively sending and receiving data to software channels. A read
operation reads data from an input port, and a write operation writes data to an output port. The code may
also call another special primitive, namely detach, in order to terminate the execution of the process.

C1 C2Generator Square Consumer

(generator.c) (square.c) (consumer.c)

Figure 2: An application software

Example 1 An example process network is shown in figure 2. It has three SW-processes (generator,
square and consumer), connected through two SW-channels (C1 and C2). The generator produces an
integer and sends it to square, which squares it and send it to the consumer which prints the result. The
description of square process is shown in figure 3. It defines the data structure for the process state,
the function square init() to initialize the process state and the function square fire() to define the cyclic
behavior of the process. The square process uses integer variables index and len. The function square fire
defines a floating variable i, which holds the value read from the port IN. On every call of square fire, it
reads a value for i, squares it, writes it to the port OUT and increments the counter index. The process
terminates when index reaches len.

The construction of the application software model in BIP is structural: every process and every channel
are independently translated to atomic components in BIP and then connected according to their connec-
tions in the process network.

3.1.1 Translation of Software Processes into BIP

The translation converts every software process to an atomic component in BIP. Each port is defined as
a port in the atomic component. Data structures defined in the C functions are used as data in the atomic
component. Control locations correspond to invocation of read/write primitives for which synchroniza-
tion is required. Transitions are labeled by the port name associated with the primitives. Computation
statements are added as actions of the transitions.

The translation requires the extraction of a control-flow graph from the C code. It starts by parsing
the process code into an intermediate, annotated abstract syntax tree (AST). The translation to BIP is then
completed in two steps. In the first step, the interaction points in the AST are identified, that is, each call
to a read/write primitive is registered as an interaction point. The second step involves the construction
of an explicit control flow graph and its representation as a finite state automaton extended with data in
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#define IN 1
#define OUT 2
typedef struct _local_states {

int index;
int len;

} Square_State;
void square_init(Process *p) {

p->local->index = 0;
p->local->len = LENGTH;

}
int square_fire(Process *p) {

float i;
if (p->local->index < p->local->len) {

read((void*)IN, &i, sizeof(float), p);
i = i*i;
write((void*)OUT, &i, sizeof(float), p);

p->local->index++;
}
else {

detach(p);
return -1;

}
return 0;

}

Figure 3: C code fragment of the square process

BIP. For every interaction point, a control location is created. An outgoing transition is added from this
location, labeled by the port used in the read/write call. The transition models the primitive call and requires
synchronization with a software channel.

Statements other than read/write calls are added as actions to the existing transitions. Let us notice that
any functions that contain read/write calls (either directly or through nested calls) are inlined in the BIP
automaton. Consequently, our translation is restricted to programs without communication calls occurring
within recursive functions. Additional restrictions are, namely: no use of global variable; and no goto
statement.

address
size

address
size

L1

L2 L3

L4L5

size=sizeof(float);

address=&i;

i=i*i;

size=sizeof(float);

address=&i;

[index<len]

var: index, len, i, address, size

[!index<len]

index=0; len=LENGTH;

OUT

index++;

IN

OUT IN

ττ

τ

Figure 4: The model of the square process as an atomic BIP component

Example 2 Figure 4 shows the translation of the square process into an atomic component in BIP. The
generated BIP component has ports IN, OUT, control locations L1, . . . L5 and variables index, len and i.
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Additional variables size and address are associated as parameters of the ports. Transitions are labeled by
IN, OUT and τ , denoting an internal transition. At L2, it awaits synchronization through IN corresponding
to the read primitive call. At L4 it awaits synchronization through OUT corresponding the write primitive
call. At L1, internal transitions with guard model the conditional (if) statement. Exit of the process on a
detach is modeled by the deadlocked location L5.

