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Abstract

We consider a compositional method for the verification of component-based systems de-
scribed in a subset of the BIP language encompassing multi-party interactions. The method
is based on the use of two kinds of invariants. Component invariants are over-approximations
of components’ reachability sets. Interaction invariantsare constraints on the states of com-
ponents involved in interactions. In this paper we propose fixed point characterization for
computing interaction invariants. We also propose a new technique that takes the incremen-
tal design of the system into account. In many situations, the technique will help to avoid
redoing all the verification process each time an interaction is added in the design. Our two
techniques have been implemented as extension of the D-Finder toolset. The result has been
applied to check deadlock-freedom on several case studies.Our experiments show that our
new methodology is generally much faster than existing ones.
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1 Introduction

Model checking [22, 15, 34] is by now a well-known method for proving properties of programs. The
main reason for its success is that it works fully automatically, i.e. without any manual intervention of
the user. Unfortunately, the method may suffer from the so called state-space explosionproblem, i.e., the
number of states of the system may be too big to be analyzed automatically.

There have been a lot of work on developing new methodologiesto cope with the state-space explosion
problem. Among them, one findspartial order reductiontechniques [27, 35] or symbolic representations
based techniques [23]. Unfortunately, the situation gets even worse when one hasto apply model checking
techniques to the verification of concurrent systems. The problem being that concurrency often requires to
compute the product of the individual systems by using both interleaving and synchronization. In general,
the size of this structure is prohibitive and cannot be handled without manual interventions.

In a series of recent works, it has been advocated thatcompositional verification techniquescould
be used to cope with state explosion in concurrent systems. The idea is to apply divide-and-conquer
approaches to infer global properties of complex systems from properties of their components. Separate
verification of components limits state explosion. Nonetheless, components mutually interact in a system
and their behavior and properties are inter-related. This is a major difficulty in designing compositional
techniques. As explained in [24], compositional rules are in general of the form

B1 < Φ1 >, B2 < Φ2 >, C(Φ1, Φ2, Φ)
B1‖B2 < Φ >

That is, if two components with behaviorsB1, B2 meet individually propertiesΦ1, Φ2 respectively,
then the systemB1‖B2 resulting from the composition ofB1 andB2 will satisfy a global propertyΦ.
C(Φ1, Φ2, Φ) is some condition taking into account the semantics of parallel composition operation and
relating the individual properties with the global property.

One approach to compositional verification is byassume-guaranteewhere properties are decomposed
into two parts. One is an assumption about the global behavior of the system within which a component
is interacting; the other is a property guaranteed by the component when the assumption about its environ-
ment holds. This approach has been extensively studied (seefor example [2, 1, 14, 11, 20, 25, 29, 32]).
Many issues make the application of assume-guarantee rulesdifficult. These are discussed in detail in a
recent paper [16] which provides an evaluation of automated assume-guarantee techniques. The main dif-
ficulties are finding decompositions into sub-systems and choosing adequate assumptions for a particular
decomposition.

In a recent paper [5], Bensalem et al. proposed a new approach for compositionalreasoning. This
approach is based on the following rule:

{Bi < Φi >}i, Ψ ∈ II(‖γ{Bi}i, {Φi}i), (
∧

i Φi) ∧ Ψ ⇒ Φ
‖γ{Bi}i < Φ >

The rule allows to prove invariance ofΦ for systems obtained by using a n-ary composition operation
parameterized by a set of interactionsγ. It uses global invariants which are the conjunction of individ-
ual invariants of componentsΦi and an interaction invariantΨ. The latter expresses constraints on the
global state space induced by interactions between components. It can be computed automatically from
abstractions of the system to be verified. These are the composition of finite state abstractionsBα

i of the
componentsBi with respect to their invariantsΦi. The approach has been implemented in the D-Finder
toolset [6] and applied to check deadlock-freedom on several case studies. The results of these experiments
show that D-Finder is exponentially faster than well-established tools such as NuSMV [13].

The methods in [5], which can be implemented in a symbolic manner, requires tohandle complex
formulas that represent both the behaviors of components and the interactions between components. More-
over, it does not allow to reuse existing verification results when one adds new interactions in the design.
This is problematic as components are generally developed by independent teams, which call for successive
verifications until the whole design (all the interactions)has been built.

In this paper, we go one step further and propose a fixed point characterization for interaction invariants.
The technique starts by computing successors for each component location and, at each iteration, constrains
the result by using existing interactions and the partiallycomputed information for other locations. The
resulting formula represents exactly the same interactioninvariant than the one produced by the method in
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[5]. However, it is generally smaller and easier to handle thanthe one obtained with the method in [5] that
directly mixes all the invariants with all the interactions.

Incremental system design methodologies often work by adding new interactions to existing sets of
components. Each time an interaction is added, one may be interested to verify whether the resulting
system satisfies some given property. Indeed, it is important to report an error as soon as it appears.
However, each verification step may be time consuming, whichmeans that intermediary verification steps
are generally avoided. The situation could be improved if the result of the verification process could be
reused when new interactions are added. Unfortunately, existing techniques do not focus on such aspects.
In this paper, we propose a solution to this problem, which takes the form of a new technique that takes the
incremental design of the system into account. In many situations, the technique will help to avoid redoing
all the verification process each time an interaction is added in the design. Our solution is developed for
the fixed point formula, but the principle could be generalized to other techniques.

Our two techniques have been implemented as extensions of the D-Finder toolset. The result has been
applied to check deadlock-freedom on several case studies.Our experiments show that our new method-
ology is generally much faster than the one proposed in [5]. In particular, we have been capable to verify
deadlock-freedom of Utopar, an automated transportation system developed by one of our industrial part-
ners within the COMBEST European project. This case study isbeyond the scope of existing verification
techniques for checking deadlock-freedom. We have also identified case studies for which our technique is
less efficient than the one in [5].

The methods presented in this paper and in [5] are fairly simple, but they allow to verify deadlock-
freedom for concurrent systems that are beyond the scope of most existing techniques. The Utopar case
study has long been a challenge for algorithmic approaches developed by our partners in COMBEST and
was handled without any specific tailoring of our fairly simple approach. What is really exciting about this
direction of work is that so much could be achieved with so little.

