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Abstract

BIP (Behavior, Interaction, Priorities) is a component framework for constructing systems
from a set of atomic components by using two kinds of composition operators: interactions
and priorities.

In this paper we present a method that transforms the interactions of a component-based
program in BIP and generates a functionally equivalent program. The method is based on the
successive application of three types of source-to-source transformations: flattening of com-
ponents, flattening of connectors and composition of atomic components. We show that the
system of the transformations is confluent and terminates. By exhaustive application of the
transformations, any BIP component can be transformed into an equivalent monolithic com-
ponent. From this component, efficient C code can be generated.

The method combines advantages of component-based description such as clarity, incre-
mental construction and reasoning with the possibility to generate efficient monolithic code. It
has been integrated in the design methodology for BIP and it has been successfully applied to
two non trivial examples described in the paper.

Keywords: Source-to-source transformation, component-based systems, optimization for performance,
correctness preservation

How to cite this report:

@techreport { ,

title = { Source-to-Source Architecture Transformation for Performance Optimization in
BIP},

authors = { Marius Bozga, Mohamad Jaber, Joseph Sifakis},

institution = { Verimag Research Report },

number = {TR-2009-3},

year = { 2009},

note = { }

}



S2S Architecture Transformation in BIP Marius Bozga, Mohamad Jaber, Joseph Sifakis

1 Introduction

Component-based systems are desirable because they allow reuse of sub-systems as well as their incre-
mental modification without requiring global changes. Their development requires methods and tools
supporting a concept of architecture which characterizes the coordination between components. An archi-
tecture is the structure of a system, which involves components and relationships between the externally
visible properties of those components. The global behavior of a system can in principle be inferred from
the behavior of its components and its architecture.

An advantage of component-based systems is that they have logically clear descriptions. Nonetheless,
clarity may be at the detriment of efficiency. Naive compilation of component-based systems results in
great inefficiency as a consequence of the interconnection of components [13].

Source-to-source transformations have been considered as a powerful means for optimizing programs
[12, 5]. In contrast to conventional optimization techniques, these can be applied for deeper semantics-
preserving transformations which are visible to the programmer and subject to his direction and guidance.

Source-to-source architecture transformations transform a component-based system into a functionally
equivalent system, by changing the structure of its architecture. They may affect performance and quality
attributes. They are useful for finding functionally equivalent systems that meet different extra-functional
(platform dependent) requirements.

We study transformations for a subset of the BIP (Behavior, Interaction, Priority) language [3, 8] where
an architecture is characterized as a hierarchically structured set of components obtained by composition
from a set atomic components. In BIP, composition is parameterized by interactions and priorities between
the composed components. In this paper we consider only composition by interactions. Composite com-
ponents can be hierarchically structured. BIP has been used to model complex heterogeneous systems. It
can be considered as an extension of C with powerful primitives for multiparty interaction between com-
ponents. It has a compilation chain allowing the generation of C++ code from BIP models. The generated
code is modular and can be executed on a dedicated platform consisting of an Engine which orchestrates
the computation of atomic components by executing their interactions. Hierarchical description allows
incremental reasoning and progressive design of complex systems. Nonetheless, it may lead to inefficient
programs if structure is preserved at run time. Compared to functionally equivalent monolithic C programs,
BIP programs may be more than two times slower. This overhead is due to the computation of interactions
between components by the Engine.

The aim of the work is to show that it is possible to synthesize efficient monolithic code from component-
based software described incrementally. We study source-to-source transformations for BIP allowing the
composition of components and thus leading to more efficient code. These are based on the operational
semantics of BIP which allows to compute the meaning of a composite component as a behaviorally equiv-
alent atomic component.

A BIP component is characterized by its interface and its behavior. An interface consists of a set of
ports used to specify interactions. Each port p; has an associated variable v,,, which is visible when an
interaction involving p; is executed. We assume that the sets of ports and variables of components are
disjoint. The behavior of a composite component is obtained by composing the behavior of its atomic
components (see Figure 1).