3.1.2 Translation of Software Channels into BIP

Every software channel is translated into a predefined BIP atomic component, as shown in figure 5.
It has ports recvPort and sendPort, and a single control location L1. It contains an array of data buff
parametrized by size N . The variable x associated with recvPort gets the received value which is inserted
into buff. The variable y associated with sendPort contains the value to be read next. The FIFO policy is
implemented by using two indices i and j, for respectively insertion/deletion into/from the (circular) buffer
buff.

recvPort sendPort

x y

var: x, y, i, j, count, buff[N]

i=0; j=0; count=0;

L1recvPort

[count<N]

buff[i]=x; count++; i=(i+1)%N

y=buff[j];

sendPort

[count>0]

y=buff[j]; count−−; j=(j+1)%N

Figure 5: SW-channel (FIFO) in BIP

3.1.3 Translation of Connections into BIP

Every connection in the application software is translated into a BIP connector which strongly syn-
chronizes the corresponding ports. Connectors provide the transfer of data implementing the read and
write operations. A connector implementing write transfers data from a process to a channel, whereas the
one implementing read transfers data from a channel to a process.

recvPort

sendPort

C2

sendPort

recvPort

generator
square

consumer

OUT

IN

OUT

IN

C1

Figure 6: Application software model in BIP

Example 3 The figure 6 provides the complete BIP model obtained from the application example given in
figure 2. It consists of BIP components generator sending data to square and consumer by using channels
C1 and C2 respectively.

3.2 Construction of Hardware Architecture Model in BIP
A hardware architecture consists of computational resources interconnected according to communication
paths. Resources are used for computation (processors, memories) or for communication (buses). Com-
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munication paths define the connections between computational resources. More formally, we consider the
family of hardware architectures that can be represented in DOL [23] and are abstracted by the following
grammar:

Hardware-Architecture ::= HW-Resource+ . HW-Comm-Path+

HW-Resource ::= HW-Processor | HW-Memory | HW-Bus
HW-Comm-Path ::= HW-Read-Path . HW-Write-Path

HW-Read-Path ::= HW-Memory . HW-Bus+ . HW-Processor
HW-Write-Path ::= HW-Processor . HW-Bus+ . HW-Memory

A hardware architecture can be equally viewed as a graph with three kinds of nodes (processor, memory
and bus) and edges defined according to the communication paths.

SB

LB2

ARM2Tile1 Tile2ARM1

LB1

LM2LM1

SM

Figure 7: A multi-core hardware architecture with two ARM tiles

Example 4 An example of a multi-core hardware architecture is shown in figure 7. It contains two identical
tiles and a shared memory (SM) connected via a shared bus (SB). Each tile i = 1, 2, contains an ARM
processor (ARMi) connected to the local memory (LMi) via a local bus (LBi). The local memory of each
tile is also connected to the shared bus. We consider the following three communication paths, ordered
(write, read) as follows:

WP1 = ARM1.LB1.LM1 RP1 = LM1.LB1.ARM1
WP2 = ARM1.LB1.SB.SM RP2 = SM.SB.LB2.ARM2
WP3 = ARM2.LB2.LM2 RP3 = LM2.LB2.ARM2

The BIP model constructed from the hardware architecture represents explicitly, in an operational man-
ner, the interconnect between the different resources as defined by the communication paths. This model
is organized as collection of bus, processor and memory components. Nonetheless, let us notice that, the
processor and memory components are just empty, placeholder components. We introduce them in the BIP
model of the hardware architecture only for the sake of clarity. They will be filled during the next step, that
is, the construction of the system model.

Every bus component is concretely defined as a scheduled collection of communication path fragments.
That is, for every read/write path going on a bus, we consider the path fragment defined by three atomic
components, respectively:

• the MasterInterface (MI) component, which controls the access of the communication path on the bus
and initiates the read/write operation. Depending on its position on the path, the master component
receives data either from some software processes executing inside the processor or from the previous
path segment.

• the VirtualLink (VL) component, which models effectively the transfer of data over the bus, from the
master once it gets access to the bus, towards the slave.

• the SlaveInterface (SI) component, which acts like a buffer and is needed to connect further either to
the next path fragment or to some FIFO buffers on the memory, depending on the position of the bus
on the path.

All the paths segments going over the same bus must share its transport capabilities according to some
predefined bus policy. The scheduling can be of one of fixed-priority, round-robin or TDMA. We model it
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explicitly by using a HW-Bus-Scheduler component, which interacts with all the master interface compo-
nents and ensures exclusive access for transmission of data, according to the policy selected.

All these components are predefined and belongs to the BIP hardware library. They have identical
interfaces for the tranport of data, respectively ports RR/WR (Read/Write-Request), RA/WA (Read/Write-
Acknowledge) to connect with upper components, and RB/WB (Read/Write-Begin), RE/WE (Read/Write-
End) to connect with lower components on the path. In addition, the MI components use ports ACQ
(Acquire) and REL (Release) to interact with the bus scheduler.

