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Abstract

Runtime enforcement is a powerful technique to ensure that a program will respect a given set
of properties. We extend previous works on this topic in several directions. Firstly, we propose
a generic notion of enforcement monitors based on a memory device and finite sets of control
states and enforcement operations. Moreover, we specify their enforcement abilities wrt. the
general safety-progress classification of properties. Furthermore, we propose a systematic
technique to produce an enforcing monitor from the automaton recognizing a given safety,
guarantee, obligation or response property. Finally, we show that this notion of enforcement
monitors is more amenable to implementation and encompasses previous runtime enforcement
mechanisms.
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1 Introduction
The growing complexity of nowadays programs and systems induces a rise of needs in validation. With
the enhancement of engineering methods, software components tend to be more and more reusable. When
retrieving an external component, the question of how this code meets a set of proper requirements raises.
Using formal methods appears as a solution to provide techniques to regain the needed confidence. How-
ever, these techniques should remain practical enough to be adopted by software engineers.
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Runtime monitoring (see [HG08, LS09] for brief overviews) falls it this category. It consists in super-
vising at runtime the execution of an underlying program against a set of expected properties. With an
appointed monitor, one is able to detect any occurrence of specific property violations. Such a detection
might be a sufficient assurance. However, for certain kind of systems a misbehavior might be not accept-
able. To prevent this, a possible solution is to enforce the desired property: the monitor not only observes
the current program execution, but it also controls it in order to ensure that the expected property is fulfilled.

Runtime enforcement monitoring was initiated by the work of Schneider [Sch00] on what has been
called security automata. In this work the monitors watch the current execution sequence and halt the
underlying program whenever it deviates from the desired property. Such security automata are able to
enforce the class of safety properties [HMS06], stating that something bad can never happen. Later,
Viswanathan [Vis00] noticed that the class of enforceable properties is impacted by the computational
power of the enforcement monitor. As the enforcement mechanism can implement no more than com-
putable functions, the enforceable properties are included in the decidable ones. More recently, Ligatti and
Al. [LBW09, LBW05] showed that it is possible to enforce at runtime more than safety properties. Using a
more powerful enforcement mechanism called edit-automata, it is possible to enforce the larger class of in-
finite renewal properties, able to express some kinds of obligations used in security policies. To better cope
with practical resource constraints, Fong [Fon04] studied the effect of memory limitations on enforcement
mechanisms.The various mechanisms and operated controls should usually remain transparent, meaning
that it should always output the longest correct prefix of the original execution sequences. This means that
the initial sequence is altered in a minimal way.

events events

memory

Monitor

σ |= Π? o |= Π
Π

Enforcement
In this paper, we introduce a generic formalism for runtime enforce-

ment under the transparency constraint. The proposed mechanism is schemat-
ically represented, in its most general form, by the figure depicted on the
left. This representation encompasses several real software implemen-
tations that can be assimilated to enforcement monitors, e.g., an access
control mechanism where the input sequence is produced by a user and

the output sequence is sent to a secured server.
A runtime enforcement monitor is a decision procedure dedicated to a property Π. It reads a finite (and

possibly infinite) sequence of events σ and produces in output a new finite (and possibly infinite) sequence
o. The monitor is equipped with an internal memory and a set of actions (possibly using the memory)
which are allowed on the input sequence. Some constraints (e.g., transparency) may exist between σ
and o that influence the actions performed by the monitor while reading σ. For instance, let consider a
transactional property Π to be enforced, telling that a given operation should be logged whenever it occurs.
The transparency constraint leads the monitor to store some events of σ (and thus not producing them in
output) as long as the transaction is not properly completed (the operation occurred, but it has been logged
yet). On the other hand, whenever the property Π is satisfied, the monitor just need to dump immediately
each input event (together with the events previously stored in its memory). In some particular cases, by
examining Π, the monitor may also determine, that, at some point, whatever are the possible coming events,
the input sequence will never (respectively will always) satisfy the property in the future. In such situation
this input sequence can be definitely blocked (respectively the monitor can be switched off, since it not
required anymore).

Our contributions. In this paper, we propose to extend these previous works in several directions.
Firstly, we study the problem of enforcement relatively to the so-called Safety-Progress hierarchy of regular
properties [MP87, CMP92b]. This classification differs from the more classical safety-liveness classifica-
tion [Lam77, AS85] by offering a rather clear characterization of a number of interesting kinds of proper-
ties (e.g., obligation, accessibility, justice, etc.). Thus, it provides a finer-grain classification of enforceable
properties. Moreover, in this Safety-Progress hierarchy, each regular property Π can be characterized by
a particular kind of (finite-state) recognizing automaton AΠ. Secondly, we introduce a generic notion of
enforcement monitor based on a finite set of control states and an auxiliary memory. This general notion
of enforcing monitor encompasses the previous notions of security automata, edit-automata and “shallow
history” automata. Thirdly, we show how to generate an enforcement monitor for Π in a systematic way,
from a recognizing automaton AΠ.
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A preliminary version of this paper appeared in ICISS’08 [FFM08]. This paper brings the following
additional contributions. It first contains a more comprehensive theoretical basis as we revisit and extend
results about the Safety-Progress classification of properties. Moreover, this paper introduces the notion
of e-properties which are more suitable to represent and delineate the space of enforceable properties.
We added more details in each section, and complete proofs of all mentioned theorems. Furthermore, we
present the notion of enforcement monitor composition. At last we supply a comparison with related works
and explain in details the advantages of the model of enforcement monitors proposed in this paper.

Paper organization. The remainder of this article is organized as follows. Section 2 introduces some
preliminary notations for our work. In Section 3 we recall briefly the necessary elements from the Safety-
Progress classification of properties. We add also additional results to this classification. Then, we present
our notion of enforcement monitor and their properties in Section 4. We address the problem of enforce-
ment monitor composition in Section 5. Section 6 first exposes the enforcement monitor synthesis and
the proofs of its correctness, and then studies the enforcement capability wrt. the classes of the Safety-
Progress classification and Section 7 compares these results and the enforcement monitors with similar
works. Finally, Section 8 exposes some concluding remarks.

2 Preliminaries and notations
This section introduces some preliminary notations about the notions of program execution sequences and
program properties.

2.1 Sequences, and execution sequences
Sequences. Considering a finite set of elements E, we define notations about sequences of elements
belonging to E. A sequence σ containing elements of E is formally defined by a total function σ : I → E
where I is either the interval [0, n− 1] for some n ∈ N, or N itself (the set of natural numbers). We denote
by E∗ the set of finite sequences over E, by E+ the set of non-empty finite sequences over E, and by
Eω the set of infinite sequences over E. The set E∞ = E∗ ∪ Eω is the set of all sequences (finite or
not) over E. The empty sequence is denoted ε. The length (number of elements) of a finite sequence σ is
denoted |σ| and the (i + 1)-th element of σ is denoted by σi. For two sequences σ ∈ E∗, σ′ ∈ E∞, we
denote by σ · σ′ the concatenation of σ and σ′, and by σ ≺ σ′ the fact that σ is a strict prefix of σ′, that
is, ∀i ∈ {0, . . . , |σ| − 1}, σi = σ′i and |σ| < |σ′|. When σ′ ∈ E∗, we note σ � σ′

def
= σ ≺ σ′ ∨ σ = σ′.

For σ ∈ E∞, we will need to designate its subsequences. In particular, for n ∈ N, σ···n is the sub-
sequence containing the n + 1 first elements of σ. Also, when |σ| > n, the subsequence σn··· is the
sequence containing all elements of σ but the n first ones. For i, j ∈ N with i ≤ j, we denote by σi···j the
subsequence of σ containing the (i+ 1)-th to the (j + 1)-th (included) elements.

Execution sequences. A program P is considered as a generator of execution sequences. We are inter-
ested in a restricted set of operations the program can perform. These operations influence the truth value
of properties the program is supposed to fulfill. Such execution sequences can be made of access events on
a secure system to its resources, or kernel operations on an operating system. In a software context, these
events may be abstractions of relevant instructions such as variable modifications or procedure calls. We
abstract these operations by a finite set of events, namely a vocabulary Σ. We denote by PΣ a program for
which the vocabulary is Σ. The set of execution sequences of PΣ is denoted Exec(PΣ) ⊆ Σ∞. This set is
prefix-closed, that is ∀σ ∈ Exec(PΣ), σ′ ∈ Σ∗ · σ′ � σ ⇒ σ′ ∈ Exec(PΣ).

2.2 Properties
Properties as sets of execution sequences. In this paper we aim to enforce properties on programs. A
property is generally defined as a set of execution sequences. More specifically a set φ ⊆ Σ∗ of finite
sequences of events (resp. ϕ ⊆ Σω of infinite sequences of events) is called a finitary property (resp. an
infinitary property). We denote by φ (resp. ϕ) the negation of φ (resp. ϕ), that is the complement wrt. Σ∗
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(resp. Σω), formally defined as Σ∗ \ φ (resp. Σω \ ϕ). Considering a given finite (resp. infinite) execution
sequence σ and a property φ (resp. ϕ), when σ ∈ φ, denoted φ(σ) (resp. σ ∈ ϕ, denoted ϕ(σ)), we say that
σ satisfies φ (resp. ϕ). A consequence of this definition is that properties we will consider are restricted
to single execution sequences1, excluding specific properties defined on powersets of execution sequences
(like fairness, for instance). Moreover, for a finitary property φ and an execution sequence σ ∈ Σ∞, we
denote by Pref≺(φ, σ) the set of all (strict) prefixes of σ satisfying φ, i.e., Pref≺(φ, σ) = {σ′ ∈ φ | σ′ ≺
σ}. This set is a chain (i.e., a totally ordered set) regarding the order relation ≺. The (unique) maximal
element of the set Pref≺(φ, σ), namely the longest prefix of σ satisfying φ (noted Max(Pref≺(φ, σ))) is
the maximal element regarding≺ if Pref≺(φ, σ) 6= ∅. Given a property φ ⊆ Σ∗ and an execution sequence
σ ∈ Σ∗, a straightforward property of the set Pref ≺(φ, σ) is that ∀a ∈ Σ,¬φ(σ) ⇒ Max (Pref ≺(φ, σ ·
a)) = Max (Pref ≺(φ, σ)).

