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Abstract

Performance of embedded applications strongly depends on features of the hardware platform
on which they are deployed. A grand challenge in complex embedded systems design is devel-
oping methods and tools for modeling and analyzing the behavior of an application software
running on a given hardware architecture. We propose a rigorous method that allows to obtain
a model which faithfully represents the behavior of a mixed hardware/software system from
a model of its application software and a model of its underlying hardware architecture. The
method takes a model of the application software in BIP, a model of the hardware architec-
ture in XML and a mapping associating read and write operations of the application software
with execution paths in the architecture. It builds a model of the corresponding mixed hard-
ware/software system in BIP. The latter can be simulated and analyzed for verification of both
functional and extra-functional properties. The method consists in progressively enriching the
application software model. It involves three steps: 1) The generation of a BIP model of the
application software; 2) The generation of a BIP model of the hardware architecture; 3) The
composition of the two models. The steps are implemented by application of source-to-source
transformations that are correct-by-construction. In particular they preserve functional proper-
ties of the application software. The obtained system model is highly parametrized and allows
flexible integration of specific target architecture features, such as bus policy and schedul-
ing policy of the processors. The method has been implemented for application software and
hardware architectures described in the DOL tool for performance evaluation. It is illustrated
through the construction of a system model of an MJPEG application running on an MPARM
architecture.
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1 Introduction

Performance of embedded applications strongly depends on features of the underlying hardware platform.
For application software running on multicore or distributed platforms rigorous performance analysis tech-
niques are essential for determining optimal implementations with respect to resource management crite-
ria. These techniques require the use of faithful models of mixed hardware/software systems. The models
should be founded on rigorous semantics and be suitable for analysis and design space exploration.

There exist performance evaluation techniques applied on very abstract system models. Some use
formal analytical models representing a system as a network of nodes exchanging streams. The dynamics
of the execution platform is characterized by execution times. These techniques allow only estimation
of pessimistic worst-case execution delays. DOL [14] provides system level performance analysis based
on formal analysis techniques using Real Time Calculus [15]. It also offers multi-objective mapping and
optimizations. A similar performance evaluation framework is SymTA/S [8]. There also exist performance
analysis techniques based on Timed-Automata [13, 10, 2, 9]. These can be used for modeling and solving
scheduling problems.

Other approaches for performance evaluation use ad hoc executable system models e.g., models in
SystemC [7]. They combine a model of the application software derived from a C/C++ based design
flow, and a hardware architecture described in TLM [12]. The obtained system models may be useful for
debugging, but are not adequate for thorough exploration of the hardware architecture dynamics and its
effects on the software execution. Furthermore, long simulation time is a major drawback.

Finally, an approach combining simulation and analytic models is presented in [11], where simulation
results can be propagated to analytic models and vice versa through well defined interfaces.

We propose a performance evaluation method that is both rigorous and allows a fine analysis of system
dynamics. It is rigorous because it is applied to system models that are faithful, have precise semantics and
thus can be analyzed by using formal techniques. A system model is derived by progressively integrating
constraints induced on an application software by the underlying hardware architecture. Both models are
described in BIP [3]. In contrast to ad hoc modeling approaches, the system model is obtained from a
BIP model of the application software and a description of the hardware architecture, by application of
source-to-source transformations that are correct-by-construction [6].

The paper is structured as follows. Section 2 presents the method and the main steps in the design
flow, with a brief introduction to the BIP component framework in section 2.1, translation of application
software into BIP in section 2.2 and generation of the system model in section 2.2. Tool impementation and
experimental results are shown in section 3. In section 4 we conclude and discuss future work directions.

