erimac

Unité Mixte de Recherche 5104 CNRS - INPG - UJF

Centre Equation

2, avenue de VIGNATE
F-38610 GIERES

tel : +33 456 52 03 40

fax : +33 456 52 03 50
http://www-verimag.imag.fr

Efficient Encoding of SystemC/TLM
In Promela—Full VVersion

Kevin Marquet and Bertrand Jeannet and Matthieu Moy

Verimag Research Report 1 TR-2010-7

November 22, 2010

-
*Jg;%mm&wﬂg&i%

Reports are downloadable at the following address
http://ww-verimg.img.fr

http://www-verimag.imag.fr

Efficient Encoding of SystemC/TLM in Promela—Full Version
Kevin Marquet and Bertrand Jeannet and Matthieu Moy

Verimag
Centre quation - 2, avenue de Vignate 38610 Gires - FRANCE

November 22, 2010

Abstract

To deal with the ever growing complexity of Systems-on-Chligsigners use models early in
the design flow. SystemC is a commonly used tool to write suotets. In order to verify
these models, one thriving approach is to encode its secsanto a formal language, and then
to verify it with verification tools. Various encodings of 8gmC into formal languages have
already been proposed, with different performance impboa. In this paper, we investigate
a new, automatic, asynchronous means to formalize modelsefzoding supports the sub-
set of the concurrency and communication constructs affeyeSystemC used for high-level
modeling. We increase the confidence in the fact that encopgptams have the same seman-
tics as the original one by model-checking a set of properilée give experimental results on
our formalization and compare with previous works.

Keywords: SystemC, model-checking, encoding, spin, promela
Reviewers: Florence Maraninchi

Notes

How to cite this report:

@techrepor{ verimag-TR-2010-7,

title = { Efficient Encoding of SystemC/TLM in Promela—Full Version
author ={ Kevin Marquet and Bertrand Jeannet and Matthieu Moy
institution ={ Verimag Research Repoyt

number ={TR-2010-%,

year ={ 2010},

note ={ }

}

Kevin Marquet and Bertrand Jeannet and Matthieu Moy

1 Introduction

As the complexity of embedded systems grows, the need fommetliods has appeared for the co-design
of hardware and software. Indeed, low-level hardware dgsan languages such as VHDL and Verilog
simulate slowly, can hardly be used to design complex systerd therefore make early software develop-
ment difficult. Consequently, higher-level modeling tobés/e appeared, allowing hardware and software
descriptions.

Transaction-Level Modeling/] (TLM) is an approach in which the architecture and the bélranf a
System-on-Chip (SoC) are described in an executable moatlghe micro-architecture details and precise
timing behavior are abstracted away. Systerfi(} has become thde factostandard for TLM modeling.

It contains a simulation kernel that can execute concumenmtesses communicating through channels
and shared variables, using C++ libraries. In this paperasgeinterested in TLM programs, written in
SystemC. We focus on the subset of SystemC needed for TLM lingdéeaving apart the constructs
originally introduced in SystemC to write lower-level prags (like RTL).

SystemC descriptions are C++ concurrent programs thatesesbed and/or verified in order to detect
design flaws. Verifying a concurrent program can be done vétious approaches. One thriving approach
is to describe its semantics formally, and then to verifg t@mantics using verification tools. The first
step is callednodel extractiorand leads to the translation of the program into a formalesgmtation, and
the second step is the verification performed on the fornpabentation. Different representations can be
chosen, that model differently time and concurrency, aatldhe connected to different verification tools.

This paper focuses on the issuenaddel extractionin the context of the verification of SoC modeled
as System C concurrent programs. Our contributions arelas/fo
1) We presennhew encoding principlesin section4 for the extraction of formal representations from

SystemC programs, and in particular for modeling the seicgof SystemC scheduler. We argue that

this encoding is simple and elegant, although it involvemesubtle points. Its main goal is how-

ever to favor the efficiency of verification tools. Moreovéhis extraction is performed in a fully
automatic way by our verification chain. The implementation is openrse and available from
http://gitorious.org/pi navm

2) In order tovalidate their correctness we define properties that must hold for an encoding to belvali

These properties and how they are tested are detailed inrs&ct
3) At last, sectiorb presentexperimental resultson SystemC examples translatedPtomelg the asyn-

chronous formalism used as input to the SPIN model-ched®ar.results show major improvements

over past similar works, thanks to the fact that our encodimgs not introduce complex behaviors lim-

iting the applicability of formal verification tools. We sldn particular a tremendout reduction of the

number of states that SPIN needs to explore.
Before presenting these, we present SystemC in segtaomd compare our approach to related works in
section3.

2 SystemC

We give a very partial overview of SystemC, focusing on thiefacthat are relevant for this paper.

A SystemC program defines anchitecture i.e. a set of components and connections between them,
and abehavior i.e. components have a behavior defined by one or sever@gses and communicate with
each other through ports. Once the architecture is defielatgration phas@erformed at the beginning
of execution), thesimulation phasatarts: processes execute according to the SystemC siigedalicy.

As an example, figuré shows a SystemC module containing two processes, one géitimn event, the
other notifying it.

The actual scheduler includes a notiodafycles 0], inspired from traditional HDL languages, which
we do not consider here, since it is not useful for TLM modelst this implies that we do not support
SystemC constructs likevait(SC_ZERO_TIME), which makes a process wait until the next evaluation
phase). We focus on the following constructs of SystemCg¢lwhie the basis for TLM modeling:
wait(d: int) Stops executing the current process, yields back the ddotthe scheduler and makes the

current process to wait for the given duration.

