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1 Introduction

The verification of safety properties of infinite-state sys$ (such as device drivers, communi-
cation protocols, control software, etc.) requires the potation of the set of reachable states,
starting with an initial state from a given (possibly infajiset. There are currently two ways of
doing this: (i) compute a finite representation of an ovegrapimation of the set of reachable
states, by applying a widening operator at each step, oatt@mpt to compute precisely the
transitive closure of the transition relation; the set @falgable states is the image of the set of
initial states via the transitive closure. The first apploscguaranteed to terminate, but the ab-
straction usually introduces imprecision that may bluntegfication result. On the other hand,
the second approach, although precise, is not guaranteéedrimate — the problem of verifying
safety properties being, in general, undecidable.

In practice, one usually tries to combine the two approaehnesenefit from the advantages
of both. To this end, it is important to know for which classésransition relations it is possible
to compute the transitive closure precisely and fast — tleioas falling outside these classes
being dealt with using suitable abstractions. To the bestioknowledge, the three main classes
of integer relations for which transitive closures can bepated precisely in finite time are: (1)
difference bounds constraints [/], (2) octagons11, 6], and (3) finite monoid affine transforma-
tions [5, 9]. For these three classes, the transitive closures can beorery defined in Presburger
arithmetic.

The contributions of this paper are two-fold. On the thaoatiside, we show that the three
classes of relations mentioned above are ultimately pieriod. each relatio can be mapped
into an integer matrix\/z such that the sequendé/y: }7° , is periodic. The proof that a se-
guence of matrices is ultimately periodic relies on a regaoln tropical semiring theoryl[7].
This provides shorter proofs to the fact that the transitlesures for these classes can be effec-
tivelly computed, and that they are Presburger definable.

On the practical side, the algorithm introduced in this p&penputes the transitive closure of
difference bounds and octagonal relations up to four orofemsagnitude faster than the original
methods from |, 6], and also scales much better in the number of variables.eXperimental
comparison with the FAST tool] for difference bounds relations shows that large relaion
(> 50 variables), causing FAST to run out of memory, can now be leaay our implementation
in less than 8 seconds, on average. We currently do not haykiaplementation of the finite
monoid affine transformation class, which is needed in ot@eompare our method with tools
like FAST [4], LASH [13], or TReX [2], for this class of relations.

1.0.1 Related Work

Early attempts to apply Model Checking techniques to thefigation of infinite-state systems
consider the problem of accelerating transition relatibpssuccessive under-approximations,
without any guarantee of termination. For systems withgetevariables, the acceleration of
affine relations has been considered primarily in the wofl&nmichini et. al [1], Boigelot [5],
and Finkel and Lerouxd]. Finite monoid affine relations have been first studied bygBtmt [5],
who shows that the finite monoid property is decidable, aadl e transitive closure is Pres-



burger definable in this case. On what concerns non-detesticitransition relations, difference
bounds constraints appear in the context of timed autonetfcation. The transitive closure
of a difference bounds constraint is shown to be Presbusgjarable first by Comon and Jurski
[8]. Their proof was subsequently simplified and extended tarpatric difference bounds con-
straints in []. We also showed that octagonal relations can be accetepageisely, and that the
transitive closure is also Presburger definable The proofs of ultimate periodicity from this
paper are based on some of our previous resujts][ For difference bounds constraints, the
proof from [7] was simplified using a result from tropical semiring thepry].

Roadmap The paper is organized as follows: Sectibgives the definition of ultimately peri-
odic relations, SectioB describes the algorithm for computing transitive closwiesltimately
periodic relations, in general, Sectidndescribes three instances of the algorithm, Sedsion
presents the experimental results, and Sediooncludes. All proofs are deferred to Appendix
??due to reasons of space.

2 Preliminaries

We denote by, N andN, the sets of integers, positive (including zero) and s¥rigtsitive inte-
gers, respectivelly. The first order additive theory of g&es is known as Presburger Arithmetic.
Thetropical semiringis defined afl' = (Z,, min, 4, 00, 0) [17], whereZ., = Z U {oco}, with
the extended arithmetic operations- oo = oo, min(z, o0) = z, for all z € Z, wheremin(z, y)
denotes the minimum between the valuesndy. For two square matriced, B € S™*™, we
define(A + B);; = A;; + By and(A x B);; = min]"(a;, + by;), forall1 < i,7 < m. Let

I € T™™ be the identity matrix, i.el;; = 0 andl,;; = oo, forall1 <i,7 <m, 7 # j.

Definition 1 [17] An infinite sequencés; }7° , € T is calledultimately periodidf:
dK de >0 3)\0, )\1, ceey /\c—l eT. S(k+1)c+i = )\Z + Ske+i

forall k > K andi = 0,1,...,c— 1. The smallest and \y, 1, ..., A._; for which the above
holds are called th@eriodandratesof {s; }° ,, respectivelly.

Example 1 The sequence, = {3k + 1| k=2, 1>2} U {bk+3|k=20+1,1> 2}is
ultimately periodic, withK' = 4, periodc = 2 and rates\y = 3, A; = 5.

A sequence of matricefA,}2, € T™ ™ is said to be ultimately periodic if, for all <
i,j < m, the sequencé(A;);;}7>, is ultimately periodic. A matrixA € T™ ™ is called
ultimately periodic if the sequencgA®}¢° , is ultimately periodic, wherel® = I and A% =
A x AF 1 foranyk > 0. Itis known that, every matrix is ultimately periodic in th@pical
semiring [L7].

If A € T™™ is a square matrix and € T, we define the matriXn - A);; = n - A;;,
forall 1 < i,57 < m. If kis a parameter (typically interpreted oVE), thenT[k| denotes the
set of all terms wheré& may occur, built from the constants and operator®.oFor instance, if
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A, B € T™*™, thenk- A+ B € T[k]™*™ denotes the matrix of termi- A+ B),; = k- A;;+ Bi;,
forall1 <i,j <m.
We have the following characterization of ultimately peimsequences of matrices:

Lemma 1 A sequence of matricgs, };°, € T™*™ is ultimately periodic if and only if:
dK de >0 E'Ao, Al, - ,AC,1 c mxm . A(k+1)c+i = A,L + AkCJrZ'
forall k > Kandi=0,1,...,c— 1.

