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Abstract

To deal with the ever growing complexity of Systems-on-Chip, designers use models early in
the design flow. SystemC is a commonly used tool to write such models. In order to verify
these models, one thriving approach is to encode its semantics into a formal language, and then
to verify it with verification tools. Various encodings of SystemC into formal languages have
already been proposed, with different performance implications. In this paper, we investigate
a new, automatic, asynchronous means to formalize models. Our encoding supports the sub-
set of the concurrency and communication constructs offered by SystemC used for high-level
modeling. We increase the confidence in the fact that encodedprograms have the same seman-
tics as the original one by model-checking a set of properties. We give experimental results on
our formalization and compare with previous works.
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1 Introduction

As the complexity of embedded systems grows, the need for newmethods has appeared for the co-design
of hardware and software. Indeed, low-level hardware description languages such as VHDL and Verilog
simulate slowly, can hardly be used to design complex systems and therefore make early software develop-
ment difficult. Consequently, higher-level modeling toolshave appeared, allowing hardware and software
descriptions.

Transaction-Level Modeling [4] (TLM) is an approach in which the architecture and the behavior of a
System-on-Chip (SoC) are described in an executable model,but the micro-architecture details and precise
timing behavior are abstracted away. SystemC [20] has become thede factostandard for TLM modeling.
It contains a simulation kernel that can execute concurrentprocesses communicating through channels
and shared variables, using C++ libraries. In this paper, weare interested in TLM programs, written in
SystemC. We focus on the subset of SystemC needed for TLM modeling, leaving apart the constructs
originally introduced in SystemC to write lower-level programs (like RTL).

SystemC descriptions are C++ concurrent programs that can be tested and/or verified in order to detect
design flaws. Verifying a concurrent program can be done withvarious approaches. One thriving approach
is to describe its semantics formally, and then to verify this semantics using verification tools. The first
step is calledmodel extractionand leads to the translation of the program into a formal representation, and
the second step is the verification performed on the formal representation. Different representations can be
chosen, that model differently time and concurrency, and that are connected to different verification tools.

This paper focuses on the issue ofmodel extraction, in the context of the verification of SoC modeled
as System C concurrent programs. Our contributions are as follows:
1) We presentnew encoding principlesin section4 for the extraction of formal representations from

SystemC programs, and in particular for modeling the semantics of SystemC scheduler. We argue that
this encoding is simple and elegant, although it involves some subtle points. Its main goal is how-
ever to favor the efficiency of verification tools. Moreover,this extraction is performed in a fully
automatic way by our verification chain. The implementation is open-source and available from
http://gitorious.org/pinavm.

2) In order tovalidate their correctness, we define properties that must hold for an encoding to be valid.
These properties and how they are tested are detailed in section 5.

3) At last, section6 presentsexperimental resultson SystemC examples translated toPromela, the asyn-
chronous formalism used as input to the SPIN model-checker.Our results show major improvements
over past similar works, thanks to the fact that our encodingdoes not introduce complex behaviors lim-
iting the applicability of formal verification tools. We show in particular a tremendout reduction of the
number of states that SPIN needs to explore.

Before presenting these, we present SystemC in section2 and compare our approach to related works in
section3.

2 SystemC

We give a very partial overview of SystemC, focusing on the points that are relevant for this paper.
A SystemC program defines anarchitecture, i.e. a set of components and connections between them,

and abehavior, i.e. components have a behavior defined by one or several processes and communicate with
each other through ports. Once the architecture is defined (elaboration phaseperformed at the beginning
of execution), thesimulation phasestarts: processes execute according to the SystemC scheduling policy.
As an example, figure1 shows a SystemC module containing two processes, one waiting for an event, the
other notifying it.

The actual scheduler includes a notion ofδ-cycles [20], inspired from traditional HDL languages, which
we do not consider here, since it is not useful for TLM models (but this implies that we do not support
SystemC constructs likewait(SC ZERO TIME), which makes a process wait until the next evaluation
phase). We focus on the following constructs of SystemC, which are the basis for TLM modeling:
wait(d: int) Stops executing the current process, yields back the control to the scheduler and makes the

current process to wait for the given duration.
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SC_MODULE(mytop) {
sc_event e;
SC_CTOR(mytop) {

SC_THREAD(myFctP); SC_THREAD(myFctQ);
}
void myFctP() {. . .; wait(e); . . . }
void myFctQ() {. . .; e.notify(); . . . }

}

Figure 1: A basic SystemC module

wait(e: event) Stops executing the current process, yields back the control to the scheduler and makes the
current process to wait for the event to occur. SystemC also allows the constructswait(e1 & e2)and
wait(e1 | e2)to wait for conjunctions and disjunctions of events.

event.notify() Makes processes waiting for the specified event eligible (without stopping the current pro-
cess).

event.notify(delay: int) Triggers a notification after the given delay. In SystemC, only the earliest timed
notification is kept, which simplifies the semantics of this primitive.

