
Competitive Self-Stabilizing
k-Clustering

Ajoy K. Datta, Stéphane Devismes, Karel Heurtefeux,
Lawrence L. Larmore, Yvan Rivierre

Verimag Research Report no TR-2011-16

November 17, 2011

Reports are downloadable at the following address
http://www-verimag.imag.fr

Unité Mixte de Recherche 5104 CNRS - INPG - UJF
Centre Equation
2, avenue de VIGNATE
F-38610 GIERES
tel : +33 456 52 03 40
fax : +33 456 52 03 50
http://www-verimag.imag.fr

http://www-verimag.imag.fr

Competitive Self-Stabilizing k-Clustering

Ajoy K. Datta, Stéphane Devismes, Karel Heurtefeux, Lawrence L. Larmore,
Yvan Rivierre

November 17, 2011

Abstract

A k-cluster of a graph is a connected non-empty subgraph C of radius at most k, i.e., all
members of C are within distance k of a particular node of C, called the clusterhead of C. A
k-clustering of a graph is a partitioning of the graph into distinct k-clusters. Finding a mini-
mum cardinality k-clustering is known to be NP-hard.
In this paper, we propose a silent self-stabilizing asynchronous distributed algorithm for con-
structing a k-clustering of any connected network with unique IDs. Our algorithm stabilizes
in O(n) rounds, using O(log n) space per process, where n is the number of processes. In
the general case, our algorithm constructs O(nk) k-clusters. If the network is a Unit Disk
Graph (UDG), then our algorithm is 7.2552k + O(1)-competitive, that is, the number of k-
clusters constructed by the algorithm is at most 7.2552k + O(1) times the minimum possible
number of k-clusters in any k-clustering of the same network. More generally, if the net-
work is an Approximate Disk Graph (ADG) with approximation ratio λ, then our algorithm is
7.2552λ2k +O(λ)-competitive.
Our solution is based on the self-stabilizing construction of a data structure called the MIS
Tree, a spanning tree of the network whose processes at even levels form a maximal indepen-
dent set of the network. The MIS tree construction is the time bottleneck of our k-clustering
algorithm, as it takes Θ(n) rounds in the worst case, while the remainder of the algorithm takes
O(D) rounds, where D is the diameter of the network. We would like to improve that time to
be O(D), but we show that our distributed MIS tree construction is a P-complete problem.

Keywords: self-stabilization, maximal independent set, MIS tree, k-clustering, competitiveness

How to cite this report:

@techreport {TR-2011-16,
title = {Competitive Self-Stabilizing k-Clustering},
author = { Ajoy K. Datta, Stéphane Devismes, Karel Heurtefeux, Lawrence L. Larmore,

Yvan Rivierre },
institution = {{Verimag} Research Report},
number = {TR-2011-16},
year = {2011}

}

Competitive Self-Stabilizing k-Clustering
Ajoy K. Datta, Stéphane Devismes, Karel Heurtefeux, Lawrence L. Larmore, Yvan Rivierre

1 Introduction
Consider a simple connected undirected graph G = (V,E), where V is a set of n nodes and E a set of
edges. For any nodes p and q, we define ‖p, q‖, the distance from p to q, to be the length of the shortest
path in G from p to q. Given a non-negative integer k, a k-cluster of G is defined to be a set C ⊆ V ,
together with a designated node Clusterhead(C) ∈ C, such that each member of C is within distance k
of Clusterhead(C). A k-clustering of G is a partition of V into distinct k-clusters.

A major application of k-clustering is in the implementation of an efficient routing scheme in a network
of processes. Indeed, we could use the rule that a process that is not a clusterhead, communicates only with
processes in its own k-cluster, and that clusterheads communicate with each other via virtual “super-edges,”
implemented as paths in the network.

Ideally, we would like to find a k-clustering with the minimum number of k-clusters. However, this
problem is known to be NP-hard [15]. Instead, we propose here an asynchronous distributed silent self-
stabilizing algorithm to construct O(nk) k-clusters in any arbitrary network with unique IDs. If the net-
work is a Unit Disk Graph (UDG), then our algorithm is 7.2552k + O(1)-competitive, that is, it builds
a k-clustering which has at most 7.2552k + O(1) times as many clusters as the minimum cardinality
k-clustering.

Related Work Self-stabilization [9] is a versatile property, enabling an algorithm to withstand transient
faults in a distributed system. A self-stabilizing algorithm, after transient faults hit and place the system
in some arbitrary state, enables the system to recover without external (e.g., human) intervention in finite
time.

There are several known asynchronous self-stabilizing distributed algorithms for finding a k-clustering
of a network, e.g., [7, 6, 3]. The solution in [7] stabilizes in O(k) rounds using O(k log n) space per
process. The algorithm given in [6] stabilizes in O(n) rounds using O(log n) space per process. The
algorithm given in [3] stabilizes in O(kn) rounds using O(k log n) space per process.

In [?], an asynchronous silent self-stabilizing algorithm is given which computes a k-dominating set of
at most b n

k+1c processes. A set of vertices D of G is called k-dominating if every vertex of G is within
k hops of some member of D. Hence, the set of clusterheads of a k-clustering is a k-dominating set.
Then, any k-dominating set can be used to construct a k-clustering by letting each member of the set be a
clusterhead, and letting each process join the nearest clusterhead. The k-dominating set construction given
in [?] stabilizes in O(n) rounds using O(log n+ k log n

k) bits per process.
Note that all these aforementioned algorithms (i.e., [7, 6, 3, ?]) are written in the shared memory model

and none of them is competitive.
There are several non self-stabilizing distributed solutions for finding a k-clustering of a network [1, 13,

19, 20]. Of those, only [13] deals with competitiveness. Moreover, they are all written in message-passing
model. Deterministic solutions given in [1, 13] are designed for asynchronous mobile ad hoc networks,
i.e., they assume networks with a UDG topology. The time and space complexities of the solution in [1]
are O(k) and O(k log n), respectively. Spohn and Garcia-Luna-Aceves [20] give a distributed solution to
a more generalized version of the k-clustering problem. In this version, a parameter m is given, and each
process must be a member of m different k-clusters. The time and space complexities of this algorithm for
asynchronous networks are not given. Ravelomanana [19] gives a randomized algorithm for synchronous
UDG networks whose time complexity is O(D) rounds, where D is the diameter of the network. Fer-
nandess and Malkhi [13] give a k-clustering algorithm that takes O(n) steps using O(log n) memory per
process, provided a BFS tree of the network is already given. In the special case that the network is a UDG,
their algorithm is 8k +O(1)-competitive. 1

Contributions In this paper, we give a silent self-stabilizing asynchronous distributed algorithm for con-
structing a k-clustering in any connected network with unique IDs. Our algorithm stabilizes in O(n)
rounds using O(log n) space per process. In the general case, our algorithm constructs at most 1 + bn−1k+1 c
k-clusters. If the network is a UDG, then our algorithm is 7.2552k+O(1)-competitive, that is, the number

1Actually, in [13], a k-cluster is defined to have diameter at most k, while the definition in this paper uses radius k. They give
competitiveness 4k +O(1), which is equivalent to competitiveness 8k +O(1) using our definition of k-cluster.

Verimag Research Report no TR-2011-16 1/18

Ajoy K. Datta, Stéphane Devismes, Karel Heurtefeux, Lawrence L. Larmore, Yvan Rivierre
Competitive Self-Stabilizing k-Clustering

of k-clusters constructed by the algorithm is at most 7.2552k +O(1) times the minimum possible number
of k-clusters in any k-clustering of the same network. This result is an improvement over that of [13].
More generally, if the network is an Approximate Disk Graph (ADG) with approximation ratio λ, then our
algorithm is 7.2552λ2k + O(λ)-competitive. UDG and ADG are commonly used to model the topology
of wireless ad hoc networks.

Our solution is based on the self-stabilizing construction of a data structure called an MIS Tree, a
spanning tree of the network whose processes at even levels form a maximal independent set of the network.
The MIS tree method was introduced by Fernandess and Malkhi [13]. The MIS tree construction is the
time bottleneck of our k-clustering algorithm, as it takes Θ(n) rounds in the worst case, and the remainder
of the algorithm takes O(D) rounds, where D is the diameter of the network. We would like to improve
that time to be O(D), however, that will most likely involve different techniques, since whether a given
process is part of the Fernandess-Malkhi MIS is a P-complete problem, as we show in Section 6.

Roadmap In the next section, we present the model used throughout this paper. In Section 3, we give
our self-stabilizing MIS tree construction. In Section 4, we give our self-stabilizing k-clustering algorithm.
In Section 5, we analyze the competitiveness of our k-clustering algorithm in UDGs and ADGs. In Section
6, we show that the problem we solved in Section 3 is P-complete. Finally, in Section 7, we give some
perspectives.