2 The Proposed Method

The method is illustrated in Figure 1. The application software is translated into a BIP model. We assume
that it consists of a set of processes communicating through fifo channels by executing atomic write/read
operations. Each process computes a function transforming local data described in a programming lan-
guage e.g. C. The BIP model of the application software is transformed by taking into account a model of
a target hardware architecture and a mapping. Hardware architecture is described by an abstract grammar
specifying its structure as the interconnection of physical devices such as processors, buses and memories.
The mapping associates with each block of a partition of processes a processor of the hardware architecture
and a scheduler for managing shared resources. It induces a correspondence between atomic write/read op-
erations of the application software and execution paths. These are sequences of operations of the hardware
architecture which are refinements of atomic operations. The method is completely automated and has been
implemented in a tool. The tool uses as a frontend the DOL tool for performance evaluation, that is the
application software, the architecture and the mapping are described in DOL. By using the BIP toolset the
produced system model can be: 1) simulated/validated on a linux PC; 2) checked for functional correctness
using the D-Finder tool; 3) transformed to generate code for execution on distributed architectures; and 4)
analyzed to estimate delay bounds by simulation or statistical model checking techniques.
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Figure 1: The Method

2.1 The BIP Component Framework

The BIP design flow is entirely supported by the BIP language and its associated toolset. The BIP language
is a notation which allows building complex systems by coordinating the behavior of a set of atomic compo-
nents. Behavior is described as automata or Petri nets extended with data and functions described in C/C++.
Transitions are labelled with ports (action names), guards (enabling conditions on the state of a component)
as well as functions (computations on local data). The description of coordination between components is
layered. The first layer describes the interactions between components by using connectors. An interaction
is a set of strongly synchronized ports. It is labelled with guards (enabling conditions) and data transfer
functions (data exchange) between interacting components. The second layer describes dynamic priori-
ties between interactions and is used to express scheduling policies. The combination of interactions and
priorities characterizes the overall architecture of a component. It confers BIP strong expressiveness that
cannot be matched by other languages [5]. BIP has clean operational semantics that describe the behavior
of a composite component as the composition of the behaviors of its atomic components. This allows a
direct relation between the underlying semantic model (transition systems) and its implementation. Figure

int v

up: {v=y1+y2;}

down: {y1,y2=v,v;}

print(y2);
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up: {w=x;}

down: {x,v=v,w;}
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Figure 2: An example of a BIP model
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2 shows a graphical representation of a BIP model. It consists of atomic components Sender, Receiver1
and Receiver2. The behavior of Sender is described as an automaton with control locations Idle and Active.
It communicates through port s which exports the variable x. Components Receiver1 and Receiver2 are
composed by the connector γ1, which represents a rendezvous interaction between ports r1 and r2, leading
to the composite component Receivers. The composite component exports γ1 by using port r. As a result
of the data transfer in γ1, the sum of the local variables y1 and y2 is exported through the port r by using
variable v. The interaction is completed by assigning v to variables y1 and y2. The model is the composi-
tion of Sender and Receivers using the connector γ2 which represents a broadcast from the Sender to the
Receivers. When the broadcast occurs, as a result of the composed data transfer, the Sender gets the sum
of y1 and y2, and each Receiver gets the value x from the Sender.

2.2 Translating Application Software into BIP

2.2.1 Description of the Application Software

In DOL [14] an application software is a process network that consists of three basic entities: Process,
Channel, and Connection, described by an abstract grammar as follows:

Application_Software ::= Process+ . Channel+ . Connection
Process ::= (InPort | OutPort)+ . Behavior
Channel ::= RecvPort . SendPort
Connection ::= Read_Connection | Write_Connection
Write_Connection ::= OutPort . RecvPort
Read_Connection ::= SendPort . InPort
Behavior ::= function

Each processPross has input portsPross.InPorti, output portsPross.OutPortj and behaviorPross.Behavior.
Each channel Cha has a single input port Cha.RecvPort and a single output port Cha.SendPort. A
Write_Connection between a processPross and a channelCha is a pair (Pross.OutPort,Cha.RecvPort).
ARead_Connection between a processPross and a channelCha is a pair (Cha.SendPort, Pross.InPort).