The behavior of atomic components is described as a Petri net extended with data and functions given
in C. A transition of the Petri net is labelled with a trigger and a function f describing a local computation.
A trigger consists of a guard g on (local) data and a port p through which synchronization is sought. For
a given marking and data state, a transition can be executed if it is enabled for this marking, its guard g is
true and an interaction involving p is possible. Its execution is atomic. It is initiated by the interaction and
followed by the execution of f.

Composition consists in applying a set of connectors to a set of components. A connector is defined
by:

1. its port p and the associated variable v,,;

2. its interaction defined by a set of ports p1, ..., p, of the composed components ;
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3. functions U and Ds, ..., D,, specifying the flow of data upstream and downstream, respectively
(see Figure 1).

The global behavior resulting from the application of a connector to a set of components is defined as
follows.

An interaction pq, . . . , p,, of the connector is possible only if for each one of its ports p;, there exists an
enabled transition in some component labelled by p;. Its execution involves two steps:

1. the variable v is assigned the value U(vp,,...,vp,);
2. the variables v; associated with the ports p; are assigned values D;(v).

The execution of an interaction is followed by the execution of the local computations of the synchronized
transitions. In Figure 1, we provide a simple BIP model. It is composed of three atomic components,
which compute integers exported through the variables v1, vo and v3. The connector defines the interaction
(strong synchronization) between p;, p2 and p3. As a result of this interaction, each component receives
the maximum of the exported values.

|
I
G : true
P1, V1 P2, V2 P3, V3 U:v:= Maz(vi,va,vs);
Dy vy :=wv; Do :vg = w;
D3 : v3 1= vy

Figure 1: Example 1

A composite component is obtained by successive application of connectors from a set of atomic com-
ponents. It is a finite set of components equipped with an acyclic containment relation and a set of con-
nectors such that: 1) minimal elements are atomic components; 2) if p is the port of a connector then its
interaction consists only of ports of components contained in the component with port p. The containment
relation defines for each component a level in the hierarchy. A component of level n is obtained by com-
posing a set of components of lower level among which there is at least one component of level n — 1. The
semantics of a composite component is defined from the semantics of atomic components (components
at level 0) and the semantics of composition by using connectors. It allows computing for a composite
component, an atomic component with an equivalent global behavior.

The main contributions of the paper are the following. We define composite components in BIP and
their semantics. We show how by incremental composition of the components contained in a composite
component, a behaviorally equivalent component can be computed. This composition operation has been
implemented in the BIP2BIP tool, by using three types of source-to-source transformations. A set of
interacting components is replaced by a functionally equivalent component. By successive application of
compositions, an atomic component can be obtained, that is a component with no interactions.

The transformation from a composite component to an atomic one is fully automated and implemented
through three steps:

1. Component flattening which replaces the hierarchy on components by a set of hierarchically struc-
tured connectors applied on atomic components;

2. Connector flattening which computes for each hierarchically structured connector an equivalent flat
connector;

3. Component composition which composes atomic components to get an atomic component.

Using such a transformation allows to combine advantages of component-based descriptions such as clarity
and reuse with efficient implementation. The generated code is readable and by-construction functionally
equivalent to the component-based model. We show through non trivial examples the benefits of this
approach.
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The paper is structured as follows. In section 2 we define the syntax for the description of structured
components in BIP. In section 3, we define the semantics by successive application of the three source-to-
source transformations. In section 4, we provide benchmarks for two examples: a MPEG encoder and a
concurrent sorting program. In Section 5, we discuss other applications and future developments.

2 Component based construction

We define atomic components and their composition in BIP.
Definition 1 (port) A port p[x] is defined by

e p — the port identifier,

e x — the data variable associated with the port.

An atomic component is a Petri net extended with data. It consists of a set of ports P used for the
synchronization with other components, a set of transitions 7" and a set of local variables X . Transitions
describe the behavior of the component. They are represented as a labelled relation on the set of control
locations L.

Definition 2 (atomic component) An atfomic component B is defined by: B = (P, L, T, X,{g; }re1, { f+ }reT),
where,

e (P,L,T) is a Petri net, that is

— P is a set of ports,
- L={ly,la,...,lk} is a set of control locations,

- T C 25 x P x 2% is a set of transitions,

o X = {x1,...,x,} is a set of variables and for each T € T respectively g. is a guard, an action

X = f'r(X)

We will use the following notations. For a transition 7 € T', we define its pre-set *7 (resp. post-set 7°)
as the set of the places which are direct predecessors (resp. successors) of this transition. Moreover, we
use the dotted notation to denote the parameters of atomic components. For example, B.P means the set
of ports of the atomic component 5.