Verimag Research Report MR-2010-7 1/15

http://gitorious.org/pinavm

Kevin Marquet and Bertrand Jeannet and Matthieu Moy

SC_MODULE(nyt op) {
sc_event e;
SC_CTOR(nyt op) {
SC_THREAD(nyFct P); SC_THREAD(nyFct Q) ;

}
void nyFctP() {..; wait(e); ...}
void nyFctQ) {..., e.notify(); ...}

Figure 1: A basic SystemC module

wait(e: event) Stops executing the current process, yields back the ddattiee scheduler and makes the
current process to wait for the event to occur. SystemC dlswsthe constructavait(el & e2)and
wait(el | e2)to wait for conjunctions and disjunctions of events.
event.notify() Makes processes waiting for the specified event eligibléh@uit stopping the current pro-
cess).
event.notify(delay: int) Triggers a notification after the given delay. In SystemQy ¢ime earliest timed
notification is kept, which simplifies the semantics of thigrtive.
SystemC scheduling followsron-preemptivescheduling policy. When several processes are eligible
at the same time, the scheduler runs them in an unspecified ord
Concerning communications between process, we use shariethles to model several threads be-
longing to the same module communicating by accesses todlus fof the module. Communication
channels allows to exchange information in a more complex via TLM, channels are modeled with
SystemC modules, and the standard way to perform commioricatto perform method calls from a
module to another, using the C++ interfaces defined in thedsta P 1]. Technically, these method calls
are done through ports (or sockets in TLM-2), but the undeglgemantics is basically the one of a call.
We therefore focus on the notion of method calls, and do notige special modeling for components
like sc_si gnal s andsc_fi f os. Our implementation does not (yet) manage TLM ports explidbut
require the function calls from modules to modules to be domain C++ (only the syntax differs).
Restricting ourselves to a strict subset of SystemC impliaswe cannot handle SystemC programs
written using specific constructs outside our subset, balsit makes our approach more general in the
sense that it could easily be adapted to other discrete-eeoamperative simulator (like the cooperative
version of JTLM [2]).

3 Overview of the problem and Related Works

General overview

The challenge raised by formal verification of SystemC medethat SystemC has not been designed for
this purpose. Few verification tools are available for gah€r+ programs, especially when the goal is to
checkfunctional propertiesMoreover, a general verifier would have to reanalyze théeByS class library
and to rediscover by itself its high-level semantics. Fasthreasons, most related work proceeds differ-
ently, by first translating and abstracting a SystemC progiaformal models accepted by the targeted
verification tools, and then applying verification tools be simplified model.

In other words, while most verification tools parse the sseode andranslateit, the SystemC library
itself is never parsed. Instead, its semantics is directily-m the tool.

Representation of the SystemC scheduler

Modeling the semantics of the SystemC library reduces maininodeling the SystemC scheduler. Three
options can be imagined to represent the scheduler in a foepeesentation: 1. choose the deterministic
behavior corresponding to the reference implementatisoriteed in the SystemC standafd]], and model
it, 2. model a non-deterministic scheduler as an explidiithwhal process, 3. or model it in the semantics
of the synchronization instructions (typically the onesa#ed above).

Choosing arbitrarily a specific, deterministic schedulkewes only to explore a subset of the behaviors.
We do not want such restriction and therefore do not considietion 1.

Verimag Research Report MR-2010-7 2/15

Kevin Marquet and Bertrand Jeannet and Matthieu Moy

Ty X Ty X T3 X Sch T1®T2®T3
Synchronous automata Asynchronous automata
+ scheduler Dedicated product

[17,19 (14

(SystemC)
Concurrent

program

T, x Ty x Ts x Sch T x T x Ts

Asynchronous automata Asynchronous. product
[1 shared variable

This paper

Figure 2: Different approaches for translating System@gams into other formalisms

Solution2 is interesting as it does not restrict the set of possiblewiehs. This is the solution consid-
ered in [L7]. However, encoding the scheduler as a special procesadtiteg with the SystemC processes
complexifies the behavior of the global system. Typicalligtsan encoding induces additional commu-
nications between processes, compared to the origina¢®gssemantics. For instance, the encoding of
the event.notify() primitive is likely to induce a context-switch (as it chasgbe state of the scheduler),
which does not occur in the original SystemC semantics. Tdtkdonsequence is that such additional
communications may prevent verification tools to perforrmv@dul optimizations. Typically, partial-order
reduction relies on a notion of “independent transitiomsitl cannot be applied if the notion of “transition”
of the model does not correspond to the notion of atomicsesiin SystemC.

Consequently, we have chosen the approach of @ointe do not encode the scheduler as an explicit
process composed iparallel with the SystemC processes. Instead, we integrate the @ened the
semantics of the synchronization primitives that are ssegientiallynside each SystemC process, without
introducing any “artificial” context-switches.

Related work

LusSy [L7] is a prototype of a complete verification chain. It encodesprocesseandthe scheduler in
synchronous automata. The intermediate formalism is¢&lRIOM. The main drawback of this formal-
ism is that it breaks down relevant information into lowevél ones, making the task harder for verification
tools, that are unable to handle real case studies. A simiak [7] describes how to generate UPPAAL
models from SystemC programs. Several other translaésedbapproaches have been proposedi[l],
also introducing a lot of complexity in the encoding.

Recent works attempted to tackle this problem by using dspmous formalisms. We will show in
section4.4that SystemC’s semantics is encoded naturally and effigierith deadline variables (similar
to “clocks™) evolving asynchronously, unlike the semasié timed automata used in UPPAAL, in which
clocks evolves synchronously.