2 Preliminaries

Computational Model Consider a simple connected bidirectional network G = (V,E) where V is a set
of n processes and E a set of links. Processes have unique IDs. By an abuse of notation, we shall identify
any process with its ID, whenever convenient.

We assume the shared memory model of computation [9], where a process p can read its own variables
and those of its neighbors, but can write only to its own variables. LetNp denote the set of neighbors of p.
Each process operates according to its (local) program. We call (distributed) algorithm A a collection of
n programs, each one operating on a single process. The program of each process is a finite set of actions:
〈label〉 :: 〈guard〉 −→ 〈statement〉. Labels are only used to identify actions. The guard of an action
in the program of a process p is a Boolean expression involving the variables of p and its neighbors. The
statement of an action of p updates one or more variables of p. An action can be executed only if it is
enabled, i.e., its guard evaluates to true. A process is said to be enabled if at least one of its actions is
enabled. The state of a process in A is defined by the values of its variables in A. A configuration of A is
an instance of the states of processes in A. We denote by γ(p) the state of process p in configuration γ.

Let 7→ be the binary relation over configurations of A such that γ 7→ γ′ if and only if it is possible
for the network to change from configuration γ to configuration γ′ in one step of A. An execution of A
is a maximal sequence of its configurations e = γ0γ1 . . . γi . . . such that γi−1 7→ γi for all i > 0. The
term “maximal” means that the execution is either infinite, or ends at a terminal configuration in which
no action of A is enabled at any process. Each step γi 7→ γi+1 consists of one or more enabled processes
executing an action. The evaluations of all guards and executions of all statements of those actions are
presumed to take place in one atomic step; this model is called composite atomicity [10].

We assume that each step from a configuration to another is driven by a scheduler, also called a daemon.
If one or more processes are enabled, the scheduler selects at least one of these enabled processes to execute
an action. A scheduler may have some fairness properties. Here, we assume a weakly fair scheduler, i.e.,
it allows every continuously enabled process to eventually execute an action.

We say that a process p is neutralized in the step γi 7→ γi+1 if p is enabled in γi and not enabled in
γi+1, but does not execute any action between these two configurations. The neutralization of a process
represents the following situation: at least one neighbor of p changes its state between γi and γi+1, and
this change effectively makes the guard of all actions of p false.

To evaluate the time complexity, we use the notion of round [12]. The first round of an execution %,
noted %′, is the minimal prefix of % in which every process that is enabled in the initial configuration either
executes an action or becomes neutralized. Let %′′ be the suffix of % starting from the last configuration of

2/18 Verimag Research Report no TR-2011-16

Competitive Self-Stabilizing k-Clustering
Ajoy K. Datta, Stéphane Devismes, Karel Heurtefeux, Lawrence L. Larmore, Yvan Rivierre

%′. The second round of % is the first round of %′′, the third round of % is the second round of %′′, and so
forth.

Self-Stabilization and Silence A configuration conforms to a predicate if the predicate is satisfied in the
configuration; otherwise the configuration violates the predicate. By this definition every configuration
conforms to predicate true and none conforms to predicate false. Let R and S be predicates on configura-
tions of the algorithm. Predicate R is closed with respect to the algorithm actions if every configuration of
any execution of the algorithm that starts at a configuration conforming to R also conforms to R. Predicate
R converges to S if R and S are closed and every execution starting from a configuration conforming to R
contains a configuration conforming to S. A distributed algorithm is self-stabilizing with respect to predi-
cate R if true converges to R. An algorithm is silent [11] if each of its executions is finite. In other words,
starting from an arbitrary configuration, the network will eventually reach a configuration where none of
its actions is enabled at any process.

Composition To simplify the design of our algorithm, we use hierarchical collateral composition [?]
which is a variant of collateral composition [21]. When we collaterally compose two algorithms A and
B, A and B run concurrently and B uses the outputs of A in its computations. In the variant we use, we
modify the code of B so that a process executes an action of B only when it has no enabled action in A.

Definition 1 Let A and B be two algorithms such that no variable written by B appears in A. The hier-
archical collateral composition of A and B, noted B ◦ A, is the algorithm defined as follows: (i) B ◦ A
contains all variables of A and B; (ii) B ◦ A contains all actions of A; (iii) For every action Gi → Si of
B, B ◦ A contains the action ¬C ∧Gi → Si where C is the disjunction of all guards of actions in A.

We recall a theorem from [?] that gives sufficient conditions to show the correctness of an algorithm
obtained by hierarchical collateral composition.

Theorem 1 B ◦ A is self-stabilizing w.r.t predicate SP under a weakly fair scheduler if: (i) A is silent
algorithm under a weakly fair scheduler, and (ii) B converges to SP from any terminal configuration of A
under a weakly fair scheduler.

3 The MIS Tree
In this section, we first recall the data structure MIS tree (for Maximal Independent Set tree), introduced in
[13]. We define an MIS tree to be a spanning tree rooted at a given node r, where the set of all nodes at
even levels is a maximal independent set of the network. This data structure has interesting properties that
will be used to compute a competitive k-clustering, when the network is a UDG. In the second part of the
section, we give a self-stabilizing algorithm that computes an MIS tree in any arbitrary identified network
within O(n) rounds. There could be many different MIS trees for a given network and a given r; the
one we construct has the same specification as that constructed in [13]. We leave open the possibility that
there could be faster algorithm to compute an MIS tree, but, in Section 6, we will prove that, if there is a
distributed algorithm which constructs the specific MIS tree constructed here in O(D) time, then P = NC
(Nick’s Class), which would be as startling as P = NP .

3.1 Definition of MIS Tree
Suppose G = (V,E) is a connected undirected graph. A set I ⊆ V is an independent set of G if no two
distinct members of I are neighbors in G. An independent set I of G is maximal if no proper superset of I
is an independent set of G. A spanning tree of G is any connected graph T = (VT , ET) such that VT = V ,
ET ⊆ E and |ET | = |VT | − 1. Any spanning tree becomes a rooted tree by choosing a distinguished root
r; in this paper, all spanning trees are rooted.

Given a rooted spanning tree T , the level of node p, Level(p), is defined to be its distance to the root
r. The height of T , noted h(T), is maxp∈VT

Level(p). Let T (p) be the subtree of T rooted at any given

Verimag Research Report no TR-2011-16 3/18

Ajoy K. Datta, Stéphane Devismes, Karel Heurtefeux, Lawrence L. Larmore, Yvan Rivierre
Competitive Self-Stabilizing k-Clustering

node p, and define h(T (p)) to be the height T (p). The parent of p in T is p itself if p = r, otherwise it is
its unique neighbor q in T such that h(p) = h(q) + 1.

Definition 2 An MIS tree T of G is a spanning tree of G rooted at some node r such that the set of nodes
at even levels of T is a maximal independent set of G.

Property 1 Let T be an MIS tree of G. Let I be the maximal independent set formed by the nodes at even
levels of T . If σ is a path of T of length ` (i.e., `+ 1 nodes), then σ contains at least d `2e members of I .

1

2 3

4

5 6

78 9

Figure 1: Example of LFMIST.

Assume that an ordering p1, p2, . . . , pn of V is given. Any rooted tree T of G can be encoded as an
n-tuple of numbers in the range 1..n, as follows. The ith entry of the encoding of T is j if pj is the parent
of pi in T . The lexically first MIS tree (LFMIST) of G with root r is then defined to be that MIS tree of
G whose is first in the lexical order of the encodings of all MIS trees of G with root r. For example, in
Figure 1, the members of the maximal independent set are shown in black and the encoding of the tree is
(1, 1, 2, 1, 3, 5, 8, 4, 6).

3.2 The Algorithm to construct an MIS Tree
Our self-stabilizing algorithm to construct an MIS tree is a hierarchical collateral composition of two
algorithms: MIST ◦ BFST . Algorithm BFST constructs a breadth-first spanning tree (BFS tree).
Then,MIST uses the BFS tree to compute an MIS Tree of the network in O(n) rounds.

Algorithm BFST We define a breadth first spanning tree (BFS tree) rooted at r, for a graphG = (V,E)
to be any spanning tree T rooted at r such that the path, through T , from any node p to r has length ‖p, r‖
(the distance from p to r in G).

Let BFST be any silent self-stabilizing breadth-first spanning tree algorithm for a network with unique
IDs which works under a weakly fair scheduler. That is, starting from an arbitrary configuration, BFST
converges to a terminal configuration where a root r and a breadth-first spanning tree of the G, rooted at r,
is output. Henceforth, we denote by LevelBFS(p) the level of any process p in the breadth-first spanning
tree computed by BFST .

Many silent self-stabilizing breadth-first search spanning tree algorithms have been given in the liter-
ature. See [16] for one of the first papers on that topic. This algorithm was designed for arbitrary rooted
networks, but it can be easily adapted to work in arbitrary network with unique IDs by composing it with
a leader election algorithm, e.g., [8]. The composition of these two latter algorithms stabilizes in O(n)
rounds uses O(log n) space per process.