Application software can be represented as a bipartite graph with two kinds of nodes: Processes and
Channels. There exist edges corresponding to Write_Connections relating output ports of Processes
to receive ports of Channels as well as edges corresponding to Read_Connections relating send ports
of Channels to input ports of Processes. We assume that each Channel has one Write_Connection
and one Read_Connection. Also, each output and each input port of a Process is uniquely associated to
a Write_Connection and a Read_Connection respectively.

2.2.2 Generation of the Application Software Model in BIP

Each node in the application software graph defines an atomic component in BIP. For a process Pross, its
behavior Pross.Behavior is defined as a function in C which contains specific communication primitives
(write and read) for inter process communication, in addition to C statements. A read operation reads
data from a port Pross.InPorti, and a write operation writes data to a port Pross.OutPortj . The
function defines a sequence of computation statements and calls to the read/write primitives, encapsulated
in control statements. The function also contain calls to a special primitive (detach) used to terminate
the process. The behavior of each process is invoked in a loop and exits when the termination (detach)
primitive is called.

The translation converts Pross.Behavior of a process Pross to an extended automaton, describing the
behavior of the atomic component. Each port of Pross is defined as a port in the atomic component. Data
structure defined in the C code are directly translated as data in the atomic component. Control locations
correspond to read/write primitives for which synchronization is required. Transitions are labeled by the
port name associated with the primitives. Computation statements are added as actions of the transitions.

The translation requires analysis of arbitrary C code and hence is non-trivial. It starts by parsing the
C source code of a process into an itermediate object model. The translation to BIP is done in two steps.
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In the first step, the interaction points in the code are identified. Each call to a read/write primitive is
registered as an interaction point.

The second step involves the generation of the automaton from the C statements. For every call to a
read/write, a control location is created. An outgoing transition is added from this location, labeled by
the port used in the primitive. This transition models the primitive call, which requires synchronization
with a software FIFO component. The port of the transition is associated with data that is read/written by
the primitive invocation. Additional assignment statements are added to load/store the data into the local
variables in the function.

A block statement that contains interaction points is transformed into sequence of control locations and
transitions in the automaton. For such statements, e.g., conditional (if-else, switch) or loop (for, while) or
control satatement (break, continue, return), additional control locations are created and internal transitions
guarded by the control condition are added to model the control automaton.

For a conditional statement, a new control location is created with an incoming transition where the
branch condition evaluation action is added. Outgoing transitions, one for the positive branch and another
for the negative branch are created. The branches are finally merged to a new control location.

For a loop statement, a new control location is created with an incoming transition where the loop
initialization action and exit condition are added. Outgoing transitions, one for the positive exit condition
and the other for the negative exit condition are created. For the negative exit branch, a transition back to
the starting location of the loop is added, with the exit condition updation action.

Statements that do not contain interaction points are added as actions to the existing transition. Subrou-
tine calls that contain read/write primitive calls (either directly or through nested subroutines) are inlined
in the automaton.

For the termination primitive (detach), a control location with an incoming transition and without any
outgoing transition is created.

From the last control location generated in the automaton, a transition to the starting contol location
is added. This models the invocation of the process behavior in a loop at runtime. The termination of the
process behavior is modeled as a move to a deadlocked location, that corresponds to the detach primitive
call.

The generation of the automata is restricted to non-recursive subroutine calls and without usage of
global data structures. However, global read only data structures are translated as local data in the individual
components.

An example of the translation of a function process_fire() into an atomic component in BIP is shown
in figure 3. The function defines local integer variables i, j, k and size. Its invocation reads data from port
inPort of size size into the variable i. It then performs an iteration of local computation and writes to port
outPort the value k.

The BIP component generated from process_fire() has ports inPort, outPort and control locations
L1, L2 andL3. i, j, k and size are defined as variables in the component. i is associated with inPort and k
is associated with outPort. At L1, the component awaits synchronization through inPort corresponding
to the read primitive call. At L3 it awaits synchronization through outPort corresponding to the write
primitive call. At L2, the component can perform internal transitions (labeled by τ ) guarded by the loop
control condition. Computations between successive read/write calls in process_fire() are added as
action statements with the respective transitions in the generated automaton.