In[14], a SystemC process is encoded withliMac automaton which distinguishesicro-statesand
macro-statesMicro-statesrepresent points where the process can not yield, conttanhacro-stateshat
are yielding points (typically following aai t ()). MicMac automata can be composed in parallel using
dedicated product exploiting the notion of micro-statelsisapproach cannot be used directly in existing
verification tools that are not aware of micro-staté<] proposes first to encode a SystemC programs into
MicMac automataand thernto encode MicMac automata into Promela. However, the lasstation loses
the specific benefits of MicMac formalism. Moreover, we shbattsome SystemC notions are encoded
naturally in Promela (in particular, atomic sections of t8ysC correspond to directly to thest omi ¢
statement in Promela), while using MicMac as an intermedatmalism prevents such direct translation
and introduces unnecessary complexity in the encodinguifou, the approach implies the re-encoding
in an explicit and asynchronous way of some mechanisms éhiication tools, including SPIN, can tackle
very efficientlywhen the corresponding native mechanisms are .used

Verimag Research Report MR-2010-7 3/15

Kevin Marquet and Bertrand Jeannet and Matthieu Moy

Our approach: asynchronous formalism + shared variables

This paper proposes a solution based on an asynchronoud (madely Promela) to encode TLM con-
current programs, that consists in modeling the asynclu®ommunications and the semantics of the
scheduler by inserting synchronization primitives mafapng shared variables into the code of the pro-
cesses. The expected gain of this approach is to minimizentheactions between processes, so as to let
verification tools freely apply reduction techniques suslsymmetry or partial order reductions.

Alternatives to Translation-Based Approaches

Other verification approaches do not need to translate ttie toverify, and can apply verification based
on execution. The obvious one is testing, but more elabdtathniques like runtime-verification][and
explicit model-checking] can perform more exhaustive exploration of the state-wpdtiese methods
showed to be very efficient to explore the possible schegsilof a system, but are fundamentally limited
to explicit-state exploration, and cannot be extended tfopa symbolic model-checking or abstract inter-
pretation. A hybrid approach is presentedii vhich executes C++ code natively fSC_VETHODs, but
relies on translation foBC_THREADs. This work is probably the closest to the one presentedsrptper,

as the encoding does not rely on a separate process for taéudeh The translation scheme proposed is
done manually, while we propose an automatic tool chain.

4 Translation from C++ and encoding of SystemC scheduler

We first remind the general principles of our tool chain fos®ynC, then we describe precisely the encod-
ing of SystemC synchronization primitives, and last we aéscsome alternatives. Among the primitives
mentioned in sectiof, we will not consider delayed notifications, or waiting fangunctions or disjunc-
tions of events, but discuss in sectibrd how to extend our encoding to handle such constructs.

4.1 Translating from C++

Translating SystemC automatically requires the use of apbetem SystemC front-end. Borrowing some
ideas from Pinapal[f], we set up a SystemC front-end called PinaVM][able to take as input a SystemC
program and produce an intermediate representation. idnsénd is based on the compiler infrastructure
LLVM [13] and the intermediate representation is mainly composédsit blocks containing SSAfatic
Single Assignmejinstructions. PinaVM executes the elaboration phaseRikapa, and usesJust-In-
Time compiler to retrieve SystemC information on events or ptotenrich intermediate representation
obtained from LLVM.

From the intermediate representation produced by our-adt a back-end produces automatically a
Promela program. Each SSA instruction is translated intecarivalent in Promela instruction. Although
Promela provides some of the structuring mechanisms oflale#hition, these mechanism provide no
benefit for the verification engine compared to a static inintherefore, we chose to inline directly all
function calls, which is made easy byvm : I nl i neFuncti on().

In the encoding of SystemC synchronization primitives, alg on three features related to concurrency
that are provided by Promela:

1. The ability to use shared variables.

2. Theblocked(cond) primitive, which stops the execution of the current proag##l conditioncond

on shared variables becomes true, and gives the controldihemprocess (the actual syntax in
Promela is simply cond).

3. The notion of atomic section, that can be interrupted Wigblocked primitive.

In the translation, each SystemC thread generates a Prpnoeless, we do not consider in this paper
dynamic creation of processes, that are seldom encouriteSaC models.

4.2 Encoding synchronization primitives

In the sequel we denote by* the eventk, with 1 < k& < N, and the set ofV,, processes is denoteel

Verimag Research Report MR-2010-7 4/15

Kevin Marquet and Bertrand Jeannet and Matthieu Moy

powait(EF): p:: E* .notify():
1W,:=k 3VieP|Wi==K
2 blocked{V, ==0) 4 W;:=0

Table 1: Encoding events alone

p:wait(d):
17, =T,+d
2 blocked(, == néig(Ti))

Table 2: Encoding time alone

Events

Processes waiting for an event are eligible immediaérthe event is notified. This means than SystemC
events areon persistent an eventE* notified before the execution ofwait(£*) instruction will be
ignored by this instruction, that will block until the nextification of £¥. An important consequence is
that a process can be waiting for at most one event (we cilyrémtnot consider the construegi t (el
& e2) of SystemC): the instructiowait(£*) is blocking, and takes into account only notifications tgkin
place after its execution.

For encoding events, we thus associate to each prpoassunded integdr < W, < N, such that:

e W, == k when procesp waits for E¥;

e W, == 0 when procesp is not waiting for an event and is eligible;
and we define thavait andnotify instructions by Tabl. We need for this encodiny, log,(1 + N.) bits.

Time

SystemC time management internally assumes a discretesémantics, although in the API timed func-
tions use floating-point durations. We thus assume that we hapecific construatai t (d: i nt) to
walit for thediscretedurationd to elapse.