Structure of the paper. In Section2, we recap the concepts that will be used through the rest of the
paper. Section3 presents a fixed point extension of the technique presented in [5], while Section4 presents
the incremental version. Experimental results are discussed in Section5. Finally, Section6 concludes the
paper.

2 Preliminaries

In this section, we recap concepts that will be used through the rest of the paper. We start with the
concepts ofcomponentsandparallel composition of components. Then we discusssystemsandinvariants.

2.1 Components and Parallel Composition

In the paper, we will be working with a simplified model for component-based design, which is used
in the Behavior-Interaction-Priority(BIP) component framework developed at Verimag [19, 30]. This
framework has been implemented in a language and a toolset called BIP [4]. The BIP language offers
primitives and constructs for modelling and composing components starting from atomic components.

Roughly speaking, an atomic component is nothing more than atransition system whose transitions’
labels are calledports. These ports are used to synchronize with other components.Formally, we have the
following definition.

Definition 1 (Atomic Component). An atomic component is a transition systemB = (L, P, T ), where:

• L = {l1, l2, . . . , lk} is a set of locations,

• P is a set of ports, and

• T ⊆ L × P × L is a set of transitions.

Givenτ = (l, p, l′) ∈ T , l andl′ are thesourceanddestinationlocations, respectively. In the rest of
the paper, we use•τ andτ• to compute the source and destination ofτ , respectively.
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Figure 1: A simple example

Example 1. Figure1 presents two atomic components. The ports of componentB1 arep1 andq1. B1 has
two locations:l1 andl2 and two transitions:τ1 = (l1, p1, l2) andτ2 = (l2, q1, l1).

We are now ready to define parallel composition between atomic components. In the incremental
design setting, the parallel composition operation allowsto build bigger components starting fromatomic
components. Any composition operation requires to define a communication mode between components.
In our context, components communicate viainteractions, i.e., by synchronization on ports. Formally, we
have the following definition.

Definition 2 (Interactions). Given a set ofn componentsB1, B2, . . . , Bn with Bi = (Li, Pi, Ti), an
interactiona is a set of ports, i.e., a subset of

⋃n
i=1 Pi, such that∀i = 1, . . . , n. |a ∩ Pi| ≤ 1.

By definition, each interaction has at most one port per component. In the figures, we will represent
interactions by link between ports. As an example, the set{p1, p2} is an interaction between Components
B1 andB2 of Figure1. This interaction describes a synchronization between ComponentsB1 andB2 by
Portsp1 andp2. Another interaction is given by the set{q1, q2}. The idea being that a parallel composition
is entirely defined by a set of interactions, which we call aconnector. As an example the connector forB1

andB2 is the set{{p1, p2}, {q1, q2}}.
In the rest of the paper, we simplify the notations and writep1p2 . . . pk instead of{p1, . . . , pk}.

We also writea1 + . . . + am for the connector{a1, . . . , am}. As an example, notation for the connector
{{p1, p2}, {q1, q2}} is p1 p2 + q1 q2.

We now propose our definition for parallel composition.

Definition 3 (Parallel Composition). Givenn atomic componentsBi = (Li, Pi, Ti) and a connectorγ,
we define the parallel compositionB = γ(B1, . . . , Bn) as the transition system(L, γ, T ), where:

• L = L1 × L2 × . . . × Ln is the set ofglobal locations,

• γ is a set of interactions, and

• T ⊆ L×γ×L contains all transitionsτ = ((l1, . . . , ln), a, (l′1, . . . , l
′
n)) obtained by synchronization

of sets of transitions{τi = (li, pi, l
′
i) ∈ Ti}i∈I such that{pi}i∈I = a ∈ γ andl′j = lj if j 6∈ I.

The idea is that components communicate by synchronizationwith respect to interactions. Given an in-
teractiona, only those components that are involved ina can make a step. This is done by following a
transition labelled by the corresponding port involved ina. If a component does not participate to the
interaction, then it has to remain in the same state. In the rest of the paper, a component that is obtained
by composing several components will be called acomposite component. Observe also that the parallel
compositionγ(B1, . . . , Bn) of B1, . . . , Bn can be seen as a1-safe Petri netwhose set of places is given
by L =

⋃n
i=1 Li and whose transitions relation is given byT . In the rest of the paper,L will be called the

set of locations ofB, whileL is the set ofglobal locations.

2.2 Systems and Invariants

We now define the concept of invariants, which can be used to verify properties of (parallel composition
of) components. We first propose the definition ofsystemthat is a component with an initial set of states.
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Definition 4 (System). A systemS is a pair〈B, Init〉 whereB is a component andInit is a state predicate
characterizing the initial states ofB.

Consider the example given in Figure1. If we assume thatInit = l1 ∧ l3, then we obtain a composite
componentγ(B1, B2), whereγ = p1 p2 + q1 q2.
In a similar way, we distinguish invariants of a component from those of a system. Therefore we define
invariants for a component and for a system separately.

Definition 5 (Invariants). Given a componentB = (L, P, T ), a predicateI on L is an invariant ofB,
denoted byinv(B, I), if for any locationl ∈ L and any portp ∈ P , I(l) and l

p
−→ l′ ∈ T imply I(l′),

whereI(l) means thatl satisfiesI.
For a systemS = 〈B, Init〉, I is an invariant ofS, denoted byinv(S, I), if it is an invariant ofB and if
Init ⇒ I.

Clearly, if I1, I2 are invariants ofB (respectivelyS) thenI1 ∧ I2 andI1 ∨ I2 are also invariants ofB
(respectivelyS).

Let γ(B1, . . . , Bn) be the composition ofn components withBi = (Li, Pi, Ti) for i ∈ 1 . . . n. In the
paper, an invariant onBi is called acomponent invariantand an invariant onγ(B1, . . . , Bn) is called an
interaction invariant. To simplify the notations, we will assume that interactioninvariants are predicates
on

⋃n
i=1 Li.

