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Abstract

Correct and efficient implementation of open real-time systems is still a costly and error-prone
process. An open real-time system interacts with its execution environment while meeting tim-
ing constraints. Rigorous design methodologies for these systems should be based on models
able to express the interactions with environment and the timing constraints they satisfy.

We present a general model-based implementation method of open real-time systems based
on the use of two models: (i) an abstract model representing the interactions between the
environment and the application and its timing behavior without considering any execution
platform (based on an abstract notion of time); (ii) a physical model representing the behavior
of the abstract model running on a given platform, that is, it takes into account execution times.

We define an Execution Engine that performs the online computation of schedules for a given
application so as to meet its timing constraints. Furthermore, it can detect time-safety viola-
tions and stop the execution if the execution times are not compatible with the timing con-
straints of the model. We implemented the Execution Engine for BIP programs and validated
our method for a module of an autonomous rover—Antenna of the Dala robot.
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Figure 1: Communication modes between an application and its environment.

1 Introduction
Correct and efficient implementation of open real-time systems is still a costly and error-prone process.
An open real-time system interacts with its execution environment while meeting timing constraints. The
behavior of an open system depends not only on its current state (like for a closed system), but also on the
behavior of its environment. Nowadays, component-based approaches are privileged instead of monolithic
approaches since they favor flexible development and reusability. They rely on the principle of encapsu-
lation allowing building applications by composition of existing components. Providing methodologies
encompassing open systems design is too often a neglected issue. Many implementations involve ad-hoc
mechanisms such as communication via shared memory which violates this encapsulation principle and
makes the analysis of the system untractable.

There are different modes of communication with the environment. We focus on a general schema of
communication in which the environment offers known interfaces implementing these modes. Considered
modes are (see Figure 1):

• An active mode in which the environment is always ready for interacting, that is, the application can
communicate at any time. It is referred in the paper as output following [15], and is often used for
implementing the interactions between the application and the actuators of the platform.

• A passive mode in which the application is waiting for the environment to be ready for interacting.
It is referred as input following [15], and is often used for implementing the interactions between the
application and the sensors of the platform, that is, the application waits for events and associated
data produced by the environment.

Event-driven [12, 16, 11] design of real-time systems usually considers components (tasks) that can
be triggered by events captured by interruptions. Scheduling theory guarantees only estimates of system
response time for periodic execution of the components when periods and execution times are known. The
resulting behavior of the system is strongly related to the chosen execution platform, without any formal
means for predicting it.

In contrast, synchronous programs consider synchronized components whose execution is a sequence
of non-interruptible steps that define a logical notion of time. In a step each component performs a quantum
of computation. Time-triggered approaches generalize the notion of logical time. They consider different
computation steps for the components. Each component defines a sequence of actions with specified logical
execution times (LET) defining the difference between their release time and their due time. The system
behaves as if actions consume exactly their LET: even if they start after their release time and complete
before their due time, their effect is visible exactly at these times. This is achieved by reading for each
action its input exactly at its release time and its output exactly at its due time. LET guarantee predictability
of the behavior of the system since it is independent from the platform as long as actions complete before
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their due time. Components may describe arbitrary sequences of LET [2], or may be restricted to periodic
execution (i.e. uniform LET) for each component with possible global mode switches as in [14].

Mixing event-driven programming and time-triggered behavior is a promising approach introduced in
[13]. They consider time-triggered actions whose instantiation may depend on external (asynchronous)
events. We extend this principle by considering more general timing constraints than (fixed) LET, such as
lower bounds, upper bounds, time non-determinism. We improved previous results [1] by considering not
only internal actions but also input and output communications with the environment. We propose a rigor-
ous design methodology based on two descriptions: a platform independent abstraction of the application,
and its implementation on a given platform. According to this principle, this paper formally defines the
following models.

• The abstract model represents the timing behavior of the application without considering any execu-
tion platform. It takes into account timing constraints corresponding only to user-requirements, based
on an abstract notion of time. Interactions with the environment are modeled using Input/Output
automata [15], in which actions correspond either to internal computations—internal actions—or
to communications with the environment—inputs and outputs. Internal actions and outputs are
triggered by the application, whereas inputs are triggered by the environment. The actions of the
abstract model are timeless. The abstract model is useful for checking a design in an early devel-
opment stage using verification and/or testing, targeting properties such as deadlock freedom and
timing-constraints consistency.

• The physical model represents the behavior of the abstract model running on a given platform, that is,
it takes into account execution times. It is obtained from the abstract model by assigning execution
times to actions. It is necessary for checking the adequacy of an abstract model to an execution
platform.

A physical model is time-safe if it meets the constraints specified in its corresponding abstract model,
assuming that outputs and internal actions are chosen according to a minimally waiting policy (i.e. once
chosen, an action is executed as soon as possible), and assuming that inputs can occur at any time instant.
As explained in [1], time non-determinism may introduce time non-robustness—an anomaly in which the
application is time-safe for a given platform but not time-safe for faster ones.

We also provide an implementation method for component-based applications. It defines a Real-Time
Engine that performs the online computation of schedules meeting the semantics of the physical model
depending on the actual execution times and the arrival of inputs. When time-robustness of a physical
model is not guaranteed, the Real-Time Engine also checks on-line for time-safety violations.

The rest of the paper is organized as follows. Section 2 introduces the notions of abstract and physical
models, and properties they satisfy. Section 3 provides the implementation method for composition of
physical models. This method has been tested in the BIP component-based framework [4]. Experimental
results showing the performance gains obtained by the method are given in Section 4.

2 Modeling Open Real-time Systems
In this section, we first give some preliminary definitions we use to describe time progress and timing
constraints. Second, we describe the notions of abstract and physical models.