For encoding time, we attach an intermigadline variablel), : int to each process. It represents
the next deadline fop whenp is waiting, and the current date whers running. It is not necessary to
examine the state of the procesfor each value of ,,, we only need to respect the schedulings allowed by
the durations waited for by the processes. Consequentlgefiee the encodingai t (d) by Tab.2:

e T}, is incremented with;

e p becomes eligible if its deadline variable is the minimum Ibfleadline variables.

Notice that we could also maintain a global cldgkto Iiréi‘g(Ti) and replace the blocking condition by

blocked(I},, == T,). The advantages and drawbacks of this option w.r.t. theefity of the verification
process is hard to assessgriori.

Interaction between time and events

Events and time interact together, and things become subda some processes are waiting for events and

others for a time duration. We propose the encoding is givetable3, based on the following principles:

(1) The value of a deadline variab¥, is meaningfulonly if W # 0 (processp is not waiting for an
event). When a process is waiting for an evdntis not updated. The main invariant becomes thus:
“the deadline variable of a running or eligible process itminimum of the deadline variables of
processes not waiting for an event”

(2) Concerning thevait(d) instruction, the blocked process becomes eligible as ssdts deadline vari-
able is the minimum of deadline variablefprocesses not waiting for an eveatcording to principle
1).

(3) When procesg notifies an eveniZ*, not only should the variabld#’; be reset (for processésvaiting
for EF), but also should their deadline variable be updated to tineent date (which is equal to the
deadline variabl&, of the running process). This is because of principle (1): these deadline vari@ble

Verimag Research Report MR-2010-7 5/15

Kevin Marquet and Bertrand Jeannet and Matthieu Moy

p::wait(d):
17, =T,+d
2 blocked(, == IlIé,l’I’i (T3))
piwait(E"): p:: E* notify():
3 Wi=K 5Vie P|W, ==
4 DblockediV; == ¢ W; =0
0) 7 T, =T,
Table 3: Encoding events and time
puwait(EF) p:: E* .notify()
ey :=true VieP
blocked¢l == ef =
false); false;

Table 4: Encoding of events with 1 Boolean per process perteve

becomes meaningful again, and the invariant above shouitbiretained. This is important to make a
sequencevait(£¥); wait(d) behave correctly in a procegs
The aim of sectiorb is to get confidence on the correctness of this rather subtieding.

Alternate Encoding of Events with Booleans

In a first attempt, we encoded each event with one Boolégrer event. However, it is not sufficient, as
explained in appendik.

We consider one Boolean per evemtd per process, and we denote &ﬁ/the Boolean associated to
eventk for proces. Intuitively, whene’; is true, procesg is waiting for eventc. The correct encoding
for proces is given by tablet.

In this case, we need at mas}, - V. shared Booleans, witlv,, the number of processes, aid the
number of events in the system. In fact, theoretically, Wy aeed, for each event, one Boolean for each
process that can wait for this particular event. This optation is not taken into account in encoding given
here in the examples but has been implemented in our veidgiicelbain.

4.3 Back on time: coding relative deadlines

Our encoding of time uses unbounded deadline variableghwhiake unsuitable for finite-state model-
checkers like SPINg]) (although timed automata model-checkers (e.g., UPPARI) [or static analyzers
(e.g. [LO])) can handle them). Fig3 shows an example where the state space is infinite. Thismyiste
periodic, as variablsharedis consecutively valued: 0, 1, 2, 0 etc. (if the incremenpraress is scheduled
first). Proving thasharednever takes the value 3 should be easy but the reachablegtate is infinite.

However, two global states agreeing on the differeri¢esT’; between deadline variables and differing
only on some absolute valug are equivalent w.r.t. the semantics of the synchronizgpiomitives of
Tab.3. But of course a finite-state model-checker will not detaig and will not quotient automatically
the infinite state-space according to this relation in otdexbtain a finite state-space.

The solution is to perform this quotient in the encoding, bgsidering relative time instead of absolute
time. We need to shift — at some points — all meaningful dewdiiariables so as to make the main
invariant stated in sectioA.2 becomes:“the deadline variable of a running or eligible process issth
minimum, which is zero, of the deadline variables of proeges®t waiting for an event” We propose
to shift them inwait(d) instructions, which results in the definition of Téb. This ensures the following
invariant that guarantees that this encoding makes deadinables bounded.

Verimag Research Report MR-2010-7 6/15

Kevin Marquet and Bertrand Jeannet and Matthieu Moy

int shared := 0;

Thread i ncrement:
while (true) {
shared := shared +1;
wai t (5);
}

Thread decrenent:
while (true) {
shared := shared - 2;
wai t (10);
}

Figure 3: Example with an infinite reachable state-space

piwait(d)

1T,:=T,+d

2Vie P|W;==0

3 =2 i ()

4 blocked(, == 0)

_ p:: B .notify()
prwait(E¥) 7Vi € P|W; ==
5W; =K k
6 blocked{V; ==0) g4 Wi =0

9 T, =1,

Table 5: Encoding of relative time (with integers for ev@nts

Proposition 1 If D denotes the maximal time duratiédhappearing in avait(d:int) instruction, and if the
main invariantwmjgo(ﬂ) == 0 is satisfied, theWp e P : 0 < T, < D.
Indeed:
e Deadline variables are initially zero and thus the inittats satisfies the invariant.
e If the invariant is satisfied, it is maintained by the encadirp :: E*.notify() instruction (line 9).
¢ If the invariant is satisfied, and the instructipn::wait(d) starts to execute, this first implies that
W, = 0 andT, = 0. After line 1, we obtain0 < 7, = d < D, and after line 3, we have
0<T,<d <d< D forsomeD'.