Proof. According to the definition{ 4;}32, is ultimately periodic if and only if, for each <
i,j < m there existk;;, ¢;; > 0 and\’ € T such that(A(kH)cin)ij =\ + (Akcij""l)ij for all
l=0,1,...,¢c; — 1. Letc be the least common multiple of ail;, further letb;; = ¢;; - K;; for
eachl < i,j < n, b be the maximum of ab,;, b = ¢ - m andletA;,t =0,1,...,c—1bethe

matrix defined as:

ij

The conditionA 4 1)c+; = Ai + Ageys is verified for allk > (%1 andi =0,1,...,c— 1, with the
above definitions.
O

2.1 Ultimately Periodic Relations

Letx = {z1,2,...,2y} be a setof variablesy > 0, and letx’ = {2/, z}, ..., 2y }. Arelation
is an arithmetic formulak(x, x’) with free variablesx U x’. We say that two relation® and R’
are equivalent, denoteld < R’ if under all valuations ok andx’, R is true if and only ifR’ is
true. A relation is calledonsistentf and only if there exist valuations of andx’ under which
it holds. We denote a consistent relatiBrby writing R < false, and an inconsistent relation by
writing R < false.

The composition of two relations is defined A R’ = Jy . R(x,y) A R'(y,x’). LetZ
be the identity relation\,_, 2’ = z. We defineR’ = Z andR" = R""! o R, for anyn > 0.
With these notationsik* = \/;-, R* denotes théransitive closureof R. A relation R is called
w-consistenif R™ is consistent for alkh > 0. For the rest of this section, |& be a class of
relations.

Definition 2 A relation R(x,x’) € R is calledultimately periodidf and only if either:
1. there exists, > 0 such thatR" is inconsistent, or
2. foralli > 0, R' is consistent, and there exists two functions:

e 0 : R — T mapping eacltonsistentelation in R into am x m matrix of T,
for somem > 0, and each inconsistent relation intb.

1A class of relations is usually defined by syntactic condgio
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e p : T — R mapping eachn x m matrix of T into a relation inR, such that
p(c(R)) < R, for each consistent relatioR € R

such that the infinite sequence of matriges ') }°, € T™ ™ is ultimately periodic.

Notice that the first condition of the definition implies thetr’) = L, for all : > 4. If each
relationR € R is ultimately periodic, thefk is called ultimately periodic as well. The following
lemma gives an alternative characterizatioowafonsistent ultimately periodic relations.

Lemma 2 An w-consistent relation? is ultimately periodic if and only if there exigt > 0,
b>0,c>0andAg, Aq,...,A._; € T™ ™ such that the following hold:

1. o(RVH) = A; 4 o(R™*), forall n > K.
2. Rttt o p(n - Ay + o(RPHY), for all n > 0.
foralli =0,1,...,c— 1, wheres andp are the functions from Deg.
Proof. By Lemmal, if R is w-consistent, then it is ultimately periodic if and only if
3K 3> 03Ag, Ay, ..., Aey € TVN  g(REFDETD) = A, 4 o( RFH)
forall k > K andi =0,1,...,c— 1. By induction onk > K, one shows first that
Rbeti oy p(Aik—K + U(RKc—l—i))’ V> K
Letb = Kc. By replacingk — K with £, we obtain

ch+b+i o p<Azk+g(Rb+z))7 Vi > ()

For practical reasons related to the representatioR*ofwe are interested in finding the
symbolic expressio®*, wherek is a parameter (becaug = 3k . R¥). Notice that the second
point of lemma2 can be used to compute the expressitinsymbolically (as a formula over
x, X' and k), assuming that we are given a function, calfrit : T[k]|™*™ — R(k), where
R (k) is the class of all parametric relations overx’ and k. Intuitivelly, 7 is the parametric
counterpart of the function from Def. 2, mapping a matrix of terms ovérinto a parametric
relation R(x, x’, k). Concrete definitions af will be given in Sectior.



3 Computing Transitive Closures of Ultimately Periodic Re-
lations

In this section we give a generic algorithm that computestiidesitive closure of a given ul-
timately periodic relation. The algorithm needs to be instded for a specific clas® of
ultimately periodic relations by providing the mappingsp (Def. 2) and = (the parametric
counterpart op) as discussed in the previous. Next, in Secdipmwe show how this algorithm
can be used for accelerating three classes of relation®refiice bounds, octagons, and finite
monoid affine transformations.

Fig. 1 shows the generic framework for computing transitive alesu The input to the
algorithm is a relationk, and the mappings : R — T™™, p : T™™ — R, and
m : T[k]™™ — R(k). The algorithm is guaranteed to terminateifs ultimately periodic, as
it will be explained in the following.

The main idea of the algorithm is to discover the préfiand periodc of the sequence
{o(R")}2, — cf. the second point of lemm2 If R is ultimately periodic, such values are
guaranteed to exist. The dove-tailing enumeration on linesd 2 is guaranteed to yield the
smallest valuesb, c) for which the sequence is shown to be periodic.

Second, the algorithm attempts to compute the first rateeo$diguence (line 6), by compar-
ing the matricesr(R?), o(R°*?) ando(R* ™). If the differenceA betweens(R<t?) ando(R?)
equals the difference betweenR?**) ando (R*?), thenA is a valid candidate for the first rate
of the progression (see lemra Notice that the consistency check on line 4 is needed torens
that we applyo to consistent relations — otherwise, the relation isum@onsistent, and the al-
gorithm returns directly the transitive closure, i.e. theté disjun(:tion\/i.ﬁ)”’_1 R,0<k<2
(line 4).

Once a candidata for the initial rate was found, the te§}; on line 7 is used to check that
R is ultimately periodic and-consistent. Notice that the characterization of ultityaperiodic
relations from lemma& cannot be applied here, siné® is not known in general, for arbitrary
n > 0. The condition used here is local, i.e. it needs only thetieak’, for a typically small
constand > 0. The next lemma establishes the correctness of the cnteged byQ; :

Lemma 3 Anw-consistent relatior is ultimately periodic if and only if
3b3e> 030, Ay, Aey €T™™ p(n- A +0(RV)) o RE = p((n+1) - A + o(RMY))

foralln > 0andi = 0,1,...,c— 1, wherec and p are the functions from Def2. Moreover,
Ao, Ay, ..., A._; satisfy the equivalences of Lemia

Proof “="If R isw-consistent and ultimately periodic, by Lemrathere exisb > 0, ¢ > 0
andAg, Ay, ..., A1 € T™ such that

ch-i—b—l—i @p(Aik—}-O’(Rb—H))
forallk > 0and: =0,1,...,c— 1. We have:

R(kz+1)c+b+i = Rk’c+b+i o R¢
p(A T+ o(R) & p(Af + a(R")) o R
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“«<" We prove the equivalent condition of Lemr@dy induction onk > 0. The base case= 0
is immediate. The induction step is as follows:

R(k+1)c+b+i = ch+b+i o R¢
& p(AF + o(R) o R, by the induction hypothesis
P p(Ai’ﬁLl + O(Rbﬂ'))

The universal querg; on line 7 is in general handled by procedures that are spéaifie
class of relationgk we work with. Notice furthermore tha®; can be handled symbolically by
checking the validity of the first order formulslk . 7(k-A+c(R))oR¢ < 7((k+1)-A+o(R?)),
wherer is the parametric counterpart pf Next, in Sectiord, we detail two ways in which
this test can be performed efficiently (for difference baaiathd octagonal relations), without
resorting to external proof engines, such as SMT or Presbsigvers.

