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Abstract

We show how to automatically construct a system that satisfies a given logical specification
and has an optimal average behavior with respect to a specification with fractional costs.
When synthesizing a system from a logical specification, it is often the case that several dif-
ferent systems satisfy the specification. In this case, it is usually not easy for the user to state
formally which system she prefers. Prior work proposed to rank the correct systems by adding
a quantitative aspect to the specification. A desired preference relation can be expressed with
(i) a quantitative language, which is a function assigning a value to every possible behavior
of a system, and (ii) an environment model defining the desired optimization criteria of the
system, e.g., worst-case or average-case optimal.
In this paper, we show how to synthesize a system that is optimal for (i) a quantitative language
given by an automaton with a fractional cost function, and (ii) an environment model given by
a labeled Markov decision process. The objective of the system is to minimize the expected
(fractional) costs. The solution is based on a reduction to Markov Decision Processes with
extended-fractional cost functions which do not require that the costs in the denominator are
strictly positive. We find an optimal strategy for these using a fractional linear program.

Keywords: Quantitative synthesis, MDP, fractional objective

Reviewers:

Notes: The research leading to these results has received funding from the European Community’s Seventh
Framework Programme [FP7] under grant agreement no 257414 (ASCENS).

How to cite this report:

@techreport {TR-2010-19,
title = {Synthesizing Systems with Optimal Average-Case Behavior for Ratio Objectives},
author = {Christian von Essen, Barbara Jobstmann},
institution = {{Verimag} Research Report},
number = {TR-2010-19},
year = {}

}



Synthesizing Systems with Optimal Average-Case Behavior for Ratio ObjectivesChristian von Essen, Barbara Jobstmann

1 Introduction

Quantitative analysis techniques are usually used to measure quantitative properties of systems, such as
timing, performance, or reliability (cf. [BHHK10, HKNP06, BBD+02]). We use quantitative reasoning
in the classically Boolean contexts of verification and synthesis because they allow us to distinguish sys-
tems with respect to “soft constraints” like robustness [BGHJ09] or default behavior [BCHJ09]. This is
particularly helpful in synthesis, where a system is automatically derived from a specification, because
quantitative specifications allow us to guide the synthesis tool towards a desired implementation.

In this paper we show how quantitative specifications based on fractional objectives can be used to guide
the synthesis process. In particular, we present a technique to synthesize a system with an average-case
behavior that satisfies a logical specification and optimizes a quantitative objective given by a fractional
objective.

The synthesis problem can be seen as a game between two players: the system and the environment (the
context in which the system operates). The system has a fixed set of interface variables with a finite domain
to interact with its environment. The variables are partitioned into a set of input and output variables. The
environment can modify the set of input variables. For instance, an input variable can indicate the arrival
of some packet on a router on a given port or the request of a client to use a shared resource. Each
assignment to the input variables is a possible move of the environment in the synthesis game. The system
reacts to the behavior of the environment by changing the value of the output variables. An assignment to
the output variables is called an action of the system and describes a possible move of the system in the
synthesis game. E.g., the system can grant a shared resource to Client C by setting a corresponding output
variable. Environment and system change their variables in turns. In every step, first the system makes
modification to the output variables, then the environment changes the input variables. The sequence of
variable evaluations built up by this interplay is evaluated with respect to a specification. A logical (or
qualitative) specification maps every sequence to 1 or 0, indicating whether the sequence satisfies the
specification or not. For example, a sequence of evaluations in which the system grants a shared resource
to two clients at the same time is mapped to 0 if the specification requires mutual exclusive access to
this resource. The aim of the system in the synthesis game is to satisfy the specification independent of
the choices of the environment. There might be several systems that can achieve this goal for a given
specification. Therefore, Bloem et al. [BCHJ09] proposed to add a quantitative specification in order to
rank the correct systems. A quantitative specification maps every sequence of variable evaluations to a
value indicating how desirable this behavior is. A system can be seen as a set of behaviors. We can
use, for example, the worst or the average value over all behaviors to assign a value to a system. Then
we can ask for a system that optimizes this value, i.e., a system that achieves a better value than another
system. Taking the worst value over the possible behaviors corresponds to assuming that the system is
in an adversary environment. The average value is computed with respect to a probabilistic model of
the environment [CHJS10]. In the average-case synthesis game, the environment player is replaced by a
probabilistic player that is playing according to the probabilistic environment model.

In this paper, we present the first average-case synthesis algorithm for specifications that evaluate a
behavior of the system with respect to the ratio of two cost functions [BCHJ09]. This ratio objective
allows us, e.g., to ask for a system that optimizes the ratio between requests and acknowledgments in
a server-client system. For the average-case analysis, we present a new environment model, which is
based on Markov decision processes and generalizes the one in [CHJS10]. We solve the average-case
synthesis problem with ratio objective by reduction to Markov decision processes with extended-fractional
cost functions, which are fractional cost functions that do not require that the costs in the denominator are
strictly positive. For irreducible Markov Decision Processes with extended-fractional cost functions, we
present a solution based on linear programming. We also extended our algorithm to non-irreducible MDPs
but due to space limitations we only present the irreducible case here. Our implementation can handle
arbitrary (finite-state) MDPs.

