
Automated Distributed
Implementation of Component-based

Models with Priorities

Borzoo Bonakdarpour, Marius Bozga, Jean Quilbeuf

Verimag Research Report no TR-2011-3

February 2011

Reports are downloadable at the following address
http://www-verimag.imag.fr

Unité Mixte de Recherche 5104 CNRS - INPG - UJF
Centre Equation
2, avenue de VIGNATE
F-38610 GIERES
tel : +33 456 52 03 40
fax : +33 456 52 03 50
http://www-verimag.imag.fr

http://www-verimag.imag.fr


Automated Distributed Implementation of Component-based
Models with Priorities

Borzoo Bonakdarpour, Marius Bozga, Jean Quilbeuf

February 2011

Abstract

In this paper, we introduce a novel model-based approach for constructing correct distributed
implementation of component-based models constrained by priorities. We argue that model-
based methods are especially of interest in the context of distributed system due to their in-
herent complexity. Our three-phase method’s input is a model specified in terms of a set of
behavioural components that interact through a set of high-level synchronization primitives
(e.g., rendezvous and broadcasts) and priority rules for scheduling purposes. Our technique,
first, transforms the input model into a model that has no priorities. Then, it transforms the
deprioritized model into another model that resolves distributed conflicts by incorporating a
solution to the committee coordination problem. Finally, it generates distributed code using
asynchronous point-to-point send/receive primitives. All transformations preserve the prop-
erties of their input model by ensuring observational equivalence. The transformations are
implemented and our experiments validate their effectiveness.

Keywords: Correct-by-construction; Distributed implementation; Transformation; Priorities; BIP

Reviewers:

How to cite this report:

@techreport {TR-2011-3,
title = {Automated Distributed Implementation of Component-based

Models with Priorities},
author = {Borzoo Bonakdarpour, Marius Bozga, Jean Quilbeuf},
institution = {{Verimag} Research Report},
number = {TR-2011-3},
year = {}

}



Borzoo Bonakdarpour, Marius Bozga, Jean Quilbeuf

1 Introduction
Correct design and implementation of computing systems has been an ongoing research topic in the past
three decades. This problem is significantly more challenging in the context of distributed systems due
to a number of factors such as non-determinism, non-atomic execution of processes, race conditions, and
occurrence of faults. Model-based development of such applications aims to increase the integrity of these
applications through the usage of explicit models employed in clearly defined transformation steps leading
to correct-by-construction artifacts. This approach is beneficial, as one can ensure functional correctness
of the system by dealing with a high-level formally specified model that abstracts implementation details
and then derive a correct implementation through a series of transformations that terminates when an actual
executable code is obtained.

In this paper, we focus on the BIP framework [5] as our formal modelling language. BIP (Behaviour,
Interaction, Priority) is based on a semantic model encompassing composition of heterogeneous compo-
nents. The behaviour of components is described as an automaton or Petri net extended by data and func-
tions given in C++. BIP uses a diverse set of composition operators for obtaining composite components
from a set of components. The operators are parametrized by a set of interactions between the composed
components. Finally, priorities are used to specify different scheduling mechanisms1. Transforming a BIP
model into a distributed implementation involves addressing three fundamental issues:

1. Concurrency. Components and interactions should be able to run concurrently while respecting
the sequential semantics of the high-level model.

2. Conflict resolution. Interactions that share a common component can potentially conflict with
each other.

3. Enforcing priorities. When two interactions can execute simultaneously, the one with higher
priority must be executed.

These issues introduce challenging problems in a distributed setting. The conflict resolution issue
can be addressed by incorporating solutions to the committee coordination problem [9] for implementing
multiparty interactions. For example, Bagrodia [1] proposes different solutions with different degrees of
parallelism. The most distributed solution is based on the drinking philosophers problem [8], and has in-
spired the approaches of Pérez et al. [14] and Parrow et al. [13]. In the context of BIP, a transformation
addressing all the three challenges through employing centralized scheduler is proposed in [4]. More-
over, in [6, 7], we propose transformations that address the concurrency issue by breaking the atomicity of
interactions and conflict resolution by embedding a solution to the committee coordination problem in a
distributed fashion. On the contrary, designing transformations that enforce priorities between interactions
in a distributed setting remains unaddressed in spite of the vital role specifying priorities plays in designing
systems.

In Subsection 1.1, we discuss the importance of incorporating priorities as a scheduling tool to solve
a wide range of problems and the main difficulty in their implementation. In Subsection 1.2, we state our
contributions in this paper.

1.1 Motivation
Priorities are widely used in system design, as a way of scheduling events. Below, we present examples of
how applying priorities can guide a system to satisfy certain properties:

• Ensuring safety. Safety properties are normally of the form “nothing bad happens during the
system execution”. In the context of concurrent and distributed computing, such bad things are often
due to existence of a set of processes competing over a resource. Priorities can be used to resolve
such race conditions. For instance, one way to prevent two processes to enter a critical section
simultaneously is to give explicit priority to one process. Dynamic priorities can then be used to
ensure non-starvation.

1Although our focus is on BIP, all results in this paper can be applied to any model that is specified in terms of a set of components
synchronized by broadcast and rendezvous interactions.

Verimag Research Report no TR-2011-3 1/16



Borzoo Bonakdarpour, Marius Bozga, Jean Quilbeuf

C1 C2 C3

p1 p2 p3

I

Figure 1: A
component-based
model with broad-
cast interaction.

R1

p1

D

p2

R2

p3

W
p4

r1 r2w

Figure 2: A simple
BIP model for mul-
tiple readers/single
writer problem.

• Improving performance. In distributed systems, it is often the case that certain resources have
higher demands. For example, in group mutual exclusion [10], as Mittal and Mohan argue [12],
in many commonly considered systems, group access requests are non-uniform. Hence, in order to
improve the performance, it is reasonable to devise algorithms that give priority to groups that require
resources with higher demand. A concrete example of group mutual exclusion is the well-known
readers/writers problem. In most cases, we give priority to readers to improve the performance.

• Reducing non-determinism. Non-determinism in distributed and concurrent computing is one of
the sources of obtaining a diverse set of behaviours. In many scenarios, it is desirable to guide the
system to behave in a certain way. For example, consider the model in Figure 1 with the following
semantics. Port p1 is an active port (e.g., a trigger), whereas ports p2 and p3 are passive (e.g., syn-
chrons). Connector I is enabled if port p1 is enabled and other components can optionally participate
in the interaction if their corresponding port is enabled. Thus, connector I allows interactions of the
following set: {p1, p1p2, p1p3, p1p2p3}. Now, if we are to build a broadcast interaction out of I , all
passive ports that are listening (enabled) have to be activated whenever this interaction takes place.
This can be achieved when interaction p1p2p3 is given higher priority than p1p2 and p1p3 that are
given higher priority that p1 alone.