2.1 Preliminary Definitions
In order to measure time progress, we use clocks that are variables increasing synchronously. They can be
valued either as integer or as real. We denote by T the set of clock values. T can be the set of non-negative
integers N or the set of non-negative reals R+. Given a set of clocks X, a valuation of the clocks v : X→ T
is a function associating with each clock x its value v(x). Given a subset of clocks X′ ⊆ X and a clock
value l ∈ T, we denote by v[X′ 7→ l] the valuation defined by:

v[X′ 7→ l](x) =
{
l if x ∈ X′

v(x) otherwise.
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In order to specify when actions of a system are enabled we use guards. Following [9], given a set of
clocks X, guards are finite conjunctions of typed intervals. They are expressions of the form [l ≤ x ≤ u]τ

where x is a clock, l ∈ T, u ∈ T ∪ {+∞} and τ is an urgency type, that is, τ ∈ { l,d,e }, where l is
used for lazy actions (i.e. non-urgent), d is used for delayable actions (i.e. urgent just before they become
disabled), and e is used for eager actions (i.e. urgent whenever they are enabled). We write [x = l]τ for
[l ≤ x ≤ l]τ . We consider the following simplification rule [9]:

[l1 ≤ x1 ≤ u1]τ1 ∧ [l2 ≤ x2 ≤ u2]τ2

≡ [(l1 ≤ x1 ≤ u1) ∧ (l2 ≤ x2 ≤ u2)]max τ1,τ2 ,

considering that urgency types are ordered as follows: l < d < e. By application of this rule, any guard g

can be put into the following form: g =
[ n∧
i=1

li ≤ xi ≤ ui
]τ
. The predicate of g on clocks is the expression

n∧
i=1

li ≤ v(xi) ≤ ui. The predicate urg[g] that characterizes the valuations of clocks for which g is urgent

is also defined by:

urg
[
g
]
⇐⇒

 false if g is lazy (i.e. τ = l)
g ∧ ¬(g>) if g is delayable (i.e. τ = d)
g if g is eager (i.e. τ = e),

where g> is a notation for the predicate defined by g>(v)⇐⇒ ∃ε > 0 . ∀δ ∈ [0, ε] . g(v + δ). We denote
by G(X) the set of guards over a set of clocks X.

2.2 Abstract model
In order to represent the behavior of a real-time application, we use Input/Output (I/O) timed automata
[15, 10]. An I/O timed automaton is a timed automaton such that actions labeling transitions are partitioned
into inputs, outputs and internal actions. A fundamental property of this model is that there is a very
clear distinction between actions whose performance is under the control of the environment—inputs,
and actions whose performance is under the control of the application—outputs and internal actions. The
distinction between inputs and other actions is then fundamental, based on who determines when the action
is performed. An automaton can establish restrictions on when it will perform an output or internal action,
but it is unable to block the performance of an input.

DEFINITION 1 (abstract model) An abstract model is an I/O timed automaton M = (A,Q,X,−→) such
that:

• A = Ain⋃Aout⋃Aint is a finite set of actions partitioned into inputs Ain, outputs Aout and

internal actions Aint,

• Q is a finite set of control locations,

• X is a finite set of clocks,

• and −→⊆ Q × (A × G(X) × 2X) × Q is a finite set of labeled transitions. A transition is a tuple
(q, a, g, r, q′) where a is an action, g is a guard over X and r is a subset of clocks that are reset by
the transition. We write q

a,g,r−→ q′ for (q, a, g, r, q′) ∈−→.

EXAMPLE 1 Consider an abstract model M = ({in,out, compute},Q, {x},−→) with an in-
put in, an output out, and an internal action compute. It has also a set of control lo-
cations Q = {init,get,exec}, and the following set of transitions (see (a) in Figure 2):

−→ =
{

(init, in, [x ≥ D]l, {x},get),
(get, compute, [x ≤ D]d, ∅,exec),
(exec,out, [x ≤ D]d, ∅, init).

}
.

Verimag Research Report no TR-2011-2. 3/17



Tesnim Abdellatif, Jacques Combaz, Marc Poulihès

(a) initial abstract model

(c) input−enabledness using location loops(b) input−enabledness using an error state

getinit
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out

Figure 2: Enforcing input-enabledness.

It represents a cyclic execution of a system that receives an input in from the environment (transition
from init to get), performs an internal computation (transition from get to exec), and sends an output out
to the environment (transition from exec to init). A clock x is used to measure the time elapsed since the
last arrival of in (i.e. x is reset by in). Both compute and out must be done before x reaches D. Notice
that in is not enabled at control locations exec, get, and at control location init when x is lower than D.

In abstract models, timing constraints, that is, guards of transitions, take into account only requirements
(e.g. deadlines, periodicity, etc.). Transitions labeled by an input are triggered by the environment, and
correspond to reception of this input by the application. Since an application cannot block its environment,
inputs may occur even if they are not enabled by the model, as explained in [10]. An abstract model that
enables all its inputs from all its states is said input-enabled. When this property does not hold, there are
two ways for interpreting the occurrence of an input at a state for which it is disabled.

Error. It can be interpreted as an error. In this case, the timing constraints of the abstract model provide
assumptions on the behavior of the environment. If the actual behavior of the environment violates
one of these assumptions, an error is reported.

Ignore. It can be ignored. In this case the timing constraints of the abstract model are used for masking or
filtering the behavior of the environment.

These two interpretations can be modeled by introducing a default behavior in case of absence of an input
transition from a state of an abstract model. Figure 2 shows an example of abstract model (a) and its
corresponding abstract models that are obtained for the first interpretation (error) using transitions leading
to an error state (b), and for the second interpretation (ignore) using location loops (c).