Finally, let us also notice that all these components are timed BIP components [6]. The VirtualLink
components model the latency of the buffer. The Master/SlaveInterface components observe the time
progress and can be used for observation purposes, as explained later in section 4.

Example 5 The BIP model of the local bus LB1 of example 4 is shown in figure 8. It implements the two
write paths WP1, WP2 and the read path RP1.

RB RE

RARR

RB RE

RARRRARR

RB RE
HW−Bus−
Scheduler

RB RE

RARR

RB RE

RARR

RB RE

RARR

RB RE

RARR

WP1
VL

RB RE

RARR RARR

RB RE

RP1
SI

WP1
MI

RP1 WP2
MI MI

ACQ

REL

ACQ ACQ

REL REL
RELACQ

WP2
VL

RP1
VL

WP2
SI

RP1 WP2WP1

WP1
SI

Figure 8: The BIP Model of the LB1 bus

Every connection is realized using BIP connectors which strongly synchronize the corresponding ports.
The behavior of the connector implements the transfer of data, its address and size between the successes-
sive components, corresponding to the write and read operations.

Example 6 Figure 9 illustrates the BIP hardware model of the 2-Tile ARM arhitecture of example 4.
Communication paths between the processors and the memories are implemented using the previously
defined set of Bus components.

3.3 Construction of the System Model in BIP

Given the BIP models of respectively the application software and hardware architecture, the construction
of the BIP system model is completed in two steps:

1. transformation of components in the BIP application model, namely decomposing the SW-Channels
into data buffers and read/write FIFO access routines, and consequently breaking the atomicity of
the read/write operations in SW-Processes.

2. allocation of the transformed processes and FIFO routines on hardware processors and respectively
data buffers on hardware memories according to the mapping, and eventually filling up the processor
and memory placeholder components.

8/18 Verimag Research Report no TR-2011-5



Rigorous Modeling of HW/SW Systems P. Bourgos, A. Basu, M. Bozga, S. Bensalem, J. Sifakis, K. Huang

VL
RP1

VL
WP1

VL
WP2

WP1

SI

RP1

SI

WP2

SI

VL
RP2

VL
WP3

VL
RP3

RP2

SI

RP3

SI SI

WP3

VL
WP2

VL
RP2

SM

WP2 RP2

SI SI

HW−Bus−

Scheduler

HW−Bus−

Scheduler

HW−Bus−

Scheduler

Tile_1 Tile_2
ARM1 ARM2

WP1 WP2

MI MI

RP1

MI

RP2

MI

WP3

MI

RP3
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LB2LB1

LM1 LM2

WP2 RP2

MI MI
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Figure 9: The BIP model of the two ARM hardware architecture

Formally, the BIP system model conforms to the following abstract grammar:
System-Model ::= HW-Processor+ . HW-Memory+ . HW-Bus+

HW-Processor ::= (SW-Process(t))+ . HdS-Routine+ .
HW-Cpu-Scheduler . SW-Connection+

HdS-Routine ::= FIFO-Read | FIFO-Write
SW-Connection ::= SW-Process-HdS-Routine

| SW-Process-SW-Scheduler
| HdS-Routine-SW-Scheduler

HW-Memory ::= FIFO-Buffer+

3.3.1 Transformation of the BIP Application Model

In order to deploy the application software on the architecture, we need a low level implementation
model for the SW-Channels where the control and the data are dissociated and moreover, the read/write
operations are no longer atomic.

Splitting software channels
Every SW-Channel in the application software is replaced by a composition of FIFO-Write, FIFO-Read

and a FIFO-Buffer atomic components. The two former components represent the control part of the soft-
ware channel, that is, the hardware dependent software routines implementing the read/write operations.
The latter component simply represents the buffer of data.

All the three components FIFO-Read, FIFO-Write, FIFO-Buffer are predefined BIP components and
belong to the BIP hardware dependent software library. The FIFO-Read component, illustrated in figure 11,
implements the read operation on channels. It has the ports RR (Read-Request), RA (Read-Acknowledge)
for its interaction with a software process read operation, and ports RB (Read-Begin), RE (Read-End) for
its interaction with the buffer. The FIFO-Write component implements the write action in a similar manner.