The main challenge in ensuring priorities in a distributed setting is their correct implementation. This is
due to the fact that components need to obtain a common knowledge about enabledness of interactions, so
the interaction with highest priority is executed. In [3], the authors propose a model checking approach that
determines whether actions of a given Petri net can be executed without violating priority rules. However,
the downside of this approach is (1) it has scaling issues, as it uses model checking, and (2) in most cases the
local knowledge of processes is shown to be insufficient to decide whether or not an action can be executed.
Other approaches include applying customized algorithms to implement priority rules for specific problems
in distributed computing (e.g., [12]).

To better describe our idea in this paper, consider the multiple readers/single writer problem. A high-
level component-based model to solve the problem is shown in Figure 2. Component D contains shared
data, component W is a writer, and components R1 and R2 are two readers. Components W , R1, and R2

access the shared data through binary rendezvous interactions w, r1, and r2, respectively. The semantics
of this model requires that these interactions are executed atomically, ensuring sequential consistency of
the shared data. Using the approach introduced in [6, 7], one can automatically generate a distributed
implementation that is observationally equivalent to the high-level model. However, the solutions in [6, 7]
come short in implementing a priority rule such as (w < r1) ∧ (w < r2), where the writer has to wait as
long as readers are reading the shared data.

This example clearly shows that it is highly desirable for designers and developers of distributed sys-
tems to have access to methods that automatically construct a correct distributed implementation from a
high-level model along with a set of priority rules, such as the one in Figure 2. This way, all implementation
issues are dealt with by transformation algorithms and designers need to make minimal effort to develop
models.

2/16 Verimag Research Report no TR-2011-3



Borzoo Bonakdarpour, Marius Bozga, Jean Quilbeuf

BIP model Deprioritized
BIP model

Distributed
BIP modelMultiparty in-

teractions +
Priorities Multiparty in-

teractions
Send/Receive
interactions

Distributed code

Figure 3: Steps for generating a distributed implementation from a high-level BIP model.

1.2 Contributions
With this motivation, our contributions in this paper are as follows:

• We propose a transformation that, given a high-level BIP model with priorities, generates a BIP
model without priorities, that behaves equivalently. This corresponds to the first step in Figure 3.

• We show the correctness of this transformation by proving that the initial and transformed models
are observationally equivalent.

• We apply the transformation introduced in [7] to derive a distributed model, where multiparty in-
teractions are implemented in terms of asynchronous point-to-point send/receive primitives. This
corresponds to the second step in Figure 3. From this distributed model, we generate distributed
code, as explained in [6, 7], which completes the design flow from the initial BIP model with priori-
ties to a correct distributed implementation.

• Finally, we validate the effectiveness of our approach by modelling a jukebox application in BIP
and conducting experiments on the generated distributed code. The jukebox application incorporates
priorities to manage demands on reading discs and our experiments show that the overhead of our
transformations has minimal effect on the benefit of using priorities.

Organization. The rest of the paper is organized as follows. In Section 2, we present the basic seman-
tics model of BIP. Section 3 is dedicated to formalize our transformation problem. Then, in Section 4,
we describe our transformation for deriving a model that has no priorities. Our approach for deriving a
distributed model and code is presented in Section 5. We discuss our case study and experimental results
in Section 6. Finally, we conclude in Section 7. All proofs are presented in the appendix.

2 Basic Semantic Models of BIP
In this section, we present operational global state semantics of BIP. BIP is a component framework for
constructing systems by superposing three layers of modelling: Behaviour, Interaction, and Priority.

Atomic Components. We define atomic components as transition systems extended with a set of ports and
a set of variables. Each transition is guarded by a predicate on the variables, triggers an update function,
and is labelled by a port. The ports are used for communication among different components and each port
is associated with a subset of variables of the component.

Definition 1 (Atomic Component). An atomic component B is a labelled transition system represented by
a tuple (Q,X,P, T ) where:

• Q is a set of control states.

• X is a set of variables.

• P is a set of communication ports. Each port is a pair (p,Xp) where p is a label and Xp ⊆ X is the
set of variables bound to p. By abuse of notation, we denote a port (p,Xp) by p.

Verimag Research Report no TR-2011-3 3/16



Borzoo Bonakdarpour, Marius Bozga, Jean Quilbeuf

s
p

p
n

(a) An atomic compo-
nent

B1

p1

B2

p2

B3

p3

B4

p4

a = p1p2
dn1 > n2c
sw(n1, n2)

b = p2p3
dn2 > n3c
sw(n2, n3)

c = p3p4
dn3 > n4c
sw(n3, n4)

(b) A composite component (BIP model)

Figure 4: Atomic and composite components in BIP

• T is a set of transitions of the form τ = (q, p, g, f, q′) where q, q′ ∈ Q are control states, p ∈ P is a
port, g is the guard of τ and f is the update function of τ . g is a predicate defined over the variables
in X and f is a function that computes new values for X according to the previous ones.

We denote X the set of valuations on X , and Q ×X the set of local states. Let (q, v) and (q′, v′) be

two states in Q ×X, p be a port in P , and v′′p be a valuation in Xp of Xp. We write (q, v)
p(v′′p )
−→ (q′, v′),

iff τ = (q, p, g, f, q′) ∈ T , g(v) is true, and v′ = f(v[Xp ← v′′p ]), (i.e., v′ is obtained by applying f after
updating variables Xp associated to p by the values v′′p ). When the communication port is irrelevant, we
simply write (q, v) → (q′, v′). Similarly, (q, v)

p→ means that there exists a transition τ = (q, p, g, f, q′)
such that g(v) is true; i.e., p is enabled in state (q, v).

Figure 4(a) shows an atomic component B, where Q = {s}, X = {n}, P = {(p, {n})}, and
T = {(s, p, g, f, s)}. Here g is always true and f is the identity function.

Interactions. For a model built from a set of n atomic components {Bi = (Qi, Pi, Xi, Ti)}ni=1, we
assume that their respective sets of ports and variables are pairwise disjoint; i.e., for any two i 6= j in
{1..n}, we require that Pi ∩ Pj = ∅ and Xi ∩Xj = ∅. Thus, we define the set P =

⋃n
i=1 Pi of all ports

in the model as well as the set X =
⋃n
i=1Xi of all variables. An interaction a is a triple (Pa, Ga, Fa),

where Pa ⊆ P is a set of ports, Ga is a guard, and Fa is an update function, both defined on the variables
associated by the ports in Pa (i.e.,

⋃
p∈Pa Xp). By Pa = {pi}i∈I , we mean that for all i ∈ I , pi ∈ Pi,

where I ⊆ {1..n}. We denote by F ia the projection of Fa on Xpi .

Priorities. Given a set γ of interactions, a priority between two interactions specifies which one is
preferred over the other. We define such priorities through a partial order π ⊆ γ × γ. We write aπb if
(a, b) ∈ π, which means that a has less priority than b.

