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Abstract

We consider a compositional method for the verification afponent-based systems de-
scribed in a subset of the BIP language encompassing narly-piteractions. The method
is based on the use of two kinds of invariants. Componentigwts are over-approximations
of components’ reachability sets. Interaction invariaares constraints on the states of com-
ponents involved in interactions. In this paper we proposedfipoint characterization for
computing interaction invariants. We also propose a newrtiggie that takes the incremen-
tal design of the system into account. In many situations,tédthnique will help to avoid
redoing all the verification process each time an interadscadded in the design. Our two
techniques have been implemented as extension of the Hadiset. The result has been
applied to check deadlock-freedom on several case stu@ias.experiments show that our
new methodology is generally much faster than existing ones
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1 Introduction

Model checking 22, 15, 34] is by now a well-known method for proving properties of pragns. The
main reason for its success is that it works fully automdl§icae. without any manual intervention of
the user. Unfortunately, the method may suffer from the dedatate-space explosigroblem, i.e., the
number of states of the system may be too big to be analyzedhatitally.

There have been a lot of work on developing new methodoldgiespe with the state-space explosion
problem. Among them, one fingsartial order reductiontechniques?7, 35] or symbolic representations
based technique&§]. Unfortunately, the situation gets even worse when onddapply model checking
techniques to the verification of concurrent systems. Thblpm being that concurrency often requires to
compute the product of the individual systems by using batirieaving and synchronization. In general,
the size of this structure is prohibitive and cannot be heahdlithout manual interventions.

In a series of recent works, it has been advocated dbatpositional verification techniquesuld
be used to cope with state explosion in concurrent systente idea is to apply divide-and-conquer
approaches to infer global properties of complex systewms foroperties of their components. Separate
verification of components limits state explosion. Nonktkg, components mutually interact in a system
and their behavior and properties are inter-related. Thas iinajor difficulty in designing compositional
techniques. As explained i{], compositional rules are in general of the form

B1 < ®; >, By < Py >, O((I)l,q)g,q))
Bl||BQ <®>

That is, if two components with behaviofs, B, meet individually propertie®,, ®, respectively,
then the systenB || B2 resulting from the composition aB; and B, will satisfy a global propertyb.
C(®1, P2, P) is some condition taking into account the semantics of fErabmposition operation and
relating the individual properties with the global propert

One approach to compositional verification isdgsume-guaranteghere properties are decomposed
into two parts. One is an assumption about the global behav¥ithe system within which a component
is interacting; the other is a property guaranteed by thepmorant when the assumption about its environ-
ment holds. This approach has been extensively studieddsesample P, 1, 14, 11, 20, 25, 29, 37)).
Many issues make the application of assume-guaranteedifiiesiit. These are discussed in detail in a
recent paperl[6] which provides an evaluation of automated assume-gueeaathniques. The main dif-
ficulties are finding decompositions into sub-systems amesing adequate assumptions for a particular
decomposition.

In a recent paper?], Bensalem et al. proposed a new approach for compositi@aaloning. This
approach is based on the following rule:

[{Bi}i < ® >

The rule allows to prove invariance &f for systems obtained by using a n-ary composition operation
parameterized by a set of interactions It uses global invariants which are the conjunction of viath
ual invariants of component®; and an interaction invariank. The latter expresses constraints on the
global state space induced by interactions between compmnk can be computed automatically from
abstractions of the system to be verified. These are the csitigroof finite state abstractiorf3{* of the
components3; with respect to their invariant®,. The approach has been implemented in the D-Finder
toolset ] and applied to check deadlock-freedom on several caseestuthe results of these experiments
show that D-Finder is exponentially faster than well-elsaled tools such as NuSMV. {].

The methods inf], which can be implemented in a symbolic manner, requirelsatadle complex
formulas that represent both the behaviors of componedttharinteractions between components. More-
over, it does not allow to reuse existing verification resuthen one adds new interactions in the design.
This is problematic as components are generally developedlependent teams, which call for successive
verifications until the whole design (all the interactiohal been built.

In this paper, we go one step further and propose a fixed ple@macterization for interaction invariants.
The technique starts by computing successors for each amnplmcation and, at each iteration, constrains
the result by using existing interactions and the partiatijnputed information for other locations. The
resulting formula represents exactly the same interaativariant than the one produced by the method in
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[5]. However, it is generally smaller and easier to handle tharone obtained with the method if fhat
directly mixes all the invariants with all the interactions

Incremental system design methodologies often work byraddew interactions to existing sets of
components. Each time an interaction is added, one may beegted to verify whether the resulting
system satisfies some given property. Indeed, it is impbtameport an error as soon as it appears.
However, each verification step may be time consuming, winiens that intermediary verification steps
are generally avoided. The situation could be improvedefrésult of the verification process could be
reused when new interactions are added. Unfortunatelstiegitechniques do not focus on such aspects.
In this paper, we propose a solution to this problem, whigbdahe form of a new technique that takes the
incremental design of the system into account. In manytsitns, the technique will help to avoid redoing
all the verification process each time an interaction is dddehe design. Our solution is developed for
the fixed point formula, but the principle could be geneedito other techniques.

Our two techniques have been implemented as extensione &f-&inder toolset. The result has been
applied to check deadlock-freedom on several case studiesexperiments show that our new method-
ology is generally much faster than the one proposeg]inlf particular, we have been capable to verify
deadlock-freedom of Utopar, an automated transportatistem developed by one of our industrial part-
ners within the COMBEST European project. This case stuthey®nd the scope of existing verification
techniques for checking deadlock-freedom. We have alstifiEd case studies for which our technique is
less efficient than the one ia][

The methods presented in this paper andsinafre fairly simple, but they allow to verify deadlock-
freedom for concurrent systems that are beyond the scop®sif existing techniques. The Utopar case
study has long been a challenge for algorithmic approackesiabed by our partners in COMBEST and
was handled without any specific tailoring of our fairly simppproach. What is really exciting about this
direction of work is that so much could be achieved with géelit

Structure of the paper. In Section2, we recap the concepts that will be used through the resteof th
paper. SectioB3 presents a fixed point extension of the technique presemtgd,iwhile Sectiord presents
the incremental version. Experimental results are dismissSectiorb. Finally, Sectior6 concludes the
paper.