For a channel Cha, the behavior is modeled as a predefined BIP atomic component modeling a FIFO
represented in figure 4. It has ports recvPort and sendPort, and a single control location. It contains an
array variable buff parametrized by size N . The variable x associated with recvPort gets the received
value which is inserted into buff . The variable y associated with sendPort contains the value to be
read next. The FIFO policy is implemented by using the two indices i and j, for insertion and deletion
respectively from buff .

Each edge of the application software graph representingWrite_Connections andRead_Connections
defines a BIP connector which strongly synchronizes the corresponding ports, as shown in the example of
figure 5. This consists of a process Pross_1 sending data to Pross_2 and Pross_3 by using channels Cha_1
and Cha_2 respectively. The connectors are associated with transfer of data, implementing the read and
write operations. A connector implementing write transfers data from a process to a channel, whereas the
one implementing read transfers data from a channel to a process.
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process_fire() {
int i, j, k;
int size = sizeof(i);
read(inPort, i, size);
i++;
for (j=0; j<10; j++) {

i=i+j;
k = compute(i);
write(outPort, k, size);
i–;

}
}

inPort

outPort

i−−; j++;

inPort

i++; j=0;

outPort

[j>=10]

[j<10]
i=i+j; k=compute(i);

size=sizeof(i)

var: i, j, k, size

L1

L2

L3

τ

τ

Figure 3: Translating a process into a BIP component

[count>0]

y=buff[j]; count−−; j=(j+1)%N

var: x, y, i, j, count, buff[N]

buff[i]=x; count++; i=(i+1)%N

i=0; j=0; count=0;

L1

y=buff[j];

sendPortrecvPort

recvPort

[count<N]

sendPort

Figure 4: FIFO channel in BIP

Cha 1

Cha 2

Pross 1

Pross 2

Pross 3

recvPort

recvPort in

in

out1

out2

sendPort

sendPort

Figure 5: Example application software model in BIP

2.3 Integrating Architecture Constraints in the Application Software
2.3.1 Description of Architecture and Mapping

A harware architecture consists of resources and communication paths. Resources are used for compu-
tation, e.g., processor and memory, or for communication, e.g., bus. Communication paths define paths
between computational resources using communication resources. This is an abstract syntax of harware
architecture.

Hardware_Architecture ::= Resource+ . Comm_Path+

Resource ::= Processor+ | Memory+ | Bus+

Comm_Path ::= Processor . Bus+ . Memory . Bus+ . Processor

BIP model of Harware Architecture: A hardware architecture is modeled as a template composite
component in BIP which is the composition of generic components of type Processor, Memory and
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Bus. Each Processor is a composite component C with ports C.wr_begin, C.wr_end, C.rd_begin,
C.rd_end, corresponding to the initiation and termination of write and read operations. A generic model
of a processor Pror is shown in figure 6. It may have several read and write ports.

rd_begin rd_end wr_begin wr_end

Processor

Figure 6: Generic processor interface

rd_begin rd_end wr_begin wr_end

Memory

Figure 7: Generic memory interface

A Memory has four ports each one corresponding to begin and end of writing and reading, as shown
in figure 7.

A Bus is a composite component configured by the number of its master, slave, and the bus scheduling
policy. For each master, a bus C has the following master ports: C.wr_req, C.wr_ack corresponding to
begin and end of writing, and C.rd_req, C.rd_ack corresponding to begin and end of reading; for each
slave, it has the following slave ports: C.wr_begin, C.wr_end corresponding to begin and end of writing,
and C.rd_begin, C.rd_end corresponding to begin and end of reading. Each master port is connected
to each slave port internally through virtual links, explained in details in section 2.3.2. A master port is
connected to a master component (i.e., processor) which initiate data transfer in the bus. For a write
operation, the processor sends the data, its size and the address of the memory where the data has to be
written. For a read, the processor sends the address of the memory to be read and the data size. A slave
port is connected to a slave component (i.e., memory) which respond to data transfer initiated by some
master component.