Definition 2 (Composite Component). A composite component (or simply component) is defined by a
set of components, composed by a set of interactions γ and a priority partial order π ⊆ γ × γ. We

denote B
def
= πγ(B1, . . . , Bn) the component obtained by composing components B1, · · · , Bn using the

interactions γ and the priorities π.

Note that if the system does not contain any priority, we may omit π.

Definition 3 (Composite Component Semantics). The behaviour of a composite component without prior-
ity γ(B1, · · · , Bn) is a transition system (Q, γ,X,→γ), where Q =

⊗n
i=1Qi, X =

⋃n
i=1Xi and→γ is

the least set of transitions satisfying the rule:

a = ({pi}i∈I , Ga, Fa) ∈ γ

Ga(v1, . . . , vn) ∀i 6∈ I. (qi, vi) = (q′i, v
′
i) ∀i ∈ I. (qi, vi)

pi(v
′′
pi

)

−→ i (q′i, v
′
i), v

′′
pi

= F ia(v1, . . . , vn)

((q1, v1), . . . , (qn, vn))
a→γ ((q′1, v

′
1), . . . , (q′n, v

′
n))

We define the behaviour of the composite component B = πγ(B1, . . . , Bn) as the transition system

4/16 Verimag Research Report no TR-2011-3



Borzoo Bonakdarpour, Marius Bozga, Jean Quilbeuf

(Q, γ,X,→π) where→π is the least set of transitions satisfying the rule:

(q, v) a→γ (q′, v′) ∀a′ ∈ γ. aπa′ =⇒ (q, v) 6 a
′

→γ

(q, v) a→π (q′, v′)

Intuitively, the first inference rule specifies that a composite component B = γ(B1, . . . , Bn) can ex-
ecute an interaction a ∈ γ, iff (1) for each port pi ∈ Pa, the corresponding atomic component Bi can
execute a transition labelled by pi, and (2) the guard Ga of the interaction evaluates to true in the current
state. Execution of the interaction modifies components’ variables by first applying update function Fa
to associated variables and then function fi in each component. The states of components that do not
participate in the interaction stay unchanged.

Figure 4(b) illustrates a composite component γ(B1, · · · , B4), where each Bi is identical to compo-
nent B in Figure 4(a). The set γ of interactions is {a, b, c}, where a = ({p1, p2}, n1 > n2, sw(n1, n2))
and function sw swaps the values of its arguments. Interactions b and c are defined in a similar fashion.
Interaction a is enabled when ports p1 and p2 are enabled and the value of n1 (in B1) is greater than the
value of n2 (in B2). Thus, the composite component B sorts variables n1 · · ·n4, such that n1 contains the
smallest and n4 contains largest values.

In the component presented in Figure 4(b), it may be desirable to always execute interaction a when
possible. This can be done by adding the two priority rules bπa and cπa. We denote the obtained compo-
nent by πγ(B1, . . . , B4).

3 The Problem of Enforcing Priorities in Distributed BIP Models
The key characteristic of a distributed system is that its components run concurrently. Since semantics
of BIP models require atomic execution of interactions and transitions, one has to break this atomicity in
order to obtain a concurrent model. In this section, we describe the challenge of enforcing priorities in BIP
models, where transitions of atomic and composite components are not executed atomically. In Subsection
3.1, we recall our method from [6, 7] for transforming a component into one whose transitions are non-
atomic. Then, in Subsection 3.2, we describe why breaking the atomicity of transitions makes it difficult
to enforce priorities.

3.1 Components with Non-atomic Transitions
In order to break the atomicity of transitions, the method in [7] splits each transition into two consecutive
steps: (1) an offer that publishes the current state of the component, and (2) a notification that triggers the
update function. The intuition behind this transformation is that the offer transition correspond to sending
information about component’s intention to interact to some scheduler and the notification transition cor-
respond to receiving the answer from the scheduler, once some interaction has been completed. Update
functions can be then executed concurrently and independently by components upon notification reception.

The offer transition publishes the list of its enabled ports through a special port named o. Enabled ports
are encoded through a list of Boolean variables. After the computation of each update function, this list is
updated according to the ports that are enabled at the next state. Notification transitions are triggered by
corresponding ports from the original atomic component.

Definition 4 (Transformed atomic component). Let B = (Q,X,P, T ) be an atomic component. The
corresponding transformed atomic component is B⊥ = (Q⊥, X⊥, P⊥, T⊥), such that:

• Q⊥ = Q ∪ {⊥s |s ∈ Q}.

• X⊥ = X ∪ {xp}p∈P , where each xp is a Boolean variable indicating whether port p is enabled.

• P⊥ = P ∪ {o}, where o is the offer port. All variables in X⊥ are associated to o (i.e., Xo = X⊥).

• For each transition τ = (q, p, g, f, q′) ∈ T , we include the following two transitions in T⊥:

Verimag Research Report no TR-2011-3 5/16



Borzoo Bonakdarpour, Marius Bozga, Jean Quilbeuf

s⊥s
p xp := T

o

p
nxp

o

Figure 5: Transformed version of the atomic component from Figure 4(a)

1. offer τ qo = (⊥q, o, go, fo, q) where go is true, fo is the identity function, and

2. notification τ qp = (q, p, gp, fp,⊥q′) where gp is true and fp applies fτ on X and for each port
r ∈ P , it sets xr to true if τ ′ = (q′, r, g′, f ′, q′′) ∈ T for some q′′ and g′ is true. Otherwise, xr
is set to false.

Figure 5 shows the transformed version of the atomic component presented in Figure 4(a). Initially, the
component is in control state ⊥s and the value of xp is true; i.e., the component is willing to interact on
port p. Then, it sends an offer through port o containing the current values of xp and n and reaches state s.
In that state, it waits for a notification on port p, which updates the value of n. The notification also triggers
the update function which consists here in only setting xp to true, since no guard and no update function
were present in the high-level model.

In Definition 4, states {⊥s |s ∈ Q} from where the component sends offers, are called busy or unstable
states. States Q, from where the component is waiting to receive a notification, are called stable states.

3.2 Priorities in Non-atomic Models
In [4], the authors show that in general, if a BIP model has priorities, its transformation to the distributed
setting, as prescribed in Subsection 3.1, does not behave in the same way as the original model. This is due
to the fact that breaking the atomicity of transitions introduces unstable states to components. In such states
components have not yet sent their offers and, hence, some enabledness and disabledness of interactions
become uncertain. An interaction can be wrongly detected maximal and executed, because higher priority
interactions are (still) waiting for some (slow) components. Thus, applying priority rules at partially busy
states results in producing behaviours that are not allowed in the initial BIP model. In [4], the authors
propose a solution for the case where the scheduler is centralized.

In order to handle priorities in a decentralized fashion, we introduce the notion of conflicting interac-
tions. Intuitively, two interactions a1 and a2 are weakly conflicting iff they share a common component.

Definition 5 (Weak Conflict). Two interactions a1 and a2 are weakly conflicting (denoted a1⊕a2) iff there
exist two ports p and q in some component B such that p ∈ Pa1 and q ∈ Pa2 .