SystemC scheduling follows anon-preemptivescheduling policy. When several processes are eligible
at the same time, the scheduler runs them in an unspecified order.

Concerning communications between process, we use shared variables to model several threads be-
longing to the same module communicating by accesses to the fields of the module. Communication
channels allows to exchange information in a more complex way. In TLM, channels are modeled with
SystemC modules, and the standard way to perform communication is to perform method calls from a
module to another, using the C++ interfaces defined in the standard [21]. Technically, these method calls
are done through ports (or sockets in TLM-2), but the underlying semantics is basically the one of a call.
We therefore focus on the notion of method calls, and do not provide special modeling for components
like sc signals andsc fifos. Our implementation does not (yet) manage TLM ports explicitly, but
require the function calls from modules to modules to be donein plain C++ (only the syntax differs).

Restricting ourselves to a strict subset of SystemC impliesthat we cannot handle SystemC programs
written using specific constructs outside our subset, but italso makes our approach more general in the
sense that it could easily be adapted to other discrete-event cooperative simulator (like the cooperative
version of jTLM [2]).

3 Overview of the problem and Related Works

General overview

The challenge raised by formal verification of SystemC models is that SystemC has not been designed for
this purpose. Few verification tools are available for general C++ programs, especially when the goal is to
checkfunctional properties. Moreover, a general verifier would have to reanalyze the SystemC class library
and to rediscover by itself its high-level semantics. For these reasons, most related work proceeds differ-
ently, by first translating and abstracting a SystemC program to formal models accepted by the targeted
verification tools, and then applying verification tools on the simplified model.

In other words, while most verification tools parse the user’s code andtranslateit, the SystemC library
itself is never parsed. Instead, its semantics is directly built-in the tool.

Representation of the SystemC scheduler

Modeling the semantics of the SystemC library reduces mainly to modeling the SystemC scheduler. Three
options can be imagined to represent the scheduler in a formal representation: 1. choose the deterministic
behavior corresponding to the reference implementation described in the SystemC standard [20], and model
it, 2. model a non-deterministic scheduler as an explicit additional process, 3. or model it in the semantics
of the synchronization instructions (typically the ones described above).

Choosing arbitrarily a specific, deterministic scheduler allows only to explore a subset of the behaviors.
We do not want such restriction and therefore do not considersolution1.
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Figure 2: Different approaches for translating SystemC programs into other formalisms

Solution2 is interesting as it does not restrict the set of possible behaviors. This is the solution consid-
ered in [17]. However, encoding the scheduler as a special process interacting with the SystemC processes
complexifies the behavior of the global system. Typically, such an encoding induces additional commu-
nications between processes, compared to the original SystemC semantics. For instance, the encoding of
theevent.notify() primitive is likely to induce a context-switch (as it changes the state of the scheduler),
which does not occur in the original SystemC semantics. The bad consequence is that such additional
communications may prevent verification tools to perform powerful optimizations. Typically, partial-order
reduction relies on a notion of “independent transitions”,and cannot be applied if the notion of “transition”
of the model does not correspond to the notion of atomic sections in SystemC.

Consequently, we have chosen the approach of point3: we do not encode the scheduler as an explicit
process composed inparallel with the SystemC processes. Instead, we integrate the scheduler in the
semantics of the synchronization primitives that are usedsequentiallyinside each SystemC process, without
introducing any “artificial” context-switches.

Related work

LusSy [17] is a prototype of a complete verification chain. It encodes the processesand the scheduler in
synchronous automata. The intermediate formalism is called HPIOM. The main drawback of this formal-
ism is that it breaks down relevant information into lower-level ones, making the task harder for verification
tools, that are unable to handle real case studies. A similarwork [7] describes how to generate UPPAAL
models from SystemC programs. Several other translation-based approaches have been proposed [19, 11],
also introducing a lot of complexity in the encoding.

Recent works attempted to tackle this problem by using asynchronous formalisms. We will show in
section4.4 that SystemC’s semantics is encoded naturally and efficiently with deadline variables (similar
to “clocks”) evolving asynchronously, unlike the semantics of timed automata used in UPPAAL, in which
clocks evolves synchronously.