1. foreachh:=0,1,2,...do

2. foreachc:=0,1,...,bdo

3. foreacht :=0,1,2 do

4. if Rkt < false therreturnR* = \/¥/" " R’

5. endfor

6. if existsA € T™* ™ : g(RtY) = A + o(R®) ando(R*t?) = A + o(R°™) then

7. ifforalln > 0:p(n-A+0o(R"))oR° < p((n+1)-A+o(R)) « false(Q,) then
8. returnR* = \/'_) R Vv 3k > 0. \/ ) w(k- A+ o(R)) o R

9. elseif existsn > 0: p(n - A+ o(Rb)) o R¢ < false(Qs) then

10. letng = min{n | p(n - A + o(RP)) o R® & false}

11. itforall n € [0,n9 — 1] : p(n - A+ o(R")) o R* & p((n +1) - A + o(R")) then
12. retunR* = /') R v /" Ve pn - A+ o(RY)) o R

13. endif

14. endif

15. endfor

16. endfor

Figure 1: Transitive Closure Algorithm

If the universal query on line 7 holds, the ratecan be used now to express the transitive
closure (line 8) as a finite disjunction over the preﬂ/@é RY) followed by a formula defining
an arbitrary number of iteration@k . \/_) 7(k - A + o(R")) o R?). Note that the formula
on line 8 defines indeed the transitive closurelpfas a consequence of lemra Moreover,
this is a formula of Presburger arithmetic, provided thatc¢lasses of relatior® andR (k) are
Presburger definable.



Otherwise, ifQ; does not hold, there are two possibilities: eithe\(is actually not the first
rate of the sequender(R")}3°, for givenb > 0 andc > 0, or (ii) the relation is nots-consistent.
In the first case, we need to reiterate with another prefiiegdgrair, which will give us another
candidate\.

In the second cas&™ becomes inconsistent, for some> 0 — in this case the computation
of its transitive closure is possible, in principle, by tadsithe disjunction of all powers at up
to m. However, in practice this may take a long timepifis large. In order to speed up the
computation, we check whether:

e p(n-A+o(RP))o R¢isinconsistent (line 9); the existential quedy (and namely finding
the smallest value for which it holds) is dealt with in Seot specifically for the classes
of difference bounds and octagonal relations.

e R is periodic with first rate\ betweer) andn, — 1 (line 11), wheren, is the smallest
satisfying the first point (line 10).

If both conditions above hold, then = (n,+1)c+0bis the smallest value for whicR™ becomes
inconsistent, and moreovek, is periodic with rateA between) andm. If this is the case, we
compute the transitive closure using the periodnd return (line 12). The following theorem
can be proved along the lines of the discussion above:

Theorem 1 If R is an ultimately periodic relation, the algorithm in Fid.eventually terminates
and returns the transitive closure &f.

4 Some Ultimately Periodic Classes of Arithmetic Relations

This section is dedicated to the application of the travesitiosure computation algorithm from
the previous section (Figl) to three classes of arithmetic relations, for which thegitve
closure is Presburger-definable: difference bounds oglgfr], octagonal relations], and finite
monoid affine transformation$].

In order to apply the transitive closure computation metlooe needs to address two issues.
First, the class of relations considered needs to be prolmdately periodic (for else, our al-
gorithm is not guaranteed to terminate). The proofs relytipmas the fact that any matrid is
ultimately periodic inT [12] (see Sectior? for the definition of ultimately periodic matrices).

Second, the queriad; andQ; (Fig. 1) need to be answered efficiently, by avoiding excessive
calls to external decision procedures. In theory, all tiipgeries can be expressed in Presburger
arithmetic, for the classes of difference constraintsagens and affine transformations, yet in
practice we would like to avoid as much as possible usinglirger solvers, due to reasons
of high complexity. For the classes of difference bounds @stdgons, we give direct decision
methods for handling these queries. The class of affineforanations without guards can also
be dealt with by simply checking equivalence between Diofiha systems, whereas the general
case still needs to be handled by a Presburger solver.



4.1 Difference Constraints

Letx = {z1, s, ..., x5} be a set of variables ranging ovér

Definition 3 A formula¢(x) is a difference bounds constraiiftit is equivalent to a finite con-
junction of atomic propositions of the form — z; < a,;, 1 <1i,5 < N, # j, wherea;; € Z.

For exampler = y + 5 is a difference bounds constraint, as it is equivalent te y <
5 N y—x < —b5. Let Ry denote the class of difference bound relations. Differdmmends
constraints are alternatively represented as matricegjaivalently, weighted graphs.

Given a difference bounds constrainta difference bounds matrigDBM) representing is
amatrixMy € TV*N such tha{My),; = a;j, if z; — z; < a;; is an atomic proposition i, and
oo, otherwise. Dually, if\/ € TV*V is a DBM, the corresponding difference bounds constraint
is AM = /\Mij<oo Ty — &y < Mz]

A DBM M is said to be consistent if and only if its corresponding ¢@st p,, is consistent.
An elementary patin a DBM M is a sequence of indicés< iy, s, ...,i; < N, wherei; ;1
are pairwise distinct, such that; ; , < oo, forall1 < j < k. An elementary path is called
anelementary cycl@ moreoveri; = i,. An elementary cycle is said to Istrictly negativef
Z;‘f;ll M;;,,, < 0. ADBM M is inconsistent if and only if it has a strictly negative etartary
cycle — a proof can be found in.f]. The next definition gives a canonical form for consistent
DBMs.

Definition 4 A consistent DBM\/ € TV*V is said to beclosedif and only if M;; = 0 and
M;; < M, + My, forall 1 <4,j5,k < N.

Given a consistent DBMV/, we denote byl/* the (unique) closed DBM such that,, <
o+ Itis well-known that, ifM is consistent, thed/* is unique, and can be computed frdh
in time O(N?), by the classical Floyd-Warshall algorithm. Moreovet}ifis a consistent DBM,
we have, for alll <i,j < N:

k—1
M;; = min {Z My, i =1g...ix_1 = j iS an elementary path iM} (1)
=0

The closed form of DBMs is needed for the elimination of exisisdly quantified variables —
if ¢ is a difference bounds constraint, thén . ¢ is also a difference bounds constraifi]|.
Consequently, we have that the class of difference boundtiaes$ is closed under relational
composition:R; (x,x') o Re(x,x') = Jy . Ri(x,¥) A Ry(y,x').

4.1.1 Difference Bounds Relations are Ultimately Periodic

Given a consistent difference bounds relatidix, x') € Ra, leto(R) = My € T?V*2N pe the
characteristic DBM ofR, and for anyM € T*V*2N 'let p(M) = Ay € Ra be the difference
bounds relation corresponding ib Clearly,p(c(R)) < R, as required by Def2.