If two interactions are weakly conflicting, then executing one of them can change the status of the other
one, for instance, from enabled to disabled. Weak conflicts play an important role in maintaining a coherent
view on the status of interactions and consequently in handling priorities efficiently. For example, knowing
that an interaction is disabled allows to execute a lower priority interaction.

Nevertheless, for distributed implementation of BIP models without priorities as discussed in [7] one
has to consider also strong conflicts. Two interactions are strongly conflicting if they synchronize on the
same transition or two internally conflicting transitions (starting at the same state) of some component. A
correct implementation, that is, one that conforms to the operational semantics of the BIP, requires that
amongst two strongly conflicting interactions enabled simultaneously at most one can execute.

Definition 6 (Strong Conflict). Two interactions a1 and a2 are said to be strongly conflicting iff one of the
two following conditions holds:

• There exists a port p in some component B, such that p ∈ Pa1 ∩ Pa2 .

• There exist two ports p and q in some component B, and a state s of B, such that p ∈ Pa1 , q ∈ Pa2 ,
s
p→ and s

q→.

6/16 Verimag Research Report no TR-2011-3



Borzoo Bonakdarpour, Marius Bozga, Jean Quilbeuf

Clearly, strong conflict implies weak conflict. Weak conflicts are used for propagating changes of
status between interactions. Strong conflicts are used to characterize the cases where a mechanism to
ensure consistent execution (i.e., conflict resolution) is needed.

4 Deprioritizing a BIP Model
In this section, we describe our approach to transform a BIP model B into an equivalent model without
priorities, denoted B̃. In our construction, we use multiparty interactions to coordinate and synchronize
our components. In Section 5, we explain how we replace multiparty interactions to obtain a model that
uses only asynchronous message passing as interactions.

Our transformation is as follows. First, we transform atomic components as prescribed in Subsection
3.1. Then, we build a manager component for each interaction, which detects enabledness of the interac-
tion, communicates with other managers to check priority rules, and, if allowed, executes the interaction.
We show that our transformation preserves the semantics of the initial BIP model. By preserving the origi-
nal semantics, we mean observational equivalence between the original model and the transformed model.
This is addressed as correctness of our transformation in Appendix 4.2.

4.1 Building and Connecting Interaction Managers
Given a BIP model B = γ(B1 · · ·Bn), for each interaction a ∈ γ, we build a manager component Ma.
This manager component:

• detects enabledness of a by listening to the offers sent by atomic components involved in a,

• executes the update function of a,

• notifies atomic components involved in a, if the interaction has been selected.

The set of managers must schedule interactions according to the global semantics of the original BIP
model described in Section 2. To this end, each manager component maintains the following control
states: undefined, enabled, disabled, and executing, for the interaction it represents. Interactions between
managers enforce priority rules and update the state of managers.

In this context, note that if two interactions are weakly conflicting, executing one can change the state
of the other. For instance, let a and b be two interactions, such that a ⊕ b, because they share component
B. Obviously, executing a implies a move in component B. This move results in changing the state of
interaction b to undefined, because until component B completes its local execution and sends an offer, it
is unknown which ports and, hence, interactions will be enabled.

With this intuition, we now formalize our deprioritization method. In the sequel, letB = πγ(B1, · · · , Bn)
be a BIP model and a ∈ γ be an interaction, where Pa = {pi}i∈I . We define the manager Ma =
(Q,X,P, T ) as follows. Our construction is generic in that the only given parameter is an interaction
a = (Pa, Fa, Ga), which indicates the set of ports, associated variables, guard, and update function (in
Figure 6, we construct the manager component that handles interaction a in Figure 4(b) as a running ex-
ample):

Control States and Variables

• We let Q = {undef , en, dis, exc}. Intuitively, in state undef , the manager does not have enough
information to decide whether or not interaction a is enabled. This is normally because some offers
have not been received yet. In states en and dis , we know for sure that a is enabled or disabled,
respectively. In state exc, the interaction a is executing.

• For each component Bi involved in a, (i.e., i ∈ I), X contains a Boolean variable bai . This variable
is true when component Bi is in a stable state, that is, waiting for a notification. For instance, in
Figure 6, we have the variables ba1 and ba2 since interaction a involves components B1 and B2.

Verimag Research Report no TR-2011-3 7/16



Borzoo Bonakdarpour, Marius Bozga, Jean Quilbeuf

unddisdisa

exc

en

na⊕a oi
bai := T

d(ba1 ∧ x
a
p1

)∧
(ba2 ∧ x

a
p2

)∧
(na1 > na2 )c

ι

⊕a

d(ba1 ∧ b
a
2 )∧

(¬xap1
∨¬xap2
∨na1 ≤ n

a
2 )c

ι

⊕a

⊕disa

starta

ba1 := F

ba2 := F

sw(na1 , n
a
2 )

xap1 na1

oa1

xap2

na2oa2 na

ba1

ba2

⊕a ⊕disa disa starta

Figure 6: A manager for an interaction between B1 and B2.

Ports and Transitions
We describe our construction with respect to ports and transitions based on the functional behaviour of the
manager component:

• Receiving offers. For each port pi that participates in interaction a, we include a port oai in P .
Moreover, X contains a Boolean variable xapi and the set of variables Xa

pi (i.e., a local copy of
the variables Xpi associated to pi in component Bi). The set T of transitions includes a transition
τi = (undef , oai , true, fτi , undef ). This transition takes place when an offer from component Bi
is received. In this case, variables from {xapi} ∪ X

a
pi are updated through the port oai by the values

received in the offer. The update function fτi sets bai to true, since the manager component has just
received an offer fromBi. In Figure 6, the manager contains two ports oa1 and oa2 . Port oi, i ∈ {1, 2},
is associated with variables (1) xapi , which indicates the status of port pi in Bi, and (2) nai , that are
local copies of variables ni associated to ports pi in Figure 4(b). All these variables are refreshed
upon receiving an offer through ports oai .

• Detecting enabled interaction. We include a port ι inP and a transition τen = (undef , ι, gτen , id , en)
in T . The port ι is not synchronized elsewhere. Thus, it is omitted in Figure 6. The guard
gτen = ∀i ∈ I. (bai ∧ xapi) ∧ Ga ensures that each component Bi (1) is in a stable state,
where port pi is enabled, and (2) the guard of a holds before switching to the en state. Finally,
id is the identity function. In Figure 6, we have a transition from undef to en guarded by
(ba1 ∧ xap1) ∧ (ba2 ∧ xap2) ∧ (na1 > na2). Notice that the latter conjunct corresponds to the guard
of interaction a in Figure 4(b).