2 Preliminaries

In this section, we recap concepts that will be used throbghrést of the paper. We start with the
concepts oEomponentandparallel composition of componenfBhen we discussystemsandinvariants

2.1 Components and Parallel Composition

In the paper, we will be working with a simplified model for cpanent-based design, which is used
in the Behavior-Interaction-Priority(BIP) component framework developed at Verimag[30]. This
framework has been implemented in a language and a toolbedl &P [4]. The BIP language offers
primitives and constructs for modelling and composing congmts starting from atomic components.

Roughly speaking, an atomic component is nothing more thaarsition system whose transitions
labels are callegorts These ports are used to synchronize with other comporfeotally, we have the
following definition.

Definition 1 (Atomic Component) An atomic component is a transition syst®m= (L, P, T ), where:
o L ={ly,ls,...,l} is asetof locations,
e Pisaset of ports, and
e 7 C L x Px Lisasetof transitions.

Givent = (I,p,l') € 7,1 andl’ are thesourceanddestinationlocations, respectively. In the rest of
the paper, we ust andr® to compute the source and destinatiorn-pfespectively.
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Figure 1: A simple example

Example 1. Figure 1 presents two atomic components. The ports of compdpeate p; andq;. B; has
two locations:l; andi; and two transitions: = (11, p1,l2) andrz = (2, ¢1,11).

We are now ready to define parallel composition between a@t@mmponents. In the incremental
design setting, the parallel composition operation alltavsuild bigger components starting fraaomic
componentsAny composition operation requires to define a commuracatiode between components.
In our context, components communicate witeractions i.e., by synchronization on ports. Formally, we
have the following definition.

Definition 2 (Interactions) Given a set of. components3;, Bs, ..., B, with B; = (L;, P;,7;), an
interactiona is a set of ports, i.e., asubsetL(jf:1 P;,suchthati =1,...,n. l[an P;| < 1.

By definition, each interaction has at most one port per carapt In the figures, we will represent
interactions by link between ports. As an example, the getp, } is an interaction between Components
B; and B, of Figurel. This interaction describes a synchronization between @ieorents3; and B by
Portsp; andp. Another interaction is given by the st , g2 }. The idea being that a parallel composition
is entirely defined by a set of interactions, which we calbanector As an example the connector B4
andBs is the se{{p1, p=}, {q1,¢2}}

In the rest of the paper, we simplify the notations and wpitgs ... pj instead of{pi,...,px}.
We also writea; + ... + a,, for the connectofa,,...,a,,}. As an example, notation for the connector

Hp1,p2} a1, a2} isp1 p2 + g1 g
We now propose our definition for parallel composition.

Definition 3 (Parallel Composition)Givenn atomic component8; = (L;, P;, 7;) and a connectot,
we define the parallel compositidh = (B4, . .., By, ) as the transition systefiC, v, 7'), where:

e L=11 %X Ly x...x L, isthe set ofjloballocations,
e v is a set of interactions, and

e 7 C LxvyxLcontainsalltransitions = ((I1,...,1,),a, (I}, ...,1,)) obtained by synchronization
of sets of transition$r; = (I;,p;, ;) € Ti}icr suchtha{p;},., = a € v andl;- =ifjé1I

The idea is that components communicate by synchronizatittnrespect to interactions. Given an in-
teractiona, only those components that are involvedzican make a step. This is done by following a
transition labelled by the corresponding port involveduin If a component does not participate to the
interaction, then it has to remain in the same state. In thieafethe paper, a component that is obtained
by composing several components will be calledoaposite componenObserve also that the parallel
compositiony(Bs, ..., B,) of By, ..., B, can be seen aslsafe Petri netvhose set of places is given
by L = |J!, L; and whose transitions relation is given By In the rest of the papef; will be called the
set of locations oB, while L is the set ofylobal locations

2.2 Systems and Invariants

We now define the concept of invariants, which can be usedrifyygoperties of (parallel composition
of) components. We first propose the definitiorspétenthat is a component with an initial set of states.
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Definition 4 (System) A systend is a pair (B, Init) whereB is a componentanfiit is a state predicate
characterizing the initial states ds.

Consider the example given in Figute If we assume thainit = [y A I3, then we obtain a composite
componenty(Bi, B2), wherey = p1 pa + q1 qo.

In a similar way, we distinguish invariants of a componentirthose of a system. Therefore we define
invariants for a component and for a system separately.

Definition 5 (Invariants) Given a componenB = (L, P,T), a predicatel on L is an invariant ofB,
denoted byinv(B, I), if for any locationl € L and any portp € P, I(l) and! 21U e T imply I,
wherel (1) means that satisfies!.

For a systenS = (B, Init), I is an invariant ofS, denoted bynv(S, I), if it is an invariant of B and if
Init = 1.

Clearly, if I;, I are invariants ofB (respectivelyS) then; A I, andI; Vv I, are also invariants oB
(respectivel\S).

Letv(By,...,B,) be the composition of components wittB; = (L;, P;, 7;) fori € 1...n. Inthe
paper, an invariant of; is called acomponent invarianand an invariant or(By, ..., B,,) is called an
interaction invariant To simplify the notations, we will assume that interactiovariants are predicates
on{J;_, L;.