Enforcement properties. In this paper we are interested in enforceable properties. As stated in the intro-
duction, enforcement monitors should output the longest “correct” prefix of an execution sequence which
does not satisfy the expected property. To do so, an enforcement monitor decides property satisfaction
using always a finite observation. Furthermore, as we consider finite and infinite execution sequences (that
a program may produce), enforceable properties should characterize satisfaction for both kinds of sequence
in a uniform way. We advocate that the separation of finitary and the infinitary parts of a property clar-
ifies the understanding of monitoring. An enforcement monitor (or a monitor) can be seen as a decision
procedure reading a finite prefix and examining the satisfaction of this prefix wrt. a given correctness
property.

Therefore, we introduce e-properties (enforcement properties) as follows. An e-property is defined2 as
a pair (φ, ϕ) ⊆ Σ∗ × Σω . Intuitively, the finitary property φ represents the desirable property that finite
execution sequences should fulfill, whereas the infinitary property ϕ is the expected property for infinite
execution sequences. The definition of negation of an e-property follows from definition of negation for
finitary and infinitary properties. For an e-property (φ, ϕ), we define (φ, ϕ) as (φ, ϕ). Boolean combina-
tions of e-properties are defined in a natural way. For ∗ ∈ {∪,∩}, (φ1, ϕ1)∗ (φ2, ϕ2) = (φ1 ∗φ2, ϕ1 ∗ϕ2).
Considering an execution sequence σ ∈ Exec(PΣ), we say that σ satisfies (φ, ϕ) when σ ∈ Σ∗∧φ(σ)∨σ ∈
Σω ∧ ϕ(σ). For an e-property Π = (φ, ϕ), we note Π(σ) when σ satisfies (φ, ϕ).

3 A Safety-Progress classification of e-properties
This section recalls and extends some results about the Safety-Progress [CMP92b, MP87] classification
of properties. In the original papers this classification introduced a hierarchy between regular properties3

defined as sets of infinite execution sequences. We extend the classification to deal with finite-length
execution sequences. As so we revisit this classification for e-properties.

3.1 Informal description
The Safety-Progress classification is made of four basic classes over execution sequences. Informally, the
classes were defined as follows:

• safety properties are the properties for which whenever a sequence satisfies a property, all its prefixes
satisfy this property.

• guarantee properties are the properties for which whenever a sequence satisfies a property, there are
some prefixes (at least one) satisfying this property.

• response properties are the properties for which whenever a sequence satisfies a property, an infinite
number of its prefixes satisfy this property.

1This is the distinction, made by Schneider [Sch00], between properties and (general) policies. The set of properties (defined over
single execution sequences) is a subset of the set of policies (defined over sets of execution sequences).

2We advocate the fact that using a pair of sets makes the distinction between the finitary and the infinitary part of the property
more explicit. Though, other notations could be considered as well.

3In the rest of the paper, the term property will stand for regular property.
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• persistence properties are the properties for which whenever a sequence satisfies a property, all but
finitely many of its prefixes satisfy this property.

Furthermore, two extra classes can be defined as (finite) Boolean combinations (union and intersection)
of basic classes.

• The obligation class can be defined as the class obtained by Boolean combination of safety and
guarantee properties.

• The reactivity class can be defined as the class obtained by Boolean combination of response and per-
sistence properties. This is the more general class containing all linear temporal properties [MP87].
In this paper, we will focus on sub-classes of reactivity to characterize the set of enforceable proper-
ties.

The following example introduces informally the aforementioned properties. In Example 3.3, we for-
malize those properties into e-properties.

EXAMPLE 3.1 Let us consider an operating system where a given operation op is allowed only when
an authorization auth has been granted before. The system is also endowed with three primitives related
to authentication: r auth (requesting authentication), g auth (granting authentication), d auth (denying
authentication). Then,

• the property Π1 stating that “each occurrence of op should be preceded by a distinct occurrence of
g auth” is a safety property;

• the property Π2 stating that “In this session, the user should perform an authorization request r auth
which should be eventually followed by a grant (g auth) or a deny (d auth)” is a guarantee property;

• the property Π3 stating that “the system should run forever, unless a d auth is issued and then the user
should be disconnected (disco) and the system should terminate (end)” is an obligation property;

• the property Π4 stating that “each occurrence of r auth should be first written in a log file and
then answered either with a g auth or a d auth without any occurrence of op in the meantime” is a
response property;

• the property Π5 stating that “after a d auth, a (forbidden) use of operation op should imply that at
some point any future call to r auth will always result in a d auth answer” is a persistence property.

The Safety-Progress classification is an alternative to the more classical safety-liveness [Lam77, AS85]
dichotomy. Unlike this one, the Safety-Progress classification is a hierarchy and not a partition. It pro-
vides a finer-grain classification, and the properties of each class are characterized according to four
views [MP87]: a language-theoretic view, a topological view, a temporal logic view, and an automata-
based view. The language-theoretic view describes the hierarchy according to the way each class can
be constructed from sets of finite sequences. The topological view characterizes the classes as sets with
topological properties. The third view links the classes to their expression in temporal logic. At last, the
automata-view gives syntactic characterization on the automata recognizing the properties of a given class.
We will consider here only the automata view dedicated to e-properties.

3.2 The automata view of e-properties
For the automata view of te Safety-Progress classification, we follow [MP87, CMP92a] and define e-
properties using Streett automata. Furthermore, for each class of the Safety-Progress classification it is
possible to syntactically characterize a recognizing finite-state automaton. We define4 a variant of deter-
ministic and complete Streett automata (introduced in [Str81] and used in [CMP92a]) for property recogni-
tion. These automata process events and decide properties of interest. We add to original Streett automata
a finite-sequence recognizing criterion in such a way that these automata uniformly recognize e-properties.

4There exist several equivalent definitions of Streett automata dedicated to infinite sequences recognition. We choose here to
follow the definition used in [MP87] and also only consider finite-state automata in the remainder.
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DEFINITION 3.1 (STREETT AUTOMATON) A deterministic finite-state Streett automaton is a tuple (Q, qinit,Σ,−→
, {(R1, P1), . . . , (Rm, Pm)}) defined relatively to a set of events Σ. The setQ is the set of automaton states,
qinit ∈ Q is the initial state. The function−→: Q×Σ→ Q is the (complete) transition function. In the fol-
lowing, for q, q′ ∈ Q, e ∈ Σ we abbreviate−→ (q, e) = q′ by q e−→ q′. The set {(R1, P1), . . . , (Rm, Pm)}
is the set of accepting pairs, for all i ≤ n, Ri ⊆ Q are the sets of recurrent states, and Pi ⊆ Q are the sets
of persistent states.

We refer to an automaton with m accepting pairs as a m-automaton. When m = 1, a 1-automaton is
also called a plain-automaton, and we refer toR1 andP1 asR andP . In the followingA = (QA, qinit

A,Σ,−→A
, {(R1, P1), . . . , (Rm, Pm)}) designates a Streett m-automaton.

For σ ∈ Σ∞, the run of σ on A is the sequence of states involved by the execution of σ on A. It is
formally defined as run(σ,A) = q0 · q1 · · · where ∀i, (qi ∈ QA ∧ qi

σi−→A qi+1) ∧ q0 = qinit
A. The

trace resulting in the execution of σ on A is the unique sequence (finite or not) of tuples (q0, σ0, q1) ·
(q1, σ1, q2) · · · where run(σ,A) = q0 · q1 · · · .

Also we consider the notion of infinite visitation of an execution sequence σ ∈ Σω on a Streett automa-
tonA, denoted vinf (σ,A), as the set of states appearing infinitely often in run(σ,A). It is formally defined
as follows: vinf (σ,A) = {q ∈ QA | ∀n ∈ N,∃m ∈ N,m > n ∧ q = qm with run(σ,A) = q0 · q1 · · · }.

For a Streett automaton, the notion of acceptance condition is defined using the accepting pairs.

DEFINITION 3.2 (ACCEPTANCE CONDITION (INFINITE SEQUENCES)) For σ ∈ Σω , we say that A ac-
cepts σ if ∀i ∈ {1, . . . ,m}, vinf (σ,A) ∩Ri 6= ∅ ∨ vinf (σ,A) ⊆ Pi.

To deal with e-properties we need to define also an acceptance criterion for finite sequences.

DEFINITION 3.3 (ACCEPTANCE CONDITION (FINITE SEQUENCES)) For a finite-length execution sequence
σ ∈ Σ∗ such that |σ| = n, we say that the m-automaton A accepts σ if (∃q0, . . . , qn ∈ QA, run(σ,A) =
q0 · · · qn ∧ q0 = qinit

A and ∀i ∈ {1, . . . ,m}, qn ∈ Pi ∪Ri).