3 Interaction Invariant Computation

A compositional verification method for safety properties of component-based systems is proposed in
[5]. The method is based on the following rule:

{Bi〈Φi〉}n
i , Ψ ∈ II(γ(B1, . . . , Bn), {Φi}n

i ),
(
∧n

i Φi) ∧ Ψ ⇒ Φ
γ(B1, . . . , Bn) < Φ >

This rule allows to prove invariance of a predicateΦ for a systemγ(B1, . . . , Bn) obtained by using
a n-ary parallel composition operation parameterized by a setof interactionsγ on a set of components
{Bi}n

i=1. Bi〈Φi〉 means thatΦi is the component invariant forBi. Ψ belongs to the setII of interaction
invariantsII of γ(B1, . . . , Bn) computed automatically fromΦi andγ(B1, . . . , Bn). The invariance ofΦ
is verified by checking tautology(

∧n
i Φi) ∧ Ψ ⇒ Φ.

In the same paper, two methods are provided for computing component invariants and interaction in-
variants:

1. Component invariants are over-approximations of the setof the reachable states of atomic compo-
nents and are generated by simple forward propagation techniques. The iteration of the forward
propagation allows to compute sequences of increasingly stronger component invariants. A key
issue is efficient computation of such invariants as the precise symbolic computation of reachable
states requires quantifier elimination. An alternative to quantifier elimination is to compute over-
approximations based on syntactic analysis of the predicates occuring in guards and actions. In
this case, the obtained invariants may not be inductive. Different strategies are used to derive lo-
cal assertions, that is, predicates attached to control locations and which are satisfied whenever the
computation reaches the corresponding control location. Amore detailed presentation, as well as the
techniques for generating component invariants are given in [7, 5, 6].

2. Interaction invariants express global synchronizationconstraints between atomic components. The
method, which is called Implication-based (IMP ), computes interaction invariants by solving logical
equations that come from implications for the conditions ofinteractions. Their computation consists
of the following steps. 1) For given component invariantsΦi of the atomic componentsBi, we
compute finite-state abstractionsBαi

i of Bi whereαi is the abstraction induced by the elementary
predicates occuring inΦi. This step is necessary only for componentsBi which are infinite-state.
2) The systemγ(Bα1

1 , · · · , Bαn
n ) which is an abstraction ofγ(B1, · · · , Bn), can be considered as a

1-safe Petri net. The set of the traps of the Petri net defines aglobal invariant which we can compute
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in a symbolic manner. 3) The concretization of this invariant gives an interaction invariant of the
initial system.

In this section, we propose a new symbolic technique to compute interaction invariants for a composite
component. We will first propose a Boolean equation system that links internal behaviors of each compo-
nent that participate to the composition with the global behavior induced by the connector. Then, we will
use this system of equations to derive a fixed point characterization of interaction invariants. Finally, we
will also propose a heuristic to improve computation performances.

3.1 Boolean Behavioral Constraints

We start with the following definition (taken from [5]) that for a given locationl computes the sets of
component transitions involved in some interaction ofγ in which transitionτi issued froml can participate.

Definition 6 (Forward Interaction Set). Given a set of interactionsγ over B = (B1, . . . , Bn), where
Bi = (Li, Pi, Ti) are transition systems, we define for a locationl ∈ Li its forward interaction set fromγ
by l•γ =

{
{τi}i∈I | ∀i.τi ∈ Ti ∧ ∃i.•τi = l ∧ {port(τi)}i∈I ∈ γ

}
.

When it is clear from the context, we writel• instead ofl•γ . As an example, consider the components given
in Figure1. Givenγ = p1 p2 + q1 q2, we havel•1 = {{τ1, τ3}}, l•2 = {{τ2, τ4}}, l•3 = {{τ1, τ3}} and
l•4 = {{τ2, τ4}} .

In the rest of the paper, locations of components will be viewed as Boolean variables. We can thus use
Bool[L] to denote the free Boolean algebra generated by the set of locationsL. We also extend the notation
•τ , τ• to interactions, that is•a = {•τ | port(τ) ∈ a}, anda• = {τ•| port(τ) ∈ a}. For connectors, we
haveγ, •γ =

⋃
a∈γ

•a.

Definition 7 (Boolean Behavioral Constraints (BBCs)). Letγ be a connector over a tuple of components
B = (B1, · · · , Bn) with Bi = (Li, Pi, Ti) andL =

⋃n
i=1 Li. The boolean behavioral constraints for

everyl ∈ L in γ(B), can be defined byl ⇒ σl, whereσl is a functionl → Bool[L] such that:

σl =

{ ∧
{τi}i∈I∈l•

∨
l′∈{τ•

i
}i∈I

l′ l• 6= ∅

true l• = ∅
(1)

Roughly speaking,σl describes the constraints added by the synchronization over l. For the example
given in Figure1, the corresponding constraints of all the locations are as follows:

l1 ⇒ l2 ∨ l4, l3 ⇒ l2 ∨ l4
l2 ⇒ l1 ∨ l3, l4 ⇒ l1 ∨ l3

The logical formulal1 ⇒ l2 ∨ l4 ensures that only locationsl2 or l4 are reachable by following the
interactionp1 p2.

Notice that boolean behavioral constraintl ⇒ σl can be written into equationl = l ∧ σl, which is
called BBC-equation. Equationl = l ∧ σl can be viewed as an image function from a local location tol

and a set of reachable locations contained inσl. Those “image” locations can be reached by following the
interactions given inγ. To simplify the notations, we often useσi instead ofσli .

3.2 Location-based Fixed Point Computation for Interaction Invariants

We now compute interaction invariants by using BBC-equations. The intuition is as follows. Iflj is in
σi, andlj ∧ σj is the sets of set of reachable locations through the interactions fromlj , then we can apply
lj ∧σj to li = li∧σi, and obtain an equation that represents the locations that can be reached fromli via lj .
If we repeat the same operation to all the locations until no more reachable location are added, then the right
side of the obtained equation for a given location represents the set of sets of reachable locations started
from this location. In this subsection, we present a method to compute the solutions for BBC-equations
and the way to obtain interaction invariants from these solutions.

We now formalize the above process. Since we want to derive a fixed point characterization, we first
have to define a preorder on sets of sets of locations. We propose the following definition.