3 Interaction Invariant Computation

A compositional verification method for safety properti€€omponent-based systems is proposed in

[5]. The method is based on the following rule:
{Bi(®i)}}, ¥ e II(y(By,...,Bn), {®:}}),
(A )NV = O
’}/(Bl,...,Bn) <P >

This rule allows to prove invariance of a predicdtdor a systenyy (B, ..., B,) obtained by using
a n-ary parallel composition operation parameterized by aoéé@tteractionsy on a set of components
{B;}"_,. B;{®;) means tha®; is the component invariant fdB;. ¥ belongs to the seltl of interaction
invariants/ I of v(By, ..., B,) computed automatically fror; and~ (B, ..., B,). The invariance ob
is verified by checking tautology/\; ®;) A ¥ = ®.

In the same paper, two methods are provided for computingpooent invariants and interaction in-
variants:

1. Component invariants are over-approximations of thet#te reachable states of atomic compo-
nents and are generated by simple forward propagation itpebs The iteration of the forward
propagation allows to compute sequences of increasingipgér component invariants. A key
issue is efficient computation of such invariants as theipeesymbolic computation of reachable
states requires quantifier elimination. An alternative t@fifier elimination is to compute over-
approximations based on syntactic analysis of the presiicatcuring in guards and actions. In
this case, the obtained invariants may not be inductivefeRiht strategies are used to derive lo-
cal assertions, that is, predicates attached to contratitmts and which are satisfied whenever the
computation reaches the corresponding control locatiomofe detailed presentation, as well as the
techniques for generating component invariants are givgn b, 6].

2. Interaction invariants express global synchronizationstraints between atomic components. The
method, which is called Implication-based{P), computes interaction invariants by solving logical
equations that come from implications for the conditiongtdractions. Their computation consists
of the following steps. 1) For given component invariaftsof the atomic components;, we
compute finite-state abstractiof§" of B; whereq; is the abstraction induced by the elementary
predicates occuring i®;. This step is necessary only for componeBtswhich are infinite-state.

2) The systemy(B7*, - -- , B%") which is an abstraction of(B;, - - - , By, ), can be considered as a
1-safe Petri net. The set of the traps of the Petri net defigéshal invariant which we can compute
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in a symbolic manner. 3) The concretization of this invarigines an interaction invariant of the
initial system.

In this section, we propose a new symbolic technigue to caenpteraction invariants for a composite
component. We will first propose a Boolean equation systelitiks internal behaviors of each compo-
nent that participate to the composition with the globaldsédr induced by the connector. Then, we will
use this system of equations to derive a fixed point chaiaaten of interaction invariants. Finally, we
will also propose a heuristic to improve computation perfances.

3.1 Boolean Behavioral Constraints

We start with the following definition (taken frond]) that for a given locatiod computes the sets of
componenttransitions involved in some interactiory @f which transitionr; issued frond can participate.

Definition 6 (Forward Interaction Set)Given a set of interactions over B = (By,...,B,), where
B; = (L;, P;, T;) are transition systems, we define for a location L; its forward interaction set frony
byl,.y = {{Ti}iel |Vi.Ti e, N Ji’r, =1 A {pOT‘t(Ti)}iGI S ’7}.

When it is clear from the context, we writinstead of 2. As an example, consider the components given
in Figurel. Giveny = p; p2 + ¢1 g2, we havely = {{m,13}}, 13 = {{me, 7} }. I3 = {{m1,73}} and
13 ={{r2,ma}}.

In the rest of the paper, locations of components will be eiédwas Boolean variables. We can thus use
Bool|L] to denote the free Boolean algebra generated by the setatfdasL. We also extend the notation
°r, 7 to interactions, that i%& = {°r| port(r) € a}, anda® = {7°| port(r) € a}. For connectors, we
havey, %y = U, ‘a-

Definition 7 (Boolean Behavioral Constraints (BBCs))et~ be a connector over a tuple of components
B = (By,---,By) with B; = (L;, P;,7;) and L = |J_, L;. The boolean behavioral constraints for
everyl € Lin~y(B), can be defined by=- ¢;, whereo; is a functionl — Bool[L] such that:

o = { /\{Ti}ielel. \/1'6{"'7;'}1‘61 I #0 1)

true *=0

Roughly speakingg; describes the constraints added by the synchronization/ owor the example

given in Figurel, the corresponding constraints of all the locations ar@boWs:

=10V, Il3=I1Vis

lo=1 Vi, l4=11Vl3
The logical formulal; = I V l4 ensures that only locatiors or [, are reachable by following the
interactionp; ps.

Notice that boolean behavioral constraint- o; can be written into equatioh= [ A o;, which is
called BBC-equation. Equatidn= [ A o; can be viewed as an image function from a local locatioh to
and a set of reachable locations contained;inThose “image” locations can be reached by following the
interactions given iry. To simplify the notations, we often usg instead of;, .

3.2 Location-based Fixed Point Computation for Interaction Invariants

We now compute interaction invariants by using BBC-equmtid he intuition is as follows. If; is in
o;, andl; A o; is the sets of set of reachable locations through the intierecfroml;, then we can apply
l;Nojtol; =1; Ao;, and obtain an equation that represents the locationsahdiereached fro via ;.
If we repeat the same operation to all the locations until soaneachable location are added, then the right
side of the obtained equation for a given location represtrg set of sets of reachable locations started
from this location. In this subsection, we present a metloocbimpute the solutions for BBC-equations
and the way to obtain interaction invariants from thesetgmhs.

We now formalize the above process. Since we want to deriweed fioint characterization, we first
have to define a preorder on sets of sets of locations. We pedpe following definition.