Algorithm MIST Let r be the root of the BFS tree computed by BFST . Let ≺ be an order on
processes defined as follows : p ≺ q if and only if (‖p, r‖, p) is smaller than (‖q, r‖, q) in the lexical
ordering of the pairs. Using the outputs of BFST , MIST computes an MIS tree of the network that
is lexically first w.r.t. to ≺. The formal description ofMIST is given in Algorithm 1. InMIST , the
program of each process p contains two variables:

- The Boolean variable p.dominator, which determines if p is in the independent set or not.
- The pointer variable p.parent, which points to the parent of p in the MIS tree.

Every process p such that p.dominator = true is said to be a dominator, otherwise it is said to be
dominated. Eventually, the set {p ∈ V | p.dominator} is fixed and forms a maximal independent set of the
network thanks to Action SetDominator.

4/18 Verimag Research Report no TR-2011-16

Competitive Self-Stabilizing k-Clustering
Ajoy K. Datta, Stéphane Devismes, Karel Heurtefeux, Lawrence L. Larmore, Yvan Rivierre

To decide of its status dominator/dominated, each process uses a priority, noted Priority(p), which
is defined by the tuple (LevelBFS(p), p) (n.b., LevelBFS(p) is eventually equal to the distance of p to the
root of the BFS tree). According to the priorities and the status of its neighbors, p decides its status as
follows: p is a dominator if and only if all its neighbors q are either dominated or satisfy Priority(q) >
Priority(p), where > is the strict lexical ordering. According to this rule, the root of the BFS tree is the
node of minimum priority and consequently is eventually definitely a dominator. All its neighbors becomes
dominated, and so on.

Each process must choose a parent such that the parent links form a spanning tree, and the set of
processes at even levels is exactly the set of dominators. The root r sets its parent variable to r. All other
processes choose as parent the neighbor having a status different of their own of minimum priority. This
forces a strict alternation between status dominator/dominating along every path of the tree. As the root is
at level zero and of dominating status, this alternation makes the tree an MIS tree.

Algorithm 1MIST , code for each process p
Inputs: LevelBFS(p) ∈ N
Variables: p.dominator: Boolean ; p.parent ∈ Np ∪ {p}
Macros:
Priority(p) = (LevelBFS(p), p)
Dominator(p) = ∀q ∈ Np, P riority(p) < Priority(q) ∨ ¬q.dominator
Parent(p) = if LevelBFS(p) = 0 then p

else q ∈ Np | Priority(q) = min{Priority(q′) | q′ ∈ Np ∧ q′.dominator 6= p.dominator}
Actions:

SetDominator :: p.dominator 6= Dominator(p) −→ p.dominator← Dominator(p)
SetParent :: p.dominator = Dominator(p) ∧ p.parent 6= Parent(p) −→ p.parent← Parent(p)

Correctness and Complexity Analysis According to Theorem 1, to show the correctness ofMIST ◦
BFST , we show thatMIST constructs a MIS tree starting from any configuration where no action of
BFST is enabled. In such a configuration, a BFS tree TBFS rooted at some node is available. In the
following, we denote by r the root of TBFS , which will be also the root of the MIS tree.

The following two lemmas show thatMIST stabilizes in O(n) rounds after BFST has stabilized.

Lemma 1 Starting from any configuration where no action of BFST is enabled, all actions SetDominator
are disabled forever after at most n rounds.

Proof. Let γ be a configuration where no action of BFST is enabled. From γ, Priority(p) is fixed
forever for every process p. Let p1,. . . ,pn the list of processes ordered by ≺ (the lexical ordering w.r.t.
priorities) in γ. We show the lemma by induction on the rank of every process in the ordering.

• Base case: In γ, if p1.dominator 6= true, p1 is continuously enabled to set p1.dominator = true.
Once, p1.dominator = true, action SetDominator is disabled at p1 forever. So, after at most one
round from γ, action SetDominator of p1 is disabled forever.

• Inductive Hypothesis: Let j a positive integer. Assume that for every process pi such that i ≤ j,
action SetDominator is disabled forever at pi after at most i rounds from γ.

• Inductive step: Consider process pj+1 in the first configuration of the (j+1)st round from γ. Every
neighbor q of pj+1 has priority that is fixed forever; moreover if Priority(q) < Priority(pj+1),
then the value q.dominator is fixed forever by induction hypothesis. So, either action SetDominator
is disabled at pj+1 or it is continuously enabled. Hence, at the end of the current round, the value of
pj+1 is fixed forever and the induction holds.

The maximum rank being n, the lemma is verified. �

Lemma 2 Starting from any configuration where no action of BFST is enabled, if at least n+1 additional
rounds have elapsed, no action ofMIST is enabled.

Verimag Research Report no TR-2011-16 5/18

Ajoy K. Datta, Stéphane Devismes, Karel Heurtefeux, Lawrence L. Larmore, Yvan Rivierre
Competitive Self-Stabilizing k-Clustering

Proof. Let γ be a configuration where no action of BFST is enabled. By Lemma 1, after at most n
rounds from γ, no action SetDominator is enabled. So, from that point, the values of Priority(p) and
p.dominator are fixed forever. Now, for all processes, the guard of action SetParent only depends on these
values. So, after at most one additional rounds, no action ofMIST is can ever again be enabled, and we
are done. �

We now consider any terminal configuration γ of MIST ◦ BFST . Let I the set of all dominator
processes in γ, that is, the set of all processes p such that p.dominator = true in γ.

The following three technical lemmas are used in order to prove Lemma 6 which states the correctness
ofMIST ◦ BFST .

Lemma 3 In any terminal configuration γ of MIST ◦ BFST , I is a maximal independent set of the
network.

Proof. Suppose the set I is not independent, then there exist two neighbors p and q such that p.dominator
and q.dominator. Then, either Priority(p) < Priority(q) or Priority(q) < Priority(p). In the first
case, Action SetDominator is enabled at q, in the latter Action SetDominator is enabled at p, contradiction.

Suppose the independent set I is not maximal, then there exists a process p such that ¬p.dominator and
for every neighbor q of p, ¬q.dominator. Then Action SetDominator is enabled at p, contradiction. �

In γ, r is the only process such that LevelBFS(r) = 0. By the definition of Parent(p), we then have:

Remark 1 In γ, for every process p, either p = r and p.parent = r or p 6= r and p.parent ∈ Np.

Lemma 4 In any terminal configuration γ ofMIST ◦ BFST , Priority(p.parent) < Priority(p). for
every process p 6= r,

Proof. We consider two cases, according to the status of p:

• p ∈ I . Then, by Lemma 3, ∀q ∈ Np, q.dominator = false, in particular for q = ParentBFS(p). Note
that LevelBFS(ParentBFS(p)) = LevelBFS(p) − 1. Thus, by definition of the Macro Parent(p),
LevelBFS(p.parent) = LevelBFS(ParentBFS(p)). Consequently, Priority(p.parent).P riority(p).

• p /∈ I . Then ¬Dominator(p). Now, as no two processes have equal priority, we have ∃q ∈
Np, P riority(p) > Priority(q) ∧ q.dominator. So, Priority(p.parent) ≤ Priority(q) by defini-
tion of Macro Parent(p). Consequently, Priority(p.parent) < Priority(p).

�

In the following, we denote by TMIS the subgraph induced by the values of the parent pointers
of MIST in the terminal configuration γ. Formally, TMIS = (V,EMIS), where EMIS is the set
{{p, p.parent} | p ∈ V \ {r}} defined in γ. (Recall that r is the unique process such that r.parent = r in
γ, by Remark 1.)

Lemma 5 In any configuration where no action ofMIST ◦ BFST is enabled, TMIS is a spanning tree
of the network.

Proof. We show by contradiction that TMIS is connected and acyclic:

• Suppose TMIS is not acyclic. Then, there exists a elementary cycle in C = (c0, c1, . . . , cm = c0)
such that ∀i ∈ [0..m − 1], ci.parent = ci+1 and m > 0. By Remark 1, r 6∈ C. By Lemma 4,
∀i ∈ [0..m − 1], Priority(ci) < Priority(ci+1). By transitivity, Priority(c0) < Priority(cm),
that is Priority(c0) < Priority(c0), contradiction.

• Suppose TMIS is not connected, then there exist at least two connected components in TMIS . At
least one component, noted G′, does not contain the root r. Every process p ∈ G′ has a parent in G′,
by Macro Parent(p). Hence, there are as many edges as processes in G′, i.e., there is a cycle in G′.
As TMIS is acyclic, we obtain a contradiction.

6/18 Verimag Research Report no TR-2011-16

Competitive Self-Stabilizing k-Clustering
Ajoy K. Datta, Stéphane Devismes, Karel Heurtefeux, Lawrence L. Larmore, Yvan Rivierre

�

In the following, we denote by LevelMIS(p) the level of any process p in the MIS tree TMIS computed
by algorithmMIST .