Definition 8. Given a set of locationsL, we define a preorder⊑⊆ 22L

× 22L

. Given two sets ofS1, S2

over22L

, S1 ⊑ S2 if for anym2 ∈ S2, there existsm1 ∈ S1 such thatm1 ⊆ m2.
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Then we can apply functionImage : 22L

× 22L

→ 22L

over a setF = {f(l)}l∈L to compute the set
of sets of locations iteratively, where

Image(S1, F ) =
∨

m∈S1

∧

l∈m

f(l)

We are now ready to define our set of fixed point equations. We will work with vectors of solutions.
We consider a vectorL indexed by the locations inL. We useL0 to denote the initialization of the vector.
Roughly speaking, we update the reachable locations from a location by replacing every locationl in σ by
its intermediate solutions. Within every iteration, we useL

k(li) to replace every locationli in σl to obtain
the reachable locations from everyl ∈ L throughli. ThenL

k becomes a vector of reachable locations,
in which every item is the set of sets of reachable locations from its index location. When the iteration
stops,Lk is a vector containing all the reachable locations from every location. The reachable locations are
calculated by considering all the interactions from a location. Since the method is based on the least fixed
point computation of locations, we call it Location-based Fixed Point (LFP ).

Definition 9 (Location-based Fixed Point Equation). Given a composite componentγ(B) with a set of
locationsL, we define a location-based iteration process over a vectorL of l ∈ L, which starts from
L

0(l) = l and such that
L

k+1(l) = L
k(l) ∧ Image(σl, L

k) (2)
The iteration terminates whenLk+1 = L

k. In such case,Lk corresponds to the set of solutions for the
BBC-equations ofγ(B).

Proposition 1. Consider a composite componentγ(B) with a set of locationsL. LetL be a vector over
L, andσl be the BBC forl ∈ L in γ(B), we haveLk+1(l) = l ∧ Image(σl, L

k).

Proof 1. SinceL
k(l) ⊑ L

k(l) ∧ Image(σl, L
k), we haveLk(l) ⊑ L

k+1(l). The proof is by induction
on k. First, we haveL0(l) = l. Suppose thatLk(l) = l∧ Image(σl, L

k−1). ThenL
k+1(l) = L

k(l) ∧
Image(σl, L

k) = l∧Image(σl, L
k−1)∧Image(σl, L

k). SinceLk−1 ⊑ L
k, we haveImage(σl, L

k−1)∧
Image(σl, L

k) = Image(σl, L
k). ThereforeLk+1(l) = l ∧ Image(σl, L

k).

This proposition shows that the iteration forL can be focused onImage(σ, L) instead ofL∧Image(σ, L),
which can improve the efficiency of the computation.

Proposition 2. Let γ be a connector overB with a set of locationsL. If L
k is the set of solutions for

BBC-equations ofγ(B), then for eachl ∈ L such thatLk(l) =
∨

i∈I mi, mi gives a minimal set of
reachable locations through a sequence of interactions ofγ via locationl, wheremi is a monomial with
the conjunction of locations.

Proof 2. First, observe thatmi is a set of reachable locations fromli. The reason is thatmi contains
at least one monomial inσi, which enumerates one reachable location for every interaction from li. If σi

contains somelj , thenmi also contains those locations inσj . Somi is a set of reachable locations fromli.
Suppose now thatmj andmk are solutions ofLk(l) for l ∈ L by Definition9 such thatmk ⊂ mj ,

meaning thatmj goes through more locations thanmk. Becausemk ∨ mj = mk. Therefore,mj does not
exist when the iteration stops, andmk is a minimal set of reachable locations.

We now introduce a new notatioñm for the dual ofm, which is used to compute invariants from
solutions. The following theorem shows that the fixed point solution for the BBC-equations characterizes
an interaction invariant.

Theorem 1. Let γ be a connector over a set of componentsB = (B1, . . . , Bn), with Bi = (Li, Pi, Ti)
andL =

⋃n
i=1 Li. If L

k is the set of solutions for BBC-equations ofγ(B), then for eachl ∈ L such that

L
k(l) =

∨
i∈I mi, L̃

k(l) =
∧

i∈I m̃i is an invariant and
∧

l∈L L̃
k(l) is an invariant ofγ(B).

Proof 3. Consider anm in L
k(l), according to Proposition2, m gives a minimal set of reachable locations

through interactions ofγ via l. Assume that for some global statel = (l1, · · · , ln), we haveli belongs to
m, thenm̃ is true. If fromli there exists an interactiona ∈ γ such thatli ∈ •a, then there existsl′j ∈ a•

with (lj , pj, l
′
j) andpj ∈ a , such thatl′j belongs tom andm̃ is still true. So any successor state ofl by an

interactiona satisfiesm̃ andm̃ is an invariant ofγ(B).
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Figure 2: Iteration step
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Figure 3: Traditional fixed point computation

Since the conjunction of invariants is still an invariant,L̃
k(l) =

∧
i∈I m̃i is an invariant ofγ(B), and∧

l∈L L̃
k(l) is also an invariant ofγ(B).

This theorem allows us to compute the global interaction invariants ofγ(B), which is the conjunction of
the invariants obtained by the dual of every solution. In Example2, we have computed the set of solutions
for every location. The union of solutions isl1 ∧ l2 ∨ l1 ∧ l4 ∨ l2 ∧ l3 ∨ l3 ∧ l4. So the interaction invariant
is given by(l1 ∨ l2) ∧ (l1 ∨ l4) ∧ (l2 ∨ l3) ∧ (l3 ∨ l4).

We conclude the subsection with an example that illustratesour approach.

Example 2 (LFP computation). Consider the components in Figure1. Consider also the following
connectorγ = p1 p2 + q1 q2. The BBC-equations for the locations of each components are:

l1 = l1 ∧ (l2 ∨ l4), l2 = l2 ∧ (l1 ∨ l3)
l3 = l3 ∧ (l2 ∨ l4), l4 = l4 ∧ (l1 ∨ l3)

The successive solutions for each iteration of the fixed point are represented in Figure2. In this figure,
the outgoing arcs from a node correspond to the literals of the disjunction. Conjunction of all the literals
corresponding to the arcs at the path from the root of the treeto a node is associated with the node. As
example, in Figure2 (b), the first tree can be written asl1 ∧ l2 ∨ l1 ∧ l4.