Definition 8. Given a set of locationg, we define a preorderC 22" x 22" Given two sets af, Sy
over22”, S1 C Sy if for anyms € S, there existsn; € S; such thatm; C ms.
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Then we can apply functiohmage : 22" x 22" — 22" overa sef = {f(D)}1er to compute the set
of sets of locations iteratively, where

Image(S1, F) = \/ /\f(l)

meSy lem
We are now ready to define our set of fixed point equations. Vilewmsrk with vectors of solutions.

We consider a vectdL indexed by the locations ifi. We usdL? to denote the initialization of the vector.
Roughly speaking, we update the reachable locations fraoatibn by replacing every locatidnin o by

its intermediate solutions. Within every iteration, we li$é!;) to replace every locatioh in o; to obtain

the reachable locations from everne L throughl;. ThenL* becomes a vector of reachable locations,
in which every item is the set of sets of reachable locatisamfits index location. When the iteration
stops/]L* is a vector containing all the reachable locations fromiaration. The reachable locations are
calculated by considering all the interactions from a lmsatSince the method is based on the least fixed
point computation of locations, we call it Location-baséxel Point (LFP).

Definition 9 (Location-based Fixed Point Equatior(iven a composite componentB) with a set of
locations L, we define a location-based iteration process over a velttof [ € L, which starts from
LL°(1) = [ and such that

LEL(1) = L*(1) A Image(oy, 1LF) 2
The iteration terminates wheld**! = L*. In such casel.” corresponds to the set of solutions for the
BBC-equations of(B).

Proposition 1. Consider a composite componeritB) with a set of locationd.. LetL be a vector over
L, ando; be the BBC fol € L in v(B), we haveL**1(I) = I A Image(o;, L¥).

Proof 1. SincelL*(I) C L*(I) A Image(o;,1L*), we havel.*(1) C L**1(1). The proof is by induction
on k. First, we havel’(l) = [. Suppose that*(l) = IA Image(o;, L*~1). ThenL*+1(l) = Lk(1) A
Image(o;,L*) = IAImage(o;, L*~Y)AImage(o;, L¥). SincelL*~! C L*, we havdmage(o;, L*~1)A
Image(o;, L*) = Image(o;, L*). Therefordl*t1(1) = I A Image(oy, LF).

This proposition shows that the iteration focan be focused ofinage(o, L) instead ofLAImage(o, L),
which can improve the efficiency of the computation.

Proposition 2. Let~ be a connector oveB with a set of locationd.. If ¥ is the set of solutions for
BBC-equations ofy(B), then for each € L such thatlL*(l) = \/,.; m;, m; gives a minimal set of
reachable locations through a sequence of interactions wf location/, wherem; is a monomial with
the conjunction of locations.

Proof 2. First, observe thain; is a set of reachable locations from The reason is thatn; contains
at least one monomial ia;, which enumerates one reachable location for every inteawsadrom/;. If o;
contains somé;, thenm; also contains those locationsérj. Som; is a set of reachable locations froin

Suppose now that,; andm, are solutions ofL* (1) for I € L by Definition9 such thatm, C m;,
meaning thain; goes through more locations tham,,. Becausen;, V m; = my,. Thereforen; does not
exist when the iteration stops, and, is a minimal set of reachable locations.

We now introduce a new notatiaf for the dual ofm, which is used to compute invariants from
solutions. The following theorem shows that the fixed poattison for the BBC-equations characterizes
an interaction invariant.

Theorem 1. Lety be a connector over a set of componeBts= (B, ..., B,), with B; = (L;, P;, T;)
andL = (J_, L;. If L* is the set of solutions for BBC-equations,d¢f3), then for eacti € L such that

L*(1) = ey mi, L*(1) = A;e; 7 is an invariant andj,; L*(1) is an invariant ofy(B).

Proof 3. Consider ann in IL* (1), according to PropositioR, m gives a minimal set of reachable locations
through interactions ofy via . Assume that for some global stdte- ({1, --- ,l,), we have; belongs to
m, thenm is true. If fromi; there exists an interactiom € ~ such that; € °a, then there exist%- €a®
with (15, p;,1%) andp; € a , such that; belongs tan andm is still true. So any successor statel dfy an
interactiona satisfiesn andm is an invariant ofy(B).
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Figure 2: Iteration step
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Figure 3: Traditional fixed point computation

Since the conjunction of invariants is still an invariahf: (1) = Nic; ™ is an invariant ofy(B), and
Nier L¥(1) is also an invariant ofy(B).

This theorem allows us to compute the global interactioatiiants ofy(B), which is the conjunction of
the invariants obtained by the dual of every solution. InrfBghe 2, we have computed the set of solutions
for every location. The union of solutionslisA la V11 Aly Vs Als Vi3 Aly. So the interaction invariant
is given by(ll V lg) A\ (ll V l4) A\ (lg V lg) A\ (lg V l4)

We conclude the subsection with an example that illustratespproach.

Example 2 (LFP computation) Consider the components in Figule Consider also the following
connectory = p1 p2 + ¢1 2. The BBC-equations for the locations of each components are
Lh=lLANI2Vi), l=lLA(l1VI)
13213/\(12\/14), l4=l4/\(ll \/l3)

The successive solutions for each iteration of the fixedtgoénrepresented in Figurg. In this figure,
the outgoing arcs from a node correspond to the literals efdisjunction. Conjunction of all the literals
corresponding to the arcs at the path from the root of the teea node is associated with the node. As
example, in Figure (b), the first tree can be written dg A I3 V 11 A 4.