The generic architecture of a bus component configured for two master and one slave, with the connec-
tions to the master and the slave is shown in figure 8.

A hardware architecture can be represented as a graph with three kinds of nodes: processor, memory
and bus. A communication path describes a path between two processors, via a common memory, using one
or more buses. It is a sequence of nodes of the formProri.(Busi1. . .Busin).Mem.(Busj1. . .Busjm).P rorj
with edges between the nodes. The edges represent the flow of information from Prori to Prorj through
two sets of buses and the target memoryMem. Edges relate portsC.wr_begin,C.wr_end andC.rd_begin,
C.rd_end of a master component (processor)C to the master portsC ′.wr_req,C ′.wr_ack andC ′.rd_req,
C ′.rd_ack respectively of a successor bus componentC ′. Similarly, edges relate the slave portsC ′.wr_begin,
C ′.wr_end andC ′.rd_begin,C ′.rd_end of the busC ′ to portsC ′′.wr_begin,C ′′.wr_end andC ′′.rd_begin,
C ′′.rd_end of a slave component (memory) C ′′.

The master and slave ports of the bus induces some rule defining the edges between the nodes: 1) A
processor can only be connected to the master port of a bus, 2) A memory can only be connected to the
slave port of a bus, 3) A processor cannot be directly connected to a memory, and, finally 4) A bus can be
connected to another bus only through a bridge component (not considered in our current model), which
acts as a slave for one and the master for the other bus.

Each edge of the graph defines a BIP connector which strongly synchronizes the corresponding ports.
The behavior of the connector implements the transfer of data, its address and size between the successes-
sive components, corresponding to the write and read operation.

A communication path can be decomposed into a Write_Path: Prori.(Busi1 . . .Busin).Mem and a
Read_Path: Mem.(Busj1 . . .Busjm).P rorj . That is

Write_Path ::= Processor . Bus+ . Memory
Read_Path ::= Memory . Bus+ . Processor

Mapping Given an Application_Software and a Hardware_Architecture, a mapping Map asso-
ciates: 1) a set of processes Pross1 . . .Prossn to a processor Pror and a Scheduler, 2) a set of channels
Cha1 . . .Chak to a memory Mem.

A mapping Map should be consistent: If there is a write_connection from Pross to Cha in the
application software, there should be a write_path: Map(Pross).(Bus1 . . . Busn).Map(Cha) in the
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wr_ackrd_req rd_ack wr_req wr_ackrd_req rd_ack wr_req

rd_begin rd_end wr_begin wr_end

Master

rd_begin rd_end wr_begin wr_end rd_begin rd_end wr_begin wr_end

rd_begin rd_end wr_begin wr_end

Master

}

} ports

Slave
ports

Memory

Processor_2Processor_1 }

} Slave

Bus (2 master, 1 slave)

Figure 8: Generic bus interface

graph of the hardware architecture. Similarly, if there is a read_connection from Cha to Pross, there
should be a read_path: Map(Cha).(Bus1 . . . Busk). Map(Pross).

A Scheduler is a component with ports acq and rel. A simple model of a scheduler that models mutual
exclusion among the processes mapped on a processor is shown in figure 9.

busy

idle rel

acq

acq
rel

Figure 9: Scheduler component

2.3.2 Generation of the System Model in BIP

We describe the method for generating a BIP System model from an application software model and a
harware architecture for a given mapping.

If Pror is a processor to which are mapped processes Pross1, . . . , Prossn then the component asso-
ciated with Pror will contain components Pross′1 . . .Pross′n such that Pross′i is obatained from Prossi
by:

1. Breaking atomicity of write and read operations: each OutPort is replaced by OutPort_begin
and OutPort_end. Similarly, each InPort is replaced by InPort_begin and InPort_end. This is
obtained by adding new control locations for each read/write operations in the behavior of the process, as
shown in figure 10.