In [14], a SystemC process is encoded with aMicMacautomaton which distinguishesmicro-statesand
macro-states. Micro-statesrepresent points where the process can not yield, contrarily to macro-statesthat
are yielding points (typically following await()). MicMac automata can be composed in parallel using
dedicated product exploiting the notion of micro-states. This approach cannot be used directly in existing
verification tools that are not aware of micro-states. [22] proposes first to encode a SystemC programs into
MicMac automataand thento encode MicMac automata into Promela. However, the last translation loses
the specific benefits of MicMac formalism. Moreover, we show that some SystemC notions are encoded
naturally in Promela (in particular, atomic sections of SystemC correspond to directly to theatomic
statement in Promela), while using MicMac as an intermediate formalism prevents such direct translation
and introduces unnecessary complexity in the encoding. To sum up, the approach implies the re-encoding
in an explicit and asynchronous way of some mechanisms that verification tools, including SPIN, can tackle
very efficientlywhen the corresponding native mechanisms are used.
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Our approach: asynchronous formalism + shared variables

This paper proposes a solution based on an asynchronous model (namely Promela) to encode TLM con-
current programs, that consists in modeling the asynchronous communications and the semantics of the
scheduler by inserting synchronization primitives manipulating shared variables into the code of the pro-
cesses. The expected gain of this approach is to minimize theinteractions between processes, so as to let
verification tools freely apply reduction techniques such as symmetry or partial order reductions.

Alternatives to Translation-Based Approaches

Other verification approaches do not need to translate the code to verify, and can apply verification based
on execution. The obvious one is testing, but more elaborated techniques like runtime-verification [6] and
explicit model-checking [5] can perform more exhaustive exploration of the state-space. These methods
showed to be very efficient to explore the possible schedulings of a system, but are fundamentally limited
to explicit-state exploration, and cannot be extended to perform symbolic model-checking or abstract inter-
pretation. A hybrid approach is presented in [3], which executes C++ code natively forSC METHODs, but
relies on translation forSC THREADs. This work is probably the closest to the one presented in this paper,
as the encoding does not rely on a separate process for the scheduler. The translation scheme proposed is
done manually, while we propose an automatic tool chain.

4 Translation from C++ and encoding of SystemC scheduler

We first remind the general principles of our tool chain for SystemC, then we describe precisely the encod-
ing of SystemC synchronization primitives, and last we discuss some alternatives. Among the primitives
mentioned in section2, we will not consider delayed notifications, or waiting for conjunctions or disjunc-
tions of events, but discuss in section4.4how to extend our encoding to handle such constructs.

4.1 Translating from C++

Translating SystemC automatically requires the use of a complete SystemC front-end. Borrowing some
ideas from Pinapa [16], we set up a SystemC front-end called PinaVM [15] able to take as input a SystemC
program and produce an intermediate representation. This front-end is based on the compiler infrastructure
LLVM [ 13] and the intermediate representation is mainly composed ofbasic blocks containing SSA (Static
Single Assignment) instructions. PinaVM executes the elaboration phase likePinapa, and uses aJust-In-
Timecompiler to retrieve SystemC information on events or portsto enrich intermediate representation
obtained from LLVM.

From the intermediate representation produced by our front-end, a back-end produces automatically a
Promela program. Each SSA instruction is translated into anequivalent in Promela instruction. Although
Promela provides some of the structuring mechanisms of a call definition, these mechanism provide no
benefit for the verification engine compared to a static inlining, therefore, we chose to inline directly all
function calls, which is made easy byllvm::InlineFunction().

In the encoding of SystemC synchronization primitives, we rely on three features related to concurrency
that are provided by Promela:

1. The ability to use shared variables.
2. Theblocked(cond) primitive, which stops the execution of the current processuntil conditioncond

on shared variables becomes true, and gives the control to another process (the actual syntax in
Promela is simply[cond]).

3. The notion of atomic section, that can be interrupted withtheblocked primitive.
In the translation, each SystemC thread generates a Promelaprocess, we do not consider in this paper

dynamic creation of processes, that are seldom encounteredin SoC models.