The initialization of.° is shown in Figure? (a). After the first iteration, we obtain the solutions shown
in Figure 2 (b). In the second iteration, we apdly to replace the corresponding locationdn as follows:

L2() =L A A1 VI3)VIEAILVIZ) =11 Ala Vi Aly
L2(lg) =1l A (ll A\ (lg \/l4) Viz A (12\/14)) =11 ANl VIg N3
L2(l3) =3 A (12/\ (ll \/l3) Vig A (ll \/l3)) =1l ANIl3VIgNly
L2(l4) = (ll A\ (lg \/l4) Viz A (12\/14)) =I3ANlu VL Ny

Sincel.? = L', the iteration stops, and the solutions are shown in Figi¢b).

Observe that the result of the above fixed point computaiiters from the set of reachable states of
the composite component. Lgtandis respectively be the initial locations iB; and B,, Figure 3 shows
another invariant that is the set of reachable global statkthe composition. This set is more accurate than
our computation, but this precision has a cost when workiit @omplex systems. It takes interaction as
a global transition and computes exactly the destinati@matmns from each source location in the global
state that participates the synchronization. Howeverlnmethod, what we need is only one location that
can be reached by an interaction.

3.3 Implementation on LFP Computation

The method presented in the above subsection requires tputerthe fixed point for each location
of each component that participates to the composition. édewdifferent locations may have the same
solutions. Being able to identify such locations would i the efficiency of the computation.
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In fact, we observe that two locations that are reachabte frach other by an interaction do have the
same solution. Unfortunately, by using the computatiorvabthe solution is computed twice. A way
to this problem is instead to compute the solutions for el@egtion separately, we can put the locations
together and compute fixed point induced by BBC-equatiofiaei@in the following definition.

Definition 10. Given a composite componey(tB) with a set of locationd., assume alsd\, a vector of
BBC-equations for all € L with A(l) = A ;. We define an iteration process by

L% = vleLl

LA = I'mage(ILF, A) (3)
WhenL*+! = IL*, the iteration stops and we obtain the set of solutions ferBBC-equations of(B).

Obviously, we havd.* C L**+1. Therefore, though we obtain different solutions fromefiént loca-
tions, we can always obtain the minimal solutions by usinérien 10.

Proposition 3. The set of solutions obtained from Definit®and 10 are always the same.

Proof 4. Both definitions give the solution computation from the saet®f locations, based on the same
set of BBC-equations, which makes the same set of solutions.

Example 3. Consider again the example given in Figdrewithy = p p2+q1 g2. After the firstiteration,
we havdl.®’ = [, VI, Vi3 V Iy, andA is given by

All) =l A2V, All)=I12A(1Vs)

A(ls) =13 A (la Vi), A(ly) =1 A1 Vs)
By Definition10, L' = I'mage(IL°, A) =13 Ala VI3 Aly Vs Alz Vi3 Aly. Sincell? = LY, the iteration
stops and, according to our definitioh! is the set of solutions for the BBC-equations/(B).

4 Incremental Component-based System Construction and Copu-
tation of Interaction Invariants

In component-based design, the construction of a compoasitgponent is both step-wise and hierar-
chical. This means that a system is obtained from a set ofiatcmmponents by successive additions of
new interactions, also callédcrementsin this section, we propose a methodology that allows torestd
interactions to a composite component without breakingterd synchronization. We also show how to
reuse intermediary results to increase efficiency.

4.1 Incremental Construction of Component-based Systems

In component-based design, new increments are progrsateed during the step-wise construction
process. It is important that these new increments do natkitfee synchronizations that are assumed by
interactions before the addition takes place. Our firstistdpus to define a notion of forbidden interactions.
Formally, we propose the following definition.

Definition 11 (Closure and Forbidden Interactiond)et~ be a connector.

e The closurey® of v, is the set of the non empty interactions contained in soteedction ofy. That
isy¢={a#0|3cry.aCb}.

e The forbidden interactions/ of + is the set of interactions that are strictly contained in tile
interactions ofy. That isy/ = ~¢ — ~.

It is easy to see that for two connectersandy,, we have(y; + v2)¢ = 7§ + 45 and (y1 + 12)f =
(M +72)° =7 — e

In our theory, a connector describes a set of interactiodslandefault, also those single component
interactions in where only one component can make progrBsis. assumption allows us to define new
increments in terms of existing interactions. We proposddtiowing definition.
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Definition 12 (Increments) Consider a connectoy over a composite componeBtand leté C 27 be
a set of interactions. We salyis an increment ovey if for any interactiona € ¢ we have interactions
bi,...,b, € ysuchthalJ;_, b; = a.

In the above definition, fusion of existing interactionimew interactions can produce a new incre-
ment.

In practice, one has to make sure that existing interactiefised byy will not break the synchroniza-
tions that are enforced by the increméntor doing so, we remove from the original conneciall the
interactions that are forbidden By This is done with the operation @ayering which describes how an
increment can be added to an existing set of interactiodwitbreaking synchronization enforced by the
increment. Formally, we have the following definition.

Definition 13 (Layering) Given a connectoty and an incremend over v, the new set of interactions
obtained by combining and~, also called layering, is given by the following et = (v — §/) + 4 the
incremental construction by layering, that is, the increrad modification ofy by é.

The above definition describes one-layer incremental coctshn. By successive applications of the
rule, we can construct a system with multiple layers. Besttie fusion of interactions, incremental con-
struction can also be obtained by first combining the incrésand then apply the result to the existing
system. This process is call&liperpositionFormally, we have the following definition.

Definition 14 (Superposition) Given two increment$;, Jo over a connectofy, the operation of superpo-
sition betweer; andd, is defined by; + Js.

Superposition can be seen as a composition between inctgméth looser coupled relation. If we
combine the superposition of increments with the layerirmppsed in Definitiorl3, then we obtain an
incremental construction from a set of increments. Foynalé have the following proposition.