2. Adding interactions with the scheduler: ports acq and rel are added for interaction with the sched-
uler Pror.Scheduler of Pror. The port acq is for acquiring the processor and rel is for releasing the
processor. A process acquires the processor at the start of its behavior. It releases the processor on its
termination. This is shown in the transformed behavior of a process in figure 11.
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L1

L2

L1’

L1

L2

transformation

var: x, y var: x, y

[x<y]

y=f(x);

[x<y]

y=f(x);

outPort_begin

outPort_end

outPort
outPort_begin

outPort_end

outPort

Figure 10: Breaking atomicity of a write

transformation

outPort_begin

outPort_end

outPort_begin

outPort_beginoutPort_end

outPort_begin

outPort_end

outPort_end

τ
j++;

L1

L2

init

acquire

L2

τ
j++;

init

L1

release detach

detach

acq

rel

acq

[j<N]

[j==N]
τ

[j==N]
τ

[j<N]j++;

j++;

rel

Figure 11: Adding ports acq and rel to a process

Additionally, Pror contain components FIFO_write and FIFO_read for implementing the write
and read operation respectively. Each channelCha in the application software is decomposed intoFIFO_write,
FIFO_read and a buffer.

Cha ::= FIFO_write . FIFO_read . Buffer

L1

L2

L4 L5

rd_req rd_ack

L3

rel

acq

rd_begin rd_end

upd_sem

signal_sem
L6

L7

rd_req

rd_end

signal_sem

used−=sizeToRead;

rd_ack

sem: used

[used<sizeToRead]

rel

rd_begin

[used>=sizeToRead] 

[used>=sizeToRead] 

acq

used+=sizeWritten;

upd_sem

var: sizeToRead, memAddress

dataRead, sizeWritten

Figure 12: FIFO_read component

L1 L3

L2

rd_endrd_beginwr_endwr_begin

data=buff[address];

rd_begin

wr_end

var: buff[N], address, data

wr_begin

buff[address]=data;

rd_end

Figure 13: Buffer component

A FIFO_read component (figure 12) implements read action ofCha. It has the ports rd_req, rd_ack
for its interface with a process read operation, and ports rd_begin, rd_end for its interface with the buffer.
A FIFO_write implements the write action of Cha in the same manner.

The decomposition of a channel into a FIFO_write, FIFO_read and a buffer is shown in figure 14.
The FIFO_write and the FIFO_read require synchronization with each other in order to preserve the
size invariant of the buffer. This is implemented by strong synchronization between the signal_sem and
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upd_sem ports. They also have ack and rel ports for interaction with the processor scheduler. This is
required to implement blocking read/write operation without blocking the processor.

The channel bufferCha.buff becomes a buffer componentBuffer (figure 13). It has portswr_begin,
wr_end and rd_begin, rd_end for writing and reading respectively. The ports for writing synchronizes
with a FIFO_write and the ports for reading synchronizes with a FIFO_read. The architecture of a

FIFO_read FIFO_write

Buffer

rd_end wr_endrd_begin wr_begin

signal_sem

upd_sem

upd_sem

signal_sem

rd_ackrd_req

acq

rel rel

acq

wr_ackwr_req

wr_begin wr_endrd_begin rd_end

Figure 14: Splitting a channel

composite processor component with its sub components is shown in figure 15

signal

upd

acq

rel

rd_req rd_ack

rd_begin rd_end

rd_req rd_ack

acq

rel

rd_begin rd_end

upd

signal

wr_req wr_ack

wr_begin wr_end

acq

rel upd

signal

rd_begin rd_end wr_begin wr_end rd_begin rd_end

Process nProcess 1

Scheduler

FIFO_Write FIFO_ReadFIFO_Read

ack rel

in_begin in_endout_endout_beginin_endin_begin

ack rel ack rel

Figure 15: Processor architecture

If Mem is a memory to which are mapped channels Cha1, . . . , Chan then the component associated
with Mem will contain components Buff ′1 . . .Buff ′n (shown in figure 16) such that Buff ′i is obtained
from the decomposition of Chai. We assume high cache rate for the local variables of the processes
mapped on a processor, and hence we do not model explicitly the allocation of process data in the memory.
The memory is used only to model inter process data communications.