The hierarchy of automata. By setting syntactic restrictions on a Streett automaton, we modify the kind
of properties recognized by such an automaton.

• A safety automaton is a plain automaton such that R = ∅ and there is no transition from a state
q ∈ P to a state q′ ∈ P .

• A guarantee automaton is a plain automaton such that P = ∅ and there is no transition from a state
q ∈ R to a state q′ ∈ R.

• An m-obligation automaton is an m-automaton such that for each i in {1, . . . ,m}:

– there is no transition from q ∈ Pi to q′ ∈ Pi,

– there is no transition from q ∈ Ri to q′ ∈ Ri,

• A response automaton is a plain automaton such that P = ∅,

• A persistence automaton is a plain automaton such that R = ∅,

• A reactivity automaton is any unrestricted automaton.

EXAMPLE 3.2 (CLASSES OF AUTOMATA AND SYNTACTIC RESTRICTIONS) In Fig. 1 are represented the
schematic illustrations for each basic class of automata. The sets of persistent and recurrent states are
represented by squares. Transitions between the different kinds of states are represented using arrows
between squares.
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PPP

PP

Safety

R

R R

Guarantee

R R

R R

Response

P P

PP

Persistence

Figure 1: Schematic illustrations of the shapes of Streett automata for basic classes
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op

Σ \ {d auth}Σ \ {r auth}Σ \ {r auth, d auth}

Σ \ {d auth}

r auth

g auth

AΠ5

Figure 2: Streett Automata for e-properties of Example 3.1

Automata and properties. We say that a Streett automaton AΠ defines an e-property (φ, ϕ) ∈ Σ∗ ×Σω

if and only if the set of finite (resp. infinite) execution sequences accepted by AΠ is equal to φ (resp. ϕ).
Conversely, an e-property (φ, ϕ) ∈ Σ∗×Σω is said to be specifiable by an automatonAΠ if the set of finite
(resp. infinite) execution sequences accepted by the automaton AΠ is φ (resp. ϕ).

EXAMPLE 3.3 (SPECIFYING e-PROPERTIES BY STREETT AUTOMATA) The e-properties previously intro-
duced in Example 3.1 can be specified by Streett automata represented on Fig. 2. Property Πi is specified
by automaton AΠi

, i ∈ {1, 2, 3, 4, 5}, which initial state is 1.

• For AΠi
, the set of states is {1, 2, 3}, R = ∅, and P = {1, 3}.

• For AΠ2
, the set of states is {1, 2, 3}, P = ∅, and R = {3}.

• For AΠ3
, the set of states is {1, 2, 3, 4}, P = {1}, and R = {3}.

• For AΠ4
, the set of states is {1, 2, 3, 4}, P = ∅, and R = {1}.

• For AΠ5
, the set of states is {1, 2, 3, 4}, P = {3}, and R = ∅.
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Figure 3: The Safety-Progress classification of e-properties

It is possible to link the syntactic characterizations on the automata to the semantic characterization of
the properties they specify. This is stated by the following definition (transposed from the initial definition
mentioned in [CMP92a]).

DEFINITION 3.4 An e-property (φ, ϕ) is a regular κ-e-property iff it is specifiable by a finite state κ-
automaton, where κ ∈ {safety, guarantee, obligation, response,persistence,
reactivity}

Given a set of events Σ, we note Safety(Σ) (resp. Guarantee(Σ), Obligation(Σ), Response(Σ),
Persistence(Σ)) the set of safety (resp. guarantee, obligation, response, persistence) e-properties defined
over Σ. A graphical representation of the Safety-Progress classification of properties is depicted on Fig. 3.

3.3 Some useful facts about e-properties

Properties of automata. Now we give a property of Streett automata related to their accepting pairs.
Indeed given a Streett m-obligation automaton (with m accepting pairs), it is possible to characterize the
language accepted by the automaton resulting in “forgetting” some accepting pairs of the initial automaton.
This is formalized as follows.

LEMMA 3.1 (FORGETTING ACCEPTING PAIRS FOR OBLIGATION PROPERTIES) Given an m-automaton
AΠ = (Q, qinit,Σ,−→,{(R1, P1), . . . , (Rm, Pm)}) recognizing an e-property Π. Following [CMP92a],
Π can be expressed as

⋂m
i=1 Πi where the Πi are obligation e-properties.

Given a subset X ⊆ {1, . . . ,m}, the automatonAΠ/X = (Q, qinit,Σ,−→,{(Ri, Pi) | i ∈ X}) recognizes
the property

⋂
i∈X Πi.

Proof. For infinite execution sequences, this proof has been done in [CMP92a]. For finite execution
sequences, the proof is a straightforward adaptation. �

We expose some straightforward consequences of definitions of safety and guarantee e-properties.

PROPERTY 3.1 (CLOSURE OF e-PROPERTIES) Considering an e-property Π = (φ, ϕ) defined over an
alphabet Σ built from a finitary property ψ, the following facts hold:

• If Π is a safety e-property, all prefixes of a sequence belonging to Π also belong to Π. That is,
∀σ ∈ Σ∞,Π(σ)⇒ ∀σ′ ≺ σ,Π(σ′).

Indeed, we have either φ(σ) or ϕ(σ), i.e., all prefixes σ′ of σ belong to ψ. Necessarily, all prefixes
σ′′ of σ′ also belong to ψ, that is ψ(σ′′). By definition, that means σ′ ∈ Af (ψ), i.e., φ(σ′) and
Π(σ′).
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• If Π is a guarantee e-property, all continuations of a finite sequence belonging to Π also belong to
Π. That is, ∀σ ∈ Σ∗,Π(σ)⇒ ∀σ′ ∈ Σ∞,Π(σ · σ′).

Indeed, Π(σ) implies that σ has at least one prefix σ0 � σ belonging to ψ: σ ∈ Ef (ψ). Then, any
continuation of σ built using any finite or infinite sequence σ′ has at least the same prefix belonging
to ψ. If σ′ ∈ Σ∗, we have σ0 � σ � σ ·σ′ and σ ·σ′ ∈ Ef (ψ). If σ′ ∈ Σω , we have σ0 � σ ≺ σ ·σ′
and σ · σ′ ∈ E(ψ).

The following lemma (inspired from [CMP92a]) provides a decomposition of each obligation properties
in a normal form. This lemma is proved in Appendix A.1.

LEMMA 3.2 Any obligation e-property can be represented as the intersection

n⋂
i=1

(Safetyi ∪Guaranteei)

for some n > 0, where Safetyi and Guaranteei are respectively safety and guarantee e-properties. We
refer to this presentation as the conjunctive normal form of obligation e-properties.

When an e-property Π is expressed as ∩ki=1(Safetyi ∪ Guaranteei), Π is said to be a k-obligation
e-property. The set of k-obligation e-properties (k ≥ 1) is denoted Obligationk. Similar definitions and
properties hold for reactivity e-properties which are expressed by combination of response and persistence
e-properties.

4 Property enforcement via enforcement monitors
Considering a program PΣ, we aim to build an enforcement monitor for an e-property (φ, ϕ), defined over
Σ.

4.1 Enforcement monitors
We now define the central notion of enforcement monitor. Such a runtime device monitors a target program
by watching its relevant events. On each input event its state evolves and an enforcement operation is
performed. Enforcement monitors are parameterized by a set of enforcement operations Ops.

DEFINITION 4.1 (ENFORCEMENT OPERATIONS Ops) Enforcement operations are aimed to operate a
modification of the internal memory of the enforcement monitor and potentially produce an output. More
specifically, they take as inputs an event and a memory content (i.e., a sequence of events) to produce an
output sequence and a new memory content: Ops ⊆ 2(Σ×Σ∗)→(Σ∗×Σ∗).

DEFINITION 4.2 (GENERIC ENFORCEMENT MONITOR (EM(OPS))) An enforcement monitor A↓ is a 4-
tuple (QA↓ , qinit

A↓ ,−→A↓ ,Ops) defined relatively to a set of events Σ and parameterized by a set of
enforcement operations Ops. The finite set QA↓ denotes the control states, qinit

A↓ ∈ QA↓ is the initial
state.The complete function −→A↓ : QA↓ × Σ → QA↓ × Ops is the transition function. In the following

we abbreviate −→A↓ (q, a) = (q′, α) by q
a/α−→A↓ q′.

Notions of run and trace (see Section 3.2) are naturally transposed from Streett automata. In
the remainder of this section, σ ∈ Σ∞ designates an execution sequence of a program, and A↓ =
(QA↓ , qinit

A↓ ,−→A↓ ,Ops) designates an EM(Ops).

DEFINITION 4.3 (RUN AND TRACE) The run of σ on A↓ is the sequence of states involved by the exe-
cution ofA↓ when σ is input. It is formally defined as run(σ,A↓) = q0·q1 · · · where q0 = qinit

A↓∧∀i, (qi ∈
QA↓ ∧ qi

σi/αi−→ A↓ qi+1). The trace resulting in the execution of σ on A↓ is the sequence (finite or not)
of tuples (q0, σ0/α0, q1) · (q1, σ1/α1, q2) · · · (qi, σi/αi, qi+1) · · · where run(σ,A↓) = q0 · q1 · · · and
∀i, αi ∈ Ops.
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We formalize the way an EM(Ops) reacts to an input sequence provided by a target program through
the standard notions of configuration and derivation.