Related Work. Researchers have considered a number of formalisms for quantitative specifications [ADMW09,
CCH+05, CdAHS03, CdAF+06, CDH08, dA98, dAHM03, DG07, DKR08, KL07] but most of them (ex-
cept for [BGHJ09]) do not consider long-run ratio objectives. In [BGHJ09], the environment is assumed
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to be adversary, while we assume a probabilistic environment model. Regarding the environment model,
there have been several notions of metrics for probabilistic systems and games proposed in the litera-
ture [dAMRS07, DGJP04]. The metrics measure the distance of two systems with respect to all temporal
properties expressible in a logic, whereas we (like [CHJS10]) uses the quantitative specification to com-
pare systems wrt the property of interest. In contrast to [CHJS10], we use ratio objectives and a more
general environment model. Our environment model is the same as the one used for control and synthe-
sis in the presence of uncertainty (cf. [BGL+04, CY90, BdA95]). However, in this context usually only
qualitative specifications are considered. MDPs with long-run average objectives are well studied. The
books [FV96, Put94] present a detailed analysis of this topic. Cyrus Derman [Der62] studied MDPs with
a fractional objective. This work differs in two aspects from ours: first, Derman requires that the payoff
of the cost function of the denominator is always strictly positive and second, the objective functions used
in [Der62] is already given in terms of the expected cost of the first cost function to the expected cost of the
second cost functions and not in terms of a single trace. Finally, we would like to note that the two choices
we have in a quantitative synthesis problem, namely the choice of the quantitative language and the choice
of environment model are the same two choices that appear in weighted automata and max-plus algebras
(cf. [DKV09, GP97, CG79]).

2 Preliminaries
Words, Qualitative and Quantitative Languages. Given a finite alphabet Σ, a word w = w0w1 . . . is
a finite or infinite sequence of elements of Σ. We use wi to denote the (i+ 1)-th element in the sequence.
If w is finite, then |w| denotes the length of w, otherwise |w| is infinity. We denote the empty word by ε,
i.e., |ε| = 0. We use Σ∗ and Σω to denote the set of finite and infinite words, respectively. Given a finite
word w ∈ Σ∗ and a finite or infinite word v ∈ Σ∗ ∪ Σω , we write wv for the concatenation of w and v. A
qualitative language ϕ is a function ϕ : Σω → B mapping every infinite word to true or false. Intuitively,
a qualitative language partitions the set of words into a set of good and a set of bad traces. A quantitative
language [CDH08] ψ is a function ψ : Σω → R+ ∪ {∞} associating to each infinite word a value from
the extended non-negative reals.

Specifications and automata with cost functions. An automaton is a tupleA = (Σ, Q, q0, δ, F ), where
Σ is a finite alphabet, Q is a finite set of states, q0 ∈ Q is an initial state, δ : Q× Σ→ Q is the transition
function, and F ⊆ Q is a set of safe states. We assume without loss of generality that Q \ F is closed
under δ, i.e., ∀s ∈ Q \ F,∀a ∈ Σ : δ(s, a) ∈ Q \ F . We use δ∗ : S × L∗ → S to denote the closure of δ
over finite words. Formally, given a word w = w0 . . . wn ∈ Σ∗, δ∗ is defined inductively as δ∗(q, ε) = q,
and δ∗(q, w) = δ(δ∗(q, w0 . . . wn−1), wn). We use |A| to denote the size of the automaton.

The run ρ of A on an infinite word w = w0w1w2 · · · ∈ Σω is an infinite sequence of states q0q1q2 . . .
such that q0 is the initial state of A and ∀i ≥ 0 : δ(qi, wi) = qi+1 holds. The run ρ is called accepting
if for all i ≥ 0, qi ∈ F . A word w is accepting if the corresponding run is accepting. The language
of A, denoted by LA, is the qualitative language LA : Σω → B mapping all accepting words to 1 and
non-accepting words to 0, i.e., LA is the characteristic function of the set of all accepting words of A.

Given an automatonA = (Σ, Q, q0, δ, F ), a cost function c : Q×Σ→ N is a function that maps every
transition in A to a non-negative integer. We use automata with cost functions and objective functions to
define quantitative languages (or properties). Intuitively, the objective function tells us how to summarize
the costs along a run. Given an automation A and two cost functions c1, c2, the ratio objective [BGHJ09]
computes the ratio between the costs seen along a run of A on a word w = w0w1w2 · · · ∈ Σω:

R(w) := lim
m→∞

lim inf
l→∞

∑l
i=m c1(δ∗(q0, w0 . . . wi), wi+1)

1 +
∑l
i=m c2(δ∗(q0, w0 . . . wi), wi+1)

(1)

The ratio objective is a generalization of the long-run average objective (also known as mean-payoff ob-
jective, cf. [ZP96]). We use RAc1

c2

to denote the quantitative language defined by A, c1, c2, and the ratio

objective function. If A, c1, or c2 are clear from the context, we drop them.
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Intuitively, R computes the long-run ratio between the costs accumulated along a run. The first limit
allows us to ignore a finite prefix of the run, which ensures that we only consider the long-run behavior.
The 1 in the denominator avoids division by 0, if the accumulated costs are 0 and has not effect if the
accumulated costs are infinite. We need the limit inferior here because the sequence of the limit might not
converge. Imagine a sequence q1q′2q4q′8q16 . . . with c(q) = 0, c2(q) = 1, c1(q′) = 1 and c2(q′) = 0.
Then the value will alternate between 0 and 1 and hence the sequence will not converge. The limit inferior
of this sequence is 0.