Let us notice that the two routines, FIFO-Write and FIFO-Read, require extra synchronization with
each other in order to maintain a coherent value for the used space within the buffer. This is realized by
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FIFO−Buffer

FIFO−Write FIFO−Read

WE

SIGSEM

UPDSEM

UPDSEM

SIGSEM

RB

RR RA

REWE

WB RB

ACQ

WB
REL

ACQ

WR WA

RE

REL

Figure 10: Low-level implementation BIP model for software channels

L1

L2

L4 L5

L3

L6
L7

RR

RR

sem: used

[used<sizeToRead]

[used>=sizeToRead] 

[used>=sizeToRead] 

used+=sizeWritten;

var: sizeToRead, memAddress

dataRead, sizeWritten

RA

RB RE

RA

RE

RB

ACQ

REL

SIGSEM

UPDSEM

SIGSEM

ACQ

REL

used−=sizeToRead;

UPDSEM

Figure 11: FIFO-Read component

using strong synchronization between two control ports, SIGSEM and UPDSEM. Moreover, they also use
the ports REL and ACQ for interaction with the processor scheduler. These ports are used to release (resp.
acquire) the processor whenever the read/write operation is suspended (resp. resumed) due to lack (resp.
presence) of available data (or available space) in the buffer.

The FIFO-Buffer represents a passive component modeling the data storage. It has ports WB, WE and
RB, RE for writing and reading respectively. The ports for writing (resp. reading) synchronizes with the
FIFO-Write (resp. FIFO-Read) component.

We can prove that the proposed model is a correct implementation of the SW-Channel. That is, the
composition is a refined model of the SW-Channel which fully preserves the input/output behaviour of the
software channel.

Transformation of software processes
The splitting of SW-Channels as described before require the transformation of the software processes

as well.
The first transformation consists in breaking atomicity of write and read operations. Every transition

involving an input/output port X is split into two transitions, labeled by fresh ports, respectively XB (i.e., X-
begin) and XE (i.e., X-end). This is obtained by adding new control locations for each read/write operations
in the behavior of the process.

The second transformation, completely orthogonal to the first one, consists in adding interactions with
the processor scheduler. This transformation is needed since several processes, together with their asso-
ciated FIFO access routines, are potentially mapped on the same hardware processor and must use it in
mutual exclusion. The ports ACQ and REL are added for interaction with the process scheduler. The port
ACQ is used for acquiring and REL is for releasing the processor. A process acquires the processor at the
start of its behavior. It releases the processor on its termination.

Example 7 The transformed behavior of the square process from figure 4 is provided in figure 12.

Let us mention that, the transformed model is a correct implementation of the initial model constructed
from the application software. That is, it can be formally proven that the input/output behavior of every
process is fully preserved by the transformation above.
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Figure 12: The transformed BIP model for the square process

3.3.2 Allocation according to mapping

Given an Application-Software and a Hardware-Architecture, a mapping Map associates software pro-
cesses to hardware processors and software channels to memories, formally:

Mapping ::= Mapping-Item+

Mapping-Item ::= SW-Process 7→ HW-Processor
| SW-Channel 7→ HW-Memory

A mapping must be consistent. That is, for every write-connection from process P to channel C in the
application software, if the mapping associates P on processor H and C on memory M, there must exist a
write-path of the form H Bus1 . . . Busn M in the hardware architecture. Similarly, for every read-connection
from channel C to process P , there must exist a read-path of the form M Bus′1 . . . Bus′m H.

Example 8 For our example, we consider the following consistent mapping:
generator 7→ ARM1 C1 7→ LM1

square 7→ ARM1 C2 7→ SM
consumer 7→ ARM2

The construction of the system model is completed as follows. For every hardware processor, we
consider the composition of all transformed software processes mapped on it, together with all the FIFO
routines required to access the FIFO buffers. These components are connected as defined by the trans-
formed software model. Additionally, the composition includes a HW-CPU-Scheduler component which
ensures mutual exclusion for execution on the processor.

Example 9 The structure of the ARM1 processor is shown in figure 13. It contains the generator and
square processes together with their associated FIFO routines respectively, the FIFO-Write for writing on
C1, the FIFO-Read for reading from C1 and the FIFO-Write for writing on C2. The first one is used by
the generator whereas the last two are used by the square.

Moreover, for every memory component, we consider the union of all the FIFO buffers mapped onto
it according to the mapping. Let us remark that no scheduling is done here: all the operations requiring
access to memory are controlled at processor and bus, the memories being simple passive components,
with no behaviour.