The semantics of abstract models assume timeless execution of actions. This corresponds to the ideal
and platform independent behavior of a real-time application.

DEFINITION 2 (abstract model semantics) An abstract model M = (A,Q,X,−→) defines a transition
system TS. States of TS are of the form (q, v), where q is a control location of M and v is a valuation of
the clocks X. It has two types of transitions:

• Actions. We have (q, v) a−→ (q′, v[r 7→ 0]) if q
a,g,r−→ q′ is in the abstract model and g(v) is true.

• Time steps. For a waiting time δ ∈ T, δ > 0, we have (q, v) δ−→ (q, v + δ) if for all transitions
q
a,g,r−→ q′ of M and for all δ′ ∈ [0, δ[, ¬urg[g](v + δ′).
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Given an abstract model M = (A,Q,X,−→) a finite (resp. an infinite) execution sequence of M from
an initial state (q0, v0) is a sequence of actions and time-steps (qi, vi)

σi−→ (qi+1, vi+1) of M , σi ∈ A ∪ T
and i ∈ { 0, 1, 2, . . . , n } (resp. i ∈ N). Notice that from any state of an abstract model it is always
possible to execute either an action or a time-step, or both. A state from which only time can progress, i.e.
from which execution sequences are only composed of time-steps, is a deadlock. We also consider abstract
models that are structurally non-zeno [8]. This class of abstract models does not have time-locks, that is,
time can always eventually progress.

EXAMPLE 2 Consider the abstract model M given in Example 1. It admits execution sequences from the
initial state (init, 0) of the following form. First, time can progress arbitrary at (init, D) before input in

resets the clock x: (init, D) δ1−→ (init, D + δ1)
in−→ (get, 0). Second, the application does an internal

action compute: (get, 0) δ2−→ (get, δ2)
compute
−→ (exec, δ2). Third, the application performs an output

out to the environment: (exec, δ2)
δ3−→ (exec, δ2 + δ3)

out−→ (init, δ2 + δ3). Finally, the application waits

for a new input from the environment: (init, δ2 + δ3)
δ4−→ (init, δ2 + δ3 + δ4)

in−→ (get, 0).
Due to the guards [x ≤ D]d of actions compute and out, waiting times δ2 and δ3 satisfy δ2 + δ3 ≤ D.

Due to the guard [x ≥ D]l of in we have δ1 ≥ D and δ2 + δ3 + δ4 ≥ D, meaning that there is a delay of
at least D time units between two consecutive occurrences of in.

2.3 Physical Model
Physical models are abstract models modified so as to take into account non-null execution times. They
represent the behavior of an application software running on an execution platform and interacting with its
environment. We consider that a physical model is time-safe if its execution sequences are also execution
sequences of the corresponding abstract model, that is, the execution times are compatible with the timing
constraints.

q

q′

r

g

a

ϕ(a)−→

q

q′

∅

waita

r ∪ {xa}

a

g

enda

[xa = ϕ(a)]d

Transition in M . Corresponding transitions in Mϕ.

Figure 3: From abstract model to physical model.

DEFINITION 3 (physical model) Let M = (A,Q,X,−→) be an abstract model and ϕ : A → T be an
execution time function that gives for each action a its execution time ϕ(a).

The physical model Mϕ = (A,Q,X,−→, ϕ) corresponds to the abstract model M modified so that
each transition (q, a, g, r, q′) of M is decomposed into two consecutive transitions: (see Figure 3):

1. The first transition (q, a, g, r ∪ {xa}, waita) corresponds to the beginning of the execution of the
action a. It is triggered by guard g and it resets the set of clocks r, exactly as (q, a, g, r, q′) in M . It
also resets an additional clock xa used for measuring the execution time of a.

2. The second transition (waita, enda, gϕ(a), ∅, q′) is labeled by internal action enda and corresponds

to the completion of a. It is constrained by gϕ(a) ≡ [xa = ϕ(a)]d that enforces waiting time ϕ(a) at
control location waita, which is the time elapsed during the execution of the action a.
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The above definition of physical models corresponds to a purely sequential execution of the actions.
In particular, inputs cannot occur (i.e. they are ignored or generate errors as explained in the previous
section) when an action is executing. In practice most of the platforms offers hardware mechanisms such
as interruptions that can be used to react to inputs while the application is running. Exploiting these
mechanisms for safely taking into account occurrences of inputs during actions execution is discussed in
Section 3.

A crucial question is the divergence of the implementation from its abstract specification, that is, the
difference between the behavior of a physical model and the behavior of its corresponding abstract model.
In a physical model Mϕ, every execution of an action a is immediately followed by waiting for ϕ(a) time
units enforced at an intermediate state. This waiting in Mϕ may not correspond to a behavior specified by
the abstract model M if there exists in M either an urgent transition or an enabled input.

Deadline Miss

If no input occurs during the execution of a in Mϕ, i.e. no input occurs at states (waita, v′ + δ), 0 ≤ δ ≤
ϕ(a), we have:

(q, v) a−→ (waita, v′)
ϕ(a)−→ (waita, v′ + ϕ(a))

enda−→ (q′, v′ + ϕ(a)).

This is equivalent, if it exists, to the following execution of the corresponding abstract model M :

(q, v|X) a−→ (q′, v′|X)
ϕ(a)−→ (q′, v′|X + ϕ(a)), (1)

where v′
|X denotes the restriction of v′ to clocks X, that is, v′

|X is a valuation of clocks X such that v′
|X(x) =

v(x) for all x ∈ X. In the following, we write (q, v)
a,ϕ(a)−→ (q′, v′ + ϕ(a)) for execution sequence (1) in

M and its corresponding execution sequence in Mϕ. Notice that (1) may not be a time step of M if there

exists a transition q′
a′,g′,r′−→ q′′ such that urg[g′](v′

|X + δ) and δ ∈ [0, ϕ(a)[, meaning that the physical
model violates timing constraints defined in the corresponding abstract model. In this case we say that the
action a′ misses its deadline (see Figure 4).

time

a

v v + ϕ(a)v + δ

action a′

urgent at v + δ
Mϕ
M

Figure 4: Action a′ miss its deadline in Mϕ.