4.2 Encoding synchronization primitives

In the sequel we denote byEk the eventk, with 1 ≤ k ≤ Ne and the set ofNp processes is denotedP .
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p::wait( Ek):
1 Wp := k

2 blocked(Wp == 0)

p::Ek.notify():
3 ∀i ∈ P | Wi == K

4 Wi := 0

Table 1: Encoding events alone

p::wait( d):
1 Tp := Tp + d

2 blocked(Tp == min
i∈P

(Ti))

Table 2: Encoding time alone

Events

Processes waiting for an event are eligible immediatelyafter the event is notified. This means than SystemC
events arenon persistent: an eventEk notified before the execution of await(Ek) instruction will be
ignored by this instruction, that will block until the next notification ofEk. An important consequence is
that a process can be waiting for at most one event (we currently do not consider the constructwait(e1
& e2) of SystemC): the instructionwait(Ek) is blocking, and takes into account only notifications taking
place after its execution.

For encoding events, we thus associate to each processp a bounded integer0 ≤ Wp ≤ Ne such that:
• Wp == k when processp waits forEk;
• Wp == 0 when processp is not waiting for an event and is eligible;

and we define thewait andnotify instructions by Tab.1. We need for this encodingNp log
2
(1 + Ne) bits.

Time

SystemC time management internally assumes a discrete timesemantics, although in the API timed func-
tions use floating-point durations. We thus assume that we have a specific constructwait(d:int) to
wait for thediscretedurationd to elapse.

For encoding time, we attach an internaldeadline variableTp : int to each processp. It represents
the next deadline forp whenp is waiting, and the current date whenp is running. It is not necessary to
examine the state of the processp for each value ofTp, we only need to respect the schedulings allowed by
the durations waited for by the processes. Consequently, wedefine the encodingwait(d) by Tab.2:

• Tp is incremented withd;
• p becomes eligible if its deadline variable is the minimum of all deadline variables.
Notice that we could also maintain a global clockTg to min

i∈P
(Ti) and replace the blocking condition by

blocked(Tp == Tg). The advantages and drawbacks of this option w.r.t. the efficiency of the verification
process is hard to assessa priori.

Interaction between time and events

Events and time interact together, and things become subtlewhen some processes are waiting for events and
others for a time duration. We propose the encoding is given on table3, based on the following principles:
(1) The value of a deadline variableTp is meaningfulonly if W 6= 0 (processp is not waiting for an

event). When a process is waiting for an event,Tp is not updated. The main invariant becomes thus:
“the deadline variable of a running or eligible process is the minimum of the deadline variables of
processes not waiting for an event.”

(2) Concerning thewait(d) instruction, the blocked process becomes eligible as soon as its deadline vari-
able is the minimum of deadline variablesof processes not waiting for an event, according to principle
1).

(3) When processp notifies an eventEk, not only should the variablesWi be reset (for processesi waiting
for Ek), but also should their deadline variable be updated to the current date (which is equal to the
deadline variableTp of the running processp). This is because of principle (1): these deadline variables
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p::wait(d):
1 Tp := Tp + d

2 blocked(Tp == min
ı∈P

Wi==0

(Ti))

p::wait( Ek):
3 Wi := K
4 blocked(Wi ==
0)

p::Ek.notify():
5 ∀i ∈ P | Wi == k

6 Wi := 0
7 Ti := Tp

Table 3: Encoding events and time

p::wait( Ek)
ek
p := true

blocked(ek
p ==

false);

p::Ek.notify()
∀i ∈ P

ek
i :=

false;

Table 4: Encoding of events with 1 Boolean per process per event

becomes meaningful again, and the invariant above should bemaintained. This is important to make a
sequencewait(Ek); wait(d) behave correctly in a processp.

The aim of section5 is to get confidence on the correctness of this rather subtle encoding.

Alternate Encoding of Events with Booleans

In a first attempt, we encoded each event with one Booleanek per event. However, it is not sufficient, as
explained in appendixA.

We consider one Boolean per eventand per process, and we denote byek
p the Boolean associated to

eventk for processp. Intuitively, whenek
p is true, processp is waiting for eventk. The correct encoding

for processp is given by table4.
In this case, we need at mostNp · Ne shared Booleans, withNp the number of processes, andNe the

number of events in the system. In fact, theoretically, we only need, for each event, one Boolean for each
process that can wait for this particular event. This optimization is not taken into account in encoding given
here in the examples but has been implemented in our verification chain.

4.3 Back on time: coding relative deadlines

Our encoding of time uses unbounded deadline variables, which make unsuitable for finite-state model-
checkers like SPIN [8]) (although timed automata model-checkers (e.g., UPPAAL [12]) or static analyzers
(e.g. [10]) can handle them). Fig.3 shows an example where the state space is infinite. This system is
periodic, as variablesharedis consecutively valued: 0, 1, 2, 0 etc. (if the incrementingprocess is scheduled
first). Proving thatsharednever takes the value 3 should be easy but the reachable statespace is infinite.