A bus componentBus is the composition ofMaster_Interface, Slave_Interface and V irtual_Links,
and contain a bus scheduler. For the interfaces and virtual links, we have separate models for read and write
operations. A Master_Interface_Read component is essentially a multiplexer, which decodes the ad-
dress of a read request (rd_req) and activates the corresponding virtual link in order to route the request
to the destination slave. The model is shown in figure 17. A V irtual_Link models the physical connec-
tion between the master and slave interfaces. Figure 18 shows the BIP model of a virtual link for a read
operation.
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Figure 16: Memory architecture
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Figure 17: Bus: Master read interface component
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Figure 18: Bus: Virtual link component

The model of a bus component configured using two master and two slave ports is partially shown in
figure 19. It shows the components realizing the bus read. The bus write is modeled using a similar set of
components, and sharing the common scheduler. We modeled a set of scheduler components for realizing
different bus scheduling policies like fixed-priority, round-robin and TDMA.

Addressing the memory for a read and a write operation is based on generation of a global address
which consists of a base address and a relative address. The base address identifies the channel buffer, and
the relative address identifies an element in the buffer. From the mapping of a channel to a memory, its base
address is determined. This base address is taken into account by the FIFO components corresponding to
the channel in order to generate the addresses for the read and write operations. In the bus, the master
interface decodes the base address to identify the virtual link for communication, which determines the
slave port and the memory connected to it. In the memory read/write operation, the relative address is
used to read or write the particular memory cell.

The construction of the system model uses a set of generic components provided as a library of system
components listed in figure 20. The library is classified into software, hardware dependent software, and
hardware components.

3 Implementation and Experimental Results

3.1 Tool Implementation
The method described in section 2 has been implemented in a tool. DOL is used as a frontend to describe
the application software as a process network, the hardware architecture as well as the mapping. The
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Figure 19: Bus architecture
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Figure 20: BIP atomic components Library

overall organization of the tool is shown in figure 21. It consists of two parts, the frontend translator and
the backend transformation tool.
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The frontend uses an open source C parser called codegen [1] to parse C files that describe the behavior
of the DOL processes into an intermediate model. This, along with the structure of the process network
extracted from the XML description, is transformed into the BIP application software model.

Application Software

Translation

Input Specification in DOL

BIP Toolset
Functional Correctness, Performance Estimation,

Statistical Model Checking

(XML)

Process Network

(C code)

Behavior

XML
Parser

C
Parser

Model (BIP)

Software

Transformation
Library

System Component

Performance

Observer Library

Model (BIP)

System

Architecture

(XML)

Mapping

(XML)

Parser
XML

Figure 21: Tool Architecture

The frontend tool supports behavior described in C with a few restrictions, namely: 1) no use of global
variable; 2) no goto statement; and 3) no call to the read/write primitives in recursive routines.

3.2 Performance Estimation on the System Model
Performance estimation of execution time is based on native simulation. The results are obtained dynam-
ically by fine-granular code analysis. The basic idea is to take advantage of coverage tools to get the
profiling result of C code during the simulation and then analyze the profiling time of each C statement.
A target platform is characterized by a weight-table of instruction execution time. Computation time on a
target architecture is obtained in two steps: 1) profiling of generate C code with profiling API and obtaining
results by simulation; 2) analysis of C profiling results based on target architecture weight-table to obtain
execution time estimation.

Bus and memory latency is measured using observer components.