Finally, the direct connections between the FIFO routines and the FIFO buffers which exist in the
transformed software model are replaced by connections over the associated hardware communication
paths. For example, the request/acknowledge connectors between a FIFO routine and the FIFO buffer (FB)
are replaced by (i) request/acknowledge connectors from the FIFO routine to the master interface of the
first bus of the associated hardware path and (ii) request/acknowledge connectors from the slave interface
of the last bus of the path to the FIFO buffer.
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Figure 13: The BIP Model of the HW Processor ARM1

We assume high cache rate for the local variables of the processes mapped on a processor, and hence
we do not model explicitly the allocation of process data in the memory. The memory is used only to model
inter process data communications through the software FIFOs.

The system model can be seen as a refined implementation of the transformed BIP model of the ap-
plication software according to hardware constraints. In fact, direct communications between components
within the application software model have been replaced by multi-hop communication using hardware
communication paths, along different buses. Moreover, mutual exclusion constraints are enforced be-
tween components running on the same hardware processors. These transformation does not impact the
input/output behavior of the application, that is, the functionality of the application model within the system
model is fully preserved. Nevertheless, they reveal all the non-functional constraints the hardware architec-
ture put on the execution due to contention for bus and memory access, bus access and transfer latencies,
contention for processor, etc. These constraints are mandatory for an accurate performance evaluation of
the application mapped on the hardware architecture.

Example 10 The figure 14 shows the complete system model obtained for the mapping of the software
application given in figure 6 to the hardware architecture given in figure 9 according to the mapping from
the example 8.

4 Performance Estimation on System Model
We provide an infrastructure for performance estimation of the system model based on native BIP simula-
tion. The process is dynamic and based on fine granular analysis of code generated for the target platform,
using weight table profiling, as shown in figure 1. It is used to obtain accurate execution times for the code
of processes on the target platform. The method is described in the following subsections.

4.1 Instrumenting the System Model
The system model is instrumented with the profiling API. The API calls are embedded in the behavior of the
SW-Processes. Every block of code, except for the read/write calls are instrumented by inserting profiling
function calls at the start and at the end of the executable block of code associated with the transition.
These calls invoke the profiler and are used to get accurate execution times.

The instrumented BIP system model is used as such by the BIP tool-chain for compilation and execution
using BIP native simulator. On execution, the profiler is invoked through the use of profiling API, which
dynamically estimates the computation time of the current block of code of the SW-Processes. The API
propagates the estimated execution time to the SW-Process, which is recorded by dedicated observers for
computation delay measurements.

The observers added in the system model are timed BIP components and monitor both the computa-
tion and the communication delay results. The communication latencies of the buses and memories are
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Figure 14: The BIP system model of generator-square-consumer application software mapped into 2-tile
ARM hardware architecture

recorded by separate sets of observers. We also have observers for measuring conflicts in the use of bus
and memories.

4.2 Weight Table Profiling

We use standard tools for cross-compilation and coverage profiling of the source code for SW-Processes,
generated from the system model using the BIP tool-chain. The source code is cross-compiled to generate
the object code (assembly) for the target processor. The source code is also instrumented for coverage
analysis. The profiler is parameterized by a weight-table, which characterizes the time of executing each
elementary instruction on the target HW-Processor. The object code, instrumented sources and weight-
table are used by the profiler dynamically during the simulation to estimate the execution time of transitions
within processes.

The profiler is implemented as a runtime process with an API, that provides routines for: 1) notifying
the portion of the code to be profiled, and 2) sending back the estimation times.

5 Experiments

The method described in section 3 has been implemented in a tool 2. It consists of two parts, the frontend
that transforms the input specification into a system model, and the backend for performance estimation on
the system model. DOL is used as an input specification framework to describe the application software,
the hardware architecture as well as the mapping.

2http://www-verimag.imag.fr/BIP-System-Designer.html
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The frontend uses an open source C parser called codegen [1] to parse C files that describe the behav-
ior of the DOL processes into an intermediate model. This, along with the description of the hardware
architecture and mapping information (XML description) is transformed into the system model.

The backend uses gcov as a profiling tool for code coverage, and arm-rtems-g++ cross compiler for
assembly code generation for ARM processors. The weight-table is created by considering the instruction
set from the ARM7 data sheet 3.