DEFINITION 4.4 (EM(OPS) CONFIGURATIONS AND DERIVATIONS) For an EM(Ops) A↓ =
(QA↓ , qinit

A↓ ,−→A↓ ,Ops), a configuration is a triplet (q, σ,m) ∈ QA↓ × Σ∗ × Σ∗ where q de-
notes the current control state, σ the current input sequence, and m the current memory content.

We say that a configuration (q′, σ′,m′) is derivable in one step from the configuration (q, σ,m) and

produces the output o ∈ Σ∗, and we note (q, σ,m)
o
↪→ (q′, σ′,m′) if and only if σ = a.σ′ ∧ q a/α−→A↓

q′ ∧ α(a,m) = (o,m′);
We say that a configuration C ′ is derivable in several steps from a configuration C and produces the

output o ∈ Σ∗, and we note C o
=⇒A↓ C ′, if and only if there exists k ≥ 0 and configurations C0, C1, . . . ,

Ck such that C = C0, C ′ = Ck, Ci
oi
↪→ Ci+1 for all 0 ≤ i < k, and o = o0 · o1 · · · ok−1.

The notion of enforcement is based on how a monitor transforms a given input sequence in an output
sequence. For the upcoming definitions we will distinguish between finite and infinite sequences.

DEFINITION 4.5 (SEQUENCE TRANSFORMATION) We define the transformation performed by an EM(Ops)
while reading an input sequence σ ∈ Σ∞ (produced by a program PΣ) and producing an output sequence
o ∈ Σ∞. The relation ⇓A↓⊆ Σ∞ × Σ∞ is defined as follows:

• The empty sequence ε is transformed into itself by A↓, i.e., ε ⇓A↓ ε. This is the case when the
underlying program does not produce any event.

• The sequence σ ∈ Σ∗ is transformed byA↓ from the state q ∈ QA↓ into the sequence o ∈ Σ∗, which
is noted (q, σ) ⇓A↓ o, if ∃q′ ∈ QA↓ ,m ∈ Σ∗ such that (q, σ, ε)

o
=⇒A↓ (q′, ε,m). That is, if there

exists a derivation starting from a configuration which state is q and producing o.

• The sequence σ ∈ Σ∗ is transformed by A↓ into the sequence o ∈ Σ∗, when (qinit
A↓ , σ) ⇓A↓ o,

which we abbreviate by σ ⇓A↓ o. That is, if the sequence is transformed from the initial state of the
EM.

• The sequence σ ∈ Σω is transformed by A↓ into the sequence o ∈ Σ∗, which is noted σ ⇓A↓ o, if
∃σ′ ≺ σ, σ′ ⇓A↓ o ∧ ∀σ′′ ∈ Σ∗, σ′ ≺ σ′′ · σ′′ ⇓A↓ o. That is, the finite sequence o is produced if
there exists a prefix of σ which produces o, and each continuation of this prefix produces o as well.

• The sequence σ ∈ Σω is transformed by A↓ into the sequence o ∈ Σω , which is noted σ ⇓A↓ o, if

∀o′ ∈ Σ∗, o′ ≺ o⇒ ∃σ′′, o′′ ∈ Σ∗, o′ ≺ o′′ ∧ σ′′ ⇓A↓ o′′
∧ ∀σ′, o′ ∈ Σ∗, σ′ ≺ σ ∧ σ′ ⇓ o′ ⇒ o′ ≺ o.

That is, if for all prefixes of o, there exists a longer prefix which can be produced.

4.2 Enforcing a property
Roughly speaking, the purpose of an EM(Ops) is to read some unsafe input sequence produced by a pro-
gram and to transform it into an output sequence that should satisfy a given e-property Π. Before defining
this notion more formally, we first explain what we mean exactly by property enforcement, and what are
the consequences of this definition on the set of e-properties we shall consider.

Enforceable properties. Property enforcement by an EM(Ops) is usually defined as the conjunction of
the two following constraints:

• soundness: the output sequence should satisfy Π;
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• transparency: the input sequence should be modified in a minimal way, namely if it already verifies Π
it should remain unchanged (up to a given equivalence relation), otherwise its longest prefix satisfying
Π should be issued.

A consequence of transparency is that the e-property (φ, ϕ) will be considered as enforceable only if
each incorrect sequence has a longest correct prefix. This means that any infinite incorrect sequence should
have only a finite number of correct prefixes, as stated below:

∀σ ∈ Σω,
(
¬ϕ(σ)⇒ (∃σ′ ∈ Σ∗, σ′ ≺ σ, ∀σ′′ ∈ Σ∗, σ′ ≺ σ′′ ≺ σ ⇒ ¬φ(σ′′))

)
The set of enforceable e-properties is denoted EP . Note also that an EM(Ops) will output the empty
sequence ε in two distinct cases: either when ε is the longest correct prefix of the input sequence, or when
this input sequence has no correct prefix at all5.

Finally, since we have to deal with potentially infinite input sequences, the output sequence should be
produced in an incremental way6: for each current prefix σ of the input sequence read by the EM(Ops), the
current output o produced should be sound and transparent with respect to Π and σ. Furthermore, deciding
whether a finite sequence σ verify Π or not should be computable in a finite amount of time (and reading
only a finite continuation of σ). It is indeed the case in our framework since we are dealing with regular
properties.

This condition rules out particular properties saying for instance that “sequences containing an event e
are accepted only if they are finite”.

Enforceable properties wrt. the Safety-Progress Classification [FFM09]. We have proved in [FFM09]
that the set of response e-properties is the set of enforceable properties. The formal proof has been done
in [FFM09], here we give a sketch of proof in the automata view for the sake of completeness.

R R

R R
Consider a response e-property Π = (φ, ϕ) (Π ∈ Response(Σ)) recognized by a res-

ponse automaton. The shape of a response automaton is depicted on the left. Now let us
consider an infinite execution sequence σ ∈ Σω . Let suppose that ¬ϕ(σ). It means that,
according to the acceptance criterion for infinite sequences (Definition. 3.3), the R-states
are not visited infinitely often. In other words, σ has finitely many prefixes belonging to

ψ. And, according to the acceptance criterion for finite sequences (Definition. 3.2), finitely many prefixes
end in R-states. In order to explain the fact that response properties are exactly the set of enforceable prop-
erties, the reader is referred to [FFM09] or to the examples in Section 6.2.2 presenting (non enforceable)
persistence properties.

Note that, as a straightforward consequence, safety, guarantee, and obligation e-properties are enforce-
able.

Property-enforcement. We define now the notion of property-enforcement by an EM(Ops). The notion
of enforcement relates the input sequence produced by the program and given to the EM(Ops) and the
output sequence allowed by the EM(Ops) (correct wrt. the property under consideration). In practice, it
might be difficult for an EM(Ops) to produce the same sequence since an EM(Ops) has to perform some
additional statements to enforce the property or some non-observable actions may occur.

As a consequence, in the general case, the comparison between input and output sequences is performed
up to some equivalence relation ≈⊆ Σ∞ × Σ∞ (for which monitor events are not considered). Note that
the considered equivalence relation should preserve the e-property under consideration.

DEFINITION 4.6 (PROPERTY-ENFORCEMENT≈) Let us consider an enforceable e-property Π = (φ, ϕ) ∈
EP , we say that A↓ enforces the property (φ, ϕ), relatively to an equivalence relation ≈, on a program
PΣ (noted Enf ≈(A↓, (φ, ϕ),PΣ)) iff for all σ ∈ Exec(PΣ), there exists o ∈ Σ∞, such that the following
constraints hold:

5This latter case is avoided in [LBW09] by assuming that properties under consideration always contain ε.
6From a more general perspective, we can see this limitation from a runtime verification point of view. Verifying infinitary

properties at runtime on a produced execution sequence, in essence, should be done by checking finite prefixes of the current sequence.
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σ ⇓A↓ o (1)

Π(σ)⇒ σ ≈ o (2)

¬Π(σ) ∧ Pref ≺(φ, σ) = ∅ ⇒ o ≈ ε (3)

¬Π(σ) ∧ Pref ≺(φ, σ) 6= ∅ ⇒ o ≈ Max (Pref ≺(φ, σ)) (4)

(1),(2),(3) and (4) ensure soundness and transparency of A↓: (1) stipulates that the sequence σ is
transformed by A↓ into a sequence o; (2) ensures that if σ satisfied already the property then it is not
transformed. When there is no correct prefix of σ satisfying the property, (3) ensures that the EM(Ops)
outputs nothing (the empty sequence ε). If there exists a prefix of σ satisfying the property (4) ensures that
o is the longest prefix of σ satisfying the property.

Soundness is due to the fact that the produced sequence o, when different from ε, always satisfies the
property φ. Transparency is ensured by the fact that correct execution sequence are not changed, and
incorrect ones are restricted to their longest correct prefix.

One may remark that we could have set Max (Pref ≺(φ, σ)) to ε when Pref ≺(φ, σ) = ∅ and merge
the two last constraints. However, we choose to distinguish explicitly the case in which Pref ≺(φ, σ) = ∅
as it highlights some differences when an EM(Ops) produces ε. Sometimes it corresponds to the only
correct prefix of the property. But it can be also an incorrect sequences wrt. the property. In practice, when
implementing an EM(Ops) for a system, this sequence can be “tagged” as incorrect.

4.3 Instantiating generic enforcement monitors
In the remainder of this article we will focus our study to some particular, but expressive enough (re-
garding enforcement), enforcement monitors. This form of monitor is suitable for enforcement under the
transparency constraint.