4.4 Discussion

Our encoding implements in some way an asynchronous timarsérs, as opposed as the synchronous
time semantics of timed automata used in tools like IFdr UPPAAL [17], in which clocks evolves
synchronously. Our approach thus does not enable the ukes# tools. On the other hand, we hardcode
in our approach the fact that we only need to know the nextlaessd and not all the possible intermediate
values that a synchronous clock would take between thertutinee and the next deadline.

In particular, it is known that the use diiscrete synchronouslocks is a bad idea with finite-state
model-checkers, as they enumerate all the possible sieestues of such clocks. But in our case, the
analogous of clocks is our deadline variables, the valuehd€lvjumps directly from the current value to
the next deadline to meet, thus avoiding an unnecessaryaration of the intermediate values. As a result,
multiplying all the durations by a constant factor does ngtact the size of the reachable state-space with
our encoding.

Implementing delayed notification on a single event coulditwee with the principles we followed in
this section. This would require to add another deadlin@tsée in each process.

Verimag Research Report MR-2010-7 7115

Kevin Marquet and Bertrand Jeannet and Matthieu Moy

Implementing waiting for conjunction or disjunction of exte would require the following modifica-
tions:
e The bounded integer variablés< W, < N, should be replaced by, Boolean variable$V,, ;
with 1 < k < N. denoting the evenE*, because a procegsan know wait for a set of events.
e We should also add a Boolean variable per process to dissimgehether the process is waiting for
a conjunction or a disjunction of events.
To sum up, our approach can easily model such constructse abst of additional finite-state variables.

5 Testing the encoding principles

Although the encoding for SystemC primitives defined abaedruitively correct, we want to verify it.

The ideal solution would be to prove that our encoding isexdrin any context, that is, in any program
using it. Such a quantification on programs requires the ygeaf-assistantlike Cod?], which is a very
demanding task. This would require to give a formal semanticSystemC, which means to C++, as well
as to Promela, and to prove that two programs are equivakinte the formalization of SystemC itself
cannot be formally proved, even such approach do not agtpative formally the complete translation
scheme.

The approach we have chosen is to construct a set of prapartikto verify them on a set of examples,
in order to check that the encoded models has the same semaatihe original examples and to get
confidence in the correctness of the encoding. We first ptésege properties and then we describe how
we checked them using SPIN. Generally speaking, it is quatd o find bugs in concurrent programs;
those verifications were very useful, allowing us to detaain several preliminary versions of our
encoding.

5.1 Invariants with absolute time

1. “The deadline variable of a running or eligible process is alvays the minimum of all meaningful
deadline variables” This is the main invariant stated in sectibrz.

2. “If process i notifies eventE* for which process; is waiting, then 7; > T;”
In other words, a process notifying the evéift executes after the processes waiting for it.

3. “When a processp waiting for an event is made eligible by a notifying processline (7) of Fig. 3),
the deadline}, of the processp does not change until its election as the running process.”

4. “before and after yielding, :_waiting == \/jGP eé?" (specific to the Boolean encoding)

5.2 Invariants with relative time

The 3 invariants above reduces to the 3 following invariamiien considering the encoding based on
relative time in sectiod.3.

1. “The deadline variable of a running or eligible process is alvays 0” This is the main invariant
stated in sectiod.3, which implies propositiori, which implies in turn that “the deadline variable
of a running or eligible process is always the least of alltiea variables”.

2. Because of invariant 1, this reduces to a trivial invari&fi process i notifies eventE* for which
processj is waiting, then T; = T; = 0" This is because procesds the running process, and
processj was running when executingait(£*).

3. This invariant is formulated the same way as in seciidn

Verimag Research Report MR-2010-7 8/15

Kevin Marquet and Bertrand Jeannet and Matthieu Moy

Property | Assertions Line number (for assertions)
. N .| Booleans:before lines 2 and 4, tald.
int !
1 Assertions before and after each yielding poi Hntegers: before fines 2 and 5, taB.
. . Booleans:Before line 7, tab4
2 Assertion innot i f y(event) Integers: Before line 6, tab3
6 Additional variable + assertions in wait(e) Booleans:'VarlabIe after line 8, assery
tion after line 5, tab4
Integers: Variable after line 7, assert
tion after line 4, tab3
4 Booleans: Assertions before and after yielding Before and after lines 2 and 4, tab.
points

Table 6: Using SPIN to verify properties

5.3 \Verifying invariants

Verifying the invariant directly on our implementation wduequire theorem-proving on C++ code using
complex libraries, and is not realistic, although desealrstead, we verify the invariants on instances of
the translation, just like certifying compilersd] verify the result of each compilation.

We verified all invariants on various examples, which allom@easing the confidence in the correct-
ness of the encoding.

Table6 sums up how each invariant was verified using SPIN, for the@ing with absolute time.The
verification of the invariants for relative time are a mereidsion of these ones. Mainly, two techniques
were used: direct assertions in the code; and a “monitongtess, for properties not related to a specific
line number. This process only contains assertions, whichle detected as violated in the automata
product performed by SPIN.

Invariant 3 was checked using additional variables and assertionsitibely, with P, the process
waiting for an eveng, P the initial running process which notifig?, this is why the property cannot
become false:

e With our encodingP; is immediately eligible and cannot be notified anymore beefming elected.

e For a third proces®; to changel’;, before P; be electedP; must be elected aftdr,. This implies

T35 <Ti. AsTy == Min(T;), T5s £ Ty and consequentl{f; == 77, even if P, could be notified
before being elected, a notification By would setT; to the same deadline variable.

As the examples we considered are deadlock-free (use ckwelln algorithms), we also verified that
the encoding does not introduce deadlocks (for instancechgduling processes in the wrong order).

The examples on which we checked these properties are tbavifnd. First, we experimented on an
adaptation of the reader/writer problem in which two wstand one reader access a FIFO. Second, we
considered a model of a communication between a Memory, a DiMAis and a CPU. Third, we consid-
ered the example used in a previous translation from SystenSPIN [27], described in appendii.1.