We experimented the method on two applications: MJPEG [14] and MPEG-2 [23, 14] described in
subsections 5.1 and 5.2 respectively. We used the multi-processor ARM (MPARM 4) with five tiles as
the target architecture (a two tile MPARM is illustrated in figure 7). For the hardware model in BIP, we
assumed all the local memories as SRAM with an access time of 2 cycles. The shared memory is a DRAM
with an access time of 6 cycles. All CPU frequencies are assumed to be 200MHz. Communication paths
are defined between all five processors using shared and local memories.

5.1 MJPEG Decoder
The MJPEG decoder application software reads a sequence of MJPEG frames and displays the decom-
pressed video frames. The process network of the application is illustrated in figure 15. It contains five
processes SplitStream (SS), SplitFrame (SF), IqzigzagIDCT (IDCT), MergeFrame (MF) and MergeStream
(MS), and nine communication sw channels C1, . . . , C9.

ARM1 ARM2 ARM3 ARM4 ARM5

Shared
Memory

C2 C4

C5

C9

C6

split−
stream

split−
frame idct

iqzigzag− merge−
frame

merge−
stream

C1 C3 C7 C8

Figure 15: MJPEG Decoder application and a mapping

ARM1 ARM2 ARM3 ARM4 ARM5
1 all
2 SS, SF , IQ MF , MS
3 SS, SF IQ, MF , MS
4 SS, SF IQ MF , MS
5 SS, MS SF IQ MF
6 SS SF IQ MF MS
7 SS, SF IQ MF , MS
8 SS SF IQ MF MS

Shared LM1 LM2 LM3 LM4
1 all
2 C6, C7 C1, C2, C3, C4, C5 C8, C9
3 C3, C4, C5, C6 C1, C2 C7, C8, C9
4 C3, C4, C5, C6, C7 C1, C2 C8, C9
5 all
6 all
7 C6, C7 C1, C2, C3, C4, C5 C8, C9
8 C1, C2 C3, C4, C5, C6 C7 C8, C9

Table 1: Mapping Description of the processes and the sw channels

We experimented with eight different mappings to analyze their effect on the total computation and
communication time for decoding a frame. The process and the sw channel mappings are the illustrated on
table 1.

3http://www.datasheetarchive.com/ARM7-datasheet.html
4http://www-micrel.deis.unibo.it/sitonew/research/mparm.html
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For the mappings described above, a system model contains about 50 BIP atomic components and 220
BIP connectors, and consists of approximately 6K lines of BIP code, generating around 19.5K lines of C
code for simulation.
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Figure 16: Mjpeg Performance Analysis Results

The total computation and communication delays for decoding a frame for different mappings are
shown in figure 16. Mapping (1) produces the worst computation time as all processes are mapped to a
single processor. Mapping (2) uses two processors, still the performance does not improve much. But
(3) gives much better performance as the computation load is balanced. The other mappings can not
produce better performance as the load can not be further distributed, even if more processors are used.
The communication overhead is reduced if we map more channels to the local memories of the processors.
The bus and memory access conflicts are shown in figure 16. As more channels are mapped to the local
memory, the shared bus contention is reduced. However, this might increase the local memory contention,
as shown for (8).

5.2 MPEG2 Decoder
The MPEG2 decoder application decodes a set of moving pictures and associated audio information. We
used an application case study where there are seven processes dispatch gops (DG), dispatch mb (DM),
dispatch blocks (DB), transform block (TB), collect blocks (CB), collect mb (CM) and collect gops (CG)
and six software channels C1, . . . , C6. The process and the sw channel mappings are illustrated on table 2.

For the MPEG-2 case study a generated BIP System Model contains about 90 BIP atomic components,
340 BIP connectors and 30K lines of BIP code generating approximately 100K lines of C code.