• Detecting disabled interaction. Likewise, T contains the transition τdis = (undef , ι, gτdis , id , dis),
with the guard gτdis = (∀i ∈ I.bai ) ∧ (∃i ∈ I.¬xapi ∨¬Ga). Thus, the manager switches to state dis
only when all components Bi (1) are in a stable state and (2) either there exists a port in Pa that is
not enabled or the guard of a does not hold. In our example in Figure 6, the guard of the transition
from undef to dis is (ba1 ∧ ba2) ∧ (¬xap1 ∨ ¬x

a
p2 ∨ n

a
1 ≤ na2).

• Executing interaction and notifying components. We include ports starta and na in P . We
also include transitions τstart = (en, starta, true, fτstart , exc) and τn = (exc, na, true, id, undef )
in T . The transition τstart is executed when interaction a has been selected for execution (selec-
tion procedure explained below). Since components {Bi}i∈I are about to leave stable state, first,
the update function fτstart sets all bai variables to false. Then, it applies the update function Fa on
variables

⋃
i∈I X

a
pi . Next, the transition τn notifies components {Bi}i∈I that a has been executed

and updated values of variables in
⋃
i∈I X

a
pi are sent through port na. In our example, the update

function associated to τstart sets ba1 and ba2 to false and then swaps the variables na1 and na2 . Both
na1 and na2 are associated to the notification port na, such that their new values are sent back to the
component.

8/16 Verimag Research Report no TR-2011-3



Borzoo Bonakdarpour, Marius Bozga, Jean Quilbeuf

o1 p1

B⊥1

o2 p2

B⊥2

o3 p3

B⊥3

o4 p4

B⊥4

Ma
na

oa1 o
a
2

⊕a⊕da dasa

Mb
nb

ob2 o
b
3

⊕b⊕db db sb

Mc
nc

oc3 o
c
4

⊕c⊕dc dc sc

ã
b̃ c̃

Figure 7: Deprioritized version of model from Figure 4(b)

• Exporting disabled state. We introduce a port disa in P . This port is meant to be enabled only
when the interaction a is in disabled state. Thus, we label transition (dis, disa, true, id , dis) with
this port.

• Handling weak conflicts. This is the key element of our construction for enforcing priorities by
the manager component.

1. We include port ⊕a in P . All variables bai are associated to this port. This port takes part in a
schedule interaction c̃ each time an interaction c in weak conflict with interaction a is selected.
Intuitively, a schedule interaction c̃ (described later in detail) checks whether all interactions
with higher priority than c are disabled and informs other managers that c will execute. Thus,
variables bai that correspond to components involved in c are set to false through the port ⊕a as
well, and the state of manager Ma reaches undef . Consequently, The port⊕a labels the transi-
tions (en,⊕a, true, id , undef ), (dis,⊕a, true, id , undef ) and (undef ,⊕a, true, id , undef ).

2. Moreover, the port starta is enabled when interaction a is enabled by the manager Ma. This
port participates in the schedule interaction ã.

3. Finally, we include the port⊕disa inP . This port labels the transition (dis,⊕disa, true, id , undef ).
This transition handles the case where there exists an interaction c which has higher priority
than a and is in weak conflict with a.

Interactions Involving a Manager
Intuitively, our construction has three types of interactions: (1) offer interactions where components

send their enabled ports to corresponding managers, (2) notification interactions where managers notify
components after execution of an interaction, and (3) schedule interactions where priority rules are handled.
We now formally construct the deprioritized model. Given a model B = πγ(B1, · · · , Bn), first, we
construct componentsB⊥1 · · ·B⊥n , as prescribed in Subsection 3.1, and componentsMa1 , · · · ,Mam , where
{a1 · · · am} = γ, as prescribed in this Subsection (see Figure 7 for an example). Let γ(Bi) denote the set
of all interactions in γ that involve the component Bi. Then, we define interactions γ̃ of the deprioritized
model as follows (Figure 7 also shows the deprioritized version of the model in Figure 4(b)):

• Offer interactions. For each i ∈ {1 · · ·n}, γ̃ contains the interaction offi, where Poffi = {oi} ∪⋃
a∈γ(Bi){o

a
i }. For each interaction a ∈ γ(Bi), the update function Foffi sets the values of variables

{xapi} ∪X
a
pi to the values of {xp} ∪Xp associated to oi, where p is a port of Bi involved in a. We

note that in Figure 7, we interpret a triangle port as a send port (i.e., for sending offers) and bullet
port as a receive port (i.e., for receiving offers). Offer interactions have no guard and they only copy
variables from the sender port to variables of the receivers ports.

• Notifications interactions. For each interaction a ∈ γ, where a = {pi}i∈I , γ̃ contains the
interaction nota, such that Pnota = na∪{pi}i∈I . This interaction notifies to each component which
port has been selected. The update function Fnota sets for each component Bi involved in a the

Verimag Research Report no TR-2011-3 9/16



Borzoo Bonakdarpour, Marius Bozga, Jean Quilbeuf

value of Xpi to the value of Xa
pi . Interpretations of bullet and triangle ports are the same as for offer

interactions.

• Schedule interactions. For each interaction a ∈ γ, γ̃ contains the interaction ã:

Pã = {starta} ∪ { ⊕c |c⊕ a, c 6> a}
∪ { disc |c⊕ a, c > a}
∪ {⊕disc|c⊕ a, c > a}

This interaction has no guard. For each interaction c weakly conflicting with a, the update function
Fã sets the variable bci to false through the port ⊕c if {a, c} ⊆ γ(Bi). For example, for the model
in Figure 4(b) with priorities bπa and cπa, we obtain the following schedule interactions:

– a has no higher priority interaction and is weakly conflicting with b. Thus, Pã = {starta,⊕b}.
– b has less priority than a and is weakly conflicting with both a and c. Thus, Pb̃ = {startb,⊕disa,⊕c}.
– c has less priority than a and is weakly conflicting with b. Thus, Pc̃ = {startc, disa,⊕b}.

4.2 Corectness
We now show the correctness of our approach, where we prove that our construction results in a model that
is observationally equivalent to the original BIP model.

Let B = πγ(B1, · · · , Bn) be a BIP model and B̃ = γ̃(B⊥1 , · · · , B⊥n ,Ma1 , · · · ,Mam) be its unpriori-
tized version. We denote q = (q1, · · · , qn) a state of B and q̃ = (q̃1, · · · , q̃n, s1, · · · , sm) a state of B̃. We
show that B̃ is observationally equivalent to B.

The observable actions of B are the interactions γ. The observable actions of B̃ are only the schedule
interactions, that is {ã|a ∈ γ}. The remaining interactions in B̃, namely offers offi and notifications nota,

are unobservable and are denoted β. We denote q̃
β→ q̃′ if a β action brings the system from state q̃ to state

q̃′.

Proposition 1. β→ is terminating.

Proof: Each β action involve at least a component. Each component can take part in at most 2 β actions,
1 notification and 1 offer, then no other β action is possible until an ã action is executed. Thus at most 2n
consecutive β-steps are possible. �

Proposition 2. From any reachable state q̃ of B̃,
β→ is confluent.