The considered enforcement operations allow enforcement monitors either:

• to halt the target program (when the current input sequence irreparably violates the property),

• or to store the current event in a memory device (when a decision has to be postponed),

• or to dump the content of the memory device (when the target program went back to a correct
behavior),

• or to switch off permanently the monitor (when the property is satisfied for ever).

We give a more precise definition of such enforcement operations.

DEFINITION 4.7 (ENFORCEMENT OPERATIONS Ops = {halt, store, dump, off }) In the following we con-
sider a set Ops = {halt, store, dump, off } defined as follows: ∀a ∈ Σ ∪ {ε},∀m ∈ Σ∗,

halt(a,m) = (ε,m) store(a,m) = (ε,m.a) dump(a,m) = (m.a, ε) off (a,m) = (m.a, ε)

(a designates the input event of the monitor and m the memory device: its content).

Note that the off and dump operations have the same definitions. From a theoretical perspective,
this operation is indeed not necessary. However, it has a practical interest. In order to limit the monitor’s
impact on the original program (performance wise), it is of interest to know when the monitor is not needed
anymore.

Furthermore, we assume that, after performing a halt (resp. off operation), an EM cannot perform
another operation than halt (resp. off ). We also distinguish two subsets of the set of states of an EM(Ops):
the states in Halt (resp. Off ) are used to represent the states in which the program (resp. monitor) should
be stopped. Formally, for the halt operation (it is similar for the off operation), it can be stated as:
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• ∀q ∈ HaltA↓ ,∀a ∈ Σ,∀α ∈ Ops,∀q′ ∈ QA↓ , q a/α−→A↓ q′ ⇒ α = halt

• ∀q ∈ QA↓ ,∀a ∈ Σ, q
a/halt−→ A↓ q

′ ⇒ q′ ∈ HaltA↓

In the remainder of this article we designate by EM, an instantiated EM(Ops) which respects these
constraints.

EXAMPLE 4.1 (ENFORCEMENT MONITOR) We illustrate the enforcement of some of the e-properties in-
troduced in example 3.1 with EMs.

• The right-hand side of Fig. 5 is an EM A↓Π1 for the safety e-property Π1. A↓Π1 has one halting
state, HaltA↓Π1 = {2} (filled with gray scale), and its initial state is 1. From this initial state it
simply dumps a first occurrence of g auth and moves to state 3, where op operation is allowed (i.e.,
dumped) and goes back to state 1. Otherwise, if event op precedes g auth, then it moves to state 2
and halts the underlying program forever.

• In the bottom of Fig. 6 is shown an EM A↓Π2 for the guarantee e-property Π2. The initial state of
A↓Π2 is state 1, and it has no halting states. Its behavior is the following: occurrences of events
different from a req auth are stored in memory as long as a req auth does not occur. Then events
different from a g auth or a d auth until one of these events occur. Then the whole memory content
is dumped. This ensures that the output sequence always satisfies the e-property under consideration.

4.4 Properties of enforcement monitors
We now study the properties of enforcement monitors with set of enforcement operations {halt , store, dump, off }.

PROPERTY 4.1 (ABOUT SEQUENCE TRANSFORMATION) Given an execution sequence σ ∈ Exec(PΣ)∩
Σω and an EM A↓, s.t. the run of σ on A↓ is expressed by

(q0, σ0/α0, q1) · (q1, σ1/α1, q2) · · · (qi, σi/αi, qi+1) · · · ,

the following properties hold:

• σ ⇓A↓ σ ⇒ ∀i ∈ N,∃j ∈ N, i ≤ j, σ···j ⇓A↓ σ···j , αj ∈ {dump, off }

• ∀i ∈ N,∃j ∈ N, i ≤ j, αj ∈ {dump, off } ⇒ σ ⇓A↓ σ

That is, for an EM, producing as output the same input sequence is equivalent to performing regularly a
dump or a off operation.

PROPERTY 4.2 (RELATION BETWEEN INPUT, MEMORY, AND OUTPUT) Input execution sequence, con-
tent in the memory, and produced output are related by the following property: ∀σ ∈ Σ+,∀σ′ ∈ Σ∗,

∃q ∈ QA↓ , (qinit
A↓ , σ · σ′, ε) o

=⇒A↓(q, σ′,m)
=⇒

(σ = o ·m ∧ q ∈ QA↓ \HaltA↓) ∨ (o ≺ σ ∧ q ∈ HaltA↓)

Proof. The proof is done by induction on the length of the input sequence σ and distinguishing several
cases according to the last enforcement operation performed by the EM A↓. Complete proof can be found
in Appendix A.2. �

It follows that the equivalence relation considered previously for enforcement ≈, becomes the equality
relation. This is due to the semantics of the enforcement operations we considered. Thus the enforcement
predicate Enf ≈(A↓, (φ, ϕ),PΣ) becomes Enf =(A↓, (φ, ϕ),PΣ) (abbreviated Enf (A↓, (φ, ϕ),PΣ) in the
remainder of this article) when the e-property is enforced by A↓ on PΣ. The following property is a
straightforward consequence of property 4.2 and the definition of enforcement operations.
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PROPERTY 4.3 (LAST ENFORCEMENT OPERATION) Given an enforcement monitor A↓, an e-property Π
s.t. Enf (A↓, (φ, ϕ),PΣ) and a finite execution sequence σ ∈ Exec(PΣ)∩Σ+ (|σ| = n+ 1) which run on
A↓ is expressed (q0, σ0/α0, q1) · · · (qn, σn/αn, qn+1), we have:

• φ(σ)⇒ αn ∈ {dump, off }

• ¬φ(σ)⇒ αn ∈ {store, halt}

Meaning that, considering an EM which correctly enforces an e-property, the last enforcement operation
performed while reading an input sequence is dump or off (resp. halt or store) when the given sequence
satisfies (resp. does not satisfy) the e-property.

An other consequence of these properties is that the produced output are always prefixes of input
execution sequence, that is: ∀σ, o ∈ Σ∞, σ ⇓A↓ o⇒ o � σ.

5 Operations on enforcement monitors

Current development of information systems makes specifications going more and more complex. Assess-
ing the value of EMs as a potential security mechanisms, it seems desirable to offer techniques to compose
them so as to cope with their related specifications. In this section we describe and address the problem of
EM composition. We give the formal definition of monitor composition wrt. Boolean operators: negation,
conjunction and disjunction. We also prove their correctness.

5.1 Preliminary notations

We define the complete lattice (Ops,v) over enforcement operations, where halt v store v dump v off
(v is a total order). Moreover, we define a negation operation on enforcement actions: for α ∈ Ops , α is
the negation of α. We define dump as store , off as halt , and α as α.

5.2 Union and intersection

We show how disjunction (resp. conjunction) of basic (enforceable) properties can be enforced by con-
structing the union (resp. intersection) of their associated enforcement monitors. These operations between
EM are based on product constructions performed by combining enforcement operations with respect to
the complete lattice (Ops,v).

DEFINITION 5.1 (UNION OF EMS) Given two EMs A↓1 = (QA↓1 , qinit
A↓1 ,−→A↓1 ,Ops), A↓2 =

(QA↓2 , qinit
A↓2 ,−→A↓2 ,Ops) defined relatively to a same input language Σ, we define A↓t =

Union(A↓1,A↓2) with QA↓t = (QA↓1 × QA↓2), qinit
A↓t = (qinit

A↓1 , qinit
A↓2) and HaltA↓t =

HaltA↓1 × HaltA↓2 . The transition relation of this enforcement monitor is defined by getting the supre-
mum (t) of enforcement operations. More formally →A↓t : QA↓t × Σ × Ops → QA↓t is defined as
∀a ∈ Σ,∀q = (q1, q2) ∈ QA↓t ,

q1
a/α1−→A↓1 q1

′ q2
a/α2−→A↓2 q2

′
A↓t

(q1, q2)
a/t({α1,α2})−→A↓t (q1

′, q2
′)

Note that this construction does not introduce non-determinism in the resulting EM. Indeed, since the
two initial EMs are deterministic, there is always one and only one transition with a given element of Σ
in the resulting EM. However, one can notice that the resulting EM may not be minimal (like the one
illustrated in the following example).
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Figure 4: Union and intersection of two enforcement monitors: A↓e1 and A↓e2

EXAMPLE 5.1 (UNION OF EMS) Let consider a system on which it is possible to evaluate two atomic
propositions a and b. At system runtime, events are fed to a monitor. Those events contain the evaluations
of a and b: either true or false.

Now let consider the following requirement: “Either a is always true or a will be eventually true”.
Meaning that, for the observed sequence of events, a is evaluated to true in every event or that in one of
the event b is evaluated to true.

In order to build an EM for this requirement, we will use two EMs, one for the requirement “a is always
true”, and the second for the requirement “b will be eventually true”. Next, we use the union of EMs in
order to obain an EM for the initial requirement. The underling vocabulary of the EMs is made of the
possible events which are observed from the system, i.e., Σ = {ab, ab, ab, ab}. The vocabulary represents
all possible evaluations of the propositional variables a and b. We use a boolan notation, e.g., the event ab
represents that a is evaluated to true and b to false, the event a represents that a is true and b is either true
or false.

The EMs we consider are depicted in Fig. 4, halting states are in gray scale:

• A↓e1 enforces the requirement “a is always true”. State 2 is a halting state.

• A↓e2 enforces the requirement “b is eventually true”.