Figure 2 shows an example of an atomic component with two ports r1, t1, a variable a, and two control
locations [y, lo. At control location /1, the transition labelled ¢; is possible. When an interaction through ¢,
takes place, a random value is assigned for the variable a. This value is exported through the port ;. From
the control location [5, the transition labelled r; can occur (the guard of the transition is true by default),
the variable a is eventually modified and the value of a is printed.

t1 1
a:=rand() print(a)

& B

Figure 2: An example of an atomic component in BIP

Definition 3 (connector) A connector v = (p[z], P, ) is defined as follows

e p is the exported port of the connector 7,

o P = {p;[x;]}ics is the support set of ~,
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e 6 = (G,U, D) where,

— G is the guard of v, an arbitrary predicate G({x;}ic1),

— U is the upward update function of v of the form,
z = F"({z:}ier),
— D is the downward update function of y of the form, U, x; 1= F;fi ().

Figure 3 shows a connector with two ports p;, p2, and exported port p. Synchronization through this
connector involves two steps: 1) The computation of the upward update function U by assigning to x the
maximum of the values of x; and x5 associated with p; and p»; 2) The computation of the downward
update function D by assigning the value of x to both 21 and x».

plx : int]

p1lz1 : int] P2z : int]

G : true
U:z:=mazx(r1,r2);
D:x :=x;20 1= x5

Figure 3: An example of a connector in BIP
For a set of connectors I = {7, } ;¢ s, we define the domination relation — on I as follows :

Yi =Y =P € V- P

That is, ; dominates 7; means that the exported port of -; belongs to the support set of «y; (see Figure 4).
I' is a set of flat connectors, iff no connector dominates another, that is, V;,~; € I' we have v; /£~ ;.

Vi .pi

oECA

Figure 4: y; dominates ~;

Definition 4 (component) Composite components are defined from existing components (atomic or com-
posite) by the following grammar:

C o= B|({Cl}l€], F,P)
where,
e B is an atomic component,

o {C;}icr is a set of constituent components,

o P = (UicrCi.P) U (Ujesv;-p), is the set of ports of the component, that is P contains the ports of
the constituent components and the exported ports of the connectors,

o I' = {v;};e is a set of connectors, such that,

- (", —) has no cycle,
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- Ujesv;.P C P (P is defined above),

— Each v € T uses at most one port of every constituent component, that is, Vv € I',)Vi € I,

That is, a component is either an atomic component 5B or a composite component obtained as the compo-
sition of a set of constituent components {C; };c by using a set of connectors I' = {~; }je.s.

For example, consider the BIP component composed of two composite components shown in Figure 5.
Each constituent component consists of three identical atomic components described in Figure 2, connected
by using the connector described in Figure 3. Each atomic component generates an integer. Then it
synchronizes with all the other atomic components. During synchronization the global maximal value is
computed and each atomic component receives the maximum of the values generated.

C o
L

Figure 5: Example 2

3 Semantics (Transformations)

We define the semantics of composite components by a set of transformations which successively transform
them into atomic components. That is, they eliminate component hierarchy and the hierarchical connectors
by computing the product behavior.

The transformation from a composite component to a atomic one is fully automated and implemented
through three steps:

1. Component flattening which replaces the hierarchy on components by a set of hierarchically struc-
tured connectors applied on atomic components;

2. Connector flattening which computes for each hierarchically structured connector an equivalent flat
connector;

3. Component composition which composes a set of atomic components to get one atomic component.

In this section, we describe the three transformations, and we illustrate them on Example 2 shown in Figure
5.

3.1 Component flattening

Consider a composite component C, obtained as the composition of a set of components {C;};c;. The
purpose of this transformation is to replace each non atomic component C; of C' by its description. By
successive applications of this transformation, the component C' can be modelled as the set of its atomic
components and their hierarchically structured connectors (see Figure 6).