With these definitions, the algorithm in Figywill return the transitive closure of a difference
bounds relation?, provided that the sequende(R*)}5°, is ultimately periodic. IfR is not
w-consistent then, by Def2, it is ultimately periodic. We consider henceforth thatis w-
consistent, i.es(R') = Mp:, foralli > 0.

For a difference bounds relatia®, we define the directed gragh;, whose set of vertices is
the setx U x’, and in which there is an edge framto z; labeledq;; if and only if the atomic
propositionz; — z; < «;; occurs inR. Clearly, My, is the incidence matrix of z.

Next, we define the concatenation@f with itself as the disjoint union of two copies 6f;,
in which thex’ vertices of the second copy overlap with theertices of the first copy. TheR™
corresponds to the graj;, obtained by concatenating the graph/oto itselfm > 0 times.
SinceR is closed under relational composition, theft € R 4, and moreover we have:

Nicijeny @i —x; <min{a] — a2} A 2} —2f <min{z]® — 27"} A

r; — o < min{z] — 27"} A 2} — z; <minfz]* — 29}

wheremin{z] — z{} is the minimal weight of all paths between the extremal zesi’; and

zfin Gg, for p,q € {0,m}. In other words, we have the equalities from Fig.(a), for all
1<4,j<N.

(Mpm)i; = min{z} — 27} min{z) = 29} = (ME?)1 @0 Ey )
(Mpm)izngen = min{zf* =27} min{a]" =27} = (ME?)1L, @0 F0))
(Mpm)ijon = min{a) =27}y min{a) =27} = (ME)1 @0
(Mgm)irny; = min{a]" =2} min{a]" =29} = (ME?) 10,0000
(a) (0)
Figure 2

As proved in [], the paths betweer{’ andz§, for arbitraryl <4, j < N andp, g € {0, m},
can be seen as words (over a finite alphabet of subgragfi$)atecognized by a finite weighted
automaton of size up t&". For the sake of completeness, its definition follows.

Definition of Zigzag Automata Letx = {xy,...,zy} be a set of variables. In the following,
we will work with a more convenient (yet equivalent) form affedrence bounds relations: all
constraints of the form — y < « are replaced by — ¢’ < a A ' —y < 0, and all constraints of
the formz’—y' < aarereplaced by’ —t < a A t—y’ < 0, by introducing fresh variablgs#Z x.
In other words, we can assume without loss of generalityttteatonstraint graph corresponding
to R (Gg) is bipartite, i.e. it does only contain edges fraxandx’ and viceversa. We denote the
m-times composition oz with itself asG}}, and the-th step nodes a7, for 0 < 7 < m, with
x',

Intuitively, a pathr between, say® andx™, with 2,y € x is represented by a word of

lengthm, as follows: thew; symbol representsimultaneouslall edges ofr that involve only
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nodes fromx’ U x'*!, 0 < i < m. Since we assumed th@f; is bipartite, it is easy to see that,
for a path fromz° to 4™, coded by a wordv, the number of times the; symbol is traversed by
the path is odd, whereas for a path frafhto 4/°, or fromz™ to y™, this number is even. Hence
the names oévenandodd automata

Given a difference bound relatidi, theeven alphabetf R, denoted a&’¢,, is the set of all
graphs satisfying the following conditions, for eaGhe X¢;:

1. the set of nodes @ is x U x/,

2. foranyz,y € xUxX/, there is an edge labeledfrom x to y, only if z — y < « occurs inp.
3. the in-degree and out-degree of each node are at most one.

4. the number of edges fromto x’ equals the number of edges frothto x.

Theodd alphabebdf R, denoted by-9,, is defined in the same way, with the exception of the last
condition:

4. the difference between the number of edges froimx’ and the number of edges from
tox is either 1 or—1.

LetXr = X% UX%. Notice that, the number of edges in all symbolsgfis even, while the
number of edges in all symbols Bf, is odd. The label of is the sum of the weights that occur
on its edges. Clearly, the weight of a path thro@ighis the weight of the word it is represented
by. We denote by (w) the weight of a wordv € ¥ z*.

We are now ready for the definition of automata recongizingdsahat represent encodings
of paths fromG}}. Theeven automatonecognizes paths that start and end on the same side of
Gy i.e., either paths from? to 2, or from z* to z7*, for somel < i,j < N, respectively.

We call the first type of automatarward even automata, and the second taekwardeven
automata. Thedd automataecognize paths from one side Gf; to another. The automata
recognizing paths from? to z" are calledorward odd automata, whereas the ones recognizing
paths fromz}" to 2 are calledbackwardodd automata. The even and odd automata share the
same transition table, whereas the input alphabéifidor the former, and:¢, for the latter.
More precisely, we define the common transition tablé’as- (Q, A), where:

Q={lr,Ir,rl, L} U {I,(z) |z €x} U {F.(2) | v € x},e € {of,0ob, ef,eb}, and

A=2UA | ATuaguay uAY)
1<i,j<N
We now define transition sets,, A;, AT/, A, AYY A%, There is a transitiorq; . .. q) N

(¢1,....qy)in A, if and only if the following conditions hold, for all <i < N:
e ¢; = [ iff G has one edge whose destinationjsand no other edge involving.

e ¢ = liff G has one edge whose sourcejsand no other edge involving.
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e ¢; = riff G has one edge whose source:jsand no other edge involving.
e ¢, = riff G has one edge whose destination/isand no other edge involving.

e ¢, = lr iff G has exactly two edges involving, one havingr; as source, and another as
destination.

e ¢, = rliff G has exactly two edges involving, one having:; as source, and another as
destination.

e ¢, € {lr, L} iff G has no edge involving;.
e ¢; € {rl, L} iff G has no edge involving;.
Let even be a function{l, r,ir,rl, L} — {T, L} defined as follows

(¢1,...,qn) — T if {ie{l,....,N}|g =1org; =7} mod2=0
(¢, qnv) — L otherwise

Then we can defing,

A =Aq Rz, qlqe{l,rlrrl, L}N andeven(q) = T}

Finally, we defineA%/, A¢t, A%/

b
o A7 A andAYy.

ef {Ief(£2)_>q|q12T1QJ:landqhe{ZTJJ-}l]-ShSN!hg{Zh]}} |f’l%j
Ay = {Ief(xi) > q| g =q; =1lrandg, € {Ir, L}, 1 <h < N,h#i} otherwise

U g = Foplzy) [ q € {rl, L}V}

, {¢— Fo(x;)|gi=1qgg=randg, € {lr, L}, 1 <h < N,h&{i,j}} ifi#j
Ay = {¢—= Fo(z;) | ¢ =q; =1lrandg, € {ir, L}, 1 <h < N,h #i} otherwise

U {Zes(z5) = q | q e {rl, L}}

Afjf =  {ly(z;)) 2 qlg=randg, € {lr,L},1 <h < N,h#i}
U{q— Fos(z;) | ¢y =randg, € {rl, L}, 1 <h < N,h#j}

Af]b =  {Iup(x;) = q|lqg=1landg, € {lr, L}, 1 <h<N,h+#1i}
U{a — Fo(z;) | g =landg, € {rl, L}, 1 < h < N, h # j}

11



With the above definitions, we can define the even forward) eaekward, odd forward, and
odd backward automata.