However, two global states agreeing on the differencesTi−Tj between deadline variables and differing
only on some absolute valueTi are equivalent w.r.t. the semantics of the synchronizationprimitives of
Tab.3. But of course a finite-state model-checker will not detect this and will not quotient automatically
the infinite state-space according to this relation in orderto obtain a finite state-space.

The solution is to perform this quotient in the encoding, by considering relative time instead of absolute
time. We need to shift — at some points — all meaningful deadline variables so as to make the main
invariant stated in section4.2 becomes:“the deadline variable of a running or eligible process is the
minimum, which is zero, of the deadline variables of processes not waiting for an event.” We propose
to shift them inwait(d) instructions, which results in the definition of Tab.5. This ensures the following
invariant that guarantees that this encoding makes deadline variables bounded.
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int shared := 0;

Thread increment:
while (true) {

shared := shared +1;
wait(5);

}

Thread decrement:
while (true) {

shared := shared - 2;
wait(10);

}

Figure 3: Example with an infinite reachable state-space

p::wait(d)
1 Tp := Tp + d

2 ∀i ∈ P | Wi == 0
3 Ti = Ti − min

Wj==0

(Tj)

4 blocked(Tp == 0)

p::wait( Ek)
5 Wi := K
6 blocked(Wi == 0)

p::Ek.notify()
7 ∀i ∈ P |Wi ==
k

8 Wi := 0
9 Ti := Tp

Table 5: Encoding of relative time (with integers for events)

Proposition 1 If D denotes the maximal time durationD appearing in await(d:int) instruction, and if the
main invariant min

Wi==0

(Ti) == 0 is satisfied, then∀p ∈ P : 0 ≤ Tp ≤ D.

Indeed:
• Deadline variables are initially zero and thus the initial state satisfies the invariant.
• If the invariant is satisfied, it is maintained by the encoding of p ::Ek.notify() instruction (line 9).
• If the invariant is satisfied, and the instructionp ::wait(d) starts to execute, this first implies that

Wp = 0 and Tp = 0. After line 1, we obtain0 ≤ Tp = d ≤ D, and after line 3, we have
0 ≤ Tp ≤ d′ ≤ d ≤ D for someD′.

4.4 Discussion

Our encoding implements in some way an asynchronous time semantics, as opposed as the synchronous
time semantics of timed automata used in tools like IF [1] or UPPAAL [12], in which clocks evolves
synchronously. Our approach thus does not enable the use of these tools. On the other hand, we hardcode
in our approach the fact that we only need to know the next deadlines, and not all the possible intermediate
values that a synchronous clock would take between the current time and the next deadline.

In particular, it is known that the use ofdiscrete synchronousclocks is a bad idea with finite-state
model-checkers, as they enumerate all the possible successive values of such clocks. But in our case, the
analogous of clocks is our deadline variables, the value of which jumps directly from the current value to
the next deadline to meet, thus avoiding an unnecessary enumeration of the intermediate values. As a result,
multiplying all the durations by a constant factor does not impact the size of the reachable state-space with
our encoding.

Implementing delayed notification on a single event could bedone with the principles we followed in
this section. This would require to add another deadline variable in each process.
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Implementing waiting for conjunction or disjunction of events would require the following modifica-
tions:

• The bounded integer variables0 ≤ Wp ≤ Ne should be replaced byNe Boolean variablesWp,k

with 1 ≤ k ≤ Ne denoting the eventEk, because a processp can know wait for a set of events.
• We should also add a Boolean variable per process to distinguish whether the process is waiting for

a conjunction or a disjunction of events.
To sum up, our approach can easily model such constructs, at the cost of additional finite-state variables.

5 Testing the encoding principles

Although the encoding for SystemC primitives defined above are intuitively correct, we want to verify it.
The ideal solution would be to prove that our encoding is correct in any context, that is, in any program

using it. Such a quantification on programs requires the use aproof-assistantlike Coq [9], which is a very
demanding task. This would require to give a formal semantics to SystemC, which means to C++, as well
as to Promela, and to prove that two programs are equivalent.Since the formalization of SystemC itself
cannot be formally proved, even such approach do not actually prove formally the complete translation
scheme.