The initialization ofL0 is shown in Figure2 (a). After the first iteration, we obtain the solutions shown
in Figure2 (b). In the second iteration, we applyL

1 to replace the corresponding location inσi as follows:

L
2(l1) = l1 ∧ (l2 ∧ (l1 ∨ l3) ∨ l4 ∧ (l1 ∨ l3)) = l1 ∧ l2 ∨ l1 ∧ l4

L
2(l2) = l2 ∧ (l1 ∧ (l2 ∨ l4) ∨ l3 ∧ (l2 ∨ l4)) = l1 ∧ l2 ∨ l2 ∧ l3

L
2(l3) = l3 ∧ (l2 ∧ (l1 ∨ l3) ∨ l4 ∧ (l1 ∨ l3)) = l2 ∧ l3 ∨ l3 ∧ l4

L
2(l4) = l4 ∧ (l1 ∧ (l2 ∨ l4) ∨ l3 ∧ (l2 ∨ l4)) = l3 ∧ l4 ∨ l1 ∧ l4

SinceL
2 = L

1, the iteration stops, and the solutions are shown in Figure2 (b).
Observe that the result of the above fixed point computation differs from the set of reachable states of

the composite component. Letl1 and l3 respectively be the initial locations inB1 andB2, Figure3 shows
another invariant that is the set of reachable global statesof the composition. This set is more accurate than
our computation, but this precision has a cost when working with complex systems. It takes interaction as
a global transition and computes exactly the destination locations from each source location in the global
state that participates the synchronization. However, in our method, what we need is only one location that
can be reached by an interaction.

3.3 Implementation onLFP Computation

The method presented in the above subsection requires to compute the fixed point for each location
of each component that participates to the composition. However different locations may have the same
solutions. Being able to identify such locations would improve the efficiency of the computation.
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In fact, we observe that two locations that are reachable from each other by an interaction do have the
same solution. Unfortunately, by using the computation above, the solution is computed twice. A way
to this problem is instead to compute the solutions for everylocation separately, we can put the locations
together and compute fixed point induced by BBC-equations defined in the following definition.

Definition 10. Given a composite componentγ(B) with a set of locationsL, assume also∆, a vector of
BBC-equations for alll ∈ L with ∆(l) = l ∧ σl. We define an iteration process by

L
0 =

∨
l∈L l

L
k+1 = Image(Lk, ∆)

(3)

WhenL
k+1 = L

k, the iteration stops and we obtain the set of solutions for the BBC-equations ofγ(B).

Obviously, we haveLk ⊑ L
k+1. Therefore, though we obtain different solutions from different loca-

tions, we can always obtain the minimal solutions by using Definition 10.

Proposition 3. The set of solutions obtained from Definition9 and10are always the same.

Proof 4. Both definitions give the solution computation from the sameset of locations, based on the same
set of BBC-equations, which makes the same set of solutions.

Example 3. Consider again the example given in Figure1, withγ = p1 p2+q1 q2. After the first iteration,
we haveL0 = l1 ∨ l2 ∨ l3 ∨ l4, and∆ is given by

∆(l1) = l1 ∧ (l2 ∨ l4), ∆(l2) = l2 ∧ (l1 ∨ l3)
∆(l3) = l3 ∧ (l2 ∨ l4), ∆(l4) = l4 ∧ (l1 ∨ l3)

By Definition10, L
1 = Image(L0, ∆) = l1 ∧ l2 ∨ l1 ∧ l4 ∨ l2 ∧ l3 ∨ l3 ∧ l4. SinceL2 = L

1, the iteration
stops and, according to our definition,L

1 is the set of solutions for the BBC-equations ofγ(B).

4 Incremental Component-based System Construction and Compu-
tation of Interaction Invariants

In component-based design, the construction of a compositecomponent is both step-wise and hierar-
chical. This means that a system is obtained from a set of atomic components by successive additions of
new interactions, also calledincrements. In this section, we propose a methodology that allows to addnew
interactions to a composite component without breaking existing synchronization. We also show how to
reuse intermediary results to increase efficiency.

4.1 Incremental Construction of Component-based Systems

In component-based design, new increments are progressively added during the step-wise construction
process. It is important that these new increments do not break the synchronizations that are assumed by
interactions before the addition takes place. Our first stepis thus to define a notion of forbidden interactions.
Formally, we propose the following definition.

Definition 11 (Closure and Forbidden Interactions). Letγ be a connector.

• The closureγc of γ, is the set of the non empty interactions contained in some interaction ofγ. That
is γc = {a 6= ∅ | ∃b ∈ γ. a ⊆ b}.

• The forbidden interactionsγf of γ is the set of interactions that are strictly contained in allthe
interactions ofγ. That isγf = γc − γ.

It is easy to see that for two connectorsγ1 andγ2, we have(γ1 + γ2)
c = γc

1 + γc
2 and(γ1 + γ2)

f =
(γ1 + γ2)

c − γ1 − γ2.
In our theory, a connector describes a set of interactions and, by default, also those single component

interactions in where only one component can make progress.This assumption allows us to define new
increments in terms of existing interactions. We propose the following definition.
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Definition 12 (Increments). Consider a connectorγ over a composite componentB and letδ ⊆ 2γ be
a set of interactions. We sayδ is an increment overγ if for any interactiona ∈ δ we have interactions
b1, . . . , bn ∈ γ such that

⋃n
i=1 bi = a.

In the above definition, fusion of existing interactions into new interactions can produce a new incre-
ment.

In practice, one has to make sure that existing interactionsdefined byγ will not break the synchroniza-
tions that are enforced by the incrementδ. For doing so, we remove from the original connectorγ all the
interactions that are forbidden byδ. This is done with the operation ofLayering, which describes how an
increment can be added to an existing set of interactions without breaking synchronization enforced by the
increment. Formally, we have the following definition.

Definition 13 (Layering). Given a connectorγ and an incrementδ over γ, the new set of interactions
obtained by combiningδ andγ, also called layering, is given by the following setδγ = (γ − δf ) + δ the
incremental construction by layering, that is, the incremental modification ofγ byδ.

The above definition describes one-layer incremental construction. By successive applications of the
rule, we can construct a system with multiple layers. Besides the fusion of interactions, incremental con-
struction can also be obtained by first combining the increments and then apply the result to the existing
system. This process is calledSuperposition. Formally, we have the following definition.

Definition 14 (Superposition). Given two incrementsδ1, δ2 over a connectorγ, the operation of superpo-
sition betweenδ1 andδ2 is defined byδ1 + δ2.