Input Miss

If an input i ∈ Ain occurs during the execution of a, i.e. at a state (waita, v′ + δ), 0 ≤ δ ≤ ϕ(a), it will be
either interpreted as an error or ignored as explained in Section 2.2. The behavior of M is not equivalent to

the one of Mϕ if it exists a transition labeled by i enabled at state (q′, v′X + δ) in M , i.e. q′
i,g′,r′−→ q′′ such

that g′(v′
|X + δ). In this case we say that the input i is missed in Mϕ (see Figure 5).

Since outputs and internal actions are triggered by the application, their execution can be controlled by
scheduling policies. We consider minimally waiting schedulers, that is, execution sequences of physical
models such that waiting times for outputs and internal actions are minimal. More formally, if (q, v) δ−→
(q, v + δ) a−→ (q′, v′) is an execution sequence of Mϕ such that a ∈ Aout ∪ Aint, then δ = min { δ′ ≥
0 | g(v + δ′) } where g is the guard of the action a at control location q. This assumption cannot apply
to inputs as they are controlled by the environment, that is, we consider they can occur at any time instant
meeting the timing constraints.
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time

a

v v + ϕ(a)v + δ

input a′

enabled at v + δ
Mϕ
M

Figure 5: Input a′ missed in Mϕ.

DEFINITION 4 (time-safety and time-robustness) A physical model Mϕ = (A,Q,X,−→, ϕ) is time-
safe for an initial state (q0, v0) if the set of execution sequences of Mϕ from (q0, v0) is contained in the set
of execution sequences of M .

A physical model Mϕ is time-robust if Mϕ′ is time-safe for all execution time ϕ′ ≤ ϕ. An abstract
model is time-robust if all its time-safe physical models are time-robust.

Time-safety for a physical model expresses that its execution times are compatible with the timing
constraints and the possible occurrences of inputs defined in the corresponding abstract model. Another
important property for a physical model is time-robustness, that is, time-safety is preserved when reducing
the execution times. Worst-case analysis of the behavior of a system usually requires time-robustness since
it is often based on worst-case estimates of the execution times.

EXAMPLE 3 Consider the abstract model M given in Example 1 and the execution time function ϕ such
that ϕ(in) = α, ϕ(compute) = β and ϕ(out) = γ. The physical model Mϕ admits execution sequences

from initial state (init, D) of the following form. First, in may occur at any time: (init, D) δ1−→ (init, δ1)
in,α−→

(get, α). If the execution time α of in is less thanD, action compute is executed according to the minimally

waiting principle (i.e. without waiting): (get, α)
compute,β
−→ (exec, α + β), otherwise time-safety is

violated and (get, α) is a deadlock. Similarly, if α + β ≤ D, out is executed: (exec, α + β)
out,γ−→

(init, α+β+γ), otherwise time-safety is violated and (exec, α+β) is a deadlock. Finally, the application
waits for a new input from the environment.

If α + β + γ < D, input in is enabled only if it happen at a state (init, t) such that t ≥ D, which
corresponds to the following execution sequence:

(init, α+ β + γ) δ2−→ (init, α+ β + γ + δ2)
in,α−→ (get, α).

If α+β+ γ ≥ D, input in is not enabled at states (init, t) such that t ∈ [D,α+β+ γ] in Mϕ whereas
it is enabled in M for those states, i.e. time-safety is violated in this case.

To summarize, physical modelsMϕ are time-safe for any execution time function satisfying α+β+γ <
D, that is, the application is fast enough to meet timing constraints and to treat an occurrence of an input
before the next one. This demonstrates time-robustness of M .

Notice that for Example 3 time-safety implies time-robustness, but this is not the case in general. An
example of non time-robust abstract model is provided in [1].

DEFINITION 5 (time-determinism) An abstract model is time-deterministic if its outputs and internal
actions are guarded by delayable or eager equalities.

We extend the definition of time-deterministic abstract models given in [1]. A time-deterministic model
is such that each action has a logical execution time (LET) which is a fixed time budget for its execution.
It guarantees that for a given sequence of inputs, it always executes outputs at the same time instants.

PROPOSITION 1 Time-deterministic abstract models are time-robust.

Proofof proposition: Let M be an abstract model such that its internal actions and outputs are guarded by
delayable or eager equalities, and let ϕ′ ≤ ϕ be execution time functions such that Mϕ is time-safe. We
have to show that Mϕ′ is also time-safe, i.e. all its execution sequences are also execution sequence of M .
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We prove by induction that execution sequences of Mϕ′ are also execution sequences of Mϕ. Consider
the following execution sequence of Mϕ′ :