Definition 5 (Component flattening) Consider a non at-

omic component C = ({C;}ier, T, P) such that there exists a non atomic component C; € {C;}icr with
C; = {Cjrtrer,T; , Pj). We define C|C; — T;] as the component C = ({Ci}icr U{Cjr}trer \
{C;},T UL, P).
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Figure 6: Component flattening

By applying to Example 2 the transformation C[C; — {~2,73}] then C[Ca — {74,75}]. we obtain the
new component in Figure 7.

Figure 7: Component flattening for Example 2

Proposition 1 Component flattening is confluent and terminates.

Proof 1 We can show that, if two constituent components respectively C; and C}, can be replaced inside
the composite component C, then the replacement can be done in any order and the final result is the
same. That is, formally we have C[C; — T';|[Cy — I'y] = C[Cy — T'}][C; — T';]. The result follows
immediately from the definition and elementary properties of union on sets.

Regarding termination, every transformation step decreases the overall number of composite compo-
nents by one, so component flattening eventually terminates when all the components are atomic.

3.2 Connector flattening

This transformation flattens hierarchical connectors. It takes two connectors y; and 7; such that v; — -;
and produces an equivalent connector.

We show in Figure 8 the composition of two connectors «y; and «y;. It consists in ”glueing” them together
on the exported port p;. For the composite connector, the update functions are respectively, the bottom-
up composition of the upward update functions, and the top-down composition of the downward update
functions. This implements a general two-phase protocol for executing hierarchical connectors. First, data
is synthesized in a bottom up fashion by executing upward update functions, as long as guards are true.
Second, data is propagated downwards through downward update functions, from the top to the support set
of the connector.

Definition 6 (Connector flattening) Given connectors
Vi = (pilwi], P, 6 = (Gi, Uy, Dy)) and ~y; = (p;la;), Py, 6; = (G, Uy, Dy)) such that v; — v; we define
the composition v;[p; — ;] as a connector v = (p, P, §) where

® D =Di
e P=PUP\ {p;},
e 0 = (G,U, D) is defined as follows:
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7i(Gi, Ui, Dy) x; .pi

73 (Gj,Uj, Dj)

CUTTT

Figure 8: Connector flattening

- G =G, AG,[F!/xj),
- U= T; = Fiu[FJu/(Ej],

_ . d d . d
- D= Upkepjxk = Fj,xk[Fi,xi/x’i] U UPkGPi\{Pj} T = Fivﬂck'

p3 1 73
71 2 73
11 to t3
p3 l
T3
G : true
U : z1 := maz(max(p3.x,r3.2), pa.2);
D :p3.x:=x1;7r3.0 1= X1;P4.T := T1;

Figure 9: Connector flattening for Example 2

By application of the transformation 4 [p2 — ~2] to Example 2 in Figure 7, we obtain the new composite
component presented in Figure 9. If we apply successively, v1[ps — 73], 71[pa — Ya], 11 [P5 — 5] we
obtain the new composite component presented in Figure 10.

Proposition 2 Connector flattening is confluent and terminates.

Proof 2 Let us first introduce some notations.

Let C = ({Ci}ier, T, P) be a composite component. We call a port p; € P transient in ' if it is both
exported by some connector vy; from I' and used by another connector v; from I'. Obviously, transient ports
can be eliminated through connector flattening.

For a transient port p; exported by a connector vy;, we will use the notation I'[p; +— ~;] to denote the
new set of connectors obtained by replacing thoroughly p; by its exporting connector y;, formally:

Plpj = vl ={v |y €L,p; & yports,y #v;} U{vlp; = vl | v € T, p; € v.ports}.
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C ‘71
71 T2 T3 T4 5 6
t1 ;2 ;3 £;4 5 6
p1[z1]
T1 T2 T3 T4 Ts5 Te
G : true
U : z1 := maz(maz(mazx(ry.xz,ry.x), r3.x), maz(maz(ry.z, r5.z), re.x));
D:rj.x:=x1;re.¢ := T1;73.2 1= T1;74.T 1= T1; 5.2 := T1;T6.T := T1;

Figure 10: Connector flattening for Example 2

That is, all connectors (except ;) without p; in their support set are kept unchanged, while the others
are transformed according to definition 6.