Proposition 4. Let v be a connector oveB, the incremental construction by the superpositiomof
incrementsd; }1<i<n IS given by

n n n
O s =0=0_6)"H)+> 6 (4)
i=1 i=1 i=1
The above proposition provides a way to transform increal@anstruction by a set of increments into
the separate constituents, where- (X7_,4,)/ is the set of interactions that are not tightened during the
incremental construction process.
We conclude the subsection with the following example.

Example 4 (Incremental construction)Consider again the components given in Figarand lety =
p1 + p2 + q1 + g2 be a connector. Lef; = p; p2 andd: = ¢1 ¢2 be two increments ovey. Since
v — (01 + 02)7 = 0, we have(d; + d2)y = p1 p2 + @1 o

4.2 Incremental Computation of Interaction Invariants

We now study the modification in the BBC-equations that arded to take increments added to the
original design into consideration. Our first objective sisis in extending the BBC-equations of each
location. We will assume that the BBC-equations for eachement have already been computed and we
will show how to obtain the BBC-equations for the originahoector plus the increments. Given a series
of increments d; }1<i<, and a locatior, o;; denotes the BBC for the locatidwith respect to Increment
§;. We usery, to denote the BBC with respect to— (37, 5;)7.

Proposition 5. Consider a composite compondbitwith a set of locationd.. Let~ be a connector over
B and let{d;}1<i<n be a set of increments over Assume thaf, = v — (E;;léi)f, andletl = [ Aoy be
the BBC-equation dfin ¢;(B) for 0 < i < n. The BBC-equations fq&?_,d;)v(B) are of the following
form:

I=1A /N oa ()
=0
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Figure 4: Example for incremental invariant computation

Proof 5. Foranyl € L, letl; be the forward interaction set éfunderd;, we havelp; ;=13 U5
for anyd; andd;. And its BBC isr;; A 0. Therefore the BBC-equations @7, ;) (B) are of the form

l:l/\/\?:oo'il-

The above proposition states that BBC-equations of logatior a superposition of increments can be ob-
tained by taking the conjunction of the corresponding équdbr each increment. By inspecting Equation
5, one can observe that if a location is involved in more tham ioocrement, then the number of forward
interaction sets for that location will increase, which @ised by sharing a same port or more than one
outgoing transition.

We now introduce the incremental computation of solutitvas tomputes the invariant for a composite
component and a set of increments. The method, which isdcchi@emental Location-based Fixed Point
(ILFP) assumes that an invariant has already been computed fooisteractions. This information is
exploited to improve the efficiency. The idea is as followscérding to Equatiod, the superposition of
a set of increment$d; }1<;<,, Over a connectoy can be regarded as separately applying increments over
theirs constituents. The incremental computation of smhstis based on the solutions of these increments
over their constituents;(B) and the solutions from the BBC-equations for — (X,6;)/)(B). We
suggest the following proposition.

Proposition 6(Incrementall F'P Computation) Consider a composite compondhand a set of locations
L. Lety be a connector foB and assume a set of incremefds} 1 <;<,, overy(B). Letdy = v— (X1, ;)7
andL; be the solutions of BBC-equationsif3) with respect td/,_.s, [, where0 < i < n. The solutions
for the BBC-equations ¢&?"_, 4;)y(B) can be computed with the following equation.
EE Vicobi ¥ Vier gz ! (6)
= Image(L*, A)
whereA is the vector of BBC-equations fOE?_, d;)v(B).

Proof 6. The idea behind the proof is to show that we can get the sanué selutions by using Equation
6 or Equation3. AsImage distributes over disjunction, we ha¥ewage(L?, A) = /i, Image(LL;, A) V
Image(V e _yn s, 1, Q). Then, since/, ., I C L;, and A(l) is monotonic, we have thaf, ., | and
VicoLi V Vier—n_, «, | have the same least fixed points oder

Proposition6 shows that the invariants computed for the incrementsdthean be reused in other com-
putation where more increments are added. Hence this antazén be maintained for further incremental
constructions and verifications, which should improve tfieiency of the verification process. Observe
that in the case thdt¢ *y, no outgoing interaction fromhwill be considered, and it can be regarded as a
deadlock location in/(B). As it will not in *; either, we need to add such locations when we compute the
global solutions.

We conclude the section with an example.

Example 5 (IncrementallL FP computation) Consider the components given in Figuteand lety =
p1 + p2 + q1 + g2 + r1 + r2. Consider also two incremends = py ps + 1 2 andds = g1 g2 that are
defined overy. Sincey — (61 +d2) = 0, we haves, = (. The vector of BBC-equatious; for 4, (B) can
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thus be defined as follows:

Ar(l) =L ALV AN, A1) =l AN VIEAs

Aq(lz) = lo, Aq(ls) =15

A(ls) =l ANlsViIsAl, Ai1(ls) =l ANlgVIgAg
The vector of BBC-equatioms, for d»(B) is as follows

As(ly) =1y, Ao(ly) =

AQ(ZQ):ZQ/\Zg\/ZQ/\Zg, (15)—15/\16\/13/\15

No(l3) = 13, Aso(le) = ls

The set of solutions for BBC-equations are
51(B)2 ]Ll:ll/\lg\/ll/\l5\/l4/\l5\/lg/\l4
52(B)2 LQ212/\[3\/12/\16\/15/\l6\/13/\l5
For (01 + d2)v(B), we havel, = *§; U %2, SO
LO:Ll VI =l Al VILANISVIEGNANIsVIGANILLVIoANI3VIaANlg Vs Nlg Vs Nls
ApplyingA for (6; + 62)v(B) into L° by I'mage function, we obtain that
L' = Image(ILO,A) =L ANGANIBVIIANIANIgNVIINANIEANLgNV I NSNSV Ia N3Ny
Vig Nly NlgVIg Nis NlgVIg NIy Nl
ThenlL? = LL!, solL! are the solutions for the BBC-equations(6f + 62)v(B).