(q, v)
a,ϕ′(a)−→ (q′, v′ + ϕ′(a)) δ−→ (q′, v′ + ϕ′(a) + δ)

b,ϕ′b−→,

and assume that (q, v) is a reachable state of both Mϕ and Mϕ′ . We will show that there exists a corre-

sponding execution sequence in Mϕ. Notice that by definition of physical models, (q′, v′ + ϕ′(a)) δ−→
(q′, v′ +ϕ′(a) + δ) is a transition of M . Moreover, as Mϕ is time-safe, (q, v)

a,ϕ(a)−→ (q′, v′ +ϕ(a)) is also

a transition of M . By definition of abstract models and as ϕ′ ≤ ϕ, transition (q, v)
a,ϕ′(a)−→ (q′, v′ + ϕ′(a))

is also a transition of M . As a result, no transition is urgent at states (q′, v + ε), ε ∈ [0, ϕ′(a) + δ[, and no
input is enabled at states (q′, v + ε), ε ∈ [0, ϕ(a)[.
Case #1: b is an internal action or an output.
As the guard of b is a delayable or eager equality, b is urgent at state (q′, v′+ϕ′(a)+δ), and is only enabled
at this state. Time-safety of Mϕ implies that ϕ(a) ≤ ϕ′(a) + δ. Since no other transition is urgent before,
we conclude that b can be executed in Mϕ at this state without violating the minimally waiting principle,
according to the following execution sequence of Mϕ:

(q, v)
a,ϕ(a)−→ (q′, v′ + ϕ(a))

γ−→ (q′, v′ + ϕ′(a) + δ)
b,ϕ(b)−→ ,

where γ = ϕ′(a) + δ − ϕ(a).
Case #1: b is an input.
Since b is an input enabled at (q′, v′ + ϕ′(a) + δ) and no transition is urgent at states (q′, v + ε), ε ∈
[0, ϕ′(a) + δ[, we have the following execution is Mϕ:

(q, v)
a,ϕ(a)−→ (q′, v′ + ϕ(a))

γ−→ (q′, v′ + ϕ′(a) + δ)
b,ϕ(b)−→ ,

where γ = ϕ′(a) + δ − ϕ(a). 2

3 Real-Time Engine
Based on the results of the previous section, we propose an implementation method for a given physical
model. If the corresponding abstract model is time-robust, then time-safety for the worst-case execution
times ensures time-safety of the implementation. Otherwise, time-safety is checked online and the execu-
tion is stopped if it is violated.

We consider that the application software is a set of interacting components. Each component is rep-
resented by an abstract model. Thus the abstract model M corresponding to the application is the parallel
composition of the I/O timed automata representing the components. This composition is parameterized
by a set of interactions defining synchronizations (i.e. rendez-vous) between internal actions of the com-
ponents.

Our method relies on a Real-Time Engine implementing the semantics of physical models. It executes
actions by taking into account their timing constraints. It also detects time-safety violations which can
correspond either to missed deadlines or missed inputs.

3.1 Composition of Models
DEFINITION 6 (composition of abstract models) Let M i = (Ai,Qi,Xi,−→i), 1 ≤ i ≤ n, be a set of

abstract models with disjoint sets of actions Ai = Ain
i ∪ Aout ∪ Aint

i and clocks, that is, for all i 6= j we
have Ai ∩ Aj = ∅ and Xi ∩ Xj = ∅. We define At, t ∈ {in,out, int}, such that At = At

1 ∪ At
2 ∪ . . . ∪ At

n.

A set of interactions γ is a subset of 2Aint
such that any interaction a ∈ γ contains at most one

(internal) action of each componentM i, that is, a = { ai | i ∈ I } where ai ∈ Aint
i and I ⊆ { 1, 2, . . . , n }.
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We define the composition of the abstract models M i as the abstract model M = (A,Q,X,−→γ) over the

set of actions A = Ain ∪ Aout ∪ γ as follows:

• A is partitioned into inputs Ain, outputs Aout, and internal actions which are interactions γ,
• Q = Q1 ×Q2 × . . .×Qn,
• X = X1 ∪ X2 ∪ . . . ∪ Xn,
• for an interaction a = { ai | i ∈ I } ∈ γ we have q

a,g,r−→γ q
′ in M with q = (q1, q2, . . . , qn) and

q′ = (q′1, q
′
2, . . . , q

′
n) if and only if g =

∧
i∈I gi, r =

⋃
i∈I ri, qi

ai,gi,ri−→ q′i in M i for all i ∈ I , and
q′i = qi for all i /∈ I ,

• for an input or an output a ∈ Ain ∪ Aout we have q
a,g,r−→ q′ in M with q = (q1, q2, . . . , qn) and

q′ = (q′1, q
′
2, . . . , q

′
n) if and only if qi

a,g,r−→ q′i in M i and q′j = qj for all j 6= i.

The composition M = (A,Q,X,−→γ) of abstract models M i, 1 ≤ i ≤ n, corresponds to a general
notion of product for the timed automata M i. It can execute two types of actions: interactions a ∈ γ which
are user-defined synchronizations (i.e. rendez-vous) between internal actions of its components M i, and

inputs/outputs a ∈ Ain
i ∪ Aout

i of the components.

DEFINITION 7 (composition of physical models) Consider abstract models M i, 1 ≤ i ≤ n, and corre-
sponding physical models M i

ϕi
= (Ai,Qi,Xi,−→i, ϕi), with disjoint sets of actions and clocks.

Given a set of interactions γ, and an associative and commutative operator ⊕ : T × T → T, the
composition of physical models M i

ϕi
is the physical model Mϕ corresponding to the abstract model M

which is the composition of M i, 1 ≤ i ≤ n, with the execution time function ϕ : A → T such that

ϕ(a) =
⊕

i∈I ϕi(ai) for interactions a = { ai | i ∈ I } ∈ γ, ai ∈ Aint
i , and ϕ(a) = ϕi(a) for

a ∈ Ain
i ∪ Aout

i .

The definition is parameterized by an operator ⊕ used to compute the execution time ϕ(a) of an inter-
action a from execution times ϕ(ai) of the actions ai involved in a. The choice of this operator depends
on the considered execution platform and in particular how executions of components (abstract models)
are parallelized. For instance, for a single processor platform (i.e. sequential execution of actions), ⊕ is
addition. If all components can be executed in parallel, ⊕ is max.