Now, it can be shown that, if p; and py, are two transient ports of ' defined respectively by connectors
vj and 7y, then flattening can be done in any order, formally

Llpj = llpr = vl = Tlpx = wllpy = 5l

The equality amounts to show that any connector y of I, different from v; and -y, gets transformed in
the same way, independently of the order of application of the two transformations. This is easily shown,
case by case, depending on the occurrence of ports p; and py, on the support of v, v; and vy, following the
definition 6.

Regarding termination, flattening of connectors is applicable as long as there are transient ports. More-
over, it can be shown that, every flattening step reduces the number of transient ports by one - the one that
is replaced by its definition. Hence, the flattening eventually terminates when no more transient ports exist,
that is, I is a set of flat connectors.

The following proposition ensures that our semantics is well-defined.

Proposition 3 The combination of component flattening and connector flattening is confluent and termi-
nates.

3.2.1 Component composition

We present the third transformation which allows to obtain a single atomic component from a set of atomic
components and a set of flat connectors. This transformation defines the composition of behaviors.
Intuitively, as shown in Figure 11, the composition operation consists in “glueing” together transitions
from atomic components that are synchronized through the interaction of some connector (interaction p;ps
for this example). Guards of synchronized transitions are obtained by conjuncting individual guards and
the guard of the connector. Similarly, actions of synchronized transitions are obtained as the sequential
composition of the upward update function followed by the downward update function of the connector,
followed by the actions of the components in an arbitrary order.

Definition 7 (Component composition) Consider a component C = ({B;}icr1,T', P) such that Vi € T
B, is an atomic component and T is a set of flat connectors. We define the composition I'({B;};c1) as

component B = (P, L, T, X, {g:}rer,{f+}rer) defined as follows:
o the set of ports P = Uycr7y.p,
e the set of places L = U;c1 B;.L,

o the set of variables X = (U;erB;. X) U (Uyery.p.x),
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G2 U£2 D2

plé épz °
Q" O
p1 P2 \/: P1p2
g1 92 — gi2
f1 f2 A 12
O O

g12 = G12 A g1 A g2
fi2 = Ui2; D12; (f1 U f2)

Figure 11: Component composition

e cach transition in T corresponds to a set of interacting transitions {71, ..., 7} € UscrT; such that

UK 7i.p = 7.P (v € T"). We define the transition T = (1,~.p,l') where,
-l="7U...U*7,

-lU'=ru...uT,

the guard g, = NF_, g, N7;.0.G,
the action X := f,(X) with f; = ~;.0.U;7;.0.D; (UE_| f..).

Figure 12 shows the Petri net obtained by composition of the atomic components of Figure 10 through the
interaction 1 7or3rarsTe.

t

t1 t2 t3 ta 5 te
a1 =rand() ag=rand() ag=rand() | a4=rand() a5 =rand() ag=rand()

U :zq := maz(maz(maz(ay, az), az), maz(maz(ay, ag), ag));
D:aji=my;a9 i=@1;a3 i=@);a4 = @T1;a5 i= D05 = T1;
f i print(ay) U print(ag) U print(ag) U print(as) U print(as) U print(ag)

Figure 12: Component composition for Example 2

4 Experimental Results

4.1 The BIP2BIP tool

These transformations have been implemented in the BIP2BIP tool, which is currently integrated in the
BIP toolset [7] as shown in Figure 13.

The frontend of the BIP toolset is a parser that generates a model from a system described in the BIP
language. The BIP language allows the description of hierarchically structured components as described
in the previous sections. The functions and data are written in C. The language supports description of
atomic components as extended Petri nets. It also allows the description of composite components by
using connectors.