Lemma 6 In any configuration where no action ofMIST ◦ BFST is enabled, TMIS is an MIS tree of
the network.

Proof. By Lemma 5, TMIS is a spanning tree of the network. By Lemma 3, I is an MIS of the network.
We now show that the even levels of TMIS form I . Formally, we prove that LevelMIS(p) is even if and
only if p.dominator for all p ∈ V , by induction on LevelMIS(p).

First, the root process r is necessarily in I . For the inductive step, let p be a process other than r, and
let L = LevelMIS(p) > 0. By the inductive hypothesis, LevelMIS(q) is even if and only if q.dominator, for
all q such that LevelMIS(q) = L− 1.

Note that LevelMIS(p.parent) = L − 1. By Macro Parent(p), p.parent.dominator 6= p.dominator.
Since L is even if and only if L− 1 is not even, we are done. �

We can require that BFST stabilize in O(n) rounds and use O(log n) space per process [16, 8]. By
Theorem 1, Lemmas 2 and 6, we have:

Theorem 2 MIST ◦ BFST is a silent self-stabilizing algorithm that builds an MIS Tree within O(n)
rounds using O(log n) space per process.

Height of the MIS Tree The next property establishes a bound on the height of the MIS Tree computed
byMIST ◦ BFST . We then illustrate this property with an example matching the bound.

Lemma 7 In any terminal configuration ofMIST ◦ BFST , if p is a non-root process at even level of
TMIS , then the process p.parent is at level LevelBFS(p)− 1 in TBFS .

Proof. As p is a dominator process, no one of its neighbors is dominator by Lemma 3. Since p is
not the root, ParentBFS(p) is defined. To sum up, ParentBFS(p) ∈ Np and LevelBFS(ParentBFS(p)) =
LevelBFS(p) − 1, so min {LevelBFS(q) | q ∈ Np ∧ q.dominator 6= p.dominator} = LevelBFS(p) − 1.
By definition, for all q, LevelBFS(q) < LevelBFS(p) implies Priority(q) < Priority(p). By Macro
Parent(p), we are done. �

0

1

2 3

4 5

n− 2 n− 1

Figure 2: Worst case example for MIS tree height.

Property 2 In any terminal configuration of MIST ◦ BFST , the height of the MIS tree TMIS of G
computed byMIST ◦ BFST is at most 2×D, where D is the diameter of G.

Proof. Let H be the height of TMIS . Let σ = (p`, p`−1, . . . , p0 = r) be any path in TMIS from a leaf to
the root. That is, p` is a leaf, and pj = pj+1.parent for all j < `.

Since TMIS is 2-colored w.r.t. dominator variables, any path in TMIS is also 2-colored w.r.t. dominator
variables. Moreover, p0.dominator = true, so pj .dominator ≡ (j%2 = 0), for all j < `.

Since Priority(pj+1) > Priority(pj) (Lemma 4), we have:

Verimag Research Report no TR-2011-16 7/18

Ajoy K. Datta, Stéphane Devismes, Karel Heurtefeux, Lawrence L. Larmore, Yvan Rivierre
Competitive Self-Stabilizing k-Clustering

(a) LevelBFS(pj+1) ≥ LevelBFS(pj) for all j < `.

By Lemma 7, LevelBFS(p.parent) < LevelBFS(p) for any dominator process p 6= r. Thus:

(b) For all j, if j is odd, then LevelBFS(pj+1) > LevelBFS(pj).

From (a) and (b), it follows that:

(c) At most two processes of σ can be on any one level of TBFS .

By definition of TBFS :

(d) p0 = r is the only process of σ at level 0 in TBFS .

By definition of TBFS and (d), p1 (if defined) is at level 1 in both TBFS and TMIS . Then, by (b), p2 (if
defined) is not at the same level in TBFS as p1. So, p0 and p2 are not at the same level as p1 in TBFS , that
is:

(e) p1 is the only process of σ at level 1 in TBFS .

Hence, among the ` + 1 processes of σ, there are exactly one process at level zero of TBFS , one process
at level 1 of TBFS , and for every other level x of TBFS , there are at most two processes of σ at level x by
(c). Hence, ` ≤ 2× (H − 1) + 2, that is, ` ≤ 2×H ≤ 2×D. �

Figure 2 exhibits the upper bound on the height of TMIS , depending on the diameter D of the network.
Even processes have the same parent in both TBFS and TMIS , whereas odd ones have their parent in TMIS

at the same level in TBFS . It is not possible to increase the height of TMIS more than once per level of
TBFS , thus the height of TMIS is at most twice the one of TBFS , that is 2×D.

4 k-Clustering of at most 1 +
⌊
n−1
k+1

⌋
k-clusters

In this section, we present a silent self-stabilizing algorithm, called CLR(k), which constructs a k-clustering
of at most 1 +

⌊
n−1
k+1

⌋
distinct k-clusters in a directed tree network. Its stabilization time is O(H) rounds,

where H is the height of the tree. By composing CLR(k) with any silent self-stabilizing spanning tree
algorithm, we obtain a silent self-stabilizing k-clustering algorithm that builds at most 1 +

⌊
n−1
k+1

⌋
distinct

k-clusters in any arbitrary network. Moreover, we will see in Section 5 that CLR(k) ◦MIST ◦ BFST
is a silent self-stabilizing k-clustering algorithm which is 7.2552k + O(1)-competitive in any UDG net-
work. The stabilization time of CLR(k) ◦MIST ◦ BFST is O(n) rounds and its memory requirement
is O(log n) space per process.

4.1 Algorithm CLR(k)
We assume that the network is a rooted tree T with root r.

The formal description of CLR(k) is given in Algorithm 2. CLR(k) builds a k-clustering in two
phases. During the first phase, CLR(k) computes the set of clusterheads, Dom, which has cardinality at
most 1 +

⌊
n−1
k+1

⌋
. The second phase consists of building a spanning forest, where each directed tree is

rooted at a clusterhead and represents the k-cluster of that clusterhead. Hence, we obtain a k-clustering of
at most 1 +

⌊
n−1
k+1

⌋
k-clusters. CLR(k) uses the following three variables in the code of each process p:

- p.α, an integer in the range [0..2k]. In any terminal configuration, the set of clusterheads Dom is
defined as the set of processes p such that p.α = k or p.α < k and p = r.

- p.parentCLR ∈ Np. In any terminal configuration, p.parentCLR is the parent of p in its k-cluster,
unless p is a clusterhead, in which case p.parentCLR = p.

- p.headCLR. In any terminal configuration, p.headCLR is equal to the identifier of the clusterhead in
the k-cluster that p belongs to.

8/18 Verimag Research Report no TR-2011-16

Competitive Self-Stabilizing k-Clustering
Ajoy K. Datta, Stéphane Devismes, Karel Heurtefeux, Lawrence L. Larmore, Yvan Rivierre

Algorithm 2 CLR(k), code for each process p
Inputs: Parent(p) ∈ Np

Variables: p.α ∈ [0..2k] ; p.parentCLR ∈ Np ∪ {p} ; p.headCLR ∈ V
Macros:

IsShort(p) ≡ p.α < k
IsTall(p) ≡ p.α ≥ k
IsClusterHead(p) ≡ (p.α = k) ∨ (IsShort(p) ∧ (p = r))
ShortChildren(p) = {q | (Parent(q) = p) ∧ IsShort(q)}
TallChildren(p) = {q | (Parent(q) = p) ∧ IsTall(q)}
MaxAShort(p) = if ShortChildren(p) = ∅ then −1 else max {q.α | q ∈ ShortChildren(p)}
MinATall(p) = if TallChildren(p) = ∅ then 2k + 1 else min {q.α | q ∈ TallChildren(p)}
MinIDMinATall(p) = if TallChildren(p) = ∅ then p else min {q ∈ TallChildren(p) | q.α = MinATall(p)}
Alpha(p) = if MaxAShort(p) + MinATall(p) ≤ 2k − 2 then MinATall(p) + 1 else MaxAShort(p) + 1
ParentCLR(p) = if p.α < k then Parent(p) else if p.α = k then p else MinIDMinATall(p)
HeadCLR(p) = if IsClusterHead(p) then p else p.parentCLR.headCLR

Actions:
SetAlpha :: p.α 6= Alpha(p) −→ p.α← Alpha(p)
SetParent :: p.parentCLR 6= ParentCLR(p) −→ p.parentCLR ← ParentCLR(p)
SetHead :: p.headCLR 6= HeadCLR(p) −→ p.headCLR ← HeadCLR(p)

Building Dom The first phase of CLR(k) consists of building the set Dom as a k-dominating set of T ,
that is, a subset of processes such that every process is at most at distance k from a process in Dom. Dom
is constructed by dynamic programming, starting from the leaves of T . As previously explained, Dom is
defined using the values of p.α for all p.