3.2 Real-Time Engine
As a rule, it is usually very difficult to obtain execution times for the actions (i.e. blocks of code) of an
application software. Execution times vary a lot from an execution to another, depending on the contents of
the input data, the dynamic state of the hardware platform (pipeline, caches, etc.). There exist techniques
for computing upper bounds of the execution time of a block of code, that is, estimates of the worst-case
execution times [17]. Given abstract modelsM i, and functions ϕi specifying WCET for the actions ofM i,
the abstract composition M can be safely implemented if the physical composition Mϕ (defined above) is
time-robust.

We define a Real-Time Engine that does not need an a priori knowledge of execution time functions ϕi
and the occurrence time of the inputs (see Figure 6). It ensures the real-time execution of a component-
based application by taking into account actual execution times on the target platform and the actual oc-
currence of the inputs. It stops1 the application when time-safety is violated, that is, when a deadline or
an input is missed as explained in Section 2.3. It also implements one of the policies (error or ignore) for
enforcing input-enabledness presented in Section 2.2.

Interactions with the environment are not directly performed by the application but are managed by the
Event Handler which is the part of the Real-Time Engine that realizes the interface between inputs/outputs
of the application and the environment. We assume that the Event Handler can detect and store all inputs
and their actual occurrence time in a FIFO. There are different ways for implementing this mechanism:
interruptions, signals, threads executing in parallel with the application, etc.

1Actually any policy can be implemented depending on the application domain. Stopping the application is usually for critical
systems.
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Figure 6: Architecture of the Real-Time Engine.

To check enabledness of actions (i.e. interactions, inputs or outputs), the Real-Time Engine expresses
the timing constraints involving local clocks of components in terms of a single clock t measuring the
absolute time elapsed, that is, t is never reset. For this, we use a valuation w : X → T in order to store
the absolute time w(x) of the last reset of each clock x with respect to the clock t. The valuation v of the
clocks X can be computed from the current value of t and w by using the equality v = t − w. Thus, the
Real-Time Engine considers states of the form (q, w, t) where q = (q0, . . . , qn) ∈ Q is a control location
of M , w : X → T is a valuation of the clocks representing their reset time, and t ∈ T is the value of the
(absolute) current time.

We rewrite each atomic expression l ≤ x ≤ u involved in a guard by using the global clock t and reset
times w, that is, l ≤ x ≤ u ≡ l + w(x) ≤ t ≤ u+ w(x). This allows reducing the conjunction of guards
from synchronizing components into a guard of the form:

∧
j

[
lj ≤ t ≤ uj

]τj =
[
(maxj lj) ≤ t ≤ (minj uj)

]max τj

.

Thus, the guard g associated to an action a (i.e. a is an input, an output or an interaction) at control location
q for reset times w can be put in the form g = [l ≤ t ≤ u]τ . For a given state (s, t) = (q, w, t) of M ,
we associate to the action a its next activation time nextt(a), its last activation time lastt(a) and its next
deadline deadlinet(a). Values nextt(a), lastt(a) and deadlinet(a) are computed from g = [l ≤ t ≤ u]τ

as follows:

nextt(a) =
{

max { t, l } if l ≤ u and t ≤ u
+∞ otherwise,

lastt(a) =
{

max { u } if l ≤ u and t ≤ u
−∞ otherwise,

deadlinet(a) =


u if l ≤ u ∧ t ≤ u ∧ τ = d
l if l ≤ u ∧ t < l ∧ τ = e
t if l ≤ u ∧ t ∈ [l, u] ∧ τ = e
+∞ otherwise.

Notice that the guard g of a depends (only) on control location and reset times, i.e. on s = (q, w). We
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extend these definitions to subsets of actions A ⊆ A:

nextt(A) =
{

+∞ if A = ∅
mina∈A nextt(a) otherwise,

lastt(A) =
{
−∞ if A = ∅
maxa∈A lastt(a) otherwise,

deadlinet(A) =
{

+∞ if A = ∅
mina∈A deadlinet(a) otherwise.

Subsets of actions A satisfy nextt(A) ≤ deadlinet(A), and nextt(A) ≤ lastt(A) if A 6= +∞.
We assume that the actual time tr is provided by the real-time clock of the platform. It is used to update

the absolute time t used by the Real-Time Engine for computing execution sequences of the physical model
Mϕ. The proposed Engine (Algorithm 1) corresponds to the ignore policy presented in Section 2.2. It also
checks for time-safety violations which correspond to inputs or deadlines missed. Notice that the proposed
algorithm directly implements the semantics of physical models, that is, it corresponds to a sequential
execution in which inputs can only occur during waiting periods. It can be slightly modified to safely
handle inputs occurring during actions execution as explained below. Moreover, the Real-Time Engine can
modified to allow parallel execution of the components and the interactions as explained in [3].

Given a state (s, t) = (q0, . . . , qn, w, t), the Real-Time Engine computes the next action to execute
using the followings steps.

Compute enabled actions. It first computes enabled actions from s and their associated timing constraints
as explained above (lines 3 to 5 of Algorithm 1). According to Definition 6, an action is enabled in

M if it is an input or an output a ∈ Ain
i ∪ Aout

i enabled for a component M i (i.e. qi
ai,gi,ri−→ q′i),

or if it is an interaction a = { ai | i ∈ I } ∈ γ such that actions ai are enabled in components
M i (i.e. qi

ai,gi,ri−→ q′i). We distinguish between enabled inputs Is, enabled outputs Os and enabled
interactions γs.