The total computation, communication and throughput delays for decoding 5 frames for different map-
pings are shown in figure 18. The MPEG-2 process network is characterized as computationally intensive.
Thus, the more we distribute the computational load to different CPUs the smaller the computational delay
is. Since the sw channels are few, there is small difference regarding the communication delay between
mappings, except for Mapping (1) where all processes and channels are mapped on a single tile. However,
the more we distribute the process network into more tiles, the greater the communication delay becomes
and the more frequently bus conflicts occur.
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Figure 17: MPEG-2 Decoder application and a mapping

ARM1 ARM2 ARM3 ARM4 ARM5
1 all
2 DG, DM , DB, TBCB, CM , CG
3 DG, DM DB, TB CB, CM , CG
4 DG DM , DB TB CB, CM , CG
5 DG DM , DB TB CB, CM CG
6 DG, DM DB TB CB CM , CG
7 DG DM , DB TB CB, CM CG

Shared LM1 LM2 LM3 LM4 LM5
1 all
2 C4 C1, C2, C3 C5, C6
3 C2, C4 C1 C3 C5, C6
4 C1, C3, C4 C2 C5, C6
5 C1, C3, C4, C6 C2 C5
6 C2, C3, C4, C5 C1 C5
7 C1 C2, C3 C4 C5, C6

Table 2: Mapping Description of the processes and the sw channels

 6

 7

 8

 9

 10

 11

1 2 3 4 5 6 7

C
om

pu
ta

tio
n 

D
el

ay
 (

m
eg

ac
yc

le
s)

 160

 180

 200

 220

 240

 260

 280

 300

1 2 3 4 5 6 7

C
om

m
un

ic
at

io
n 

D
el

ay
 (

ki
lo

cy
cl

es
)

 0

 10000

 20000

 30000

 40000

 50000

 60000

0 1 2 3 4 5 6 7

B
us

 c
on

fli
ct

 (
cy

cl
es

)

Figure 18: Mpeg-2 Performance Analysis Results

6 Conclusion

The presented method allows generation of a correct-by-construction model of a mixed hardware/software
system from application software, a description of the hardware architecture and a mapping. The method is
completely automated and supported by BIP tools. The system model is obtained by refining the application
software model and composing it with the hardware architecture model. The composition is defined by
the mapping. BIP instrumentates incremental construction of the models. Its expressiveness allows the
integration of architecture constraints into the application model without suffering complexity explosion.
DOL is used as a front-end.

The method clearly separates software and hardware design issues. It is also parameterized by design
choices related to resource management such as scheduling policies, memory size and execution times.
This allows mastering the complexity and appreciation of the impact of each parameter on system behavior.

When the generated system model is adequately instrumented with execution times, it can be used
for performance analysis and design space exploration. Experimental results show the feasibility of the
system model for fine granular analysis of the effects of architecture and mapping constraints on the system
behavior. The method is tractable and allows design space exploration to determine optimal solutions.
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Future work includes extension to other programming models for the application software and richer
hardware architecture models that includes DMA (Direct Memory Access) Controller, Bus Bridge and
Network on Chip communication. Another issue is the optimization of our performance estimation method.
We can enrich the system model with performance parameters through an initial calibration step, instead of
dynamic analysis of the target code, to fasten the simulation. Moreover, we plan to include statistical model
checking on system models consisting of multiple applications running on complex multicore architectures
for performance analysis, as in [4].
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[21] Wolfgang Mueller, Rainer Dömer, and Andreas Gerstlauer. The formal execution semantics of SpecC.
Proceedings of the 15th international symposium on System Synthesis ISSS 02, page 150, 2002.

[22] Ramzi Ben Salah, Marius Bozga, and Oded Maler. Compositional timing analysis. In EMSOFT,
pages 39–48, 2009.

[23] Lothar Thiele, Iuliana Bacivarov, Wolfgang Haid, and Kai Huang. Mapping applications to tiled mul-
tiprocessor embedded systems. In ACSD ’07: Proceedings of the Seventh International Conference
on Application of Concurrency to System Design, pages 29–40, Washington, DC, USA, 2007. IEEE
Computer Society.

[24] Lothar Thiele, Samarjit Chakraborty, and Martin Naedele. Real-time calculus for scheduling hard
real-time systems, 2002.

18/18 Verimag Research Report no TR-2011-5


	Introduction
	Design Flow
	Deriving System Model
	Construction of Application Software Model in BIP
	Translation of Software Processes into BIP
	Translation of Software Channels into BIP
	Translation of Connections into BIP

	Construction of Hardware Architecture Model in BIP
	Construction of the System Model in BIP
	Transformation of the BIP Application Model
	Allocation according to mapping


	Performance Estimation on System Model
	Instrumenting the System Model
	Weight Table Profiling

	Experiments
	MJPEG Decoder
	MPEG2 Decoder

	Conclusion