6 Experiments and efficiency of our encoding

The aim of the previous section was to formally check that encoding effectively reflects SystemC
semantics. However, our motivation for the encoding we psepis to enable better performances of
model-checkers, compared to other encoding approacheslsin sectiorB. We now show how our
case study was translated to Promela in order to apply thE &Ridel-checker, and then we compare
experimentally the efficiency of our encoding w.r.t. modeecking with the encoding proposed i
applied to the same example.

6.1 A SystemC example

Fig. 4 shows our encoding translated to Promela. Our verificati@incactually unrolls loops and generates
specialized functions for the different events and proegss

Using SPIN, the use of &, representing the minimum of ≪ (see sectiod.2) could be accurate as
since this would allow to usg, to verify properties. Although this does not change the derity of the

Verimag Research Report MR-2010-7 9/15

Kevin Marquet and Bertrand Jeannet and Matthieu Moy

SC_MODULE(MyModul e)

{
M/Modul e *initiator;
sc_event e;

SC_HAS_PROCESS(MyNbdul €) ;

M/Modul e(sc_nodul e_nane nane) {
SC_THREAD(conput e) ;
sensitive << e;

}

void fonct() {
e.notify();
}

void conpute() {
wai t(e);
initiator->fonct();

s

modules 3 5 7 9 11
time | states| time | states| time | states| time | states| time | states
no bug 0.00 39 0.00| 121 | 0.00| 419 | 0.01 | 1581 | 0.08 | 6199

bug 0.00 32 0.00 74 0.00| 188 | 0.00| 590 | 0.03| 2144
modules 13 15 17 19 21
time | states| time | states| time states | time states time states
no bug 0.46 | 24641 | 2.46 | 98379 | 12.26 | 393301 | 65.56 | 1572959 | 326.08 | 6291561
bug 0.19| 8306 | 1.04 | 32900 | 5.49 | 131222 | 28.22 | 524456 | 145.36 | 2097338

Table 7: Experimental results

verifications performed by SPIN, we did not use a gldhiain order to simplify the code.

Fig. 7 in the appendix shows the pseudo-code for the reader/vesiganple described above.

Our test model is the one used it] and partly detailed in Fig6.1 It consists of a chain of modules.
The first module triggers an interrupt in the next one. Thisriupt notifies an event, allowing the module
to trigger an interrupt in the next module, and so on. The iagtiule contains an assertion which is
either always false (bug) or always true (no-bug). Theldtteees SPIN to compute the whole state space
when checking for invalid assertions. While this program rsegm artificial, it exhibits the characteristics
found in more complex real-world models and leading to stafdosion: many processes, synchronized
by SystemC events, which can thus be lost depending on theitéxe order of the various statements.
Such study allows to experiment on how the state space tleglsne be explored grows depending on
parameters. As this test model is untimed, we test here balgfficiency of the encoding of events.

6.2 Results

The results presented in Figfocuses on the main parameter which is the number of modiilshows
the number of states computed by SPIN during the model-ihgcif the example presented above.

Table7 gives a bit more details. The line “no-bug” corresponds ®dkample described, whereas the
line “bug” shows the number of states computed before findimgunter-example in the case where an
assert (fal se) has been introduced in the last module.

We mainly observe two things: First, the number of statesrasving exponentially, although the
acceleration is not high: there is a factobetween the number of states computed for 3 modules and 5, a
factor of about! between results for 15 and 17 modules and also a factor ot dbdmtween 19 and 21.

Second, those results show a reduction by a factor of abocboitpared to previous results presented
in [27]. The comparison between the two approaches, in the caseiere is no bug is shown in figure
5. We can see that, with our encoding, SPIN is able to modelichpdo 21 processes, compared to 15 in
the other approach. In addition, one of our main resultsasttie encoding presented here have been fully
automated.

Verimag Research Report MR-2010-7 105

Kevin Marquet and Bertrand Jeannet and Matthieu Moy

int e[NBTHREADS] ;
i nt T[NBTHREADS] ;
bool end[NBTHREADS] ;

inline init_coding(i) {
i =0

do :: i == NBTHREADS -> break;
;. else ->
e[i] = 0; T[i] = 0; end[i] = false;
i++; od;

}

inline notify(pid, nevent, i) {
i =0;

do :: i < NBTHREADS && e[i] == nevent ->
e[i]=0; T[i]l=T[pid]; i++
©: i < NBTHREADS && e[i] != nevent ->

i++;
;i i == NBTHREADS - > break; od;
i =0;
}

inline wait(pid, tine) {

Tlpid] = T[pid] + tine;

((end[0]) || (e[O] t=0) || (T[pid] <= T[0]) &&
(end[1]) || (e[1] t=0) || (T[pid] <= T[1]) &&
(end[2]) || (e[2] !=0) || (T[pid] <= T[2]));

}

inline wait_e(pid, nevent) {
e[pid] = nevent;
e[pid] == 0;

}

Figure 4: Encodings in Promel&ompared to Tal8, we add theend array to handle the particular case where a
task is completed in theai t (d: i nt) instruction.

7 Conclusion

We investigated the formalization of models of SoC in therfaf asynchronous automata. We proposed
an encoding of synchronization primitives related to esemd time using shared variables and sequential
instrumentation of processes. This choice contrasts wlitbr@approaches in which parallel instrumentation
is used, under the form of an additional process modelingilstemC scheduler added to the system. We
ensured the encoding principles are correct by verifyingimalver of invariants. The given principles are
general and apply to different back-end languages.