Update and check for time-safety. It computes the next deadlineD with respect to the current state (s, t)
(line 11). The absolute time t is then updated with respect to the actual time tr in order to take
into account the previous action execution time, and stops the execution if the deadline D is missed
(lines 12 and 14).

It also stops the execution if an enabled input occurred during the previous action execution (line 18).
We use the primitive Inputs() of the Event Handler which returns the current contents of its FIFO
filtered by enabled inputs Is (and their corresponding timing constraints) given as parameter. It is
also possible to safely handle these inputs a posteriori by replacing line 18 by:

(a, t) ← PurgeFirst(Is).

The primitive PurgeFirst() of the Event Handler returns and removes2 the oldest occurrence of an
enabled input from the FIFO (first enabled input in the FIFO). This input is treated after its occurrence
time with the same behavior as if it was treated exactly at this time.

Schedule an output or an interaction. It chooses, if it exists, an output or an interaction a according to
a real-time scheduling policy and plan to execute a at its next activation time nextt(a) (lines 21
and 22). Otherwise a = ∅ and the system can only progress if an input is received before the next
deadline D and before the last instant of activation of the inputs nextt(Is) (lines 24 and 25).

Wait. It waits for the instant of execution of a if a 6= ∅, otherwise it waits for an input until there is a
deadlock (line 28). If an enabled input occurs while waiting, it is immediately executed instead of
the planed action.

Execute. It executes the chosen action a which corresponds to either an output or an interaction planed
by the real-time scheduler, or an enabled input (line 36). The execution of an output also includes

2The actual implementation of the Real-Time Engine removes also non-enabled inputs when possible, to avoid overflows.
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Algorithm 1 Real-Time Engine
Require:

1: (s, t) = (q, w, t)← (q0, 0, 0) // initialize system state
2: loop
3: Is← EnabledInputs(s) // enabled inputs
4: Os← EnabledOuputs(s) // enabled outputs
5: γs← EnabledInteractions(s) // enabled interactions
6:
7: if nextt(Is ∪ Os ∪ γs) = +∞ then
8: exit(DEADLOCK) // nothing enabled from state (s, t)
9: end if

10:
11: D← deadlinet(Is ∪ Os ∪ γs) // next deadline
12: t← tr // update model time w.r.t. actual time
13: if t > D then
14: exit(DEADLINE MISSED) // missed deadline
15: end if
16:
17: if Inputs(Is) 6= ∅ then
18: exit(INPUT MISSED) // missed input
19: else
20: if nextt(Os ∪ γs) < +∞ then
21: a← RealTimeScheduler(Os ∪ γs) // plan action
22: t← nextt(a) // at absolute time t
23: else
24: a← ∅ // no enabled output or interaction
25: t← min { lastt(Is), D } // after t, deadlock
26: end if
27:
28: wait Inputs(Is) 6= ∅ or tr ≥ t
29:
30: if Inputs(Is) 6= ∅ then
31: (a, t)← PurgeFirst(Is) // retrieved the input
32: end if
33: end if
34:
35: if a 6= ∅ then
36: Execute(a) // execute a at global time t
37: else
38: exit(DEADLOCK) // nothing enabled from (s, t)
39: end if
40: end loop
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a notification to the Event Handler which executes the corresponding actuate actions as shown in
Figure 6. Notice that inputs occurring during the execution of a are treated at the next iteration
according to the semantics of Mϕ.

4 Experimental results
We implemented the proposed method for the component-based framework BIP [4]. This implementa-
tion consists of an extension of the BIP language allowing the expression of real-time open systems and
the development of a dedicated Real-Time Engine. The Real-Time Engine performs the computation of
schedules meeting the timing constraints of the application, depending on the actual time provided by the
real-time clock of the platform and the actual occurrences of inputs.

Our experiments on the Dala rover using this extension of BIP show significant improvements in terms
of CPU utilization and reactivity to requests from the environment with respect to its previous implemen-
tation based on the standard BIP tools (i.e. without using the proposed extension).

4.1 The BIP Framework
BIP (Behavior Interaction Priority) is a framework for building systems consisting of heterogeneous com-
ponents. A component has only private data, and its interface is given by a set of communication ports
which are action names eventually associated with data. The behavior of a component is given by an
automaton whose transitions are labelled by ports and can execute C++ code. Connectors between com-
munication ports of components define a set of enabled interactions which are synchronizations between
components with possible data transfer. Interactions are obtained by combining two types of synchro-
nization: rendez-vous and broadcast. This is achieved by assigning types—trigger or synchron—to ports.
A trigger is an active port, and can initiate an interaction without synchronizing with other ports. It is
represented graphically by a triangle. A synchron port is passive, hence needs synchronization with other
ports, and is denoted by a circle. The execution of interactions may involve transfer of data between the
synchronizing components. Priority is a mechanism for conflict resolution that allows direct expression
of scheduling policies between interactions. Usually maximal progress is considered as default priority
relation. It favors the execution of larger interactions (in the sense of inclusion of sets of ports). Compo-
nents, connectors and priorities are used for building hierarchically new components, namely compound
components.

In addition to ports which correspond to internal actions of the system, the proposed extension of BIP
introduces inputs and outputs using environment ports. Since environment ports are used for interacting
directly with the environment, they cannot be involved in interactions. Environment ports of type output
are represented as triggers (using triangles) since they are freely triggered by the system. In contrast,
environment ports of type input are represented as synchrons (using circles) since they are triggered by
the environment. Our extension of BIP also considers timed automata instead of automata for components
behavior.