Finite-state system and Correctness A finite-state system S = (S,L, s0, A, δ, τ) consists of the au-
tomaton A = (S,L, s0, δ, S), an output (or action) alphabet A, and an output function τ : S → A
assigning to each state of the system a letter from the output alphabet. The alphabet of the automaton L
is called the input alphabet of the system. Given an input word w, the run of the system S on the word w
is simply the run of A on the word w. For every word w over the input alphabet, the system produces a
word over the joint input/output alphabet. We use OS to denote the function mapping input words to the
joint input/output word, i.e, given an input word w = w0w1 · · · ∈ Lω , OS(w) is the sequence of tuples
(l0, a0)(l1, a1) · · · ∈ (L × A)ω such that (i) li = wi for all i ≥ 0, (ii) a0 = τ(s0), and (iii) for all i > 0,
ai = τ(δ∗(s0, w0 . . . wi−1))) holds.

Given a system S with input alphabet L and output alphabet A, and an automaton A with alphabet
Σ = L× A, we say that the system S satisfies the specification A, denoted S |= A, if for all input words,
the joint input/output word produced by the system S is accepted by the automaton A, i.e., ∀w ∈ Lω :
(LA ◦ OS)(w) = 1, where ◦ denotes the function composition operator.

Probability space. We use the standard definitions of probability spaces. A probability space is given by
a tuple P := (Ω,F , µ), where Ω is the set of outcomes or samples, F ⊆ 2Ω is the σ-algebra defining the
set of measurable events, and µ ∈ F → [0, 1] is a probability measure assigning a probability to each event
such that µ(Ω) = 1 and for each countable set E1, E2, · · · ∈ F of events we have µ(

⋃
Ei) =

∑
µ(Ei).

Recall that, since F is a σ-algebra, it satisfies the following three conditions: (i) ∅ ∈ F , (ii) E ∈ F implies
Ω \ E ∈ F for any event E, and (iii) the union of any countable set E1, E2, · · · ∈ F is also in F , i.e.,⋃
Ei ∈ F . Given a measurable function f : F → R ∪ {+∞,−∞}, we use EP [f ] to denote the expected

value of f under µ, i.e.,

EP [f ] =

∫
Ω

f dµ (2)

If P is clear from the context we drop the subscript or replace it with the structure that defines P . The
integral used here is the Lebesgue Integral, which is commonly used to define the expected value of a
random variable. Note that the expected value is always defined if the function f maps only to values in
R+ ∪ {∞}.

Markov chains and Markov decision processes (MDP). Let D(S) := {p : S → [0, 1] |
∑
s∈S p(s) =

1} be the set of probability distributions over a set S.
A Markov decision process is a tupleM = (S, s0, A, Ã, p), where S is a finite set of states, s0 ∈ S

is an initial state, A is the set of actions, Ã : S → 2A is the enabled action function defining for each
state s the set of enabled actions in s, and p : S × A → D(S) is a probabilistic transition function. For
technical convenience we assume that every state has at least one enabled action, i.e., ∀s ∈ S : |Ã(s)| ≥ 1.
If |Ã(s)| = 1 for all states s ∈ S, thenM is called a Markov chain (MC). In this case, we omit A and Ã
from the definition ofM. Given a Markov chainM, we say thatM is irreducible if every state can be
reached from any other.

An L-labeled Markov decision process is a tupleM = (S, s0, A, Ã, p, λ), where (S, s0, A, Ã, p) is a
Markov decision process and λ : S → L is a labeling function such thatM is deterministic with respect
to λ, i.e, ∀s, a, s′, s′′ if p(s, a)(s′) > 0 and p(s, a)(s′′) > 0, then λ(s′) 6= λ(s′). Since we use L-labeled
Markov decision process to represent the behavior of the environment, we require that in every state all
actions are enabled, i.e., ∀s ∈ S : Ã(s) = A.

Verimag Research Report no TR-2010-19 3/13



Christian von Essen, Barbara JobstmannSynthesizing Systems with Optimal Average-Case Behavior for Ratio Objectives

Sample runs and strategies A (sample) run ρ ofM is an infinite sequence of tuples (s0, a0)(s1, a1) · · · ∈
(S × A)ω of states and actions such that for all i ≥ 0, (i) ai ∈ Ã(si) and (ii) p(si, ai)(si+1) > 0. We
use Ω to denote the set of all runs, and Ωs for the set of runs starting at state s. A finite run of M is a
prefix of some infinite run. To avoid confusion, we use v to refer to a finite run. Given a finite run v, the
set γ(v) := {ρ ∈ Ω | ∃ρ′ ∈ Ω : ρ = vρ′} of all possible infinite extensions of v is called the cylinder set
of v. We use the usual extension of γ(·) to sets of finite words.

A strategy is a function π : (S × A)∗S → D(A) that assigns a probability distribution to all finite
sequences in (S×A)∗S. A strategy must refer only to enabled actions, i.e., for all sequencesw ∈ (S×A)∗,
states s ∈ S, and actions a ∈ A, if π(ws)(a) > 0, then action a has to be enabled in s, i.e., a ∈ Ã(s).
Strategies that do not use randomization are called pure. A strategy π is pure if for all finite sequences w ∈
(S×A)∗ and for all states s ∈ S, there is an action a ∈ A such that π(ws)(a) = 1. A memoryless strategy
is independent of the history of the run, i.e., for all w,w′ ∈ (S × A)∗ and for all s ∈ S, π(ws) = π(w′s)
holds. A memoryless strategy can be represented as function π : S → D(A). A strategy is positional if
it is pure and memoryless. In this case, it can be represented by a function π : S → A mapping states
to actions. An MDP M = (S, s0, A, Ã, p) together with a positional strategy π : S → A defines the
Markov chainMπ = (S, s0, A, Ãπ, p), in which only the actions prescribed in the strategy π are enabled,
i.e., Ãπ(s) = {π(s)}. Note that every finite-state system S with input alphabet S and output alphabet A
denotes a strategy forM.