5 Experiments

We have implemented both tHeg”P method (Sectio) and its incrementalL F'P version (Sectiod)
in the D-Finder toolsef6].

In this section, we start with a brief introduction to the the~inder tool and explain what are the
modifications that have. Then we show the experimental tesbitained by implementing the methods
discussed in this paper.

5.1 D-Finder Structure

The D-Finder tool implements a compositional methodolamytifie verification of component-based
systems described in the BIP languagje [The tool provides three symbolic-representations-thaseth-
ods for computing interaction invariants, namely fig"P and theL FP methods presented in this paper
as well as thd M P method presented irs] and discussed in the beginning of Sect®nD-Finder relies
on the CUDD packagel[l] and represents sets of locations by BDDs. D-Finder alspgses techniques
to compute component invariants. Those techniques, whigll@scribed in4], relies on the Yices]d)]
and OmegaiJ toolsets for the cases in where a component can manipudde é general overview of
the structure of the tool is given in Figuse

D-Finder is mainly used to check safety properties of cortp@®mponents. In this paper, we will be
concerned with the verification of deadlock properites. ¥dJI S be the set of global states in where a
deadlock can occur. The tool will progressively find and @limte potential deadlocks as follows. D-Finder
starts with an input a BIP model and computes componentianvsC I by using the techniqdeoutlined
in [5]. From the generated component invariants, it computesbatraction of the BIP model and the
corresponding interaction invariants. Then, it checks satisfiability of the conjunctibhACI A DIS. If
the conjunction is unsatisfiable, then there is no deadltsk&ther it generates stronger component and
interaction invariants or it tries to confirm the detectedalecks by using reachability analysis techniques

5.2 Experimental Results

We have compared the three methotis{P, LFP and IMP) on several case studies. All our experi-
ments have been conducted with a 2.4GHz Duo CPU Mac laptdp2@B8 of RAM.

1For those systems that do manipulate data, this requirestifieaeliminations, which are performed with the Omegaget[33).
Deadlock-freedom of components is checked by using theYioek [14].

2 D-Finder is also connected to the state-space exploratinirof the BIP platform, for finer analysis when the heuridéiits to
prove deadlock-freedom.
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Figure 5: D-Finder tool

The case studies we consider are the Gas Statifjnthe Smoker 26|, and the ATM [LZ]. The clas-
sical examples of Reader/Writer and Producer/Consumealapeconsidered. Regarding the Gas Station
example, we assume that every pump has 10 customers. Héttoere are 50 pumps in a Gas Station,
then we have 500 customers and the number of componentslimglthe operator is thus 551. In the
ATM example, every ATM machine is associated to one userréfbee, if we have 10 machines, then the
number of components will be 22 (including the two composadmat describe the Bank).

The computation times for the application of the three méshan these case studies are given in Table
1. Regarding the legend of the tablegle is the “size” of examplesiocation denotes the total number
of control locationsjnteraction is for the total number of interaction&}/P provides the amount of time
for computing invariants and checking deadlock-freedoimgithe technique of]; LFP is for the LF'P
method presented in Secti@8nand/LFP is for theILFP method presented in SectidnThe computation
time is given in minutes. The timeout, i.e., “-" is one houarkhe incremental method, we start with all
the components, and progressively add interactions betivesm. As an example, for the Smoker case
study, we start with interactions f800 smokers, then add the interactions 6 more smokers and so
on. We observe that, for the classical case studieBP and LFP perform better than th&\/P method.

In Figures6(a)and6(b), we also compare the memory consumed by the three methote Gais Station
and Smoker examples. Again, batli'P andILFP are more efficient thanM/P.

In addition to these quite classical benchmarks, we alseigeaesults ofJtopar, that is an automated
transportation systentJtoparis one of the two main case studies of the European project BESBT [17].

A succinct description of the Utopar case study can be fotuhdg@//www.combest.eu/home/?link=Application2.
Rougly speaking, the Utopar system is the composition aehypes of components that are: (1) au-
tonomous vehicles, called U-cars, (2) a centralized Autan@ontrol System, and (3) Calling Units. The
centralized Automatic Control System and the Calling Uhase (almost exclusively) discrete behavior.
On the other hand, U-cars are equipped with a local contro##eponsible for handling the U-car sensors
and performing various routing and driving computationpataling on users’ requests. The system is
deadlock-free if there always exists some U-car that camores a request from either a Calling Unit, the
Automatic Control System or a Customer inside the U-car.hls paper, we have analyzed a simplified
version of Utopar by abstracting from data exchanged betweenponents as well as from continuous
dynamics of the U-cars. In this version, each U-car is matlelea component havingcontrol locations
andé6 integer variables. The Automatic Control System has 3 oblucations and integer variables. The
Calling Units have2 control locations and no variables. In Talleone can see that our techniques scale
very well, while the/M P one runs out of time quite quickly. Also, we observe that tigémental version

is always faster.

On the bad side, we have observed that for the case of cypliddgies, the performance may decrease
with the increasing number of components. This is illustlatith the Dining Philosophers for whidld/P
is much faster (see TabB and consumes less memory (See Fidi(&) than the two methods presented
in this paper. The reason is that in the case of cyclic topefgne often has to compute interaction
invariants with constraints that involve all the comporseintthe cycleat the same timeThe symbolic
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Table 1: Comparison between different invariant compatatiethods for the Gas Station, the Smoker, the

Reader/Writer, and the Producer/Consumer case studies.