The BIP language is completed by a compiler that generates C++ code from BIP models. The generated
code is intended to be combined with a dedicated Engine implementing the semantics of BIP. Engines
are used for simulating, executing or exploring (i.e. exhaustive computation of the execution sequences)
BIP models. The single-thread Engine directly implements the BIP semantics by executing interactions
sequentially. The multi-thread Engine allows the execution of more than one interaction at the same time,
while preserving the semantics according to a notion of observational equivalence [3]. We extended the
compiler and implemented a Real-Time Engine for the considered extension of BIP, based on the results
given in Section 3.

4.2 Use Case: The Dala Robot
BIP has been successfully used for implementing the functional level of the controller of the autonomous
rover Dala [7]. The functional level includes the basic built-in actions and perception capacities of the
robot (e.g. image processing, obstacle avoidance, motion planning, etc.). These are encapsulated into
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Figure 8: Implementation of Antenna module using timing constraints and environment ports.

controllable communicating modules. Each module provides a set of services which can be invoked by the
higher level (i.e. decisional level) according to tasks that need to be achieved. Those services are managed
by execution tasks which are executed periodically for launching and executing activities associated to
services. Each module may export posters for communicating with other modules. They can store data
produced by the module.

We conducted experiments on the Antenna module of Dala. Antenna is responsible for the communi-
cation with an orbiter, and provides the following services:

Init service initializes the communication module. It fixes the bounds of the communication time window
between the application and the orbiter, given as parameter.

Communication service starts the communication with the orbiter. It has a parameter defining the dura-
tion of the communication.

StopCom service terminates the on-going communication between the application and the orbiter.

BIP implementations are obtained by translating an existing GenoM [6, 5] specification of Antenna
initially used by LAAS for implementing the robot. We consider the following implementations of Antenna
in BIP.

The first implementation is based on the multi-thread BIP Engine, meaning that it does not benefit from
the extension proposed in this paper (see Figure 7). By calling sleep primitives of the platform at each
execution of action tick, MasterTime component ensures the synchronization of the Timer components
every 10 ms. Timer components trigger other components at periods, given as parameters, in terms of ticks
by using integer variablesCounter representing clocks. Periodic execution of Timer is enforced by a guard
involving Counter. Interactions with the environment are performed by periodically reading a dedicated
shared memory (i.e. by an active wait) in component MessageBox which checks the presence of requests
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Figure 9: Response time of Antenna to a request.

using a period of 10 ticks (100 ms). Component Age measures the freshness of the poster at a period of
5 ticks (50 ms). Component Scheduler executes activities based on a period of 60 ticks (600 ms).

The second implementation is based on the Real-Time Engine proposed in this paper. It directly ex-
presses timing constraints in components using clocks as explained in Section 2, which avoids the use of
MasterTime and Timer components (see Figure 8). As a result, we introduced clock Ageclk in Age com-
ponent measuring the freshness of the poster. We introduced clock Pclk in Scheduler component which
is tested against the period 600 ms. Environment port Request (which is an input) replaces the active
wait used by the first implementation for communicating with the environment. Environment port Report
(which is an output) sends reports to the environment each time a request is treated.

Comparison of the Implementations

We compared the execution of the implementations of Antenna using the multi-thread Engine and the Real-
Time Engine. CPU utilization is 4 times higher for the multi-thread Engine compared to the Real-Time
Engine. The main reason is that the multi-thread Engine executes tick every 10 ms, even at states for
which the application is waiting for enabledness of a guard or the arrival of a message, whereas the Real-
Time Engine is actually sleeping (processor is idle) for the same states. The Real-Time Engine directly
schedules the interactions at time instants meeting the timing constraints, avoiding the need for any periodic
synchronization between the components.

The response time of Antenna (i.e. delay between sending a message to Antenna and its treatment)
is also drastically improved by the Real-Time Engine: it ranges from 0 to 100 ms for the multi-thread
Engine whereas it is about 0.1 ms for the Real-Time Engine. This is due to the fact that the Real-Time
Engine is instantaneously waked up when a message arrives during sleeping periods. We implemented this
mechanism in the decisional level by sending a Unix signal to the Event Handler each time a message is
sent. In contrast, the implementation using the multi-thread Engine actively checks for messages every
100 ms, which explains that the response time (i.e. the difference between the time instant of the arrival of
a message and the time instant of the next check) ranges from 0 ms to 100 ms.

Furthermore, there are other drawbacks of the implementation using the multi-thread Engine. Firstly,
executing tick at a given period P requires the execution times of interactions to be bounded by P , which is
a strong and restrictive assumption that imposes decomposing interactions when it does not hold. Secondly,
tick strongly synchronizes all components so that the obtained model may easily deadlock since a local
deadlock of a single component leads to global deadlock of the system. Finally, mixing timing constraints
(expressed in terms of boolean guards involving integer variables) with data makes the analysis of the
model more difficult. Indeed, they should be restricted to intervals constraints and handled separately to
exploit existing analysis techniques for timed-automata, as in the proposed method.
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5 Conclusion

We have presented a general implementation method for open real-time systems. This method generalizes
existing techniques namely time-triggered approaches. These techniques rely on the notion of (fixed)
logical execution times (LET) imposed to component actions leading to time-deterministic behaviors. We
consider any type of interval timing constraints for actions, which encompasses time non-deterministic
systems. We also provide mechanisms that allow the system to react to external inputs produced by the
environment. We think that our approach is particularly suited for implementing adaptive systems, that
is, systems that adapt their behavior in accordance with the actual execution on the platform (i.e. with
execution times, energy consumption, available resources, etc.) and/or the behavior of the environment.
In contrast to standard event-driven programming techniques which offer no guarantees on the behavior
of the system besides estimates of response times, our method allows static verification as well as on-line
checking of essential properties such as time-safety or time-robustness.

In addition, experimental results show the enhancements obtained by using the method, in terms of
CPU utilization and response time.
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