Let My be the incidence matrix dfy. By the construction oM i, for each variable: € x,
there are eight indices, denotedlgg(), Loy (), Icf(x), Iep(x),
Fop(x), Fyp(x), Fop(x), Fap(x) € {1,...,5" + 8N}, such that all relations from Fig (b) hold,
forall 1 < 4,5 < N. Intuitivelly, all paths fromz! to x? are recognized by the automatﬂ[f;f,

paths fromz" to =" by A¢?, paths fromz) to =" by A;’Jf , and paths from;” to = by A?). Itis
easy to see (as an immediate consequence of the interpnatéthe matrix product iff') that, for
anym > 0, the matrix M2 gives the minimal weight among all paths, of length, between
z; andzf, foranyl <i,j < N andp,q € {0,m}. But the sequenc@M7 }>°_ is ultimately
periodic, since every matrix is ultimately periodicTn12]. By equating the relations from Fig.
2 (a) with the ones from Fig2 (b), we obtain that the sequente(R™)}5°_, = {Mgrm}5°_, IS
ultimately periodic as well.

In conclusion, the algorithm from Fid. will terminate on difference bounds relations. More-
over, the result is formula in Presburger arithmetic. Ths® aimplifies the proof that transitive
closures of difference bounds relations are Presburgemat#é, from [], since the minimal
paths of lengthn within the weighted automaton recognizing the pathgpfcorrespond in fact
to elements of then-th power of M ; (the incidence matrix of the automaton)Tn

4.1.2 Checkingw-Consistency and Inconsistency of Difference Bounds Relatns

For a difference bounds relatidi(x, x') € R4, and a matrixA € T2V*2N we give methods to

decide the querie®; and Q, (lines 7 and 9 in Figl) efficiently. To this end, we consider the
class of parametric difference bounds relations. From noviedk ¢ x be a variable interpreted
overN,.

Definition 5 A formula¢(x, k) is a parametric difference bounds constrainit is equivalent
to a finite conjunction of atomic propositions of the form— z; < a;; - k + b;;, for some
1 <i,j < N,i# j, wherea;;,b;; € Z.

The class of parametric difference bounds relations witlapaterk is denoted a4, (k).
A parametric difference bounds constragift:) can be represented by a matfix,[k] of linear
terms, wheréM,[k]);; = a;;-k+b;; if x;—x; < a;;-k+b;; occurs ing, andoo otherwise. Dually,
a matrixM [k] of linear terms corresponds to the formilg, (k) = Pk 00 Ti— T < M{E];;.

2The offset of 2 is needed due to use of the special initial aral fransitions.
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With these considerations, we defin@\/[k]) = Ay (k). Clearly, we haver(k - A + o(R?)) €
Rdb(k‘), forR € Rap, b >0 andA e T2Vx2N,

Parametric DBMs do not have a closed form, since in generalptimimum of two linear
terms ink (for all valuations ofk) cannot be expressed again as a linear term. According to
(1), one can define the closed form of a parametric DBM as a matrberms of the form
min{a; - k + b;}/",, for somea;,b; € Z andm > 0. Then the queryQ; can be written as a
conjunction of formulae of the forrdk > 0. min{a; - k + b;}", = ao - k + by. The following
lemma gives a way to decide the validity of such formulae:

Lemma 4 Givenl, agy,a, ..., an, by, by, ..., b, € Z, the following are equivalent:
1. Vk > (. min{a; - k+ b} = ao -k + by

2. \/Zl(ai:ao/\bi:bo) A /\Tzl(aoSCLjACLQ‘€+b0§aj'£+bj)

Proof. We assume w.l.0.g. that all terms- k& + b;, i = 1, ..., m are distinct.

“1 = 2" For infinitely manyk > K we havemin{a; - k + b;}", = ao - k + by. Since the
set of terms{a; - k + b;}", is finite, there exist¢; < ky, and some = 1,...,m such that
a; - k1 +b; = ag - k1 + by anda; - ke + b; = ag - ko + bg. HeNnce we have:

(ai—ao)-k‘l = bo—bi
(ai—a0)~k‘2 = bo—bz

and the only possibility is whem; = ay andb; = by. For the second part, we hawg- k + by <
a; - k+0b;, forall k > K, therefore:

e ap- K +by<a;- K+ Db (the casé = K)

e by — b, < (a; —ag) - k, for all k > K, thereforea; — ap > 0 (the term(a; — ao) - k is
bounded from below, hence it cannot decrease infinitelynpfte

“2=1"SinceV’, a; = ap A\ b; = by, we haveuy - k + by € {a; - k+ b;}]",, forallk > K. By
apg < a; Nag- K +by < a;- K+ b; weobtainag - k + by < a; - k+b;, forall k > K. Therefore
min{a; - k+ b;}", = ao -k + by, forall k > K.

O

In analogy to the non-parametric case, the inconsisteneypaframetric difference bounds
constrainty(k) amounts to the existence of a strictly negative elementgeiedn M, k], for
some valuatiork € N,. We are also interested in finding the smallest value for Wwisiech a
cycle exists. The following lemma gives this value.

Lemma5 Let¢(x, k) be a parametric difference bounds constraint avg|%| be its associated
matrix. For someu;;, by; € Z, let{a;; - k + bi;}7%,, i = 1,...,2N be the set of terms denoting
weights of elementary cycles going througfTheng¢ is inconsistent for soméc N andk > ¢

if and only if there existd < ¢ < 2N and1 < j < m, such that either (i)a;; < 0 or
(i) a;; > 0 Aa; - €+ b; < 0 holds. Moreover, the smallest value for whighbecomes
inconsistent ianin?®, {min/, ~;;}, wherey;; = max(¢, L—%J +1),ifa; <0, =4¢Iif
a; >0 A a;;-{+b;; <0, andvy;; = oo, otherwise. ’

13



Proof. ¢ is inconsistent iff there exists > K such that,; - k£ + b;; < 0, for somel < ¢ < 2n
andl < j < m,. If a;; < 0, thenk > —2%4, hencek > |—2| + 1. Sincek > K, we have
1] )

ko = max(K, [~ 21| + 1). Else, ifa;; > 0 anda;; - K +b;; > 0, we haveu,; - k+b;; > 0, for all
k > K, contradiction. The only remaining casenis > 0 A a;; - K + b;; < 0, where we chose
ko = K.