3.3 MJPEG Decoder Case Study
We apply our method for generating an implementation of a MJPEG decoder on MPARM [4] architecture
and provide performance results. The MJPEG decoder application software reads a sequence of MJPEG
frames and displays the decompressed video frames. The process network of the application is illustrated in
figure 22. It contains five processes SplitStream (SS), SplitFrame (SF ), IqzigzagIDCT (IDCT ),
MergeFrame (MF ) and MergeStream (MS), and nine communication channels C1, . . . , C9. The
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Figure 22: MJPEG Decoder application and a mapping

target architecture is a simplified MPARM, illustrated in figure 23. It is configured using five identical tiles
and a shared memory, connected via a shared AMBA-AHB bus. Each tile contains a processor (ARM )
connected to a local memory (LM ) via a local bus. For the hardware model in BIP, we assumed all the

...
localbus

Memory
local

localbus

local
Memory

SharedBus

ARM1

Memory
Shared

T ile1 T ile5

ARM5

Figure 23: 5-Tile MPARM Architecture

local memory as SRAM with an access time of 2 cycles. The shared memory is a DRAM with an access
time of 6 cycles. Clock frequency of all processors, memory and buses are assumed to be the same.

We experimented with eight different mapping to analyze their effect on the total computation and com-
munication time for decoding a frame. The process mappings are described in table 1, and the sw_channel
mappings are described in table 2.

For the mappings described above, a system model contains about 50 atomic components and 220
connectors, and consists of approximately 6K lines of BIP code, generating around 19.5K lines of C code.
The total computation and communication delays for decoding a frame for different mappings are shown
in figure 24. Mapping (1) produces the worst computation time as all processes are mapped to a single
processor. Mapping (2) uses two processors, sill the performance does not improve much due to bad
mapping. But (3) gives much better performance as the computation load is balanced. The other mappings
can not produce better performance as the load can not be further distributed, even if more processors are
used. The communication overhead is reduced if we map more channels to the local memories of the
processors. The bus and memory access conflicts are shown in figure 25). As more channels are mapped
to the local memory, the shared bus contention is reduced. However, this might increase the local memory
contention, as is evident for (8).

The results show the feasibility of the system model for fine granular analysis of the effects of archi-
tecture and mapping constraints on the system behavior.
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ARM1 ARM2 ARM3 ARM4 ARM5

1 all

2 SS, SF , IQ MF , MS

3 SS, SF IQ, MF , MS

4 SS, SF IQ MF , MS

5 SS, MS SF IQ MF

6 SS SF IQ MF MS

7 SS, SF IQ MF , MS

8 SS SF IQ MF MS

Table 1: Mapping Description of the processes

Shared LM1 LM2 LM3 LM4

1 all
2 C6, C7 C1, C2, C3, C4, C5 C8, C9
3 C3, C4, C5, C6 C1, C2 C7, C8, C9
4 C3, C4, C5, C6, C7 C1, C2 C8, C9
5 all
6 all
7 C6, C7 C1, C2, C3, C4, C5 C8, C9
8 C1, C2 C3, C4, C5, C6 C7 C8, C9

Table 2: Mapping Description of the sw_channels

4 Conclusion

The presented method allows generation of a correct-by-construction model of a mixed hardware/software
system from its application software, a description of the hardware architecture and a mapping. The method
is completely automated and supported by tools. The system model is obtained by refining the application
software model and composing it with the hardware architecture model. The composition is defined by the
mapping.

Using BIP is instrumental for incremental construction of the models. Its expressiveness allows the
integration of architecture constraints into the application model without suffering complexity explosion.
DOL is used mainly as a front-end. Any other performance evaluation tool providing similar functionality
could have been used.

The method clearly separates software and hardware design issues. It is also parameterized by design
choices related to resource management such as scheduling policies, memory size and execution times .
This allows mastering the complexity and appreciation of the impact of each parameter on system behavior.

When the generated system model is adequately instrumented with execution times, it can be used for
performance analysis and design space exploration. Experimental results show that the method is tractable
and allows design space exploration to determine optimal solutions.

Future work directions include extension to other programming models for the application software
and richer hardware architecture models.
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