Proof: In any reachable state, if a manager reaches the state exc then the corresponding notification
is enabled, since schedule interactions and boolean variables bi ensure that each component may receive
only one notification after each offer. Similarly, if any component reaches an unstable state, then the
corresponding offer is enabled.

Offer interactions are independent since they do not share any port nor change a common variable.
Thus, the order of their execution does not change the final state.

Notification interactions (that correspond to interactions of the original model, augmented by a noti-
fication port) enabled from a reachable state are not conflicting since schedule interactions handle weak
conflicts. Thus, notification interactions are independent and their order of execution does not change the

final state. We can conclude that
β→ is confluent. �

From proposition 1 and 2, for each reachable state q̃ of B̃, there is a unique state denoted [q̃] such that

q̃
β∗→ [q̃] and [q̃]

β

6→.
We recall the definition of observational equivalence of two transition systemsA = (QA, P ∪{β},→A

) and B = (QB , P ∪ {β},→B). It is based on the usual definition of weak bisimilarity [11], where β-
transitions are considered unobservable. The same definition is trivially extended for atomic and composite
BIP components.

10/16 Verimag Research Report no TR-2011-3



Borzoo Bonakdarpour, Marius Bozga, Jean Quilbeuf

Definition 7 (Weak Simulation). A weak simulation over A and B, denoted A ⊂ B, is a relation R ⊆
QA ×QB , such that we have ∀(q, r) ∈ R, a ∈ P : q a→A q′ =⇒ ∃r′ : (q′, r′) ∈ R ∧ r β

∗aβ∗→ B r′ and

∀(q, r) ∈ R : q
β→A q

′ =⇒ ∃r′ : (q′, r′) ∈ R ∧ r β
∗

→B r′

A weak bisimulation over A and B is a relation R such that R and R−1 are both weak simulations.
We say that A and B are observationally equivalent and we write A ∼ B if for each state of A there is a
weakly bisimilar state of B and conversely. We consider the correspondence between observable actions
of B and B̃ as follows. To each interaction a ∈ γ, where γ is the set of interactions of B, we associate the
schedule interaction ã of B̃.

Theorem 1. B ∼ B̃.

Proof. We define the relation R between the states of B and the states of B̃ as follows: the couple (q̃, q)
is in the relation R if the states of atomic components B⊥1 , · · · , B⊥n in [q̃] are the same as in q. Formally,
we have (q̃, q) ∈ R if [q̃] = (q1, · · · , qn, s1, · · · , sm) and q = (q1, · · · , qn). We show that R is an
observational equivalence by proving the next three assertions:

(i) If (q̃, q) ∈ R and q̃
β→ r̃ then (r̃, q) ∈ R.

(ii) If (q̃, q) ∈ R and q̃ ã→ r̃ then ∃r : q a→ r and (r̃, r) ∈ R.

(iii) If (q̃, q) ∈ R and q a→ r then ∃r̃ : q̃
β∗ã−→ r̃ and (r̃, r) ∈ R.

The point (i) comes from the definition of R.
(ii) If the interaction ã is enabled, then managerMa is in state en , which implies that at equivalent state

q:

• All ports of a are enabled and the guard Ga is true, since the guard of the τen transition is true

• No higher priority interaction is enabled since ã is enabled only when managers corresponding to
such interactions are in state dis .

Thus we have q a→ r, and the reader can easily check that (r̃, r) ∈ R.
(iii) From q̃ we can reach [q̃] by using only β transitions. In state [q̃], since every atomic component has

sent an offer, the state of each manager will be either en or dis , according to the status of the corresponding
interaction at state q in B. Then since a is enabled at state q, Ma is in state en at state [q̃]. If there is any
interaction b with higher priority than a, then it is disabled in state q, thus the manager Mb is in state dis at

state [q̃]. Thus ã is enabled at state [q̃] and we have q̃
β∗ã−→ r̃. Executing the notification interaction na and

the offer interactions from components involved in a lead B̃ in a state where atomic components have the
same state as in r. Thus (r̃, r) ∈ R. �

4.3 Binary Versus n-ary Offers and Notifications
In a realistic distributed implementation, the offer and notification interactions may be implemented using
a primitive ensuring synchronization of the receivers (e.g., atomic multicast). However, if such a primitive
is not available, we have to refine our B̃ model, so that it resolves the issue in asynchronous networks as
well. To this end, we use the method presented is section 5, or by replacing each notification and each offer
by a set of binary interactions of the type {sender, receiver} (i.e., we need to duplicate offer ports in atomic
components and notification ports in managers).

Notice that desynchronization of the notifications has no effect on the behaviour each component since
atomic components perform independent computation after receiving the notification. On the contrary,
synchronization of offers’ receivers ensures that the value of bi variables are consistent among managers.
This is, in fact, a crucial requirement to ensure correctness of our construction. As an example, consider
the scenario presented in Figure 8. This scenario presents interactions between Ma, B⊥2 , and Mb from the
model in Figure 7, with desynchronized offers. Once B⊥2 has sent its offer to Ma, this latter one switches

Verimag Research Report no TR-2011-3 11/16



Borzoo Bonakdarpour, Marius Bozga, Jean Quilbeuf

Ma B⊥2 Mb

offa2

ã bb2 := F

offb2
bb2 = T

Figure 8: A scenario leading to inconsistency between managers

to enabled state, interaction ã becomes enabled, and is executed. Then, Mb receives the offer from B⊥2 and
sets bb2 to true, which is an inconsistency, as the offer from B⊥2 has already been consumed by a.

To prevent this inconsistency, we enforce synchronization of the offers by adding a guard to each sched-
ule interaction. Let a be an interaction, we defined ã = (Pã, Gã, Fã) and we define ãSR = (Pã, GSRã , Fã)
as:

GSRã =
∧
c⊕a

∧
{a,c}⊂γ(Bi)

bci

This guard checks that, for each interaction c weakly conflicting with a, and each component Bi that is
involved in both a and c, the value of bci is true. It means that the manager Mc has received the offer from
Bi.

We denote B̃SR by the model built from B̃, where we replace each offer and each notification by a set
of binary interactions, and, we replace each schedule interaction ã by the interaction ãSR.

Theorem 2. Let B be a BIP model. B̃SR is observationally equivalent to B̃.

5 Building a Distributed Model: The 3 Tier Architecture
Once we construct a model with no priorities as prescribed in Section 4, one can apply the technique
presented in [6] to generate distributed code. We now briefly recap this technique. The code generation
is accomplished in two steps. First, from a given BIP component, we generate another BIP model that
only incorporates asynchronous message passing as interactions (denoted SR-BIP). Then, we transform
the SR-BIP model into a set of C++ executables – one per atomic component – that communicate using
asynchronous message passing primitives such as MPI or TCP sockets primitives. We only review the first
step.