Induced probability space, objective function, and optimal strategies. An MDPM = (S, s0, A, Ã, p)
together with a strategy π and a state s ∈ S induces a probability space PπM,s = (ΩπM,s,FπM,s, µ

π
M,s)

over the cylinder sets of the runs. Hence, ΩπM,s = Sω . The probability measure of a cylinder set is
the probability that the MDP starts from state s and follows the common prefix under the strategy π. By
convention PπM := PπM,s0

. IfM is a Markov chain, then π is fixed (since there is only one available action
in every state), and we simply write PM.

An objective function ofM is a measurable function f : (S × A)ω → R+ ∪ {∞} that maps runs of
M to values in R+ ∪ {∞}. We use EπM,s[f ] to denote the expected value of f wrt the probability space
induced by the MDPM, a strategy π, and a state s.

We are interested in a strategy that has the least expected value for a given state. Given an MDPM and
a state s, a strategy π is called optimal for objective f and state s if EπM,s[f ] = minπ′ Eπ′

M,s[R], where π′

ranges over all possible strategies.
Given an MDPM = (S, s0, A, Ã, p) and two cost function c1 : S ×A→ N and c2 : S ×A→ N, the

ratio or fractional payoff value is the functionR : (S×A)ω → R+ ∪{∞}mapping every run ρ to a value
in R+ ∪ {∞} as follows:

R c1
c2

(ρ) := lim
m→∞

lim inf
l→∞

∑l
i=m c1(ρi)

1 +
∑l
i=m c2(ρi)

(3)

We drop the subscript c1c2 if c1 and c2 are clear from the context.

3 Synthesis with Ratio Objective in Probabilistic Environments
In this section, we first present a variant of the quantitative synthesis problem introduced in [BCHJ09].
Then, we show how to solve the synthesis problem with a safety and a ratio specifications in a probabilistic
environment described by an MDP.

The quantitative synthesis problem with probabilistic environments asks to construct a finite-state sys-
tem S that satisfies a qualitative specification and optimizes a quantitative specification under the given
environment. The specifications are qualitative and quantitative languages over letters in (L × A), where
L and A are the input and output alphabet of S, respectively.

In order to compute the average behavior of a system, we need a model of the environment. In
[CHJS10], the environment model is a probability space P = (Lω,F , µ) over the input words Lω of
the system defined by a finite L-labeled Markov chain. This model assumes that the behavior of the en-
vironment is independent of the behavior of the system. This restricts the modeling possibilities. It is
impossible to model a client-server system, in which a client increases the probability of sending a request
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(b) Automaton with cost fcts for client i

Figure 1: Specifications for the client-server example

if it has not been served in the previous step. Therefore, our environment model is a function fe that maps
every system fs : L∗ → A to a probability space P = (Lω,F , µ) over the input words Lω . Note that
every finite-state system defines such a system function fs but not vice versa. To describe a particular
environment model fe, we use a finite L-labeled Markov decision process. Once we have an environment
model, we can define what it means for a system to satisfy a specification under a given environment.

Definition 1 (Satisfaction). Given a finite-state system S with alphabets L and A, a qualitative specifi-
cation ϕ over alphabet L × A, and an environment model fe, we say that S satisfies ϕ under fe (written
S |=fe ϕ

1) iff S satisfies ϕ with probability 1, i.e.,

Efe(S)[ϕ ◦ OS ] = 1.

Next, we define the value of a system with respect to a specification under an environment model
and what it means for a system to optimize a specification. Then, we are ready to define the quantitative
synthesis problem.

Definition 2 (Value of a system). Given a finite-state system S with alphabets L and A, a qualitative (ϕ)
and a quantitative specification (ψ) over alphabet L × A, and an environment model fe, the value of S
with respect to ϕ and ψ under fe is defined as the expected value of the function ψ ◦ OS in the probability
space fe(S), if S satisfies ϕ, and∞ otherwise. Formally,

Valuefeϕψ(S) :=

{
Efe(S)[ψ ◦ OS ] if S |=fe ϕ,

∞ otherwise.

If ϕ is the set of all words, then we write Valuefeψ (S). Furthermore, we say S optimizes ψ wrt fe, if

Valuefeψ (S) ≤ Valuefeψ (S ′) for all systems S ′.

Definition 3 (Quantitative realizability and synthesis problem). Given a qualitative specification ϕ and a
quantitative specification ψ over the alphabets L×A and an environment model fe, the realizability prob-
lem asks to decide if there exists a finite-state system S with alphabets L andA such that Valuefeϕψ(S) 6=∞.
The synthesis problem asks to construct a finite-state system S (if it exists) s. t.

1. Valuefeϕψ(S) 6=∞ and

2. S optimizes ψ wrt fe.

In the following, we give an example of a quantitative synthesis problem.