Consider any terminal configuration. In this configuration, p.α = ‖p, q‖, where q is the furthest process
in the subtree of T rooted at p, that will be in the same k-cluster as p.

- If p.α < k, then p is said to be short and we have two cases: p 6= r or p = r. In the former case, p
is k-dominated by a process of Dom outside of its subtree, that is, the path from p to its clusterhead
goes through the parent link of p in the tree, and the distance to this process is at most k−p.α. In the
latter case, p is not k-dominated by any other process of Dom inside its subtree and, by definition,
there is no process outside its subtree. Thus, p must be placed in Dom.

- If p.α ≥ k, then p is said to be tall and there is a process q at p.α−k hops below p such that q.α = k.
So, q ∈ Dom and p is k-dominated by q. Note that, if p.α = k, then p.α− k = 0, that is, p = q and
p belongs to Dom.

p.α is computed using the two following macros:

- MaxAShort(p) returns the maximum value of q.α for all short children q of p. If p has no short
children, MaxAShort(p) returns −1.

- MinATall(p) returns the minimum value of q.α for all tall children q of p. If p has no tall children,
MinATall(p) returns 2k + 1.

According to these macros, p.α is computed by Action SetAlpha in a bottom-up fashion as follows:

- If p is a leaf, p.α = 0.
- If p is not a leaf and MaxAShort(p) + MinATall(p) ≤ 2k − 2, p.α = MinATall(p) + 1.
- If p is not a leaf and MaxAShort(p) + MinATall(p) > 2k − 2, p.α = MaxAShort(p) + 1.

To help the reader’s intuition, we summarize below the important properties of p.α, for any process p.
These properties can be checked in the examples presented in Figure 3.

Property 3 In any terminal configuration, for every process p, we have:

(a) If p.α > 0, then there is some child q of p such that q.α = p.α− 1.
(b) If p.α > k, then there is a proper descendant q of p such that q ∈ Dom and q is p.α−k levels below

p.
(c) There is a member of Dom within |p.α− k| hops of p.

Verimag Research Report no TR-2011-16 9/18

Ajoy K. Datta, Stéphane Devismes, Karel Heurtefeux, Lawrence L. Larmore, Yvan Rivierre
Competitive Self-Stabilizing k-Clustering

5

43210

6543210

06543210

43210 10

00

(a)

2

40

0

10

3210

(b)

Figure 3: Examples of 3-Clustering using CLR(3). The root of each tree network is on the right, values
of α are indicated, clusterheads are colored in black, and arrows represent local spanning tree of each
k-cluster.

Constructing k-Clustering The second phase of CLR(k) partitions the processes into distinct k-clusters,
each of which contains one clusterhead. Each k-cluster contains a k-cluster spanning tree, a tree containing
all the processes of that k-cluster. Each k-cluster spanning tree is a subgraph of T rooted at the clusterhead,
possibly with the directions of some edges reversed. Furthermore, the height of the k-cluster spanning tree
is at most k.

Each process of Dom designates itself as clusterhead using Actions SetParent and SetHead. Other
processes p designate their parent (using Action SetParent) as follows: (1) if p is short, then its parent in
its k-cluster is its parent in the tree; (2) if p is tall, then p selects as parent in its k-clustering its tall child in
the tree of minimum α value. Finally, identifiers of clusterheads are propagated in a top-down fashion in
their k-cluster using Action SetHead.

Two examples of 3-clustering using CLR(3) are given in Figure 3. In Figure 3a, the root is a tall
process, consequently it is not a clusterhead. In Figure 3b, the root is a short process, consequently it is a
clusterhead.

4.2 Correctness
We first show the convergence of CLR(k) from any configuration to a terminal one. Since computation
of the p.α is bottom-up in T , the time required for those values to stabilize is O(H) rounds. After that,
one additional round is necessary to fix the ParentCLR variables, because the values of these variables only
depend on the α variables. Finally, the headCLR variables are fixed top-down within the k-cluster spanning
trees starting from the clusterheads inO(H) rounds. Hence, it follows that the time complexity of CLR(k)
is O(H) rounds, as shown below.

Lemma 8 For every process p, the variable p.α is fixed forever within H + 1 rounds.

Proof. We prove this lemma by backwards induction on the level Level(p) of processes p in the tree.
As a base case, if Level(p) = H , that is p is a leaf, then p.α is fixed forever within one round.
Assume for every p such that Level(p) = l, the variable p.α is fixed forever within H − l + 1 rounds.
Let q be a process such that Level(q) = l − 1. The value of Alpha(q) depends only on the values of

every p.α where p has level l. By the induction hypothesis, all those values are fixed within H − l + 1
rounds, thus q.α is fixed within one additional round, that is within H − l + 2 = H − (l − 1) + 1 rounds.

This complexity is maximum with l = 0 and the lemma follows. �

Lemma 9 For every process p, the variable p.parentCLR is fixed forever within H + 2 rounds.

Proof. As the evaluation of both guard and statement of Action SetParent only relies, for a process p,
on the variables p.parentCLR and q.α for every q neighbor of p. Thus, after all α variables are fixed in the
network, every p.parentCLR is fixed within one additional round. By Lemma 8, we are done. �

Lemma 10 In every configuration where all parentCLR and α variables are fixed forever, there is no
directed cycle constituted of directed edges of the form (p, p.parentCLR) except self-loops.

10/18 Verimag Research Report no TR-2011-16

Competitive Self-Stabilizing k-Clustering
Ajoy K. Datta, Stéphane Devismes, Karel Heurtefeux, Lawrence L. Larmore, Yvan Rivierre

Proof. The network being a tree, we only need to exclude the existence of cycle of size two. Assume
by the contradiction that such a cycle exists between p and its neighbor q, that is p.parentCLR = q and
q.parentCLR = p. Without loss of generality, assume that q is a child of p. Then, by definition of Macro
ParentCLR(q), q.α < k. By definition of Macro ParentCLR(p), q.α > k, a contradiction. The cluster
level of the parent of each process p which is not a clusterhead is smaller than the cluster level of p, and
thus no cycle of cluster parent pointers is possible. �

Lemma 11 For every process p, the variable p.headCLR is fixed forever within O(H) rounds.

Proof. By Lemmas 8 and 9, the variables p.α and p.parentCLR are fixed within H + 2 rounds.
For every process p, the variable p.headCLR only depends on p.parentCLR.headCLR and some fixed

variables.
For every process p such that p.parentCLR = p, p.headCLR is fixed forever in at most one additional

round. Then, changes on headCLR can be propagated from node p to its neighbor q only if q.parentCLR =
p. By Lemma 10, these propagations end after O(H) rounds, and we are done. �

From Lemmas 8 to 11, follows:

Lemma 12 Starting from any configuration, CLR(k) reaches a terminal configuration in O(H) rounds.

We then consider any terminal configuration to show the closure of CLR(k). The proof begins by
formally establishing the three claims given in Property 3, in Remark 2, Lemmas 13, and 14.

Remark 2 Property 3.(a) follows immediately from the definition of α.

Below, we prove Property 3.(b).

Lemma 13 In any terminal configuration of CLR(k), for every process p, if p.α > k, then there is a
proper descendant q of p such that q ∈ Dom and q is p.α− k levels below p.

Proof. We prove this lemma by strong induction on p.α.
As a base case, if p.α = k + 1, then, by Property 3.(a), there is a child q of p such that q.α = k, that is

q ∈ Dom.
Assume the lemma holds for every p such that k < p.α < a.
Let p′ be a process such that p′.α = a.
By Property 3.(a), there is a child q′ of p′ such that q′.α = p′.α − 1. By induction hypothesis, there

is a proper descendant q′′ of q′ such that q′′ ∈ Dom and q′′ is q′.α − k levels below q′. So, q′′ is
q′.α− k + 1 = p′.α− 1− k + 1 = p′.α− k below p′, and we are done. �

We now prove Property 3.(c).

Lemma 14 In any terminal configuration of CLR(k), for every process p, there is a process q such that
q ∈ Dom and ‖p, q‖ ≤ |p.α− k|.

Proof. If p.α > k, then, by Lemma 13, we are done.
Consider now any process p such that p.α ≤ k. We prove the lemma by strong backwards induction on

p.α.
As a base case, if p.α = k, then p ∈ Dom by definition.
Assume the lemma holds for every p′ such that a < p′.α ≤ k.
Let q be a process such that q.α = a and q 6= r. Indeed, if r.α ≤ k, then r ∈ Dom by definition. Let

q′ be the parent of q. We consider two cases.