As explained in Subsection 3.2, distributed execution of interactions may introduce strong conflicts
even if we do not consider priorities. Thus, our target SR-BIP model in a transformation should have
the following three properties: (1) preserving the behaviour of each atomic component, (2) preserving the
behaviour of interactions, and (3) resolving conflicts in a distributed manner. Moreover, we require that
interactions in the target model are asynchronous message passing.

We design our target BIP model based on the three tasks identified above, where we incorporate one
tier for each task. Since several distributed algorithms exist in the literature for conflict resolution, we
design the tier corresponding to conflict resolution so that it provides appropriate interfaces with mini-
mal restrictions. As a running example, we use the part of the model presented in Figure 7 formed by
γsched(Ma,Mb,Mc) where γsched = {ã, b̃, c̃} to describe the concepts of our transformation. The dis-
tributed version of γsched(Ma,Mb,Mc) is presented in Figure 9. Our 3-tier architecture consists of the
following.

Components Tier. Let B̃ = γ̃(B⊥1 · · ·B⊥n ,Ma1 · · ·Mam) be a deprioritized BIP model. The com-
ponent tier includes components M⊥a1

· · ·M⊥am (i.e., manager components obtained by the transformation
explained in Subsection 3.1 to break atomicity). The components B⊥1 · · ·B⊥n are copied from the deprior-
itized model, since they have already been transformed by the deprioritization. Recall that the send-port
offer (o) shares the list of enabled ports in the component with the upper tier. Each port p of the original

12/16 Verimag Research Report no TR-2011-3



Borzoo Bonakdarpour, Marius Bozga, Jean Quilbeuf

B⊥
1 B⊥

2 B⊥
3 B⊥

4

Part copied from
deprioritized model

M⊥
a

o

M⊥
b

o

M⊥
c

o

Components tier

IP1

nã
n
b̃

ra rb

IP2

nc̃

Interaction Protocol

CRPConflict Reso-
lution Protocol

ok f ok f ok f

Figure 9: Distributed version of the deprioritized model from Figure 7

component becomes a receive-port p through which the component is notified to execute the transition
labelled by p once the upper tiers resolve conflicts and decide on which components can execute on what
port. For example, the bottom tier in Figure 9 includes managers components illustrated in Figure 7.

Interaction Protocol. This tier consists of a set of components each hosting a set of interactions from
the deprioritized BIP model. Strong conflicts between interactions included in the same component are re-
solved by that component locally. For instance, interactions ã and b̃ in Figure 7 are grouped into component
IP1 in Figure 9. Thus, the conflict between ã and b̃ is handled locally in IP1. To the contrary, the conflict
between b̃ and c̃ has to be resolved using the third tier of our model. The interaction protocol also evaluates
the guard of each interaction and executes the code associated with an interaction that is selected locally
or by the upper tier. The interface between this tier and the component tier provides ports for receiving
enabled ports from each component and notifying the components on permitted port for execution (ports
nã, nb̃, nc̃).

Conflict Resolution Protocol. This tier accommodates an algorithm that solves the committee coordi-
nation problem [9] to resolve strong conflicts between interactions hosted in separate interaction protocol
components. For instance, the external conflict between interactions b̃ and c̃ is resolved by the central
component CRP in Figure 9. We emphasize that the structure of components in this tier solely depends
upon the augmented committee coordination algorithm. Incorporating a centralized algorithm results in
one component CRP as illustrated in Figure 9. Other algorithms, such as ones that use a circulating to-
ken [1] or dining philosophers [9, 2] result in different structures in this tier and are discussed in detail
in [6]. The interface between this tier and the Interaction Protocol involves ports for receiving request to
reserve an interaction (labelled r) and responding by either success (labelled ok) or failure (labelled f ).

6 Case Study
In this section, we use a jukebox example to illustrate our deprioritization transformation and conduct ex-
periments to study the effectiveness of our method (see the models in Figures 10 and 11). This model repre-
sents a system, where a set of readers (R1, . . . , R4) need to access the data located on discs (D1, . . . , D4).
A reader may need any disc. Access to the disc is managed by jukebox components (J1, J2) that can
load any disc to make it available for reading. Each pair (Di, Jk), i ∈ {1 · · · 4} and k ∈ {1, 2}, has two
interactions: (1) a loadi,k interaction for loading the disc in the jukebox and an unloadi,k interaction for
unloading it. Each reader Rj is connected to a jukebox through a readj interaction. All interactions take
some time to execute. In particular, 100ms for load/unload and 500ms for read, respectively.

Figure 11 presents the behaviour of atomic components and the data transfer on interactions. To ensure

Verimag Research Report no TR-2011-3 13/16



Borzoo Bonakdarpour, Marius Bozga, Jean Quilbeuf

D1

load unload

D2

load unload

D3

load unload

D4

load unload

J1
load unload

data

read
R1

read
R2

J2
load unload

data

read
R3

read
R4

Figure 10: BIP Model for the jukebox example

that all discs are eventually loaded, each jukebox keeps a list of discs to load, namely to_load. Each time a
disc is loaded, it is removed from the list by the load transition in the jukebox component. The guard of a
load interaction prevents the disc to be loaded if it is not on the list. When the to_load list becomes empty,
it is reinitialized to the set of all discs on the unload interaction. The variable current contains the identity
(i.e., 1 . . . 4) of the disc currently loaded in the jukebox, and is updated by the load interaction. In order to
ensure that the reader gets the correct data, a guard on the {read , data} interaction holds, only if the disc
in the jukebox (current) is the one to be read (to_read). Each reader has a sequence of 2 discs to read. The
variable to_read contains the id of the next disc to be read. It is initialized with the first value (not shown
on the figure), and is updated after the first read. This model has finite runs: the execution terminates when
all readers have read the two discs they needed.

This model comes in two versions. The first one, denoted B∅ does not contain priorities. The second
one, denoted Bπ , is the restriction of B∅ using two types of priorities:

• Priorities to enforce termination: we give priority to the read interactions over the unload inter-
actions. Formally, it corresponds to the sets of priorities {unloadi,1 π readj |i ∈ {1, · · · , 4}, j ∈
{1, 2}} and {unloadi,2 π readj |i ∈ {1, · · · , 4}, j ∈ {3, 4}}, one set corresponding to each jukebox.
This ensures that any enabled read interaction will be executed before the disc is unloaded. Since
each disc is eventually loaded, each read interaction will take place and the execution terminates.
Otherwise, sequences of load/unload interaction could happen forever. Note that here, assuming
fairness ensures that the model eventually terminates.

• Priorities to speed up execution: by inspecting the discs requested by the readers, we know that some
discs are more often needed than others, therefore we give more priority to the corresponding load
interactions. Here, we give more priority to the disc 1 in jukebox 1 by adding the following set of
priorities: {loadi,1 π load1,1|i ∈ {2, 3, 4}}.