O

4.2 Octagons

Letx = {z1, 9, ..., x5} be a set of variables ranging ovér

Definition 6 A formula¢(x) is anoctagonal constrairit it is equivalent to a finite conjunction
of terms of the forrn:i:flj'i + T < Qg 20; < bi, or —2x; < ¢, Whereaij,bi,c,- € Z and
1<i,j<N,i#j.

The class of octagonal relations is denoteddy; in the following. We represent octagons as
difference bounds constraints over the set of variaples{y, y», . . ., yan }, With the convention
thatys;_, stands forr; andys,; for —x;, respectively. For example, the octagonal constraint
x9 = 3isrepresented ag—y, < 3Ay,—y3 < —3. To handle the variables in the following, we
definezr = i—1, if i iseven, and = i+1 if 7 is odd. Obviously, we have= i, foralli € Z, i > 0.
We denote bys the difference bounds formuldy, /=1, ya/ — 21, . .., Yon—1/Tn, Yon/ — T,,] OVEr
y. The following equivalence relatesand¢ :

N
A(x) & (G2, yas- - ton - O A [\ vaica + v2i = 0)[1/y1, . T /yan 1] (2)
=1
An octagonal constraint s equivalently represented by the DBM; € T2Vx2N corresponding

to ¢. We say that a DBMV/ € T?N*2V s coherentiff Af;; = M;, forall 1 < i,j < 2N. This
property is needed since any atomic proposition- z; < a, in ¢ can be represented as both
Yoio1 — Yoj—1 < aandyy; — yy < a, 1 < 4,5 < N. Dually, a coherent DBMV/ € T?V*2N
corresponds to the octagonal constraint:

/\ (i —xj < Mgy 91 N+ x5 < Mayq9; N —x; — x5 < Ma;ii-1) (3)
1<i,j<N

A coherent DBMM is said to beoctagonal-consistent and only if €2, is consistent.

Definition 7 An octagonal-consistent coherent DBW € T?V*2¥ is said to betightly closedif
and only if the following hold:

3. My, + My, Y1 <, j, k < 2N
2. Myiseven V1l <i<2N 4.

M) 4 |2 i< j < 2N

M;; <
M <[5
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The following theorem from3] provides an effective way of testing consistency and com-
puting the tight closure of a coherent DBM. Moreover, it sholat the tight closure of a given
DBM is unique and can also be computed in tideN3).

Theorem 2 [3] Let M € T?V*2N pe a coherent DBM. Thef/ is octagonal-consistent if and
only if M is consistent and % | + [%2] > 0, forall 1 < i < 2N. Moreover, the tight

closure ofM is the DBMM" € T*V**V defined asV/{; = min {M;}, VéJ + L%J } for all
1 <i,5 <2N,whereM* € T?V*2N s the closure of\/.

The tight closure of an octagonal constraint is needed ftential quantifier elimination,
and ultimately, for proving that the class of octagonaltiefes is closed under compositiof] |

4.2.1 Octagonal Relations are Ultimately Periodic

Given a consistent octagonal relatifix, x’) let o(R) = M. Dually, for any coherent DBM
M € TV>4N et p(M) = Q. Clearly,p(c(R)) < R, as required by Def2.

In order to prove that the clagg,.; of octagonal relations is ultimately periodic, we need to
prove that the sequende (R™)}°°_, is ultimately periodic, for an arbitrary relatioR € R ..
It is sufficient to consider only the case wheReis w-consistent, hence(R™) = Mz, for
all m > 0. We rely in the following on the main result ob]f which establishes a relation
betweenMy (the octagonal DBM corresponding to theth iteration of R) and Mz~ (the
DBM corresponding to the:-th iteration of R € R ), for m > 0:

(Ma);; = min {(Mﬁm)ij, VMF;’”J + VM@’")%J } Jforall1 <i,j <4N (%)
This relation is in fact a generalization of the tight clasw@xpression from theore from
m = 1toanym > 0.

In Section4.1it was shown that difference bounds relations are ultinggtetiodic. In par-
ticular, this means that the sequeddd;~ }7°_,, corresponding to the iteration of the difference
bounds relation?, is ultimately periodic. To prove that the sequerdd==}°_, is also ulti-
mately periodic, it is sufficient to show that: the minimundahe sum of two ultimately peri-
odic sequences are ultimately periodic, and also that tiegen half of an ultimately periodic
sequence is also ultimately periodic.

Lemma 6 Let{s,,}>>_, and{t,,}5>>_, be two ultimately periodic sequences. Then the sequences
{min (s, tm) Yoo, {Sm + tm }oe_g @nd { | 3| }*°_ are ultimately periodic as well.

Proof. For the sequencesnin(s,,, t,,)}oo_, and{s,, + t,, }>°_, we assume w.l.0.g. that the two

sequences$s,, }oo_, and{t,, }>°_, are ultimately periodic starting at the same indéxhave the
same period and rateskff), o )\f;)l respectively)\ét), o Agt,)l.

We can show that the sum sequeHeg, + ¢,,}>°_, is periodic as well starting ak’, with
periodc and rates\és) + )\((f), s Aff,)l + )\Ql. In fact, for everyk > K andi = 0,...,.c — 1 we
have successively:
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(5 + ) (ktt)eri = S(ht1)etri + Llht1)ers (4)

= A e + A e (5)
= A+ A+ spes o+ thors ©)
= A+ A) + (s + kesi (7)

Similarly, for the min sequencnin(s,,, t.,) }7°_, consider the point&h;);—o .1 defined by
)\gt)_)\g.g

(
{M—‘ it A\ < A\ andty,; < sk

o (—1 it A0 < A andsycy, < e ®)

L 0 otherwise

It can be shown that, for each= 0, ..., ¢ — 1 precisely one of the following assertions hold:
1O < AP or A = AP andsgers < trers) andvk > K + by spes < tress
2. O < AP or AY = A andtyers < ske) andvk > K 4 by s < Speps

Intuitively, starting from the positiok” + b;, on every period:;, the minimum amongst the
two sequences is always defined by the same sequence i.endh®ving the minimal rate on
indexi, or if the rates are equal, the one having the smaller stpvafue.