• A↓t enforces the requirement “a is always true or b is eventually true”. It is the EM union A↓t
built from the EMs A↓e1 ,A↓e2 . Following the definition of the construction, the set of states is the
cartesian product QA↓e1 ×QA↓e2 . The initial state is (1,1). Note that there is no halting state in this
resulting EM since HaltA↓e1 × HaltA↓e2 = ∅. This EM is not minimal and can be easily minimized
by merging the states (1, 2) and (2, 2).

The intersection operation between enforcement monitors is defined in a similar way by using the
infimum operator u between enforcement operations:

DEFINITION 5.2 (INTERSECTION OF EMS) Given two EM A↓1 = (QA↓1 , qinit
A↓1 ,−→A↓1 ,Ops),

A↓2 = (QA↓2 , qinit
A↓2 ,−→A↓2 ,Ops) defined relatively to a same input language Σ and enforcement

operations Ops, we define the EM intersection A↓u = (QA↓u , qinit
A↓u ,−→A↓u ,Ops) with QA↓u =

(QA↓1 × QA↓2), qinit
A↓u = (qinit

A↓1 , qinit
A↓2) and HaltA↓u = HaltA↓1 × QA↓2 ∪ QA↓1 × HaltA↓2 .

The transition relation of this enforcement monitor is defined by getting the supremum (u) of enforcement
operations. More formally→A↓u : QA↓u×Σ×Ops→ QA↓u is defined as ∀a ∈ Σ,∀q = (q1, q2) ∈ QA↓u ,
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q1
a/α1−→A↓1 q1

′ q2
a/α2−→A↓2 q2

′
A↓u

(q1, q2)
a/u({α1,α2})−→A↓u (q1

′, q2
′)

EXAMPLE 5.2 (INTERSECTION OF TWO ENFORCEMENT MONITORS) Similarly to Example 5.1, we build
an enforcement monitor for the requirement “a is always true and b is eventually true” by using the inter-
section construction. The resulting EM A↓u is shown in Fig. 4. It has two halting states: (2, 1) and (2, 2).
This EM is not minimal and can be easily minimized by merging the states (2, 1) and (2, 2).

THEOREM 5.1 Given A↓Π1
= (QA↓Π1 , qinit

A↓Π1 ,−→A↓Π1
,Ops) and A↓Π2

=

(QA↓Π2 , qinit
A↓Π2 ,−→A↓Π2

,Ops), two enforcement monitors enforcing two enforceable properties
Π1,Π2 ∈ EP on a program PΣ, the property Π1 ∨ Π2 (resp. Π1 ∧ Π2) is enforced by the enforcement
monitor union (resp. intersection). More formally: ∀Π1,Π2 ⊆ Σ∞,

Enf (A↓Π1 ,Π1,PΣ) ∧ Enf (A↓Π2 ,Π2,PΣ)⇒ Enf (Union(A↓Π1 ,A↓Π2),Π1 ∨Π2,PΣ)

Enf (A↓Π1 ,Π1,PΣ) ∧ Enf (A↓Π2 ,Π2,PΣ)⇒ Enf (Intersection(A↓Π1 ,A↓Π2),Π1 ∧Π2,PΣ)

Proof. We tackle the proof of the Union operator. For i ∈ {1, 2}, we have Enf (A↓Πi ,Πi,PΣ), i.e.,
for all σ ∈ Exec(PΣ), there exists oi ∈ Σ∗:

σ ⇓A↓Πi
oi (5)

Πi(σ)⇒ σ = oi (6)

¬Πi(σ) ∧ Pref ≺(φi, σ) = ∅ ⇒ oi = ε (7)

¬Πi(σ) ∧ Pref ≺(φi, σ) 6= ∅ ⇒ oi = Max (Pref ≺(φi, σ)) (8)

Let us note At = Union(A↓Π1
,A↓Π2

) = (Q, qinit ,−→,Ops), Π = Π1 ∨ Π2, and ⇒ the multistep
derivation relation defined over configurations ofAt and−→. We have to show Enf (At,Π,PΣ), meaning
that, given σ ∈ Exec(PΣ), we have to prove the existence of o ∈ Σ∗ s.t.,

σ ⇓At o (9)

Π(σ)⇒ σ = o (10)

¬Π(σ) ∧ Pref ≺(φ, σ) = ∅ ⇒ o = ε (11)

¬Π(σ) ∧ Pref ≺(φ, σ) 6= ∅ ⇒ o = Max (Pref ≺(φ, σ)) (12)

We first consider σ ∈ Σ∗, the following proof is done by induction on |σ|.

Induction basis. For the induction basis |σ| = 0; we have σ = ε. Then we have easily (9) as ε ⇓A↓Π ε.
Moreover, Pref ≺(φ, ε) = ∅, which gives (11).

Inductive step. Let n ∈ N and suppose that for all sequences σ s.t. |σ| = n, we have the existence of an
output o of At s.t. (10) and (11).

As σ ⇓At o (induction hypothesis), there exists a configuration (q, ε,m) ∈ Q × Σ∗ × Σ∗ such that
(qinit, σ, ε)

o⇒ (q, ε,m). Which implies that (qinit, σ ·a, ε)
o⇒ (q, a,m). That is, after reading σ, the EMAt

is in a state q with a in input, and m as memory content. Then from the configuration (q, a,m), it evolves

towards a configuration (q′, ε,m′), that is (q, a,m)
o′

↪→ (q′, ε,m′) with α(a,m) = (o′,m′), α ∈ Ops. By
reading σ · a, At produces the output o · o′. Also, the reading of σ · a on A↓Πi , i ∈ {1, 2}, induces the
following evolution of configurations:

(qinit, σ · a, ε)
oi⇒ (qi, a,mi)

o′i
↪→ (q′i, ε,m

′
i),

with αi(a,mi) = (o′i,m
′
i); qi, q

′
i ∈ QA↓Πi ;mi,m

′
i, oi, o

′
i ∈ Σ∗.

There are two cases depending on φ(σ · a).
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• The first case is φ(σ · a). In this case, that means that either φ1(σ · a) or φ2(σ · a). Let treat the case
φ1(σ ·a), the case φ2(σ ·a) is identical. As Enf (Π1,A↓Π1 ,PΣ), we have that ∃o1 ∈ Σ∗, σ ·a ⇓A↓Π1

o1. Moreover, φ1(σ · a) implies that o1 = σ · a. Inevitably the last enforcement operation of
A↓Π1

is dump or off , i.e., α1 = dump ∨ α1 = off (Prop. 4.3). It follows that α = t({α1, α2}) =
dump∨α = t({α1, α2}) = off . According to the definition of enforcement operation and Prop. 4.2,
we obtain in both cases that σ · a ⇓At σ · a, i.e., (9) and (10).

• The second case is ¬φ(σ · a). It implies that ¬φ1(σ · a) ∧ ¬φ2(σ · a). Using the definition of
enforcement, we have four cases depending on whether Pref ≺(φi, σ · a) = ∅ or not, i ∈ {1, 2}.

– The first case is Pref ≺(φi, σ · a) 6= ∅, i ∈ {1, 2}. For i ∈ {1, 2}, as Enf (Πi,A↓Πi ,PΣ),
¬φi(σ · a) gives us ∃oi ∈ Σ∗, oi = Max (Pref ≺(φi, σ · a)). Now, we have either o1 ≺ o2,
o2 ≺ o1 or o1 = o2.

∗ Let us consider the case o1 ≺ o2 (o2 ≺ o1 is identical). In this case, we have ∀o′1 ∈
Σ∗ · o1 ≺ o′1 � σ · a · ¬φ1(o′1), and ∀o′2 ∈ Σ∗ · o2 ≺ o′2 � σ · a · ¬φ2(o′2). Then
o1 ≺ o2 implies that o2 = Max (Pref ≺(φ, σ ·a)). We have now to show that σ ·a ⇓At o2.
Let us examine the sequence of enforcement operations performed by At. We have that
o2 ⇓At o2, as the last enforcement operation performed while reading o2 � σ · a is a
dump (At is obtained by taking the upperbound of enforcement operations).
∗ Similarly in the case o1 = o2, we have that o1 = o2 = Max (Pref ≺(φ, σ · a)). The

previous reasoning holds.

– The second case is Pref ≺(φi, σ · a) = ∅, i ∈ {1, 2}. For i ∈ {1, 2}, as Enf (Πi,A↓Πi
,PΣ),

¬φi(σ · a) gives us σ · a ⇓A↓Πi
ε, i ∈ {1, 2}.

– The third case is Pref ≺(φ1, σ · a) = ∅ ∨Pref ≺(φ2, σ · a) = ∅. Since Enf (Πi,A↓Πi ,PΣ), i ∈
{1, 2}, it gives us two sequences oi ∈ Σ∗, s.t. oi = Max (Pref ≺(φi, σ · a)), i ∈ {1, 2} that we
can compare similarly to the first case.

For infinite sequences, the reasoning is similar to the proof of Theorem 5.2. It is done on the shape of
the sequence of enforcement operations and by distinguishing according to ϕ(σ). �

The proof for the intersection operator is conducted similarly. A consequence of this theorem is that
the class EP of enforceable properties is closed under union and intersection.

5.3 Negation

Considering a safety or guarantee (enforceable) e-property7, we show how an EM can be transformed so
as the e-property of the resulting EM enforces the negation of the original enforced e-property.