From the generated model, the code-generator generates C++ code, executable on a dedicated middleware,
the BIP Engine. The BIP Engine can perform execution and enumerative state-space exploration. The
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BIP language

BIP2BIP i

flattening

/
/ P
/
—9\ -7 i Model

\
\
\ [ Component
Composition

Flat Model

Code generator

Figure 13: BIP toolset: General architecture

BIP Engine

generated state graphs can be analyzed by using model-checking tools. The BIP2BIP tool is written in Java
(~4000 loc). It allows transformation of parsed models. It contains the following modules implementing
the presented transformations.

e Component flattening : this module replaces a composite component by its description. By succes-
sive applications of this module, we obtain an equivalent model consisting only of atomic compo-
nents of the initial model and a set of connectors.

e Connector flattening : this module transforms an hierarchically structured connector to an equivalent
flat one. By successive applications of this module, we obtain a new model with flat connectors.

e Component composition : this module transforms a set of atomic components and a set of flat con-
nectors into an equivalent atomic component. By successive applications of this module, we obtain
a new model consisting of a single atomic component.

By exhaustive application of these transformations, an atomic component can be obtained. From the latter,
the code-generator can generate standalone C code, which can be run directly without the Engine. In par-
ticular, all the remaining non-determinism in the final atomic component is eliminated at code generation
by applying an implicit priority between transitions.

It should be noted that the transformations also can be applied independently, to obtain models that respond
to a particular user needs. For example, one may decide to eliminate only partially the hierarchy of com-
ponents, or to compose only some components.

The performance of BIP2BIP is quite satisfactory. For example, when applied to an artificially complex
BIP model, consisting of 256 atomic components, composed by using 509 connectors with 7 levels of
hierarchy, it takes less than 15 seconds to generate the corresponding C program.

4.2 Examples of transformation

For two examples, we compare the execution times of BIP programs before and after flattening. These
examples show that it is possible to generate efficient C code from component-based descriptions in BIP.
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4.2.1 MPEG video encoder

In the framework of an industrial project, we have componentized in BIP an MPEG4 encoder written in
C by an industrial partner. The aim of this work was to evaluate gains in scheduling and quality control
of the componentized program. The results were quite positive regarding quality control [ 1, 10] but the
componentized program was almost two times slower than the handwritten C program. We have used
BIP2BIP to generate automatically C code from the BIP program as explained below (see Figure 14).

L, fin fout fin out J
fi fout fi fout fi - fout
rabFrame() . ‘outputFrame()
GrabFrame -7 Encode | OutputFrame
P \\
- \
\
exit,
¢ = Max
=0
out
Tl < C < Max
R grabMacroBlock()
~ ci=c+l
¥
, .
K in out
IQuant /) IDCT(
// ’
. ) / in
/) c MA)f
Y| c=ev]
IDCT S Te=Max
out ) / ’ reconstruction()
n ,
- Tty 256
4 W = width of frame
out H = height of frame
L

Figure 14: MPEG4 encoder

The BIP program consists of 11 atomic components, and 14 connectors. It uses the data and the func-
tions of the initial handwritten C program. It is composed of two atomic components and one composite
component. The atomic component GrabFrame gets a frame and produces macroblocks (each frame is
split into N macroblocks of 256 pixels). The atomic component OutputFrame produces an encoded frame.
The composite component Encode consists of 9 atomic components and the corresponding connectors. It
encodes macroblocks produced by the component GrabFrame.

Figure 15 shows the execution times for the initial handwritten C code, for the BIP program and the
corresponding C code generated automatically. Notice that the automatically generated C code and the
handwritten C code have almost the same execution times. The advantages from the componentization of
the handwritten code are multiple. The BIP program has been rescheduled as shown in [11, 10] so as to
meet given timing requirements.

Table 16 gives the size of the handwritten C code, the BIP model, as well of the generated C++ code from
the BIP model C'(!) and the generated C code from the BIP model after flattening C'(?). The time taken by
the BIP2BIP tool to generate automatically C'(?) is less than 1sec.

4.2.2 Concurrent Sorting

This example is inspired from a network sorting algorithm [1]. We consider 2" atomic components, each
of them containing an array of /N values. We want to sort all the values, so that the elements of the first
component are smaller than those of the second component and so on. We solve the problem by using
incremental hierarchical composition of components with particular connectors.