1Note that S |=fe ϕ and S |= ϕ coincide if (i) ϕ is prefix-closed (which is the case for the specifications, we consider here), and
(ii) fe(S) assigns, for every finite word w ∈ L∗, a positive probability to the set of infinite words wLω .
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a; 7/8

a; 1/2

(a) MDP of one client

m0 m1

r1

r2

r1r2

r1r2

r1

r2

(b) Implementation of a server for two clients. State label-
ing: τ(m0) = a1a2 and τ(m1) = a1a2

Figure 2: Specifications and implementation for the client-server example

Server-client example. Consider a server-client system with two clients and one server. Each server-
client interface consists of two variables ri (request) and ai (acknowledge). Client i sends a request by
setting ri to 1. The server acknowledges the request by setting ai to 1. We require that the server does not
acknowledge both clients at the same time. Hence, our qualitative specification demands mutual exclusion.
Figure 1(a) shows an automaton stating the mutual exclusion property for a1 and a2. Edges are labeled
with evaluations of a1 and a2, e.g., a1a2 states that a1 = 0 and a2 = 1. States drawn with a double
circle are safe states. Among all systems satisfying the mutual exclusion property, we ask for a system that
minimizes the average ratio between requests and useful acknowledges. An acknowledge is only useful if it
is sent as a response to a request. To express this property, we can give a quantitative language defined by an
automaton with two cost functions (c1, c2) and the ratio objective (Eqn. 1). Figure 1(b) shows an automaton
labeled with tuples representing the two cost functions c1 and c2 for one client. The first component of the
tuples represents cost function c1, the second component defines cost function c2. The cost function c1 is
1, whenever we see a request. The cost function c2 is 1, when we see a “useful” acknowledge, which is an
acknowledge that matches an unacknowledged request. E.g., every acknowledge in state s1 is useful, since
the last request has not been acknowledged yet. In state s0 only acknowledgments that answer a direct
request are useful and get cost 1 (in the second component). This corresponds to a server with a buffer that
can hold exactly one request. State s1 says that there is a request in the buffer. If the machine is in this state
and its request is granted, then it can clear its buffer. If another request comes while it is in this state and if
it does not get an acknowledgment in the same round, then it has to drop one request.

Assume we know the expected behavior of the clients. E.g., in every step, Client 1 is expected to send a
request with probability 0.5 independent of the acknowledgments. Client 2 changes its behavior based on
the acknowledgments. We can describe the behavior of Client 2 by the labeled MDP shown in Figure 2(a).
In the beginning the chance of getting a request from this client is 0.5. Once it has sent a request, i.e., it
is in state r, the probability of sending a request again is very high until at least one acknowledgment is
given. This is modeled by action g at state r having a probability of 3/4 to get into state r again, and a
probability of 1/4 to not send a request in the next step. In this case, we move to the right r state. In this
state, the probability of receiving a request from this client in the next step is even 7/8. This means, that if
this client does not receive an acknowledgment after having sent a request, then the possibility of receiving
another request from this client in the next two steps is 1− 1/4 ∗ 1/8 = 31/32.

Consider the finite-state system S shown in Figure 2(b). It is an implementation of a server for two
clients. The system has two state m0 and m1 labeled with a1a2 and a1a2, respectively. We can compute
the value of S using the following two lemmas (Lem. 1, Lem. 2).

Lemma 1. Given (i) a finite-state system S with alphabets L and A, (ii) an automaton A with alphabet
L × A, and (iii) a L-labeled MDPM defining an environment model for S, there exists a Markov chain
Mc and two cost functions c1 and c2 such that

S |=M LA
Def. 1⇐⇒ ESM[LA ◦ OS ] = 1 ⇐⇒ EMc

[R c1
c2

] = 0
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Proof idea: The Markov chainMc is constructed by taking the synchronous product of S, A, andM.
In every state (s, q,m) ∈ (SS × QA × SM), we take the action a ∈ A given by the labeling function of
the system τ(s) and move to a successor state for every input labels l ∈ L such that there exists a state m′

in the MDPM with λ(m′) = l and p(m, a)(m′) > 0. The corresponding successor states of the system-
and the automaton-state components are s′ = δS(s, l) and q′ = δA(q, (l, a)). The probability distribution
ofMc is taken from theM-component. The two cost functions are defined as follows: for state (s, q,m)
and an action a, then c1((s, q,m), a) = 1 and c2((s, q,m), a) = 0, if q is a safe state in A, otherwise
c1((s, q,m), a) = 0 and c2((s, q,m), a) = 1. Intuitively, since the non-safe states of A are (by definition)
closed under δA and all actions in this set have the same cost, they all have the same value, namely∞, so
does every state from which there is a positive probability to reach this set.2

Lemma 2. Given (i) a finite-state system S with alphabets L and A, (ii) an automaton A with alphabet
L×A with two cost functions c1 and c2, and (iii) a L-labeled MDPM defining an environment model for
S, there exists a Markov chainMc and two cost functions d1 and d2 such that

ValueMR c1
c2

(S)
Def. 2
= ESM[R c1

c2

◦ OS ] = EMc
[R d1

d2

]

Proof idea: The construction is the same as the one for Lem. 1 except for the cost functions. The cost
functions are simply copied from the component referring to the automaton, e.g., given a state (s, q,m) ∈
(SS ×QA × SM) and an action a ∈ A, d1((s, q,m), a) = c1(q) and d2((s, q,m), a) = c2(q).