Superposition can be seen as a composition between increments, with looser coupled relation. If we
combine the superposition of increments with the layering proposed in Definition13, then we obtain an
incremental construction from a set of increments. Formally, we have the following proposition.

Proposition 4. Let γ be a connector overB, the incremental construction by the superposition ofn

increments{δi}1≤i≤n is given by

(

n∑

i=1

δi)γ = (γ − (

n∑

i=1

δi)
f ) +

n∑

i=1

δi (4)

The above proposition provides a way to transform incremental construction by a set of increments into
the separate constituents, whereγ − (Σn

i=1δi)
f is the set of interactions that are not tightened during the

incremental construction process.
We conclude the subsection with the following example.

Example 4 (Incremental construction). Consider again the components given in Figure1 and letγ =
p1 + p2 + q1 + q2 be a connector. Letδ1 = p1 p2 and δ2 = q1 q2 be two increments overγ. Since
γ − (δ1 + δ2)

f = ∅, we have(δ1 + δ2)γ = p1 p2 + q1 q2.

4.2 Incremental Computation of Interaction Invariants

We now study the modification in the BBC-equations that are needed to take increments added to the
original design into consideration. Our first objective consists in extending the BBC-equations of each
location. We will assume that the BBC-equations for each increment have already been computed and we
will show how to obtain the BBC-equations for the original connector plus the increments. Given a series
of increments{δi}1≤i≤n and a locationl, σil denotes the BBC for the locationl with respect to Increment
δi. We useσ0l to denote the BBC with respect toγ − (Σn

i=1δi)
f .

Proposition 5. Consider a composite componentB with a set of locationsL. Letγ be a connector over
B and let{δi}1≤i≤n be a set of increments overγ. Assume thatδ0 = γ − (Σn

i=1δi)
f , and letl = l∧ σil be

the BBC-equation ofl in δi(B) for 0 ≤ i ≤ n. The BBC-equations for(Σn
i=1δi)γ(B) are of the following

form:

l = l ∧
n∧

i=0

σil (5)
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Figure 4: Example for incremental invariant computation

Proof 5. For any l ∈ L, let l•δi
be the forward interaction set ofl underδi, we havel•(δi+δj)

= l•δi
∪ l•δj

for anyδi andδj . And its BBC isσil ∧ σjl. Therefore the BBC-equations of(Σn
i=1δi)γ(B) are of the form

l = l ∧
∧n

i=0 σil.

The above proposition states that BBC-equations of locations for a superposition of increments can be ob-
tained by taking the conjunction of the corresponding equation for each increment. By inspecting Equation
5, one can observe that if a location is involved in more than one increment, then the number of forward
interaction sets for that location will increase, which is caused by sharing a same port or more than one
outgoing transition.

We now introduce the incremental computation of solutions that computes the invariant for a composite
component and a set of increments. The method, which is called Incremental Location-based Fixed Point
(ILFP ) assumes that an invariant has already been computed for a set of interactions. This information is
exploited to improve the efficiency. The idea is as follows. According to Equation4, the superposition of
a set of increments{δi}1≤i≤n over a connectorγ can be regarded as separately applying increments over
theirs constituents. The incremental computation of solutions is based on the solutions of these increments
over their constituentsδi(B) and the solutions from the BBC-equations for(γ − (Σn

i=1δi)
f )(B). We

suggest the following proposition.

Proposition 6(IncrementalLFP Computation). Consider a composite componentB and a set of locations
L. Letγ be a connector forB and assume a set of increments{δi}1≤i≤n overγ(B). Letδ0 = γ−(Σn

i=1δi)
f

andLi be the solutions of BBC-equations ofδi(B) with respect to
∨

l∈•δi
l, where0 ≤ i ≤ n. The solutions

for the BBC-equations of(Σn
i=1δi)γ(B) can be computed with the following equation.

L
0 =

∨n
i=0 Li ∨

∨
l∈L−

S

n
i=0

•δi
l

L
k+1 = Image(Lk, ∆)

(6)

where∆ is the vector of BBC-equations for(Σn
i=1δi)γ(B).

Proof 6. The idea behind the proof is to show that we can get the same setof solutions by using Equation
6 or Equation3. AsImage distributes over disjunction, we haveImage(L0, ∆) =

∨n
i=0 Image(Li, ∆)∨

Image(
∨

l∈L−
S

n
i=0

•δi
l, ∆). Then, since

∨
l∈L l ⊑ Li, and∆(l) is monotonic, we have that

∨
l∈L l and∨n

i=0 Li ∨
∨

l∈L−
S

n
i=0

•δi
l have the same least fixed points over∆.

Proposition6 shows that the invariants computed for the increments (theδi) can be reused in other com-
putation where more increments are added. Hence this invariant can be maintained for further incremental
constructions and verifications, which should improve the efficiency of the verification process. Observe
that in the case thatl 6∈ •γ, no outgoing interaction froml will be considered, and it can be regarded as a
deadlock location inγ(B). As it will not in •δi either, we need to add such locations when we compute the
global solutions.

We conclude the section with an example.

Example 5 (IncrementalLFP computation). Consider the components given in Figure4 and letγ =
p1 + p2 + q1 + q2 + r1 + r2. Consider also two incrementsδ1 = p1 p2 + r1 r2 andδ2 = q1 q2 that are
defined overγ. Sinceγ − (δ1 + δ2)

f = ∅, we haveδ0 = ∅. The vector of BBC-equations∆1 for δ1(B) can
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thus be defined as follows:
∆1(l1) = l1 ∧ l2 ∨ l1 ∧ l5, ∆1(l4) = l1 ∧ l4 ∨ l4 ∧ l5
∆1(l2) = l2, ∆1(l5) = l5
∆1(l3) = l1 ∧ l3 ∨ l3 ∧ l4, ∆1(l6) = l1 ∧ l6 ∨ l4 ∧ l6

The vector of BBC-equations∆2 for δ2(B) is as follows.
∆2(l1) = l1, ∆2(l4) = l4
∆2(l2) = l2 ∧ l3 ∨ l2 ∧ l6, ∆2(l5) = l5 ∧ l6 ∨ l3 ∧ l5
∆2(l3) = l3, ∆2(l6) = l6