We can show now that the min sequenein(s,,,t,)}_, is periodic starting aty +

max’_4 b;, with periodc and rateSnin()\((f), )\((f)), o min(/\gs_)l, )@1). That is, we have succes-

sively, for everyk > K + max‘_; b; andi = 0, ..., ¢ — 1, and whenever satisfies the condition
(1) above (the case wheérsatisfies the condition (2) being similar):

mins, t)(x1)eri = MIN(S(ky1)etis Lkt1)eri)
S(k+1)cti
= /\Es) + Sketi
min()\gs), )\Et)) + min(Skers, thers)

= min()\(s) )\(t)) + min(s, t) pers

i 7Y

For the sequenc| %z |} ~_ , assume that the sequen(eg, }55_, is ultimately periodic start-
ing at i, with periodc and rates\, ..., \._;. It can be easily shown that the sequené&g] is
ultimately perdiodic as well starting &f, with period2c, and rates\g, ..., Ac_1, A, ..oy Ae_1.
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We have successively for aky> K, and foranyi =0, ...,c — 1:

3(k+1)2c+iJ_ 2Xi + Skocti — )\ rkacﬂj
{ 2 _{ 2 T

Similarly, for anyk > K and for anyi = 0, ...,c — 1 we have

S(k+1)20+c+iJ _ 2Xi + Sk2cyeti Y Lsk-2c+c+iJ
{ 2 { 2 T

Together with the above relatior)( lemma6 proves thafR ,.; is ultimately periodic.

4.2.2 Checkingw-Consistency and Inconsistency of Octagonal Relations

This section describes an efficient method of deciding trerigaQ; and Q. (lines 7 and 9 in
Fig. 1) for the class of octagonal relations. In order to deal whigsse queries symbolically,we
need to consider first the clags,.;(k) of octagonal relations with parameterin the rest of this
section, let ¢ x be a variable ranging oveé¥, .

Definition 8 Then a formulay(x, z) is a parametric octagonal constraifit is equivalent to a
finite conjunction of terms of the fortaw; £x; < a;;-k+b;;, 22, < ¢;-k+d;, or —2z; < c-k+d;,
Whereaij, bw‘, ¢, d;, C;, d,z € Zandl < 1,7 <N, 1 7é 7.

A parametric octagom(x, k) is represented by a matrik/;[k]T[k]*"**" of linear terms
overk, and viceversa, a matrix/ [k] € T[k]*V*2N corresponds to a parametric octagopn (k).
We definer (M [k]) = Qu (k). As in the case of difference bounds constraints, one reotheat
(k- A+ 0(R") € Rowr(k), for R € Roer, b > 0@andA € TAV*4N,

The composition of parametric octagonal relations (frog €;) requires the computation
of the tight closure in the presence of parameters. Accgrttitheoren®, the parametric tight
closure can be expressed as a matrix of elements of the farfit;(k)}™,, wheret;(k) are
either: (i) linear terms, i.et;(k) = a; - k + b;, or (ii) sums of halved linear terms, i.&,(k) =
|-@z"k2+biJ + |-Ci‘k2+diJ_

The main idea is to split a halved linear term of the fard2 |, & > 0 into two linear terms
a-k+ ng anda -k + L”*T“J, corresponding to the caseskof- 0 being even or odd, respectivelly.
This is justified by the following equivalence:

{152 | k>0t ={a-k+[3] [ k>0} U {a-k+[%5] |k >0}

Hence, an expression of the fornin{¢;(k)}™, yields two expressionsiin{¢{(k)}",, for even

k, andmin{t?(k)}™,, for oddk, wheret{ andt?, 1 < i < m, are effectively computable linear
terms. With these considerationg; (for octagonal relations) is equivalent to a conjunction of
equalities of the fornvk > 0 . min{t?(k)}, = t3(k), ® € {e,0}. Now we can apply lemma
4 to the right-hand sides of the equivalences above, to givaesft equivalent conditions for
decidingQ;.
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The queryQ, is, according to theorer®, equivalent to finding either (i) a strictly negative
cycle in a parametric octagonal DBM [], or (ii) a pair of indicesl < i,j < 4N, i # j such
that [ 2 | | 245 |~ 0. Considering that the set of terms corresponding to the twesca
above isT = {a; - k + b}, U {| @5t ] 4 |«kth 1P we split each termt € T into two
matching linear terms, and obtain, equivalently:

= {af - k+ BT U {af b+ BHE

Now we can apply Iemm5, and compute the minimal value for Which atetma 1., becomes
negative, i.eng = min]" " min(2v¢,27? — 1), wherey? = max(1, L j +1),ifaf <0, 1if
a? >0 A af + B <0, andco, otherwise, fore € {¢, 0}.

4.3 Finite Monoid Affine Transformations

The class of affine transformations is one of the most gemtaases of deterministic transition
relations involving integer variables. ¥ = (z, ..., zx) is a vector of variables ranging ovér
anaffine transformationms a relation of the form:

T=x=A%x+b A ¢(x) (9)

whereA ¢ ZV*N b € ZV, ¢ is a Presburger formula, amgd stands for the standard matrix
multiplication inZ.

The affine transformation is said to have th@te monoid property5, 9] if the monoid
(Ma, > whereM 4 = {A®Z | i > 0} is finite. In this case, we also say thais finite monoid.
Here A" = Iy and A®" = A @ A®' fori > 0. Intuitivelly, the finite monoid property is
equivalent to the fact that has flnltely many powers (for the standard integer multgilam)
that repeat periodically. It is easy to see thais finite monoid if and only if there exiss > 0
andl > 0 such thatd®” = A®"* je. M, = {AS° .. A®P Aerti-hy

If A is finite monoid, it can be shown that can be defined in Presburger arithmeticq].
We achieve the same result below, by showing that finite ntbaffine transformations are
ultimately periodic relations. As a byproduct, the tramsitclosure of such relations can also
be computed by the algorithm in Fid.

An affine tranformatior?’ (9) can be equivalently written in the homogeneous form:

T=x'y,=A,9x, N ¢n(x,) where AhE( OAO tl) )

wherex, = (z1,...zn,2zn11) With x5, & x being a fresh variable ang, (x;,) = ¢(x) A
xn+1 = 1. In general, thé-th iteration of an affine transformation can be expressed as

TF = x) = 42" @x, A VO< <. on(4n® @ xp) (10)

Notice that, ifx,(f) denotes the initial values of;,, the values ofx; at the/-th iteration are
) = 4,%" @ x\"). Moreover, we need to ensure that all guards up to (and imdyidhe
(k — 1)-th step are satisfied, i.&»h(Ah(@e ®xyp), forall0 < ¢ < k.
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For the rest of the section we fikandb, as in Q). The encoding of a consistent affine trans-
formationT is defined ag (T') = A;, € TWV+UxN+1_ Dually, for someM € T[k]N+Dx N+,
we define:

T(M): 3oy, 2y Xn =M%, ANV0 <L <k.pp(M[l/k] ®xp)

whereM [¢/k] denotes the matri®/ in which each occurrence éfis replaced by. In contrast
with the previous cases (Sectidriand Sectior.2), only M is not sufficient here to recover the
relationm (M) — ¢ needs to be remembered as Vel

With these definitions, we havgT") = A%k, for all k > 0 —as an immediate consequence
of (10). The next lemma proves that the class of finite monoid affedations is ultimately
periodic.