The approach we have chosen is to construct a set of properties and to verify them on a set of examples,
in order to check that the encoded models has the same semantics as the original examples and to get
confidence in the correctness of the encoding. We first present these properties and then we describe how
we checked them using SPIN. Generally speaking, it is quite hard to find bugs in concurrent programs;
those verifications were very useful, allowing us to detect bugs in several preliminary versions of our
encoding.

5.1 Invariants with absolute time

1. “The deadline variable of a running or eligible process is always the minimum of all meaningful
deadline variables”This is the main invariant stated in section4.2.

2. “If process i notifies eventEk for which processj is waiting, then Ti ≥ Tj”

In other words, a process notifying the eventEk executes after the processes waiting for it.

3. “When a processp waiting for an event is made eligible by a notifying process (line (7) of Fig.3),
the deadlineTp of the processp does not change until its election as the running process.”

4. “before and after yielding, i waiting ==
∨

j∈P ek
j ” (specific to the Boolean encoding)

5.2 Invariants with relative time

The 3 invariants above reduces to the 3 following invariantswhen considering the encoding based on
relative time in section4.3.

1. “The deadline variable of a running or eligible process is always 0” This is the main invariant
stated in section4.3, which implies proposition1, which implies in turn that “the deadline variable
of a running or eligible process is always the least of all deadline variables”.

2. Because of invariant 1, this reduces to a trivial invariant: “If process i notifies eventEk for which
processj is waiting, then Ti = Tj = 0” This is because processi is the running process, and
processj was running when executingwait(Ek).

3. This invariant is formulated the same way as in section5.1.
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Property Assertions Line number (for assertions)

1 Assertions before and after each yielding point
Booleans:before lines 2 and 4, tab.4
Integers: before lines 2 and 5, tab.3

2 Assertion innotify(event)
Booleans:Before line 7, tab.4
Integers: Before line 6, tab.3

6 Additional variable + assertions in wait(e)
Booleans: Variable after line 8, asser-
tion after line 5, tab.4
Integers: Variable after line 7, asser-
tion after line 4, tab.3

4 Booleans:Assertions before and after yielding
points

Before and after lines 2 and 4, tab.4

Table 6: Using SPIN to verify properties

5.3 Verifying invariants

Verifying the invariant directly on our implementation would require theorem-proving on C++ code using
complex libraries, and is not realistic, although desirable. Instead, we verify the invariants on instances of
the translation, just like certifying compilers [18] verify the result of each compilation.

We verified all invariants on various examples, which allowsincreasing the confidence in the correct-
ness of the encoding.

Table6 sums up how each invariant was verified using SPIN, for the encoding with absolute time.The
verification of the invariants for relative time are a mere derivation of these ones. Mainly, two techniques
were used: direct assertions in the code; and a “monitoring”process, for properties not related to a specific
line number. This process only contains assertions, which can be detected as violated in the automata
product performed by SPIN.

Invariant 3 was checked using additional variables and assertions. Intuitively, with P1 the process
waiting for an evente, P2 the initial running process which notifiesP1, this is why the property cannot
become false:

• With our encoding,P1 is immediately eligible and cannot be notified anymore before being elected.
• For a third processP3 to changeT1 beforeP1 be elected,P3 must be elected afterP2. This implies

T3 ≤ T1. As T1 == Min(Ti), T3 6< T1 and consequently,T3 == T1, even ifP1 could be notified
before being elected, a notification byP3 would setT1 to the same deadline variable.

As the examples we considered are deadlock-free (use of well-known algorithms), we also verified that
the encoding does not introduce deadlocks (for instance, byscheduling processes in the wrong order).

The examples on which we checked these properties are the following. First, we experimented on an
adaptation of the reader/writer problem in which two writers and one reader access a FIFO. Second, we
considered a model of a communication between a Memory, a DMA, a bus and a CPU. Third, we consid-
ered the example used in a previous translation from SystemCto SPIN [22], described in appendixA.1.

6 Experiments and efficiency of our encoding

The aim of the previous section was to formally check that ourencoding effectively reflects SystemC
semantics. However, our motivation for the encoding we propose is to enable better performances of
model-checkers, compared to other encoding approaches described in section3. We now show how our
case study was translated to Promela in order to apply the SPIN model-checker, and then we compare
experimentally the efficiency of our encoding w.r.t. model-checking with the encoding proposed in [22]
applied to the same example.

6.1 A SystemC example

Fig.4 shows our encoding translated to Promela. Our verification chain actually unrolls loops and generates
specialized functions for the different events and processes.