For both versions B∅ and Bπ , we generate the corresponding deprioritized models B̃∅ and B̃π . In
Table 1, we present the size – the number of atomic components and the number of interactions – of these
different models, in the columns labelled “Orig.”. We then apply the transformation provided in [7] to the
models B∅, B̃∅ and B̃π to obtain for each model a distributed version including a centralized scheduler2.
The number of Send/Receive components and interactions contained in the distributed version of these
models is given in the columns labelled “S/R” in Table 1. We simulate the execution of these models on
two different platforms. The first one is centralized, where only one processor is available to execute all
components. The second one is fully decentralized, where each atomic component has its own processor.
We assume that executing a load, unload or read interaction completely blocks the processor. For each
couple (model, execution platform), we measure the average time of terminating executions. Results are
presented in Table 1.

As mentioned earlier, we applied our deprioritization transformation to model B∅ although we can
directly obtain a distributed model. By comparing the execution times of B∅ and B̃∅ on the centralized

2We cannot transform directly Bπ into such a distributed model since the transformation presented in [7] does not take priorities
into account.

14/16 Verimag Research Report no TR-2011-3



Borzoo Bonakdarpour, Marius Bozga, Jean Quilbeuf

J D

R

unload

load data
current

to_load
if (to_load== ∅)
to_load={1,2,3,4}

to_load =to_load - current

data

load unload

unload

load

id
unload load

did ∈ to_loadc
current=id

read read
to_read = 2

to_read
read

dcurrent == to_readc

Figure 11: Behaviour of jukebox components and interactions

Model Size Execution time# Atoms # Interactions
Orig. S/R Orig. S/R Cent. Decent.

B∅ 10 11 20 28 15.2 11.0
B̃∅ 30 31 70 148 12.0 5.9
B̃π 30 31 70 154 5.4 2.8

Table 1: Model size and execution time (in s) for different implementations of Figure 10

platform, we can notice that our deprioritization transformation does not introduce a significant overhead,
even if it increases the number of components and interactions.

The distributed execution is almost twice faster for B̃∅ than for B∅. This is due to the fact all time
consuming computations in B∅ are on interactions, which are all executed on the same processor (the one
hosting the scheduler). When switching to B̃∅, these interactions are executed by the manager components
and, hence, run concurrently on different processors.

The model B̃π runs faster thanB∅ on the centralized platform. Here, priorities enforce a better schedul-
ing – we first load the discs that are often used, we do not perform an unload if a reader has something
left to read – and thus reduce the total execution time. Again, switching to decentralized execution gives
almost twice better results, as (time consuming) interactions are now running concurrently.

7 Conclusion
In this paper, we proposed an automated method to derive correct distributed implementation from high-
level component-based models encompassing prioritized multiparty interactions. Our method consists of
three steps: (1) one transformation to deprioritize the initial model, (2) a transformation from [6, 7] that
generates a distributed model from the deprioritized model by resolving interaction conflicts, and (3) a final
transformation from the distributed model into C++ code. All steps preserve observational equivalence be-
tween the input and output models. We illustrated our approach using a non-trivial example and presented
encouraging experimental results.

There exist several research directions for future work. First, more rigorous and deeper case studies and
experiments are needed to completely understand the overheads introduced by our transformations. Since
deprioritization is an independent step of our method and is isolated from conflict resolution (i.e., step two),
one can study the overhead of each step separately. Another direction is to devise a committee coordination
algorithm for conflict resolution that takes priority issues into account. This allows us to incorporate such
an algorithm directly in our 3-tier model [7]. This approach can potentially have less overhead than the
one presented in this paper. Finally, one can speed-up distributed execution of models with priorities by

Verimag Research Report no TR-2011-3 15/16



Borzoo Bonakdarpour, Marius Bozga, Jean Quilbeuf

detecting disabled interactions as early as possible. Such detection can benefit from knowledge-based
methods (e.g., [3]).

References
[1] R. Bagrodia. A distributed algorithm to implement n-party rendevouz. In Foundations of Software

Technology and Theoretical Computer Science, Seventh Conference (FSTTCS), pages 138–152, 1987.

[2] R. Bagrodia. Process synchronization: Design and performance evaluation of distributed algorithms.
IEEE Transactions on Software Engineering (TSE), 15(9):1053–1065, 1989.

[3] A. Basu, S. Bensalem, D. Peled, and J. Sifakis. Priority scheduling of distributed systems based on
model checking. In Computer Aided Verification (CAV), pages 79–93, 2009.

[4] A. Basu, P. Bidinger, M. Bozga, and J. Sifakis. Distributed semantics and implementation for systems
with interaction and priority. In Formal Techniques for Networked and Distributed Systems (FORTE),
pages 116–133, 2008.

[5] A. Basu, M. Bozga, and J. Sifakis. Modeling heterogeneous real-time components in BIP. In Software
Engineering and Formal Methods (SEFM), pages 3–12, 2006.

[6] B. Bonakdarpour, M. Bozga, M. Jaber, J. Quilbeuf, and J. Sifakis. Automated conflict-free distributed
implementation of component-based models. In IEEE Symposium on Industrial Embedded Systems
(SIES), pages 108 – 117, 2010.

[7] B. Bonakdarpour, M. Bozga, M. Jaber, J. Quilbeuf, and J. Sifakis. From high-level component-based
models to distributed implementations. In ACM International Conference on Embedded Software
(EMSOFT), 2010. To appear.

[8] K. M. Chandy and J. Misra. The drinking philosophers problem. ACM Transactions on Programming
Languages and Systems (TOPLAS), 6(4):632–646, 1984.

[9] K. M. Chandy and J. Misra. Parallel program design: a foundation. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1988.

[10] M. Jurdzinski. Small progress measures for solving parity games. In Symposium on Theoretical
Aspects of Computer Science (STACS), pages 290–301, 2000.

[11] R. Milner. Communication and concurrency. Prentice Hall International (UK) Ltd., Hertfordshire,
UK, 1995.

[12] N. Mittal and P. K. Mohan. A priority-based distributed group mutual exclusion algorithm when
group access is non-uniform. Journal of Parallel Distributed Computing, 67(7):797–815, 2007.

[13] J. Parrow and P. Sjödin. Multiway synchronizaton verified with coupled simulation. In Proceedings of
the Third International Conference on Concurrency Theory, CONCUR ’92, pages 518–533, London,
UK, 1992. Springer-Verlag.

[14] J. A. Pérez, R. Corchuelo, and M. Toro. An order-based algorithm for implementing multiparty syn-
chronization. Concurrency and Computation: Practice and Experience, 16(12):1173–1206, 2004.

16/16 Verimag Research Report no TR-2011-3


	Introduction
	Motivation
	Contributions

	Basic Semantic Models of BIP
	The Problem of Enforcing Priorities in Distributed BIP Models
	Components with Non-atomic Transitions
	Priorities in Non-atomic Models

	Deprioritizing a BIP Model
	Building and Connecting Interaction Managers
	Corectness
	Binary Versus n-ary Offers and Notifications

	Building a Distributed Model: The 3 Tier Architecture
	Case Study
	Conclusion