DEFINITION 5.3 (NEGATION OF AN EM) Given A↓Π = (QA↓Π , qinit
A↓Π ,−→A↓Π ,Ops) with input lan-

guage Σ and enforcing Π, a safety or guarantee e-property, we define the Negation(A↓Π) = A↓Π =

(QA↓Π , qinit
A↓Π ,−→A↓Π ,Ops) as:

• QA↓Π = QA↓Π, qinit
A↓Π = qinit

A↓Π ,

• HaltA↓Π = {q ∈ QA↓Π | ∃q′ ∈ QA↓Π ,∃a ∈ Σ, q′
a/halt−→ A↓Π q},

• →A↓Π is the smallest relation verifying q
a/α−→A↓Π q′ if q

a/α−→A↓Π q′.

EXAMPLE 5.3 When restraining the vocabulary of the previous example to Σ = {a, b}, the EM A↓e1 is
the negation of A↓e2 . In this case, exactly either a or b is true on a same event, and a = b, b = a.

7It is only useful to deal with safety and guarantee e-properties. Indeed, the negation of a response e-property is a persistence
(thus not enforceable) and obligation e-properties are Boolean combination of safety and guarantee e-properties.
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THEOREM 5.2 (Negation of an EM) Given A↓Π = (QA↓Π , qinit
A↓Π ,−→A↓Π ,Ops) an EM defined rela-

tively to an input language Σ enforcing Π, the EM obtained using the Negation transformation enforces
Π. More formally: ∀Π ⊆ Σ∗ × Σω

Enf (A↓Π,Π,PΣ)⇒ Enf (Negation(A↓Π),Π,PΣ)

The proof principle follows the one used for the proof of the Union construction. The complete proof can
be found in Appendix A.3.

6 Enforcement wrt. the Safety-Progress classification
We now study how to practically enforce e-properties of the Safety-Progress hierarchy (Section 3). More
precisely, we show which classes of properties can be effectively enforced by an EM, and more important,
we provide a systematic construction of an EM for an e-property Π ∈ EP from the Streett automaton
defining this e-property. This construction technique is specific to each class of properties. This synthesis
technique provides also a characterization of the set of enforceable properties wrt. the Safety-Progress
classification of properties.

6.1 From a recognizing automaton to an enforcement monitor
We define four general operations those purpose is to transform a Streett automaton recognizing a safety
(resp. guarantee, obligation, response) e-property into an enforcement monitor enforcing the same e-
property.

6.1.1 Safety e-properties

DEFINITION 6.1 (SAFETY TRANSFORMATION) Given a Streett safety-automatonAΠ = (QAΠ , qinit
AΠ ,Σ,−→AΠ

, (∅, P )) recognizing a safety (enforceable) e-property Π ∈ Safety(Σ). We define the transformation
TransSafety(AΠ) = A↓Π = (QA↓Π , qinit

A↓Π ,−→A↓Π ,Ops) such that:

• QA↓Π = QAΠ , qinit
A↓Π = qinit

AΠ

• →A↓Π is defined as the smallest relation verifying:

– q
a/off−→A↓Π q′ if q′ ∈ P ∧ Reach(q′) ⊆ P ∧ q a−→AΠ

q′ (TSAF1)

– q
a/dump−→ A↓Π q′ if q′ ∈ P ∧ Reach(q′) 6⊆ P ∧ q a−→AΠ

q′ (TSAF2)

– q
a/halt−→ A↓Π q′ if q′ /∈ P ∧ q a−→AΠ

q′ (TSAF3)

Note that there is no transition from q ∈ R to q′ /∈ R. Here, one can notice that the halting states (resp. off
states) are the P states (resp. {q ∈ P | ReachAΠ

(q) ⊆ P}).

Informally, the behavior of an EMA↓Π obtained from TransSafety(AΠ) can be understood as follows.
While the current execution sequence satisfies the underlying property (i.e., whileAΠ remains in P -states),
the EM “allows” the events: it switches off if the property is also satisfied forever (Reach(q′) ⊆ P ),
else it dumps each input event if the may not be satisfied in the future (Reach(q′) 6⊆ P ). Once the
execution sequence deviates from the property (i.e., whenAΠ reaches a P -state), then it halts immediately
the underlying program with a halt operation.

EXAMPLE 6.1 (SAFETY TRANSFORMATION) The right-hand side of Fig. 5 shows the EMA↓Π1 obtained
using transformation TransSafety applied to AΠ1 .
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1

2

op/halt
1

2

op

Σ/halt

A↓Π1

3

g auth/dump

Σ \ {op}/dump

Σ

3

g auth

AΠ1

op

Σ \ {op}

op/dump

Σ \ {g auth, op} Σ \ {g auth, op}/dump

Figure 5: Recognizing automaton and EM for the safety e-property Π1

2 3
{g auth, d auth}/dump

Σ \ {g auth, d auth}/store Σ/dump

2 3
{g auth, d auth}

Σ \ {g auth, d auth}
Σ

A↓Π2

AΠ2

1

1 r auth

r auth/store

Σ \ {r auth}

Σ \ {r auth}/store

Figure 6: A guarantee-automaton and the corresponding EM for property Π2

6.1.2 Guarantee e-properties

DEFINITION 6.2 (GUARANTEE TRANSFORMATION) Given a Streett guarantee-automatonAΠ = (QAΠ , qinit
AΠ ,Σ,−→AΠ

, (R, ∅)) recognizing a guarantee (enforceable) e-property Π ∈ Guarantee(Σ). We define the transforma-
tion TransGuarantee(AΠ) = A↓Π = (QA↓Π , qinit

A↓Π ,−→A↓Π ,Ops) s.t.:

• QA↓Π = QAΠ , qinit
A↓Π = qinit

AΠ ,

• →A↓Π is defined as the smallest relation verifying:

– q
a/off−→A↓Π q′ if q′ ∈ R ∧ q a−→AΠ q′ (TGUAR1)

– q
a/halt−→ A↓Π q′ if q′ /∈ R ∧ q a−→AΠ q′ ∧ ReachAΠ(q′) ∩R = ∅ (TGUAR2)

– q
a/store−→ A↓Π q′ if q′ /∈ R ∧ q a−→AΠ q′ ∧ ReachAΠ(q′) ∩R 6= ∅ (TGUAR3)

Note that there is no transition from q ∈ R to q′ ∈ R. And, as P = ∅, we do not have transition from q ∈ P
to q′ ∈ P . One can notice that HaltA↓Π = {q ∈ QA↓Π |6 ∃q′ ∈ ReachAΠ

(q) ∧ q′ ∈ R} and Off A↓Π = R.
We note A↓Π = TransGuarantee(AΠ).

An EM A↓Π obtained from TransGuarantee(AΠ) behaves as follows. While the current execution
sequence does not satisfy the underlying property (i.e., whileAΠ remains inR-states), it stores each entered
event in its memory. If AΠ reaches a state from which the property cannot be satisfied anymore, then the
enforcement monitor halts the underlying program. Once, the execution sequence satisfies the property
(i.e., when AΠ reaches an R-state), it switches off and dumps the content of the memory and the current
event. The following example illustrates this principle.

EXAMPLE 6.2 (GUARANTEE TRANSFORMATION) Fig. 6 (down) shows the EM enforcing Π2, obtained
by the TransGuarantee on AΠ2

transformation. One can notice that this EM has no halting state since
from all states an R-state is reachable.
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6.1.3 Obligation e-properties

Since obligation properties are defined as positive Boolean combinations of safety and guarantee prop-
erties [CMP92a], the following corollary is a straightforward consequence of theorems 5.1 and 6.1. The
proof of this corollary provides a systematic construction when the automata recognizing the e-property is
decomposable into a product of safety and guarantee automata.

COROLLARY 6.1 Given a program PΣ, an obligation property Π is enforceable by an EM obtained by
using the safety and guarantee transformations and the Union and Intersection operations.

Proof. Consider a program PΣ, an obligation property Π on PΣ, we want to show that there exists an
EM A↓Π s.t. Enf (A↓Π,Π,PΣ).

We know that there exists n > 0 s.t. Π can be expressed
⋂n
i=1(Safetyi ∪Guaranteei).

This proof is done by an induction on n. From each Safetyi (resp. Guaranteei) we build an EM
using the TransSafety (resp. TransGuarantee) transformation. Then using the union and intersection
construction we obtain the EM for the property. �

We also define a direct transformation for obligation properties. Informally the TransObligation trans-
formation combines the effects of the two previous transformations by using information of each accepting
pair.

DEFINITION 6.3 (OBLIGATION TRANSFORMATION) Given a Streett obligation-automatonAΠ = (QAΠ , qinit
AΠ ,Σ,−→AΠ

, {(R1, P1), . . . , (Rm, Pm)}) recognizing an m-obligation (enforceable) e-property Π ∈ Obligation(Σ).
We define TransObligation(AΠ) = A↓Π = (QA↓Π , qinit

A↓Π ,−→A↓Π ,Ops) s.t.:

• QA↓Π = QAΠ , qinit
A↓Π = qinit

AΠ ,

• →A↓Π is defined as the smallest relation verifying:

q
a/α−→A↓Π q′ if q a−→AΠ q′ and α = umi=1(t(βi, γi)) where the βi and γi are obtained in the

following way:

– βi = off if q′ ∈ Pi ∧ ReachAΠ(q′) ⊆ Pi
– βi = dump if q′ ∈ Pi ∧ ReachAΠ

(q′) 6⊆ Pi
– βi = halt if q′ /∈ Pi
– γi = off if q′ ∈ Ri
– γi = halt if q′ /∈ Ri ∧ ReachAΠ(q′) ⊆ Ri
– γi = store if q′ /∈ Ri ∧ ReachAΠ

(q′) 6⊆ Ri

Note that there is no transition from q ∈ Ri to q′ ∈ Ri, and no transition from q ∈ Pi to q′ ∈ Pi. One can
notice that Halt = {q ∈

⋃m
i=1(Pi ∩Ri) | ReachAΠ

(q) ⊆
⋃
i(Pi ∩Ri)} and Off = {q ∈

⋂m
i=1(Pi ∪Ri) |

ReachAΠ
(q) ⊆

⋂
i(Pi ∪Ri)}. We note A↓Π = TransGuarantee(AΠ).