• Assume q′.α = MaxAShort(q′) + 1. As q.α < k, q is short and q.α ≤ MaxAShort(q′). So:

q.α < q′.α ≤ k
a < q′.α ≤ k

Verimag Research Report no TR-2011-16 11/18

Ajoy K. Datta, Stéphane Devismes, Karel Heurtefeux, Lawrence L. Larmore, Yvan Rivierre
Competitive Self-Stabilizing k-Clustering

By induction hypothesis, there is a member of Dom which is within k − q′.α hops of q′. Then, this
process is within k − q′.α+ 1 hops from q. Now:

a < q′.α
−q′.α < −a
k − q′.α+ 1 < k − a+ 1
k − q′.α+ 1 ≤ k − a
k − q′.α+ 1 ≤ k − q.α
k − q′.α+ 1 ≤ |q.α− k|

So, this process is within |q.α− k| hops from q and we are done.

• Otherwise, q′.α = MinATall(q′) + 1 and q′.α > k. By Lemma 13, there is some q′′ ∈ Dom within
q′.α− k hops of q′. Thus, ‖q′′, q‖ ≤ q′.α− k + 1. Then, by definition of α:

MaxAShort(q′) + MinATall(q′) ≤ 2k − 2
MinATall(q′)− k + 2 ≤ k −MaxAShort(q′)
q′.α− k + 1 ≤ k − q.α

Hence:

‖q′′, q‖ ≤ k − q.α
‖q′′, q‖ ≤ |q.α− k|

So, q′′ is within |q.α− k| hops from q and we are done.

�

Since |p.α− k| ≤ k for every p, we can deduce the following corollary from Property 3.(c).

Corollary 1 In any terminal configuration of CLR(k), Dom is a k-dominating set of T .

The following lemma shows that every process is in the k-cluster of a member of Dom.

Lemma 15 In any terminal configuration of CLR(k), for every process p, there is a path P = (p1 =
p, . . . , pm) such that: (1) m ≤ k, (2) ∀i ∈ [1..m− 1], pi.parentCLR = pi+1, (3) pm.parentCLR = pm, (4)
∀i ∈ [1..m], pi.headCLR = pm, (5) pm ∈ Dom.

Proof. We prove this lemma by strong induction on |p.α− k|. Note that p.α ∈ [0..2k], thus |p.α− k| ∈
[0..k].

As a base case, if p.α = k, then IsClusterHead(p) = true. Thus, by definition, p.parentCLR = p
and p.headCLR = p. The path P = (p) verifies each property stated in the lemma.

Assume the lemma holds for every q such that |q.α− k| < a.
Let p be a process such that |p.α− k| = a.
If p.α > k, then, by definition of Alpha(p), p.α = MinATall(p) + 1, i.e., there is some neighbor q of

p such that q.α = MinATall(p). Without loss of generality, consider the one of smallest identifier, hence
p.α = q.α + 1. Since p.α − k = a, follows q.α + 1− k = a, that is q.α − k = a− 1 < a. By induction
hypothesis, there is a path Q = (p1 = q, . . . , pm) leading to a clusterhead pm such that:

• m ≤ k,

• ∀i ∈ [1..m− 1], pi.parentCLR = pi + 1,

• pm.parentCLR = pm,

• ∀i ∈ [1..m], pi.headCLR = pm.

12/18 Verimag Research Report no TR-2011-16

Competitive Self-Stabilizing k-Clustering
Ajoy K. Datta, Stéphane Devismes, Karel Heurtefeux, Lawrence L. Larmore, Yvan Rivierre

By definition of ParentCLR(p) and HeadCLR(p), p.parentCLR = q and p.headCLR = pm, and the
lemma holds.

Otherwise, p.α < k. If p = r, then IsClusterHead(p) = true and the lemma holds. Consider now
the case p 6= r and note q = Parent(p). By definition of ParentCLR(p), p.parentCLR = q. By definition
of HeadCLR(p), p.headCLR = q.headCLR. We now show that |q.α− k| < a, i.e., |q.α− k| < |p.α− k|
in order to make use of the induction hypothesis as in the previous case, thus completing the proof. Two
cases have to be distinguished:

• q.α ≤ k, then, by definition of Alpha(q), q.α = MaxAShort(q) + 1. As p is a short child of q,
q.α ≥ p.α+ 1, and q.α− k > p.α− k. Since p and q are short processes, |q.α− k| < |p.α− k|.

• q.α > k, then, by definition of Alpha(q), q.α = MinATall(q) + 1 and:

MaxAShort(q) + MinATall(q) ≤ 2k − 2
(MaxAShort(q) + 1) + (q.α− k) ≤ k
(p.α+ 1) + (q.α− k) ≤ k (p.α ≤ MaxAShort(q))
q.α− k ≤ k − p.α− 1
|q.α− k| < |k − p.α|
|q.α− k| < |p.α− k|

�

Lemma 16 In any terminal configuration of CLR(k), every k-cluster whose clusterhead is not the root
contains at least a path of k + 1 processes.

Proof. Consider any k-cluster whose clusterhead p is not the root. Then, p.α = k, p.parentCLR = p,
and p.headCLR = p by definition of IsClusterHead(p), ParentCLR(p), and HeadCLR(p). Moreover, by
Property 3.(a), there is a path (p0, . . . , pk) such that pk = p and for every i ∈ [0..k−1], pi.α = pi+1.α−1 =
i. By Definition of Macro ParentCLR(pj), for every j ∈ [0..k − 1], pj .parentCLR = pj+1. By Definition
of Macro HeadCLR(pj), for every j ∈ [0..k − 1], pj .headCLR = pj+1.headCLR = pk = p. �

Lemma 17 In any terminal configuration of CLR(k), there are at most 1 +
⌊
n−1
k+1

⌋
distinct k-clusters.

Proof. By Lemma 16, except for the k-cluster which contains the root , every k-cluster contains at least
k + 1 processes. Thus, there are at most 1 +

⌊
n−1
k+1

⌋
k-clusters. �

By Corollary 1 and Lemmas 15 and 17, we have:

Lemma 18 In any terminal configuration of CLR(k), T is partitioned into at most 1 +
⌊
n−1
k+1

⌋
distinct

k-clusters.

From Lemmas 12 and 18, we have:

Theorem 3 In any tree of n processes and height H , CLR(k) is a silent self-stabilizing algorithm that

partitions the tree within O(H) rounds into at most 1 +
⌊
n−1
k+1

⌋
distinct k-clusters.

By Theorems 1, 2, and 3, CLR(k) ◦MIST ◦ BFST is self-stabilizing,MIST ◦ BFST stabilizes
within O(n) rounds, and O(H) rounds later CLR(k) ◦MIST ◦BFST reaches a terminal configuration,
where H is the height of TMIS . Now, by Property 2 (page 7), H is bound by 2D, where D is the diameter
of the network. Hence, from any initial configuration, CLR(k) ◦ MIST ◦ BFST stabilizes in O(n)
rounds.

Theorem 4 In any arbitrary network with unique IDs, CLR(k) ◦ MIST ◦ BFST is a silent self-

stabilizing algorithm that builds at most 1 +
⌊
n−1
k+1

⌋
distinct k-clusters within O(n) rounds using O(log n)

space per process.

Verimag Research Report no TR-2011-16 13/18

Ajoy K. Datta, Stéphane Devismes, Karel Heurtefeux, Lawrence L. Larmore, Yvan Rivierre
Competitive Self-Stabilizing k-Clustering

5 Competitiveness of k-Clustering
Unit Disk Graphs We now analyze the competitiveness, in terms of number of clusters, of CLR(k) ◦
MIST ◦ BFST , in the special case that the network is a UDG in the plane, that is, the processes are
fixed in the plane, and two processes can communicate if and only if their Euclidean distance in the plane
is at most one. We first show, in Lemma 19, that the cardinality of the MIS computed byMIST ◦BFST
is bounded by a constant multiple of the minimum cardinality of any k-clustering, then in Lemma 20, we
show that the cardinality of Clr, the k-clustering built by CLR(k) ◦ MIST ◦ BFST , is bounded by a
constant multiple of that same minimum.

Lemma 19 For every connected UDG and every k ≥ 1, any independent set I is of cardinality at most(
2πk2√

3
+ πk + 1

)
times the cardinality of an optimum k-clustering Opt.

Proof. We make use of a result by Folkman and Graham [14]. If X is a compact convex region of the
plane, let J ⊆ X such that the distance between any two distinct members of J is at least 1. Then, the car-
dinality of J is at most

⌊
2√
3
A(X) + 1

2P (X) + 1
⌋

, where A(X) and P (X) are the area and the perimeter
of X , respectively. We observe that J is any independent set of any UDG in the plane. Consider any clus-
terhead p in Opt and the surrounding disk of radius k centered at p in the plane. All processes that belongs
to the k-cluster of p are within this disk. Due to the above result, no more than

(
2√
3
(πk2) + 1

2 (2πk) + 1
)

processes can be independent in this disk, thus in the k-cluster of p. By definition, every process belongs
to a k-cluster. It follows that the cardinality of any independent set is at most

(
2πk2√

3
+ πk + 1

)
times the

one of an optimum k-clustering Opt. �

We now compare the maximal independent set computed byMIST ◦ BFST with the k-clustering
set Clr computed by CLR(k) ◦MIST ◦ BFST .