Lemma 7 Given a finite monoid matrixt € ZY*" and a vectorb € Z", the sequence
{A®" 1= is ultimately periodic.

Proof Let A € ZV*N be a matrixb € Z" be a vector, and

- A b
Ah:(o...o 1)
Then we have, for alt > 0:
et = (g | Tl on )
N —

0...0 1

Fori=N+1,1<j<N-+1, {(Afk)ij}go:o is trivially ultimately periodic. Fol <i,7 < N,
{(A®k)”}zo o IS ultimately periodic due to the fact thatis finite monoid. It remains to be proven
that, for alll < j < N, the sequencé(zk ' A®" @ b);}22, is ultimately periodic. W.L.o.g.
assume that the monoid dfis M 4, = {M®0 M®

M®P . MEPTY whereM®P = M Then, fork >pwe have:

Zk 1 M@Z o p;l M®z + Lk—;[)—i—lJ Zp+l 1 M®z + Zp+ ((k—p+1) mod ) M@i
Hence the sequend® ") M’} is ultimately periodic with period and rates
A _ Zp-i—l 1M®z

forallj =0,1,...,1—1.
O

The queriexQ; and Q, (lines 7 and 9 in Fig.1) in the case of finite monoid affine trans-
formations, are expressible in Presburger arithmetic.s&lpgoblems could be simplified in the
case of affine transformatiom@thout guardsi.eT = x’ = Ax + b. The transformation is, in
this casew-consistent. Consequentk, reduces to an equivalence between two homogeneous
systems<’;, = Ay, ® x;, andx’;, = Ay, @ x;. This is true if and only ifd,; = A,;,. The query
Q, becomes trivially false in this case.

3This incurs a slight modification of the algorithm preseriteig. 1.
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Relation new compact canonical
old T speedup old T speedup

do |z-a =DA=9) 018| 07 389 | 38.77 | 21539
& @2 =-DA@ =9) 018 | 1818 | 1010 | 38.77 | 215.39
dy |z—a’=-DAx=y)A(x—2" <5)A(z=2) 1.2 26.5 22.1 33431.2 | 27859.3
d3s |e—a’=-1DAx=y)A(x—2<5)A(z=2) 0.6 32.7 54.5 33505.5| 55841.7
di |z—a’=-1DAxz=y)A(x—2<5)A(z=2) 0.5 702.3 1404.6 | 48913.8| 97827.6
ds (a=aAlb=ad)AGB=b)A(c=0) 18 | 5556.6 | 3087.0 | > 10° >

(a—b<-1DAla—e <-2)A(b—d <-2)

ANb—c <D A(c=b <=2)A(c—d <-1)

ANd—c <-2)A(d—€e <—-1Ae—a < -1
ds /\Ee—d'S—Q%/\ga’—b§4)/\(a’—c§3)) 56 | >10° o0 > 10° o0

ANV —c<AANY —d<3)A(d—d <4 N(d—e<3)

ANd'—a <3ANd —e<A)A(/—a<4)A(e—b<3)
01 (z+2"=1) 0.21 0.91 4.33 0.91 4.33
2 ety < -DA(y—7 <2 029 085 2.93 0.84 2.9
03 |e<zA(z+y <-1)A(—y—z’ <-2) 0.32 0.93 2.91 0.94 2.94
o [Zry<HA(ct < -DA(—y+y <-3) 021| 367 | 1748 | 1352 | 6438
o5 @ty <DA(—z<0)A(—y<0) 12 | 200509 16709.1 | > 10° )

(@>0)Aly=0)A (@ >0)A(y >0)
o6 Nrx+y<DA@E +y <DA(x—1<2a’) 25 | > 108 00 > 108 )

Ne' <z+DAW-1<y)A@Y <y+1)

Table 1: Comparison with older algorithms on difference lsuand octagons. Times are in
milliseconds.

5 Experimental Results

We have implemented the transitive closure algorithm frogn Ewithin the FLATA toolset [L(],
a framework we develop for the analysis of counter systems cWvhpared the performance of
this algorithm with our older transitive closure computatimethods for difference boundg [
and octagonal relations5]. We currently lack experimental data for finite monoid tielas
(namely, a comparison with existing tools such as FAET ILASH [13] or TReX [2] on this
class), as our implementation of finite monoid affine tramsftion class is still underway.

Tablel shows the results of the comparison between the older gigwidescribed in7, 6]
(denoted a®ld) and the algorithm in Fig.1 for difference bounds relation% ¢ and octag-
onal relationso; _¢. The tests have been performed on botimpact (minimum number of
constraints) andanonical (i.e. closed, for difference bounds and tightly closed,dotagons)
relations. Thespeedupcolumn gives the ratio between té& andnew execution times. The
experiments were performed on a 2.53GHz machine with 2.9GBeoory.

As shown in Tabld, the maximum observed speedup is almostfor difference boundsi
in canonical form) and of the order of four for octagons. Feritelationsl; (canonical form)g
andog the computation using older methods took longer thamsec. It is also worth noticing
that the highest execution time with the new method was ofr&séc.

Table2 compares FLATA with FAST4] on counter systems with one self loop labeled with
a randomly generated deterministic difference boundicglatWe generated 50 such relations
for each sizeNV = 10,15, 20, 25,50, 100. Notice that FAST usually runs out of memory for
more than 25 variables, whereas FLATA can handle 100 vasabl reasonable time (less than
8 seconds on average).
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FLATA FAST
done[ av. [ Er [[done] av. [ Er [ Em [ EB

10 50 [ 15[ O 49 0.6 0 0 1
15 50 1.6 0 31 105 | 17 0 2
20 50 | 16| O 4 34 9 8 29
25 50 [ 16| O 2 4.2 2 10 36
50 50 1.6 0 0 - 0 0 50
100 49 | 7.7 1 0 - 0 0 50
(a) — matrix density 3%
vars FLATA FAST
done [ av. [ Er done[ av. [ Er [ Eym | EB
10 50 [ 15[ O 22 6.9 | 23 1 4
15 50 1.5 0 1 20.6 4 3 42
20 50 1.6 0 0 - 1 0 49
25 43 | 17| 7 0 0 0 50
50 50 2.3 0 0 0 0 50
100 42 | 55| 8 0 - 0 0 50

—(b) — matrix density 10%

Table 2: Comparison with FAST (MONA plugin) on determinigfifference bounds. Times are
in secondsEr —timeout 30 sFz — BDD too large,F,; — out of memory

6 Conclusion

We presented a new, scalable algorithm for computing thesitiree closure of ultimately peri-
odic relations. We show that this algorithm is applicablalifference bounds, octagonal and
finite monoid affine relations, as all three classes are shovioe ultimately periodic. Exper-
imental results show great improvement in the time neederbitopute transitive closures of
difference bounds and octagonal relations.
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