We experimented on the SPIN model-checker, showing thaepncoding leads SPIN to explore ten
times less states during model-checking of the encoded lymmapared to an encoding based on parallel
instrumentation. This confirms the conjecture we expresseation3. In addition, the translation has
been fully automated: our tool reads SystemC code direatigt, generates Promela code without human
intervention. This shows that our results are due to our @&ngoand not to specific optimizations. The
tool can be downloaded freely frohi t p: / / gi t ori ous. or g/ pi navm

We see at least two point to investigate in the future. Fieshave yet to compare our time management
to other approaches. We intend to compare this solutiongmaghes based on timed automata and relying
on the UPPAAL [] tool for model-checking to validate our discussion of gattl.4 on the asynchronous
encoding of time in SystemC. A second perspective to evalieg relevance and the efficiency of static
analysis tools such asa®icURINTERPROC[1] for checking safety properties of timed SystemC models.

References

[1] M. Bozga, S. Graf, and L. Mounier. IF-2.0: A validationv&mnment for component-based real-
time systems. In K.G. Larsen Ed Brinksma, edifigceedings of CAV’'02 (Copenhagen, Denmark)
volume 2404 oL NCS pages 343—-348. Springer-Verlag, July 2002

[2] Giovanni Funchal and Matthieu Moy. jTLM: an experimetida framework for the simulation of
transaction-level models of systems-on-chipDIWTE, 2011. (to appear

Verimag Research Report MR-2010-7 11A5

http://gitorious.org/pinavm

Kevin Marquet and Bertrand Jeannet and Matthieu Moy

7e+06

" PinavM ' ——
[SPIN 07] -+

6e+06 -

50106 |- Out of memory,

4e+06 -

Nb of states

3e+06

2e+06 -

le+06

- b e . ! . .
2 4 6 8 10 12 14 16 18 20 22
Nb of components

Figure 5: Experimental results of the two approaches

[3] Hubert Garavel, Claude Helmstetter, Olivier Ponsimig &/endelin Serwe. Verification of an Indus-
trial SystemC/TLM Model using LOTOS and CADP. Hh ACM-IEEE International Conference
on Formal Methods and Models for Codesign MEMOCODE’2008mbridge, MA United States,
2009.3,3

[4] Frank GhenassiaTransaction-Level Modeling with SystemC: TLM Concepts Apglications for
Embedded SystemSpringer-Verlag New York, Inc., Secaucus, NJ, USA, 2QD6.

[5] Claude Helmstetter. TLM.open: a SystemC/TLM Front-dadthe CADP Verification Toolbox.
Extended abstract for SBDCES workshop (http://unit.gisip/cvs/workshop/SBDCES.html) Work
financed by the Multival project3

[6] Claude Helmstetter, Florence Maraninchi, and Laureatllgt Contoz. Full simulation coverage for
SystemC transaction-level models of systems-on-a-¢&leipnal Methods in System Desi@b(Num-
ber 2 / October, 2009):pages 152-189, 06 2009.

[7] Paula Herber, Joachim Fellmuth, and Sabine Glesner.eMatbcking SystemC designs using timed
automata. IlCODES/ISSS '08: Proceedings of the 6th IEEE/ACM/IFIP imé¢ional conference on
Hardware/Software codesign and system synthpaiges 131-136, New York, NY, USA, 2008.7

[8] Gerard J. HolzmannDesign and validation of computer protocoRrentice-Hall, Englewood Cliffs,
NJ, 1991.4.3

[9] INRIA. The coq proof assistant. http://cog.inria.fd.

[10] B. Jeannet. Relational interprocedural verificatibic@ncurrent programs. I8oftware Engineering
and Formal Methods, SEFM'09EEE, November 2009. to appedr3, 7

[11] D. Karlsson, P. Eles, and Z. Peng. Formal verificationystemc designs using a petri-net based rep-
resentation. IfProceedings of the conference on Design, automation anthtEsirope: Proceedings
page 1233. European Design and Automation Associatior§.Zb0

[12] K. G. Larsen, P. Pettersson, and W. Yi.PRAAL in a Nutshell. Int. Journal on Software Tools for
Technology Transfel(1-2):134-152, October 1997.3, 4.4

[13] Chris Lattner and Vikram Adve. LLVM: A compilation fraework for lifelong program analysis &
transformation. INCGO '04: Proceedings of the international symposium on Cgeleeration and
optimization page 75, Washington, DC, USA, 2004. IEEE Computer Sociefly.

[14] F. Maraninchi, M. Moy, J. Cornet, L. Maillet-Contoz, Belmstetter, and C. Traulsen. SystemC/TLM
semantics for heterogeneous system-on-chip validatioNHWCAS-TAISA 2008: Proceedings of
the Joint 6th International IEEE Northeast Workshop on @it and Systems and TAISA Conference
pages 281-284, 2008, 3

Verimag Research Report MR-2010-7 1215

Kevin Marquet and Bertrand Jeannet and Matthieu Moy

powait(EF): p:: E*.notify():
E* :=true; ek = false;
blocked¢® == false);

ek :=true;

Table 8:Incorrect encoding with with 1 Boolean per event

[15] Kevin Marquet and Matthieu Moy. PinaVM: a SystemC framd based on an executable intermedi-
ate representation. limternational Conference on Embedded Software Internali€onference on
Embedded Softwar@age 79, Scottsdale, USA, 10 2010. SD B.4.4, 1.6.4, D.2.dn®pM (projet
Minalogic). 4.1

[16] Matthieu Moy, Florence Maraninchi, and Laurent Ma#@ontoz. Pinapa: An extraction tool for
SystemC descriptions of systems-on-a-chipEMSOFT September 20051.1