In Section 4, we show how to compute an optimal value for MDP with ratio objectives in polynomial
time. Since Markov chains with ratio objectives are a special case of MDP with ratio objectives, we can
first use Lem. 1 to check if S |=M LA. If the check succeeds, we then use Lem. 2 to compute the value
ValueMR c1

c2

(S). This algorithm leads to the following theorem.

Theorem 1 (System value wrt Safety and Ratio specifications). Given a finite-state system S with alpha-
bets L and A, an automaton A with alphabet L×A defining a qualitative language, an automaton B with
alphabet L× A and two cost functions c1 and c2 defining a quantitative language, and a L-labeled MDP
M defining an environment model, we can compute value of S with respect to LA and R c1

c2

under PSM in
time polynomial in the maximum of |S| · |A| · |M| and |S| · |B| · |c1| · |c2| · |M|.

In order to construct an optimal system with respect to a Safety and a Ratio specification, we modify
Lem. 1 and Lem. 2 slightly and construct an MDP instead of two Markov chains.

Lemma 3. Given an automaton A with alphabet L×A defining a qualitative language , an automaton B
with alphabet L × A and two cost functions c1 and c2 defining a quantitative language, and a L-labeled
MDPM defining an environment model, we can construct anM′ and two cost functions d1 and d2 such
that for all systems S,

ValueMLAR c1
c2

(S) = ValueM
′

R d1
d2

(S) = ESM′ [R d1
d2

].

Theorem 2 (Optimal System wrt Safety and Ratio specifications). Given an automaton A with alphabet
L × A defining a qualitative language , an automaton B with alphabet L × A and two cost functions c1
and c2 defining a quantitative language, and a L-labeled MDPM defining an environment model, we can
compute value of S with respect toLA andR c1

c2

underPSM in time polynomial in |S|·|A|·|B|·|c1|·|c2|·|M|.

4 Calculating the best strategy
In this section we will first outline a proof showing that for every MDP there is a positional optimal strategy
for our payoff function. To this end, we argue how the proof given by [Gim07] can be adapted to our case.
After that we will show how we can calculate an optimal positional strategy.

2Note that instead of an MDP with ratio objective, we could have also set up a two-player safety game here.
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4.1 Positional strategies suffice
In [Gim07], Gimbert proved that in an MDP any payoff function mapping to R that is submixing and prefix
independent admits optimal positional strategies. Since our payoff function R may also take the value∞,
we cannot apply the result immediately. However, since R maps only to non-negative values and the set
of measurable functions is closed under addition, multiplication, limit inferior and superior and division,
provided that the divisor is not equal to 0, the expected value of R is always defined and theory presented
in [Gim07] also applies in this case. Furthermore, to adapt the proof of [Gim07] to minimize the payoff
function instead of maximizing it, one only needs to inverse the used inequalities and replace max by min.
What remains to show is thatR fulfills the following two properties.

Lemma 4 (R is submixing and prefix independent). LetM = (S,A, Ã, p) be a MDP and ρ be a run.

1. For every i ≥ 0 the prefix of ρ up to i does not matter, i.e.,R(ρ) = R(ρiρi+1 . . . ).

2. For every sequence of non-empty words u0, v0, u1, v1 · · · ∈ (A × S)+ such that ρ = u0v0u1v1 . . .
we have that the payoff of the sequence is greater than or equal to the minimal payoff of sequences
u0u1 . . . and v0v1 . . . , i.e.,R(ρ) ≥ min{R(u0u1 . . . ),R(v0v1 . . . )}.

Proof. The first property follows immediately from the first limit in the definition ofR.
For the second property we partition N into U and V such that U contains the indexes of the parts

of ρ that belong to a uk for some k ∈ N and such that V contains the other indexes. Formally, we define
U :=

⋃
i∈N Ui where U0 := {k ∈ N | 0 ≤ k < |u0|} and Ui := {max(Ui−1)+ |vi−1|+k | 1 ≤ k ≤ |ui|}.

Let V := U \ N be the other indexes.
Now we look at the payoff from m to l for some m ≤ l ∈ N, i.e. Rlm := (

∑
i=m...l c1(ρi))/(1 +∑

i=m...l c2(ρi)). We can divide the sums into two parts, the one belonging to U and the one belonging to
V and we get

Rlm =

 ∑
i∈{m...l}∩U

c1(ρi)

+

 ∑
i∈{m...l}∩V

c1(ρi)


1 +

 ∑
i∈{m...l}∩U

c2(ρi)

+

 ∑
i∈{m...l}∩V

c2(ρi)


We now define the different sub-sums as u1 :=

∑
i∈{m...l}∩U c1(ρi), u2 :=

∑
i∈{m...l}∩U c2(ρi), v1 :=∑

i∈{m...l}∩V c1(ρi) and v1 :=
∑
i∈{m...l}∩V c2(ρi). Then we receive

Rlm =
u1 + v1

1 + u2 + v2

We will now show

Rlm ≥ min

{
u1

u2 + 1
,

v1

v2 + 1

}
Without loss of generality we can assume u1/(u2 + 1) ≥ v1/(v2 + 1), then we have to show that

u1 + v1

1 + u2 + v2
≥ v1

v2 + 1
.