The set of solutions for BBC-equations are
δ1(B) : L1 = l1 ∧ l2 ∨ l1 ∧ l5 ∨ l4 ∧ l5 ∨ l2 ∧ l4
δ2(B) : L2 = l2 ∧ l3 ∨ l2 ∧ l6 ∨ l5 ∧ l6 ∨ l3 ∧ l5

For (δ1 + δ2)γ(B), we haveL = •δ1 ∪ •δ2, so
L

0 = L1 ∨ L2 = l1 ∧ l2 ∨ l1 ∧ l5 ∨ l4 ∧ l5 ∨ l2 ∧ l4 ∨ l2 ∧ l3 ∨ l2 ∧ l6 ∨ l5 ∧ l6 ∨ l3 ∧ l5
Applying∆ for (δ1 + δ2)γ(B) into L

0 byImage function, we obtain that
L

1 = Image(L0, ∆) = l1 ∧ l2 ∧ l3 ∨ l1 ∧ l2 ∧ l6 ∨ l1 ∧ l5 ∧ l6 ∨ l1 ∧ l3 ∧ l5 ∨ l2 ∧ l3 ∧ l4
∨l2 ∧ l4 ∧ l6 ∨ l4 ∧ l5 ∧ l6 ∨ l3 ∧ l4 ∧ l5

ThenL
2 = L

1, soL
1 are the solutions for the BBC-equations of(δ1 + δ2)γ(B).

5 Experiments

We have implemented both theLFP method (Section3) and its incrementalILFP version (Section4)
in theD-Finder toolset[6].

In this section, we start with a brief introduction to the theD-Finder tool and explain what are the
modifications that have. Then we show the experimental results obtained by implementing the methods
discussed in this paper.

5.1 D-Finder Structure

The D-Finder tool implements a compositional methodology for the verification of component-based
systems described in the BIP language [8]. The tool provides three symbolic-representations-based meth-
ods for computing interaction invariants, namely theILFP and theLFP methods presented in this paper
as well as theIMP method presented in [5] and discussed in the beginning of Section3. D-Finder relies
on the CUDD package [31] and represents sets of locations by BDDs. D-Finder also proposes techniques
to compute component invariants. Those techniques, which are described in [5], relies on the Yices [18]
and Omega [33] toolsets for the cases in where a component can manipulate data. A general overview of
the structure of the tool is given in Figure5.

D-Finder is mainly used to check safety properties of composite components. In this paper, we will be
concerned with the verification of deadlock properites. We let DIS be the set of global states in where a
deadlock can occur. The tool will progressively find and eliminate potential deadlocks as follows. D-Finder
starts with an input a BIP model and computes component invariantsCI by using the technique1 outlined
in [5]. From the generated component invariants, it computes an abstraction of the BIP model and the
corresponding interaction invariantsII. Then, it checks satisfiability of the conjunctionII ∧CI ∧DIS. If
the conjunction is unsatisfiable, then there is no deadlock else either it generates stronger component and
interaction invariants or it tries to confirm the detected deadlocks by using reachability analysis techniques2.

5.2 Experimental Results

We have compared the three methods (ILFP , LFP andIMP ) on several case studies. All our experi-
ments have been conducted with a 2.4GHz Duo CPU Mac laptop with 2GB of RAM.

1For those systems that do manipulate data, this requires quantifier eliminations, which are performed with the Omega toolset [33].
Deadlock-freedom of components is checked by using the toolYices [18].

2 D-Finder is also connected to the state-space exploration tool of the BIP platform, for finer analysis when the heuristicfails to
prove deadlock-freedom.
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Figure 5: D-Finder tool

The case studies we consider are the Gas Station [21], the Smoker [26], and the ATM [12]. The clas-
sical examples of Reader/Writer and Producer/Consumer arealso considered. Regarding the Gas Station
example, we assume that every pump has 10 customers. Hence, if there are 50 pumps in a Gas Station,
then we have 500 customers and the number of components including the operator is thus 551. In the
ATM example, every ATM machine is associated to one user. Therefore, if we have 10 machines, then the
number of components will be 22 (including the two components that describe the Bank).

The computation times for the application of the three methods on these case studies are given in Table
1. Regarding the legend of the table,scale is the “size” of examples;location denotes the total number
of control locations;interaction is for the total number of interactions;IMP provides the amount of time
for computing invariants and checking deadlock-freedom using the technique of [5]; LFP is for theLFP

method presented in Section3, andILFP is for theILFP method presented in Section4. The computation
time is given in minutes. The timeout, i.e., “-” is one hour. For the incremental method, we start with all
the components, and progressively add interactions between them. As an example, for the Smoker case
study, we start with interactions for300 smokers, then add the interactions for300 more smokers and so
on. We observe that, for the classical case studies,ILFP andLFP perform better than theIMP method.
In Figures6(a)and6(b) , we also compare the memory consumed by the three methods on the Gas Station
and Smoker examples. Again, bothLFP andILFP are more efficient thanIMP .

In addition to these quite classical benchmarks, we also provide results onUtopar, that is an automated
transportation system.Utopar is one of the two main case studies of the European project COMBEST [17].
A succinct description of the Utopar case study can be found at http://www.combest.eu/home/?link=Application2.
Rougly speaking, the Utopar system is the composition of three types of components that are: (1) au-
tonomous vehicles, called U-cars, (2) a centralized Automatic Control System, and (3) Calling Units. The
centralized Automatic Control System and the Calling Unitshave (almost exclusively) discrete behavior.
On the other hand, U-cars are equipped with a local controller, responsible for handling the U-car sensors
and performing various routing and driving computations depending on users’ requests. The system is
deadlock-free if there always exists some U-car that can respond a request from either a Calling Unit, the
Automatic Control System or a Customer inside the U-car. In this paper, we have analyzed a simplified
version of Utopar by abstracting from data exchanged between components as well as from continuous
dynamics of the U-cars. In this version, each U-car is modeled by a component having7 control locations
and6 integer variables. The Automatic Control System has 3 control locations and2 integer variables. The
Calling Units have2 control locations and no variables. In Table2, one can see that our techniques scale
very well, while theIMP one runs out of time quite quickly. Also, we observe that the incremental version
is always faster.