Lemma 20 For every connected network and every k ≥ 1, let I be the MIS computed byMIST ◦BFST ,
the cardinality of Clr, the k-clustering built by CLR(k) ◦MIST ◦ BFST is at most 1 + 2

k (|I| − 1).

Proof. By Lemma 16 (page 13), every k-cluster of Clr contains a path of k + 1 processes (i.e., of length
k), excepted for the k-cluster which contains r. Since Clr is built on TMIS , by Property 1 (page 4), this
path contains dk2 e processes of I \ {r}. Thus, |Clr| − 1 k-clusters of Clr contain at least dk2 e processes of
I \ {r}. We have:

(|Clr| − 1)× dk2 e ≤ |I \ {r}|
(|Clr| − 1)k2 ≤ |I| − 1
|Clr| − 1 ≤ 2

k (|I| − 1)
|Clr| ≤ 1 + 2

k (|I| − 1)

�

By Lemmas 19 and 20, we deduce that |Clr| ≤ 1 +
(

4πk√
3

+ 2π
)
|Opt|, and since 4π√

3
≈ 7.2552, we

can claim the following:

Theorem 5 For every connected UDG and every k ≥ 1, CLR(k)◦MIST ◦BFST computes a 7.2552k+
O(1)-approximation of the optimum k-clustering in terms of cardinality.

Approximate Disk Graphs More generally, if V is a set of points in the plane, and λ ≥ 1, then we say
thatG = (V,E) is an approximate disk graph in the plane with approximation ratio λ, if, for any u, v ∈ V ,
‖u, v‖ ≤ 1 ⇒ {u, v} ∈ E and {u, v} ∈ E ⇒ {u, v} ≤ λ. This model has been first introduced by [2]. It
is also known as Quasi-UDG from [17].

Theorem 6 For every connected approximate disk graph in the plane with approximation ratio λ, and
every k ≥ 1, CLR(k) ◦MIST ◦ BFST computes a 7.2552λ2k + O(λ)-approximation of the optimum
k-clustering in terms of cardinality.

14/18 Verimag Research Report no TR-2011-16

Competitive Self-Stabilizing k-Clustering
Ajoy K. Datta, Stéphane Devismes, Karel Heurtefeux, Lawrence L. Larmore, Yvan Rivierre

Proof. As in the proof of Lemma 19, we make use of the result of Folkman and Graham, but we then
consider the surrounding disk of radius λk centered at any clusterhead of Opt. It follows that no more than(

2√
3
(πλ2k2) + 1

2 (2πλk) + 1
)

processes can be independent in this disk, and thus no more that that same
number can be in any k-cluster of Opt. It follows that the cardinality of any independent set in an ADG
is at most

(
2πλ2k2√

3
+ πλk + 1

)
times the one of an optimum k-clustering Opt. By Lemma 20 and since

4π√
3
≈ 7.2552, we are done. �

6 MIS Construction and Nick’s Class
The time bottleneck of our k-clustering solution is the MIS Tree construction. Indeed, our algorithm builds
a MIS Tree in Θ(n) rounds in the worst case (Theorem 2, page 7) and, once the MIS Tree is built, the
k-clustering is computed in O(D) rounds by Theorem 3 (page 13) and Property 2 (page 7). So, we would
like to improve that time to be O(D), but as we shall see below, finding an algorithm with a sublinear time
complexity for computing an MIS tree for a general network could be very hard, and may be impossible.

Nick’s Class (NC) [4] is defined to be the set of all problems that can be solved in parallel in poly-
logarithmic time with polynomially many processors. Thus, there can be no deterministic polylogarithmic
time distributed algorithm for any problem which is not in NC. P is defined to be the set of all problems
that can be deterministically solved in polynomial time. A problem A ∈ P is said to be P-complete if,
given any problem B ∈ P , there is a reduction of B to A, and that reduction can be computed in parallel in
polylogarithmic time with polynomially many processors. Thus, NC = P if and only if there is any one
P-complete problem which is in NC.

The question of whether NC = P is considered to be in the same class of difficulty as the question of
whether P = NP . Just as we justify giving up the search for a polynomial time algorithm for any problem
that we can prove to be NP-complete, we justify giving up the search for a fast parallel algorithm for a
problem if we can prove that it is P-complete. We show that the exact problem solved by our MIS Tree
construction is P-complete.

Given a network G = (V,E), we compute an MIS of G, with respect to priorities ordering defined
in Section 3. Note that there is a natural lexical ordering on the subsets of V , obtained by writing each
subset as an ordered list of processes. The MIS computed by our algorithm comes first in the natural lexical
ordering (w.r.t. the priorities) of subsets of V , it is said to be the lexically first maximal independent set of
G.

Let denote by p0, p1, . . . , pn the processes of G, ordered by priority. Our algorithm takes advantage
of an additional property of priorities: There is a unique local minimum, i.e., for any i > 0 there is some
j < i such that pj is a neighbor of pi.

The lexically first maximal independent set problem on a graph G is equivalent to finding a lexically
first maximal clique in the complementary graph G′, shown by Cook [5] to be P-complete.

However, our algorithm solves a restricted version of the LFMIS problem, where the ordering is known
to have a unique local minimum, and thus we need to give separate proof that this version is also P-
complete. The below proof consists of exhibiting a method to NC-reduce any instance of the P-complete
Circuit Value problem to an instance of the LFMIS problem with unique local minimum. The Circuit Value
(CV) problem, is defined as the problem of evaluating the last output of an acyclic Boolean circuit, given
that its inputs are assigned to true. Such a circuit consists of Boolean assignments (negation, conjunction
or disjunction), inputs and outputs. This problem has been shown to be P-complete in [18].

Theorem 7 The LFMIS problem with unique local minimum is P-complete.

Proof. We prove this theorem by exhibiting a method to NC-reduce any instance of the P-complete CV
problem to an instance of the LFMIS problem with unique local minimum. It goes through two transfor-
mation steps, first rewriting any instance of the CV problem into an intermediate constrained form, which
can then be directly converted into an instance of the LFMIS problem.

First, consider an instance of CV problem. Denote by xi, its ith assigned variable. Without loss of
generality, we assume that the number of variables is even, and that the ith variable is assigned to ¬xi−1 if
i is even, and is assigned to either true or the conjunction or disjunction of two prior variables if i is odd.

Verimag Research Report no TR-2011-16 15/18

Ajoy K. Datta, Stéphane Devismes, Karel Heurtefeux, Lawrence L. Larmore, Yvan Rivierre
Competitive Self-Stabilizing k-Clustering

true
x1 x2 x3 x4 x5 x6

(a)

true
y1 y2

y4

y3 y5

y6 y8

y7

(b)

Figure 4: (a) An instance of CVP, and (b) its constrained form.

1 : x1 ← true
2 : x2 ← ¬x1
3 : x3 ← x1 ∨ x2
4 : x4 ← ¬x3
5 : x5 ← x2 ∧ x4
6 : x6 ← ¬x5

(a)

1 : y1 ← true
2 : y2 ← ¬y1
3 : y3 ← ¬y2
4 : y4 ← ¬y2 ∧ ¬y3
5 : y5 ← ¬y2 ∧ ¬y3 ∧ ¬y4
6 : y6 ← ¬y2 ∧ ¬y5
7 : y7 ← ¬y2 ∧ ¬y4 ∧ ¬y6
8 : y8 ← ¬y2 ∧ ¬y7

(b)

x1 ≡ y3
x2 ≡ y4
x3 ≡ y6
x4 ≡ y5
x5 ≡ y7
x6 ≡ y8

(c)

Figure 5: (a) An instance of CVP, (b) its constrained form, and (c) variables correspondence.

The above assumptions can be enforced by using the following insertions of assignments, which can
be done in parallel. In the case of an odd number of assignments, a ← ¬x; b ← a ∧ a; c ← ¬b, where x
was the last variable and a, b, c are new variables. If an assignment at even rank is not a negation, then the
same new assignments are inserted both ahead and behind that assignment. If an assignment at odd rank is
a negation, then the assignment a← b ∧ b is inserted both ahead and behind that assignment.

Thus, assuming an even number of variables of the circuit, we denote them x1, x2, . . . , x2n. The first
variable, x1, is the first input, while the last variable, x2n, is the last output of the circuit. We show an
example of an instance of the CV problem in Figure 4a, and as a program in Figure 5a.

For any 1 ≤ i ≤ n, we will refer to x2i−1 and x2i as partners. Note that partners always take opposite
Boolean values when evaluated.