Using SPIN, the use of aTg representing the minimum of allTi (see section4.2) could be accurate as
since this would allow to useTg to verify properties. Although this does not change the complexity of the
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SC_MODULE(MyModule)
{
MyModule *initiator;
sc_event e;

SC_HAS_PROCESS(MyModule);

MyModule(sc_module_name name) {
SC_THREAD(compute);
sensitive << e;
}

void fonct() {
e.notify();
}

void compute() {
wait(e);
initiator->fonct();
}
};

# modules 3 5 7 9 11
time states time states time states time states time states

no bug 0.00 39 0.00 121 0.00 419 0.01 1581 0.08 6199
bug 0.00 32 0.00 74 0.00 188 0.00 590 0.03 2144

# modules 13 15 17 19 21
time states time states time states time states time states

no bug 0.46 24641 2.46 98379 12.26 393301 65.56 1572959 326.08 6291561
bug 0.19 8306 1.04 32900 5.49 131222 28.22 524456 145.36 2097338

Table 7: Experimental results

verifications performed by SPIN, we did not use a globalTg in order to simplify the code.
Fig. 7 in the appendix shows the pseudo-code for the reader/writerexample described above.
Our test model is the one used in [22] and partly detailed in Fig.6.1. It consists of a chain of modules.

The first module triggers an interrupt in the next one. This interrupt notifies an event, allowing the module
to trigger an interrupt in the next module, and so on. The lastmodule contains an assertion which is
either always false (bug) or always true (no-bug). The latter forces SPIN to compute the whole state space
when checking for invalid assertions. While this program mayseem artificial, it exhibits the characteristics
found in more complex real-world models and leading to stateexplosion: many processes, synchronized
by SystemC events, which can thus be lost depending on the execution order of the various statements.
Such study allows to experiment on how the state space that needs to be explored grows depending on
parameters. As this test model is untimed, we test here only the efficiency of the encoding of events.

6.2 Results

The results presented in Fig.5 focuses on the main parameter which is the number of modules.It shows
the number of states computed by SPIN during the model-checking of the example presented above.

Table7 gives a bit more details. The line “no-bug” corresponds to the example described, whereas the
line “bug” shows the number of states computed before findinga counter-example in the case where an
assert(false) has been introduced in the last module.

We mainly observe two things: First, the number of states is growing exponentially, although the
acceleration is not high: there is a factor3 between the number of states computed for 3 modules and 5, a
factor of about4 between results for 15 and 17 modules and also a factor of about 4 between 19 and 21.

Second, those results show a reduction by a factor of about 10compared to previous results presented
in [22]. The comparison between the two approaches, in the case where there is no bug is shown in figure
5. We can see that, with our encoding, SPIN is able to model check up to 21 processes, compared to 15 in
the other approach. In addition, one of our main results is that the encoding presented here have been fully
automated.
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int e[NBTHREADS];
int T[NBTHREADS];
bool end[NBTHREADS];

inline init_coding(i) {
i = 0;
do :: i == NBTHREADS -> break;

:: else ->
e[i] = 0; T[i] = 0; end[i] = false;
i++; od;

}

inline notify(pid, nevent, i) {
i = 0;
do :: i < NBTHREADS && e[i] == nevent ->

e[i]=0; T[i]=T[pid]; i++;
:: i < NBTHREADS && e[i] != nevent ->

i++;
:: i == NBTHREADS -> break; od;

i = 0;
}

inline wait(pid, time) {
T[pid] = T[pid] + time;
((end[0]) || (e[0] != 0) || (T[pid] <= T[0]) &&
(end[1]) || (e[1] != 0) || (T[pid] <= T[1]) &&
(end[2]) || (e[2] != 0) || (T[pid] <= T[2]));

}

inline wait_e(pid, nevent) {
e[pid] = nevent;
e[pid] == 0;

}

Figure 4: Encodings in Promela.Compared to Tab.3, we add theend array to handle the particular case where a
task is completed in thewait(d:int) instruction.

7 Conclusion

We investigated the formalization of models of SoC in the form of asynchronous automata. We proposed
an encoding of synchronization primitives related to events and time using shared variables and sequential
instrumentation of processes. This choice contrasts with other approaches in which parallel instrumentation
is used, under the form of an additional process modeling theSystemC scheduler added to the system. We
ensured the encoding principles are correct by verifying a number of invariants. The given principles are
general and apply to different back-end languages.