This holds if and only if (u1 +v1)(1+v2) = u1 +v1 +u1v2 +v1v2 ≥ v1(1+u2 +v2) = v1 +v1u2 +v1v2

holds. By subtracting v1 and v1v2 from both sides we receive u1 + u1v2 = u1(1 + v2) ≥ u2v1. If u2 is
equal to 0 then this holds because u1 and v2 are greater than or equal to 0. Otherwise, this holds if and
only if u1/u2 ≥ v1/(1 + v2) holds. This follows from the assumption u1/(u2 + 1) ≥ v1/(v2 + 1) because
u1/u2 ≥ u1/(u2 + 1) holds. The claim follows because we have shown this for any pair of m and l.

Theorem 3 (There is always a positional optimal strategy). For each MDP with the ratio payoff function,
there is a positional optimal strategy.

Proof. See [Gim07]
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4.2 Reduction of MDP to a Linear Fractional Program
In this section, we show how to calculate a positional optimal strategy for an MDP with ratio objective
by reducing the problem to a fractional linear programming problem. A fractional linear programming
problem is similar to a linear programming problem, but the function that one wants to optimize is the
fraction of two linear functions. A fractional linear programming problem can be reduced to a series of
conventional linear programming problems to calculate the optimal value.

We present the reduction only for MDPs for which every positional strategy induces a irreducible
Markov chain because the resulting linear program is easier to understand. A similar reduction exists for
general MDPs.

Our reduction uses the fact that an MDP with a positional strategy induces a Markov chain and that
the runs of a Markov chain have a special property akin to the law of large numbers, which we can use to
calculate the expected value.

Definition 4 (Random variables of MCs). Let pn(l) be the probability of being in state l′ at step n and let
p∗(l) := limn→∞

1
n

∑n
i=0 p

i(l) be the Cesaro limit of pn. Let further νnl denote the number of visits to
state l up to time n.

We have the following lemma describing the long-run behavior of Markov Chains [Tij03, Nor03].

Lemma 5 (Expected number of visits of a state and well-behaved runs). For every infinite run of a Markov
Chain the fraction of visits to a specific state l equals p∗(l) almost surely, i.e., P (liml→∞

νl
s

l = p∗(s)) = 1.
We call the set of runs that have this property well-behaved.

When we calculate the expected payoff, we only need to consider well-behaved words as shown in the
following lemma.

Lemma 6. Let N denote the set of runs that are not well-behaved. Then

E[R] =

∫
ΩM\N

R dµM

Proof. The probability measure of the set of well-behaved words is 1. Hence the probability measure of
the complement of this set, i.e., N , has to be 0. Sets like these are called null sets. A classical result says
that null sets do not need to be considered for the Lebesgue integral.

For a well-behaved run, i.e., for every run that we need to consider when calculating the expected value,
we can calculate the payoff in the following way.

Lemma 7 (Calculating the payoff of a well-behaved run). Let ρ be a well-behaved run of a irreducible
Markov chain. Denote by π : S → A the only action available at a state. Then

R(ρ) =

∑
s∈S p

∗(s)c1(s, π(s))

liml→∞
1
l +

∑
s∈S p

∗(s)c2(s, π(s))

Proof. By definition ofR we have

R(ρ) = lim
m→∞

lim inf
l→∞

∑m
i=l c1(ρi)

1 +
∑m
i=l c2(ρi)

Since the Markov chain is irreducible, it does not matter whether we start calculating at time 0 or at a later
point. Hence

R(ρ) = lim inf
l→∞

∑l
i=0 c1(ρi)

1 +
∑l
i=0 c2(ρi)

We can calculate the sums in a different way: we take the sum over the states and count how often we visit
one state, i.e., ∑l

i=0 c1(ρi)

1 +
∑l
i=0 c2(ρi)

=

∑
s∈S c1(s, π(s))νls

1 +
∑
s∈S c2(s, π(s))νls

=

∑
s∈S c1(s, π(s))(νls/l)

1/l +
∑
s∈S c2(s, π(s))(νls/l)
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Now we take lim instead of lim inf . We will see later that the sequence converges for l→∞ and hence
lim and lim inf have the same value. Because both sides of the fraction are finite values we can safely draw
the limit into the fraction, i.e.,

(†) lim
l→∞

( ∑
s∈S c1(s, π(s))(νls/l)

1/l +
∑
s∈S c

(
2s, π(s))(νls/l)

)
=

liml→∞
(∑

s∈S c1(s, π(s))(νls/l)
)

liml→∞
(
1/l +

∑
s∈S c2(s, π(s))(νls/l)

)
=

∑
s∈S c1(s, π(s)) liml→∞(νls/l)

liml→∞(1/l) +
∑
s∈S c2(s, π(s)) liml→∞(νls/l)

Finally, by the definition of well-behaved runs we have liml→∞
νl
l

l = p∗(l). Hence∑
s∈S c1(s, π(s)) liml→∞(νls/l)

liml→∞(1/l) +
∑
s∈S c2(s, π(s)) liml→∞(νls/l)

=

∑
s∈S c1(s, π(s))p∗(l)

liml→∞(1/l) +
∑
s∈S c2(s, π(s))p∗(l)

The limit diverges to∞ if and only if the second costs are all equal to zero and at least one first cost
is not. In this case the original definition of R diverges and hence R and the last expression are the same.
Otherwise the last expression converges, hence † converges, ergo lim inf and lim of this sequence are the
same.

Note that the previous lemma implies that the value of a well-behaved run is independent of the actual
run. In other words, on the set of well-behaved runs of an irreducible Markov chain the payoff function is
constant. Ergo the expected value of such a Markov chain is equal to the payoff of any of its well-behaved
runs.