[17] Matthieu Moy, Florence Maraninchi, and Laurent Ma#@ontoz. LusSy: an open tool for the anal-
ysis of systems-on-a-chip at the transaction lesign Automation for Embedded SysteR06.
special issue on SystemC-based systeins, 3

[18] G.C. Necula and P. Lee. The design and implementatianagrtifying compiler. ACM SIGPLAN
Notices 33(5):333-344, 199%.3

[19] B. Niemann, C. Haubelt, M. Oyanguren, and J. Teich. Fdizing TLM with communicating state
machines Advances in Design and Specification Languages for EmbeSigatémspages 225-242,
2007.3,3

[20] Open SystemC Initiative. IEEE 1666 Standard: SystemC Language Reference Mara(gl5.
http://ww. systenc.org/. 1,21

[21] Open SystemC Initiative (OSCIOSCI TLM-2.0 Language Reference Manuhlly 2009. Version
JA32, available fronint t p: / / www. syst ent. or g/ downl oads/ st andar ds. 2

[22] Claus Traulsengidme Cornet, Matthieu Moy, and Florence Maraninchi. A SystérbM semantics
in Promela and its possible applications.14th Workshop on Model Checking Software SRINy
2007.3,3,5.3,6,6.1,6.2

A Examples of incorrect encodings

It is not sufficient to use only one Boolean per event. Forainsg, let us consider the encoding described
in table8, where several processes are waiting for eveft

In this case, if several processes are waiting/h only one of them, at most, is unblocked. In-
deed, since the process chosen as running immediately’seidalse, the others remain blocked on the
bl ocked(eF == true) ;

A.1 Wrong Encoding of Time and Events with Booleans

This encoding could seem to be correct but is in fact invakiure 6 presents an example where this
encoding fails to execute processes in the correct ordeeelprocesses are concurrently executing. The
instructions executed by processes are represented lasc{ftA, 1B...) and are separated by SystemC
constructs: waiting or notifying eventsdi t (e), noti fy(e), waiting time (vai t (20)). The right
hand side of the Fig. details the concurrent execution ofitreee processes. The process with least deadline
variable is always chosen, but the encoding leads to theWalg error:

1. T1 performs a wait(90) ;

2. T2 should be eligible at this point but it is not becas&aiting is still true ;

Verimag Research Report MR-2010-7 135

http://www.systemc.org/
http://www.systemc.org/downloads/standards

Kevin Marquet and Bertrand Jeannet and Matthieu Moy

p:wait(d):

17, =T,+d

2 blocked(, == min (1))

i,waiti;gi:false

prwait(EF): pi: EF notify():
3 ef :=true 7 Vi € Plef == true
4 p_waiting := true 8 ek .= false
5 bIOCkedé’; == false) 9 T, :=1T,
6 p_waiting := false

Table 9:Incorrect complete encoding with Booleans

P1 P2 P3 Execution Clocks
®» ® O OROROREES
11 2-1 3-1

wait(30) wait(20); wait(10); @ @ @ 302090
® & O

2 72 5 @ @ 3020 90

notify(e) wait(e); wait(80);
@) @ @ @ (1) 302090
13

Wait(90)
O @ @ @ 12020 90
D

Wrong/l/
@ Good !

(2
@

(@
@
©

Figure 6: Counter-example for invalid encoding

3. so T3is chosen as running.

The error here is that when a proceswaiting for an event is notified, it becomes eligible while
i_waiting is not set to false. Therefore, it can be chosen asingreven if its deadline variable is greater
than the deadline variable of a process waiting for time.

A.2 The reader-writer example

Verimag Research Report MR-2010-7 145

Kevin Marquet and Bertrand Jeannet and Matthieu Moy

int enpty_fifo; #define TIMEO 5
#define MAX 3 #define TIME1 3
#define TIME2 1
#defi ne LOOP_NB_W 10
#defi ne LOOP_NB_R 20 #def i ne NBTHREADS 3
procedure procedure
wite_in_fifo(pnunmber, tinme) read_i n_fifo(pnunber, tinme)
{ {
empty_fifo--; enmpty_fifo++
noti fy(pnunber, EVENT_WRI TE); noti fy(pnunber, EVENT_READ);
wai t (pnunber, tine); wai t (pnunber, tine);
Thirﬁ?dj Wi;‘:{)p: Thread witerl:
. ’ ’ int j, tenp;
int pnunber = 0O; i nt Jpnunbngr =1
for (J =0; j <_NB_L(IP_W]++) { for (j =0; j < NB_LOOP W j++) {
while (enpty fifo == 0) while (enpty fifo == 0)
i Yﬁ'ot —e(pnunber, EVENT_READ); wai t _e(pnunber, EVENT_READ);
=0 : I =0
wite_in_fifo(pnunber, TIMEO); wite in_fifo(pnumber, TINEL):;
} }
Thread reader:
int i, j, tenp;
int pnunber = 2;
while (j = 0; j < NB.LOOP_R j++) {
while (enpty_fifo == MAX)
wai t _e(pnunber, EVENT_WRI TE);
i =0;
read_i n_fifo(pnunmber, TIME2);
}
Figure 7: Reader/writer example
Verimag Research Report MR-2010-7 15A5

	Introduction
	SystemC
	Overview of the problem and Related Works
	Translation from C++ and encoding of SystemC scheduler
	Translating from C++
	Encoding synchronization primitives
	Back on time: coding relative deadlines
	Discussion

	Testing the encoding principles
	Invariants with absolute time
	Invariants with relative time
	Verifying invariants

	Experiments and efficiency of our encoding
	A SystemC example
	Results

	Conclusion
	Examples of incorrect encodings
	Wrong Encoding of Time and Events with Booleans
	The reader-writer example