We experimented on the SPIN model-checker, showing that ourencoding leads SPIN to explore ten
times less states during model-checking of the encoded model, compared to an encoding based on parallel
instrumentation. This confirms the conjecture we express insection3. In addition, the translation has
been fully automated: our tool reads SystemC code directly,and generates Promela code without human
intervention. This shows that our results are due to our encoding and not to specific optimizations. The
tool can be downloaded freely fromhttp://gitorious.org/pinavm.

We see at least two point to investigate in the future. First we have yet to compare our time management
to other approaches. We intend to compare this solution to approaches based on timed automata and relying
on the UPPAAL [7] tool for model-checking to validate our discussion of section 4.4on the asynchronous
encoding of time in SystemC. A second perspective to evaluate the relevance and the efficiency of static
analysis tools such as CONCURINTERPROC[10] for checking safety properties of timed SystemC models.
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A Examples of incorrect encodings

It is not sufficient to use only one Boolean per event. For instance, let us consider the encoding described
in table8, where several processes are waiting for eventEk:

In this case, if several processes are waiting onEk, only one of them, at most, is unblocked. In-
deed, since the process chosen as running immediately setsek to false, the others remain blocked on the
blocked(ek == true);

A.1 Wrong Encoding of Time and Events with Booleans

This encoding could seem to be correct but is in fact invalid.Figure6 presents an example where this
encoding fails to execute processes in the correct order. Three processes are concurrently executing. The
instructions executed by processes are represented in circles (1A, 1B...) and are separated by SystemC
constructs: waiting or notifying events (wait(e), notify(e), waiting time (wait(20)). The right
hand side of the Fig. details the concurrent execution of thethree processes. The process with least deadline
variable is always chosen, but the encoding leads to the following error:

1. T1 performs a wait(90) ;

2. T2 should be eligible at this point but it is not because2 waiting is still true ;

Verimag Research Report no TR-2010-7 13/15

http://www.systemc.org/
http://www.systemc.org/downloads/standards


Kevin Marquet and Bertrand Jeannet and Matthieu Moy

p::wait(d):
1 Tp := Tp + d

2 blocked(Tp == min
i∈P

i waiting==false

(Ti))

p::wait( Ek):
3 ek

p := true
4 p waiting := true
5 blocked(ek

p == false)
6 p waiting := false

p::Ek.notify():
7 ∀i ∈ P |ek

i == true

8 ek
i := false

9 Ti := Tp

Table 9:Incorrect complete encoding with Booleans
P1 P2 P3

A

B

C

D

13

wait(90)

12

notify(e)

11

wait(30)

E

F

G

2-2

wait(e);

2-1

wait(20);

H

I

J

3-2

wait(80);

3-1

wait(10);

Execution

EA H

EA I

EB I

FB I

FC I

3-1

2-1

1-1

1-2

FC J

GC I

Wrong !

Good !

Clocks

30 20 10

30 20 90

30 20 90

30 20 90

120 20 90

Figure 6: Counter-example for invalid encoding

3. so T3 is chosen as running.

The error here is that when a processi waiting for an event is notified, it becomes eligible while
i waiting is not set to false. Therefore, it can be chosen as running even if its deadline variable is greater
than the deadline variable of a process waiting for time.

A.2 The reader-writer example
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int empty_fifo;
#define MAX 3

#define LOOP_NB_W 10
#define LOOP_NB_R 20

#define TIME0 5
#define TIME1 3
#define TIME2 1

#define NBTHREADS 3

procedure
write_in_fifo(pnumber, time)
{

empty_fifo--;
notify(pnumber, EVENT_WRITE);
wait(pnumber, time);

}

procedure
read_in_fifo(pnumber, time)
{

empty_fifo++;
notify(pnumber, EVENT_READ);
wait(pnumber, time);

}

Thread writer0:
int j, temp;
int pnumber = 0;

for (j = 0; j < NB_LOOP_W; j++) {
while (empty_fifo == 0)
wait_e(pnumber, EVENT_READ);

i = 0;
write_in_fifo(pnumber, TIME0);

}

Thread writer1:
int j, temp;
int pnumber = 1;

for (j = 0; j < NB_LOOP_W; j++) {
while (empty_fifo == 0)
wait_e(pnumber, EVENT_READ);

i = 0;
write_in_fifo(pnumber, TIME1);

}

Thread reader:
int i, j, temp;
int pnumber = 2;

while (j = 0; j < NB_LOOP_R; j++) {
while (empty_fifo == MAX)

wait_e(pnumber, EVENT_WRITE);
i = 0;
read_in_fifo(pnumber, TIME2);

}

Figure 7: Reader/writer example
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