Theorem 4 (Expected payoff of a MDP and a strategy). LetM be a MDP and π be a strategy. Let further
p∗ denote the Cesaro limit of pn of the induced Markov chain. Then

EπM[R] =

∑
s∈S c1(s, π(s))p∗(l)

liml→∞(1/l) +
∑
s∈S c2(s, π(s))p∗(l)

Proof. This follows from the previous lemma and the fact thatR is constant on any well-behaved run.

Note that this means that an expected value is∞ if and only if the second cost of every action in the
Markov chain is 0 and there is at least one first cost that is not.

Using this lemma, we are now able to transform the MDP into a fractional linear program. This is
done in the same way as is done for the expected average payoff case (cf. [Put94]). We define variables
x(s, a) for every state s ∈ S and every available action a ∈ Ã(s). This variable intuitively corresponds
to the probability of being in state s and choosing action a at any time. Then we have, for example
p∗(s) =

∑
a∈Ã(s) x(s, a). We need to restrict this set of variables. First of all, we always have to be in

some state and choose some action, i.e., the sum over all x(s, a) has to be one. The second set of restrictions
ensures that we have a stationary distribution, i.e., the sum of the probabilities of going out of (i.e., being
in) a state is equal to the sum of the probabilities of moving into this state.

Definition 5 (Linear program for MDP). LetM be an MDP such that every Markov chain induced by any
strategy is recurrent and irreducible and such that it contains at least one non-zero second cost. Then we
define the following linear program for it.

Minimize

∑
s∈S

∑
a∈Ã(s) x(s, a)c1(s, a)∑

s∈S
∑
a∈Ã(s) x(s, a)c2(s, π(s, a))

(4)

subject to

∑
s∈S

∑
a∈Ã(S) x(s, a) = 1 (5)∑

a∈Ã(s) x(s, a) =
∑
s′∈s

∑
a∈Ã(s′) x(s′, a)p(s′, a)(s) ∀s ∈ S (6)

There is a one to one correspondence between positional strategies and feasible solutions to the linear
program3. See [Put94] for a detailed analysis of this in the expected average reward case, and how this can

3A feasible solution is one that fulfills the linear equations that every solution is subject to.
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be extended to the case of general MDPs.
Once we have calculated a solution of the linear program, we can calculate the strategy as follows.

Definition 6 (Strategy from solution of linear program). Let x(s, a) be the solutions to the linear program.
Then we define the strategy as follows.

π(s) = a⇔ x(s, a) > 1

Note that this definition is well defined because for each s there is at most one action a such that
x(s, a) > 0 because of the bijection between feasible solutions and strategies and because the optimal
strategy is always positional.

4.3 From LFP to LP
Since solvers to linear fractional programs are not common and there are good free solvers to linear pro-
grams, we presented a method of converting a linear fractional program to a sequence of linear programs
that calculate the solution. This algorithm is due to [IM56]. Let f(x) denote the value of Eqn. 4 under
variable assignment x.

Input: feasible solution x0, MDPM
Output: Variable assignment, optimal solution
n← 0
repeat

g ← f(xn)
n← n+ 1
Solve

Minimize
∑
s∈S

∑
a∈Ã(s)

xn(s, a)c1s − g
∑
s∈S

∑
a∈Ã(s)

xn(s, a)c2s

subject to Eqn. 5 and Eqn. 6.
until f(xn) 6= f(xn+1) ;
return xn, f(xn)

4.4 Preliminary Implementation
We have developed a tool that can handle arbitrary (finite) MDPs with ratio objectives based on the ap-
proach presented in this paper. Our tool is implemented in Scala and uses the GNU Linear Programming
Kit to solve the resulting linear programs.

We made some initial experiments using the server-client example from Section 3. In the case of two
clients we have a MDP with 24 states and 288 edges. The resulting machine has 8 states and behaves as
follows: if it receives two requests at the same time, then it decides to serve Client 2 first, i.e., the client with
the behavior described in Figure 2(a). If Client 2 stops requesting, then the machine serves the other client.
Intuitively, this is the best strategy because answering Client 1 first would result, with a high probability,
in a dropped request of Client 2. Even if there is an outstanding request for Client 1, i.e., if a grant would
earn a point to the system, then the system sends an acknowledgment to Client 2, if Client 2 is requesting,
even if this means a dropped request for Client 1. In other words, if Client 2 sends a request, then Client 2
gets an acknowledgment. The expected value is 1.2 = 12/10. This means that, out of 12 requests, 10 can
be served, which means 83.3%.

5 Conclusions and Future Work
We have presented a technique to automatically synthesize system that satisfy a qualitative specification
and optimize a quantitative specification under a given environment model. Our technique can handle
qualitative specifications given by an automaton with a set of safe states, and quantitative specifications
defined by an automaton with ratio objective.

Verimag Research Report no TR-2010-19 11/13



Christian von Essen, Barbara JobstmannSynthesizing Systems with Optimal Average-Case Behavior for Ratio Objectives

Currently, we are working on a better representation of the input specifications. In particular, we are
aiming for a symbolic representation that would allows us to use a combined symbolic and explicit ap-
proach, which has shown to be very effective for MDP with long-run average objective [?]. Furthermore,
we are extending the presented approach to qualitative specification describe by arbitrary ω-regular speci-
fications.
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