Verimag Research Report n® TR-2009-3 11/14



Marius Bozga, Mohamad Jaber, Joseph Sifakis S2S Architecture Transformation in BIP

350

12

T T T T T T
Automatically generated monolithic C code

+ +
unr Handwritten monolithic CDB?S ”17” T Automatically generated C code /
s 300 BIP —-—-- i
10 | )
,*’

9k # g
250 |- g
8 - a i /

200 |

150 4

Measured Time (Seconds)
(=2}
T
L

Measured Time (Seconds)

100 ]

50 i
//F

e

| | | | . . . . I | | L
0 50 100 150 200 250 300 350 400 450 0 10 20 30 40 50 60 70
Number of frames Number of atomic components

(a) (b)

Figure 15: Execution time for the MPEG4 Encoder (a) and Execution time for Concurrent Sorting (b)
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Figure 16: Code size in loc for MPEG4 Encoder (a) and Code size in loc for Concurrent Sorting (b)

In Figure 17, we give a model for sorting the elements of 4 atomic components. The components
C1 and Cs are identical. The pair (By, Bs) is composed by using two connectors 7y; and 7, to form
the composite component C;. Each atomic component computes the minimum and the maximum of the
values in its array. These values are then exported on the port p. The connector v; is used to compare the
maximum value of B; with the minimum value of By, and to permute them if the maximum is bigger than
the minimum value.

When the maximum value of the B; is smaller than the minimum value of B>, that is the components
are correctly sorted, then the second connector v, is triggered. It is used to export the minimum value of
B; and the maximum value of Bs to the upper level. At this level the same principle is applied to sort the
values of the composite components C; and C5. This pattern can be repeated to obtain arbitrary higher
hierarchies (see Figure 18).

Figure 15 shows the execution times for the hierarchically structured BIP program and for the cor-
responding C code generated automatically. Notice, the exponentially increasing difference between the
execution time of the component-based BIP program and the corresponding C code. Table 16 shows the
size in lines of code of the BIP program, the component-based C++ corresponding program and the C code
for 4, 8, 16, 32 and 64 atomic components. The size of the BIP model changes only linearly with n.
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p(Min, Max) q(Min, Max) p(Min, Maz) q(Min, Max)

G :p.Max > q.Min G:p.Max <= q.Min

U : U: Min:=p.Min; Max := q.Max;

D :z:=p.Mazx;p.Max := q.Min; D :p.Min := Min;q.Max := Max;
q.-Min := x;

Figure 17: Concurrent Sorting

Figure 18: Concurrent Sorting

5 Conclusion

The paper shows that it is possible to reconcile component-based incremental design and efficient code gen-
eration by applying a paradigm based on the combined use of 1) a high level modelling notation based on
well-defined operational semantics and supporting powerful mechanisms for expressing structured coordi-
nation between components; 2) semantics-preserving source-to-source transformations that progressively
transform architectural constraints between components into internal computation of product components.

BIP has already successfully been used for the componentization of non trivial systems such as the
controller of the DALA robot [4]. This allowed building component-based models for which enhanced
analysis and verification is possible by using tools such as D-Finder [6] for compositional verification. The
use of the BIP2BIP tool allows to reduce overheads in execution time by reducing modularity introduced
by the designer when it is not necessary at implementation level.

This paradigm opens the way to the synthesis of efficient monolithic software which is correct-by-
construction by using the design methodology supported by BIP. The methodology is currently under study,
and involves the following steps:

1. The system (software) to be designed is decomposed into components. The decomposition can be
represented as a tree which shows how the system can be obtained as the incremental composition
of components. Its root is the system and its leaves correspond to atomic components;

2. Description of the behavior of the atomic components;

3. Description of composite components as the composition of atomic components by using only con-
nectors and priorities.
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This is possible because BIP is expressive enough for expressing any kind of coordination by using only
architectural constraints [9].

Along steps 2) and 3) it is possible by using the D-Finder tool, to generate and/or check invariants of the
components and validate their properties. The methodology provides sufficient conditions for preserving
the already established properties of the sub-systems along the construction.

The BIP2BIP tool is an essential feature of the BIP toolset. Further developments will focus on source-
to-source transformations for BIP programs with priorities by following a similar flattening principle. In
fact, priority rules can be compiled in the form of restrictions of the guards of components. We plan to use
BIP2BIP, for optimizing distributed implementations [2], in particular to generate monolithic C code for
subsystems implemented on the same site.
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