Gas Station
scale location interaction IMP LFP ILFP
50 pumps 2152 2000 0:50 017 0:17
100 pumps 4302 4000 2:58 0:38 0:52
200 pumps 8602 8000 11:34 1:34 1:55
300 pumps 12000 12902 26:00 2:53 2:51
400 pumps 17202 16000 47:38 5:01 3:51
500 pumps 21502 20000 - 745 4:43
600 pumps 25802 24000 - 11:21 5:53
700 pumps 30102 28000 - 16:04 7:14
Smoker
scale location interaction IMP LFP ILFP
300 smokers 907 903 0:07 0:06 0:07
600 smokers 1807 1803 0:13 0:18 0:14
1200 smokers 3607 3603 1:06 0:40 0:34
1500 smokers 4507 4503 1:38 0:59 0:44
3000 smokers 9007 9003 6:21 3:43 1:57
4200 smokers 12607 12603 13:21  6:39 3:11
6000 smokers 18007 18003 27:03 14:45 5:57
7500 smokers 22507 22503 41:38 22:44 8:29
9000 smokers 27007 27003 - 32:52 11:36
ATM
scale location interaction IMP LFP ILFP
10 machines 224 182 0:25 0:30 0:27
50 machines 1104 902 1049 3:17 2:20
100 machines 2204 1802 43:00 6:50 6:00
150 machines 3304 2702 - 10:00 9:30
250 machines 5504 4002 - 17:56 17:16
350 machines 7704 6302 - 39:35 2754
Reader/Writer
scale location interaction IMP LFP ILFP
400 readers 806 804 0:04 0:06 0:05
1000 readers 2006 2004 0:12 0:11 0:13
2000 readers 4006 4004 0:40 031 0:32
3000 readers 6006 6004 1:23 0:56 1.01
5000 readers 10006 10004  4:43  3:.02 2:17
6000 readers 12006 12004 5:28  3:40 3:19
Producer/Consumer
scale location interaction IMP LFP ILFP
1000 consumers 2004 2003 0:11 012 0:12
2000 consumers 4004 4003 0:27 0:27 0:33
4000 consumers 8004 8003 1:27 1:19 1:18
6000 consumers 12004 12003 3:01 2:40 2:32
8000 consumers 16004 16003 5:35 5:20 4:22
10000 consumers 20004 20003 8:44 8:40 6:12
12000 consumers 24004 24003 12:06 11:02 8:37

Table 2: Comparison between different invariant compatathethods on the Utopar case study.

scale location interaction IMP LFP ILFP
100 cars, 400 units 1503 40500 3:35 0:59 0:56
200 cars, 400 units 2203 80600 8:05 2:15 1:45
300 cars, 400 units 2303 120700 13:38 3:45 2:29
400 cars, 400 units 2903 160800 20:32 6:08 3:46
100 cars, 900 units 2503 91000 17:52 2:47 2:44
200 cars, 900 units 3203 181100 38:41 7:11 4:59
300 cars, 900 units 3903 271200 - 23:30 7:18
100 cars, 1600 units 3903 161700 59:30 12:02 5:53
200 cars, 1600 units 3903 161700 - - 17:46
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Figure 6: Comparison of memory usage between differentization methods

implementation of ] starts with a formula that tries to interleave the behawviof all the components
simultaneously. In general, the formula has to be refinedrdemoto build the interaction invariant. As
stated above, this does not seem to be the case for cyclitoips. On the other hand, the fixed point
characterization will only build the constraints in an nati&ve way and hence it will take some time until
the fixed point is reached. This explains the difference ifigpmances: in generdlLF'P and LFP only
work with small formulas that represent the behaviors oftasstiof components, but sometimes they have
to build a huge one. In such situation, they are less effitcleant a technique that directly works with all
the components from the very beginning. On the good sidecanesee thail.F'P can still compete with
IMP. Since our incremental principle is quite general, we haxadchope to build an incremental version
of IMP, which should be much faster than the current version.

The analysis on experimental results also provides us astieurn how to construct a component-based
system incrementally to facilitate the verification pracéd/e can always choose much related interactions

Table 3: Comparison between different invariant compatathethods on Dining Philosophers

scale location interaction IMP LFP ILFP

50 philosophers 300 250 0:04 4:34 0:05
60 philosophers 360 300 0:06 9:36 0:06
70 philosophers 420 350 0:07 1859  0:07
80 philosophers 480 400 0:09 30:46  0:09
90 philosophers 540 450 0:11 49:14 0:11
100 philosophers 600 500 0:13 - 0:20
150 philosophers 900 750 0:29 - 0:47
200 philosophers 1200 1000 0:52 - 1:18
250 philosophers 1500 1250 1:23 - 2:20
300 philosophers 1800 1500 2:19 - 3:54
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(the interactions specifying the synchronizations withigroup of components) into one increment, which
may reduce the computation when we put the solutions of imergs together to obtain all interaction
invariants by theL FP method.

6 Conclusion

In this paper, we have presented two new techniqiés and L FP for computing interaction invari-
ants for a composite component described within the BIP éwmonk. The concept of interaction invariant
for BIP models was introduced by Bensalem et al.5h [n [5], the authors also propose a global method-
ology, called/MP, for computing such invariants.

The LFP method computes solutions for interaction invariants bsngoting local reachable states
of components from global interactions. TheFP method uses directly the solutions from the separate
application of set of interactions over the same set of corapts.

As we have seen[LFP and LFP work faster and consume less memory tHanP in the case of
acyclic topologies. On the other hand, for cyclic topolagid/P seems to be more efficient.

As a future work, we plan to work on extensions of D-Findet 8feuld be capable to handle systems
with stacks. This would allow us to model recursion. Anotberspective is to combine D-Finder with ex-
isting techniques for computing the set of reachable st#tas infinite-state system (which can be viewed
as a component invariant) that manipulate unbounded dafa[L0]. Finally, we are also considering
extensions of the tool that could handle linear temporétlpgoperties?d].
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