Then, we rewrite that circuit in a constrained form, where variables are noted y1, y2, . . . , y2n+2. The
first statement will be y1 ← true, and the second statement will be y2 ← ¬y1. For any 1 ≤ i ≤ n, the
two variables y2i+1 and y2i+2 will correspond to the partner variables x2i−1 and x2i, in either order.2 Thus
y2i+1 ≡ ¬y2i+2. We will also refer to y2i+1 and y2i+2 as partners. We use the following rewriting rules to
construct the intermediate circuit, for any 1 ≤ i ≤ n.

1. The (2i+ 2)nd assignment will be y2i+2 ← ¬y2 ∧¬y2i+1. That is, y2i+2 is assigned to the opposite
Boolean value of its odd partner y2i+1. Note that the term ¬y2 does not impact the evaluation of the
conjunction, since its value is true.

2. The (2i + 1)st assignment will depend on the operator of the (2i − 1)st assignment in the initial
instance:

(a) If the (2i−1)st assignment is an input true, then the (2i+1)st assignment will be y2i+1 ← ¬y2,
y2i+1 corresponds to x2i−1, and y2i+2 corresponds to x2i. Indeed, both x2i−1 and y2i+1 will
be evaluated to true.

(b) If the (2i − 1)st assignment is a conjunction x2i−1 ← xj ∧ xk, let yp and yq be the variables
corresponding to the partners of xj and xk, respectively. Then, the (2i + 1)st assignment

2Actually, this order will depend on the rewriting rules explained next.

16/18 Verimag Research Report no TR-2011-16

Competitive Self-Stabilizing k-Clustering
Ajoy K. Datta, Stéphane Devismes, Karel Heurtefeux, Lawrence L. Larmore, Yvan Rivierre

1

2

3 4 5 6 7 8

Figure 6: Resulting instance of the LFMIS problem.

will be y2i+1 ← ¬y2 ∧ ¬yp ∧ ¬yq , y2i+1 corresponds to x2i−1, and y2i+2 corresponds to x2i.
Indeed, the partners of xj and xk are evaluated to ¬xj and ¬xk, and yp and yq will be evaluated
similarly, thus there will be y2i+1 ≡ ¬¬xj ∧ ¬¬xk ≡ xj ∧ xk ≡ x2i−1.

(c) If the (2i − 1)st assignment is a disjunction x2i−1 ← xj ∨ xk, let yp and yq be the variables
corresponding to xj and xk, respectively. Then, the (2i + 1)st assignment will be y2i+1 ←
¬y2 ∧¬yp ∧¬yq , y2i+1 corresponds to x2i, and y2i+2 corresponds to x2i−1. Indeed, there will
be y2i+1 ≡ ¬xj ∧ ¬xk ≡ ¬(xj ∨ xk) ≡ ¬x2i−1 ≡ x2i.

Through simple induction on sets of partner variables, we can see that evaluation of both circuits will
assign to each variable of the intermediate circuit the same Boolean value as the corresponding variable in
the initial circuit. We show the intermediate instance corresponding to the first example in Figure 4b, and
as a program in Table 5b. The correspondence between variables of both instances is given in Table 5c.

Finally, we construct an instance of the LFMIS problem with unique local minima. Let G be the
network whose processes are p1, p2, . . . , p2n+2, and where p1 is the root. For each 1 ≤ j < i ≤ 2n + 2,
pi is adjacent to pj if and only if the term ¬yj appears in the ith assignment of the intermediate circuit.
Figure 6 shows the resulting instance of the LFMIS problem for the circuit described in Figure 4b, and as
a program in Table 5b.

The first variable y1 is assigned to true; it is equivalent to having the root process p1 in the LFMIS. The
second variable y2 is the only one to depend on y1 and, for every 3 ≤ i ≤ 2n+ 2, yi depends on y2; p2 is
the central process ofG and the only one at level 1. Every other variable is the conjunction of the negations
of some previous variables, it implies that, for every 3 ≤ i ≤ 2n + 2, local computation of the LFMIS at
process pi only relies on prior processes p2, . . . , pi−1.

By simple induction on processes ordering, we see that pi ∈ I if and only if yi is assigned the value
true in the intermediate circuit, that is also in the initial circuit.

We note that all the steps of the reduction could be accomplished in parallel. Thus, any instance of the
CV problem can be NC-reduced to an instance of the LFMIS problem with unique local minimum. �

Although the problem is technically open, Theorem 7 justifies not seeking an O(D) time algorithm for
computing the LFMIS.

7 Perspectives
An immediate extension of this work would be to sharpen the competitiveness’ analysis of our k-clustering
in any UDG. Another possible extension is to try to find another competitive construction for a UDG
which can be performed in sublinear time. We feel it is worth investigating if it is possible to design a
self-stabilizing k-clustering that is competitive in any connected network.

References
[1] A. D. Amis, R. Prakash, D. Huynh, and T. Vuong. Max-Min D-Cluster Formation in Wireless Ad

Hoc Networks. In IEEE INFOCOM, pages 32–41, 2000. 1

Verimag Research Report no TR-2011-16 17/18

Ajoy K. Datta, Stéphane Devismes, Karel Heurtefeux, Lawrence L. Larmore, Yvan Rivierre
Competitive Self-Stabilizing k-Clustering

[2] L. Barrière, P. Fraigniaud, and L. Narayanan. Robust position-based routing in wireless ad hoc net-
works with unstable transmission ranges. In DIALM, pages 19–27. ACM, 2001. 5

[3] E. Caron, A. K. Datta, B. Depardon, and L. L. Larmore. A Self-Stabilizing k-Clustering Algorithm
for Weighted Graphs. JPDC, 70(11):1159–1173, 2010. 1

[4] S. A. Cook. Deterministic CFL’s are Accepted Simultaneously in Polynomial Time and Log Squared
Space. In STOC, pages 338–345. ACM, 1979. 6

[5] Stephen A. Cook. A Taxonomy of Problems with Fast Parallel Algorithms. Information and Control,
64:2–22, March 1985. International Conference on Foundations of Computation Theory. 6

[6] A. K. Datta, S. Devismes, and L. L. Larmore. A Self-Stabilizing O(n)-Round k-Clustering Algo-
rithm. In SRDS, pages 147–155, 2009. 1

[7] A. K. Datta, L. L. Larmore, and P. Vemula. A Self-Stabilizing O(k)-Time k-Clustering Algorithm.
The Computer Journal, page bxn071, 2009. 1

[8] Ajoy K. Datta, Lawrence L. Larmore, and Priyanka Vemula. Self-Stabilizing Leader Election in
Optimal Space. In SSS, pages 109–123, 2008. 3.2, 3.2

[9] E. W. Dijkstra. Self-Stabilizing Systems in Spite of Distributed Control. Commun. ACM, 17:643–644,
1974. 1, 2

[10] S. Dolev. Self-Stabilization. MIT Press, 2000. 2

[11] S. Dolev, M. G. Gouda, and M. Schneider. Memory Requirements for Silent Stabilization. In PODC,
pages 27–34, 1996. 2

[12] S. Dolev, A. Israeli, and S. Moran. Uniform Dynamic Self-Stabilizing Leader Election. IEEE Trans.
Parallel Distrib. Syst., 8:424–440, 1997. 2

[13] Y. Fernandess and D. Malkhi. K-Clustering in Wireless Ad Hoc Networks. In POMC 2002, pages
31–37, 2002. 1, 1, 1, 3

[14] J. H. Folkman and R. L. Graham. An Inequality in the Geometry of Numbers. Canad. Math. Bull.,
12:745–752, 1969. 5

[15] M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP -
Completeness. W. H. Freeman, 1979. 1

[16] S. T. Huang and N. S. Chen. A Self-Stabilizing Algorithm for Constructing Breadth-First Trees. Inf.
Process. Lett., 41:109–117, 1992. 3.2, 3.2

[17] F. Kuhn, R. Wattenhofer, and A. Zollinger. Ad-hoc networks beyond unit disk graphs. In DIALM-
POMC, pages 69–78. ACM, 2003. 5

[18] R. E. Ladner. The Circuit Value Problem is Log Space Complete for P . SIGACT News, 7:18–20,
January 1975. 6

[19] V. Ravelomanana. Distributed k-Clustering Algorithms for Random Wireless Multihop Networks. In
ICN, pages 109–116, 2005. 1

[20] M. A. Spohn and J. J. Garcia-Luna-Aceves. Bounded-Distance Multi-Clusterhead Formation in Wire-
less Ad Hoc Networks. Ad Hoc Networks, 5:504–530, 2004. 1

[21] G. Tel. Introduction to Distributed Algorithms. Cambridge University Press, 2nd edition, 2001. 2

18/18 Verimag Research Report no TR-2011-16

	Introduction
	Preliminaries
	The MIS Tree
	Definition of MIS Tree
	The Algorithm to construct an MIS Tree

	k-Clustering of at most 1+"4262304 n-1k+1"5263305 k-clusters
	Algorithm CLR(k)
	Correctness

	Competitiveness of k-Clustering
	MIS Construction and Nick's Class
	Perspectives