On the bad side, we have observed that for the case of cyclic topologies, the performance may decrease
with the increasing number of components. This is illustrated with the Dining Philosophers for whichIMP

is much faster (see Table3) and consumes less memory (See Figure6(c)) than the two methods presented
in this paper. The reason is that in the case of cyclic topologies, one often has to compute interaction
invariants with constraints that involve all the components in the cycleat the same time. The symbolic
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Table 1: Comparison between different invariant computation methods for the Gas Station, the Smoker, the
Reader/Writer, and the Producer/Consumer case studies.

Gas Station
scale location interaction IMP LFP ILFP

50 pumps 2152 2000 0:50 0:17 0:17
100 pumps 4302 4000 2:58 0:38 0:52
200 pumps 8602 8000 11:34 1:34 1:55
300 pumps 12000 12902 26:00 2:53 2:51
400 pumps 17202 16000 47:38 5:01 3:51
500 pumps 21502 20000 - 7:45 4:43
600 pumps 25802 24000 - 11:21 5:53
700 pumps 30102 28000 - 16:04 7:14

Smoker
scale location interaction IMP LFP ILFP

300 smokers 907 903 0:07 0:06 0:07
600 smokers 1807 1803 0:13 0:18 0:14
1200 smokers 3607 3603 1:06 0:40 0:34
1500 smokers 4507 4503 1:38 0:59 0:44
3000 smokers 9007 9003 6:21 3:43 1:57
4200 smokers 12607 12603 13:21 6:39 3:11
6000 smokers 18007 18003 27:03 14:45 5:57
7500 smokers 22507 22503 41:38 22:44 8:29
9000 smokers 27007 27003 - 32:52 11:36

ATM
scale location interaction IMP LFP ILFP

10 machines 224 182 0:25 0:30 0:27
50 machines 1104 902 10:49 3:17 2:20
100 machines 2204 1802 43:00 6:50 6:00
150 machines 3304 2702 - 10:00 9:30
250 machines 5504 4002 - 17:56 17:16
350 machines 7704 6302 - 39:35 27:54

Reader/Writer
scale location interaction IMP LFP ILFP

400 readers 806 804 0:04 0:06 0:05
1000 readers 2006 2004 0:12 0:11 0:13
2000 readers 4006 4004 0:40 0:31 0:32
3000 readers 6006 6004 1:23 0:56 1:01
5000 readers 10006 10004 4:43 3:02 2:17
6000 readers 12006 12004 5:28 3:40 3:19

Producer/Consumer
scale location interaction IMP LFP ILFP

1000 consumers 2004 2003 0:11 0:12 0:12
2000 consumers 4004 4003 0:27 0:27 0:33
4000 consumers 8004 8003 1:27 1:19 1:18
6000 consumers 12004 12003 3:01 2:40 2:32
8000 consumers 16004 16003 5:35 5:20 4:22
10000 consumers 20004 20003 8:44 8:40 6:12
12000 consumers 24004 24003 12:06 11:02 8:37

Table 2: Comparison between different invariant computation methods on the Utopar case study.
scale location interaction IMP LFP ILFP

100 cars, 400 units 1503 40500 3:35 0:59 0:56
200 cars, 400 units 2203 80600 8:05 2:15 1:45
300 cars, 400 units 2303 120700 13:38 3:45 2:29
400 cars, 400 units 2903 160800 20:32 6:08 3:46
100 cars, 900 units 2503 91000 17:52 2:47 2:44
200 cars, 900 units 3203 181100 38:41 7:11 4:59
300 cars, 900 units 3903 271200 - 23:30 7:18
100 cars, 1600 units 3903 161700 59:30 12:02 5:53
200 cars, 1600 units 3903 161700 - - 17:46
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Figure 6: Comparison of memory usage between different verification methods

implementation of [5] starts with a formula that tries to interleave the behaviors of all the components
simultaneously. In general, the formula has to be refined in order to build the interaction invariant. As
stated above, this does not seem to be the case for cyclic topologies. On the other hand, the fixed point
characterization will only build the constraints in an interative way and hence it will take some time until
the fixed point is reached. This explains the difference in performances: in generalILFP andLFP only
work with small formulas that represent the behaviors of a subset of components, but sometimes they have
to build a huge one. In such situation, they are less efficientthan a technique that directly works with all
the components from the very beginning. On the good side, onecan see thatILFP can still compete with
IMP . Since our incremental principle is quite general, we have good hope to build an incremental version
of IMP , which should be much faster than the current version.

The analysis on experimental results also provides us a heuristic on how to construct a component-based
system incrementally to facilitate the verification process. We can always choose much related interactions

Table 3: Comparison between different invariant computation methods on Dining Philosophers
scale location interaction IMP LFP ILFP

50 philosophers 300 250 0:04 4:34 0:05
60 philosophers 360 300 0:06 9:36 0:06
70 philosophers 420 350 0:07 18:59 0:07
80 philosophers 480 400 0:09 30:46 0:09
90 philosophers 540 450 0:11 49:14 0:11
100 philosophers 600 500 0:13 - 0:20
150 philosophers 900 750 0:29 - 0:47
200 philosophers 1200 1000 0:52 - 1:18
250 philosophers 1500 1250 1:23 - 2:20
300 philosophers 1800 1500 2:19 - 3:54
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(the interactions specifying the synchronizations withina group of components) into one increment, which
may reduce the computation when we put the solutions of increments together to obtain all interaction
invariants by theILFP method.

6 Conclusion

In this paper, we have presented two new techniquesILFP andLFP for computing interaction invari-
ants for a composite component described within the BIP framework. The concept of interaction invariant
for BIP models was introduced by Bensalem et al. in [5]. In [5], the authors also propose a global method-
ology, calledIMP , for computing such invariants.

The LFP method computes solutions for interaction invariants by computing local reachable states
of components from global interactions. TheILFP method uses directly the solutions from the separate
application of set of interactions over the same set of components.

As we have seen,ILFP andLFP work faster and consume less memory thanIMP in the case of
acyclic topologies. On the other hand, for cyclic topologies,IMP seems to be more efficient.

As a future work, we plan to work on extensions of D-Finder that should be capable to handle systems
with stacks. This would allow us to model recursion. Anotherperspective is to combine D-Finder with ex-
isting techniques for computing the set of reachable statesof an infinite-state system (which can be viewed
as a component invariant) that manipulate unbounded data [3, 9, 10]. Finally, we are also considering
extensions of the tool that could handle linear temporal logic properties [28].
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