EXAMPLE 6.3 (OBLIGATION TRANSFORMATION) At the bottom of Fig. 7 is depicted the EM enforcing
the 1-obligation property Π3 of Example 3.3, obtained by the TransObligation transformation. One can
notice that this EM has no halting state.

6.1.4 Response e-properties

Finding a transformation for a response property Π needs to slightly extend the definition of TransGuarantee
to deal with transitions of a Streett automaton leading from states belonging to R to states belonging to R
(such transitions are absent when Π is a guarantee property). Therefore, we introduce a new transformation
called TransResponse obtained from the TransGuarantee transformation by adding a rule to deal with
the aforementioned difference.
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1 2 3
d auth disco

Σ \ {d auth, end} Σ \ {disco}
Σ

1 2 3
d auth/store disco/dump

Σ \ {d auth, end}/dump Σ \ {disco}/store Σ/dump

AΠ3

A↓Π3

4 Σend

4 Σ/halt
end/halt

Figure 7: A 1-obligation-automaton and the corresponding EM for property Π3

1 2 3

4

{d auth, g auth}

r auth log

Σ \ {log}
{op, r auth}

log

Σ

1 2 3

4

{d auth, g auth}/dump

r auth/store log/store

Σ \ {log}/halt

{op, r auth}/halt

log/store

Σ/halt

AΠ4
A↓Π4

Figure 8: A response-automaton and the corresponding EM for property Π4

DEFINITION 6.4 (RESPONSE TRANSFORMATION) Given a Streett response-automatonAΠ = (QAΠ , qinit
AΠ ,Σ,−→AΠ

, (R, ∅)) recognizing a response (enforceable) e-property Π ∈ Response(Σ). We define the transformation
TransResponse(AΠ) = A↓Π = (QA↓Π , qinit

A↓Π ,−→A↓Π ,Ops) using the following rules for→A↓Π :

• q a/store−→ A↓Π q′ if q ∈ R ∧ q′ /∈ R ∧ q a−→AΠ q′ ∧ ReachAΠ(q′) 6⊆ R (TRESP1)

• q a/halt−→ A↓Π q′ if q ∈ R ∧ q′ /∈ R ∧ q a−→AΠ q′ ∧ ReachAΠ(q′) ⊆ R (TRESP2)

• q a/dump−→ A↓Π q′ if q ∈ R ∧ q′ ∈ R ∧ q a−→AΠ q′ ∧ ReachAΠ(q′) 6⊆ R (TRESP3)

• q a/off−→A↓Π q′ if q ∈ R ∧ q′ ∈ R ∧ q a−→AΠ q′ ∧ ReachAΠ(q′) ⊆ R (TRESP4)

An EM A↓Π obtained via the TransResponse(AΠ) transformation processes the entered execution
sequence and enforces the originally recognized property. Informally the principle is similar to the one
of guarantee enforcement, except that there might be an alternation in the run between states of R and R.
While the current execution sequence does not satisfy the underlying property (the current state is in R), it
stores each event of the input sequence (or halts the underlying program if the property can not be satisfied
in the future). Once, the execution sequence satisfies the property (the current state is in R), it dumps the
content of the memory and the events stored so far (or switches off if the property is satisfied for ever).

EXAMPLE 6.4 (RESPONSE TRANSFORMATION) The right-hand side of Fig. 8 shows the EM enforcing
the response e-property Π4 introduced in example 3.3, obtained by the TransResponse transformation.
There is one halting state: state 4.

6.2 Enforcement wrt. the Safety-Progress classification
Using the aforementioned transformations it is possible to derive an EM of a certain regular property
from a recognizing finite-state automaton for this (enforceable) property. In the following, we prove the
correctness of the transformations applying the set of enforceable properties wrt. the Safety-Progress clas-
sification. Furthermore, we discuss and justify the enforcement limitation for non-enforceable properties.
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6.2.1 Enforceable properties.

Now, we tackle the question of monitor synthesis for the enforceable properties, namely the safety, guaran-
tee, obligation, and response properties. Given any safety (resp. guarantee, obligation, response) property
Π, and a Streett automaton recognizing Π, one can synthesize from this automaton an enforcing monitor
for Π using systematic transformations. The following theorem proves the correctness of these transforma-
tions. It also proves alternatively that safety, guarantee, obligation, and response properties are enforceable.

THEOREM 6.1 (Correctness of the transformations) Given a program PΣ, a regular safety (resp. guar-
antee, obligation, response) e-property Π ∈ Safety(Σ) (resp. Π ∈ Guarantee(Σ),Π ∈ Obligation(Σ),Π ∈
Response(Σ)) is enforceable on PΣ by an EM obtained by the application of the safety (resp. guarantee,
obligation, response) transformation on the automaton recognizing Π. More formally, given AΠ recogniz-
ing Π, we have:

(Π ∈ Safety(Σ) ∧ A↓Π = TransSafety(AΠ))⇒ Enf (A↓Π,Π,PΣ),
(Π ∈ Guarantee(Σ) ∧ A↓Π = TransGuarantee(AΠ))⇒ Enf (A↓Π,Π,PΣ).
(Π ∈ Obligation(Σ) ∧ A↓Π = TransObligation(AΠ))⇒ Enf (A↓Π,Π,PΣ).

(Π ∈ Response(Σ) ∧ A↓Π = TransResponse(AΠ))⇒ Enf (A↓Π,Π,PΣ).

For each proof, we have to show for Π that for A↓Π, result of the transformation from a recognizing
automaton AΠ of Π, we have: for all execution sequences σ ∈ Exec(PΣ ), there exists o ∈ Σ∗ s.t. the
following constraints hold:

σ ⇓A↓Π o (13)

Π(σ)⇒ σ = o (14)

¬Π(σ) ∧ Pref ≺(φ, σ) = ∅ ⇒ o = ε (15)

¬Π(σ) ∧ Pref ≺(φ, σ) 6= ∅ ⇒ o = Max (Pref ≺(φ, σ)) (16)

Proof.
For these proofs we note A↓Π = (QA↓Π , qinit

A↓Π ,−→A↓Π ,Ops) the EM obtained using a transforma-
tion. The proof for safety properties is fully presented. Then for the others classes of properties, we only
sketch the proofs; full versions can be found in appendix.

For the class of safety properties. We note AΠ = (QAΠ , qinit
AΠ ,Σ,−→AΠ

, (∅, P )). Let us con-
sider an execution sequence of the program σ ∈ Exec(PΣ). We study the effect of the submission of
σ to A↓Π. We will associate the execution of σ on AΠ to the execution of σ on A↓Π. The execution
of σ on AΠ produces a trace (q0, σ0, q1) · (q1, σ1, q2) · · · (qi, σi, qi+1) · · · which corresponds to a trace
(q0, σ0/α0, q1) · · · (qi, σi/αi, qi+1) · · · on A↓Π with q0 = qinit

A↓Π . We distinguish depending on whether
the sequence σ satisfies the property Π or not.

• The first case is Π(σ). The automaton AΠ accepts σ, let us distinguish whether σ is finite or not.

– If σ ∈ Σ∗, let n = |σ|. As σ is accepted byAΠ, and according to (Def. 3.2), we have that while
reading σ, the automaton “stays in P -states” (we have R = ∅ and no transition from P -states
to P -states since AΠ is a safety automaton).
If σ = ε, we have (13) as ε ⇓A↓Π ε. Moreover, Pref ≺(φ, ε) = ∅, which gives (15).
Else (σ 6= ε), according to the constraints of the transition relation of a safety-automaton,
(TRANSSAFETY1), and (TRANSSAFETY2), the trace of σ onA↓Π is such that ∀i ≤ n, αi = dump∨αi =
off .
From the execution trace on A↓Π and the definition of the enforcement operations (∀i <
n, dump(σi, ε) = (σi, ε)), we deduce the following derivation of configurations:

(qinit
A↓Π , σ, ε)

σ0
↪→ (q1, σ1···, ε) · · ·

σn−2

↪→ (qn−1, σn−1···, ε)
σn−1

↪→ (qn, σn, ε).
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By deduction, using the multistep derivations, we have (qinit
A↓Π , σ, ε)

σ⇒A↓Π(qn−1, ε, ε). That
is σ ⇓A↓Π σ. Which ensures (13). Besides, according to the acceptance criterion of e-
properties, we have φ(σ), which permits us to deduce (14), as σ = σ.

– If σ ∈ Σω , then using (Def. 3.2) of a Streett automaton and the definition of a safety-automaton,
we have vinf (σ) ⊆ P . Meaning that the only states visited infinitely often are P -states. As
there is no transition from states in P to states in R, no state of P was visited. The run of
σ on AΠ is s.t. ∀i ∈ N, qi ∈ P . Which by a similar reasoning leads us to find the trace
of σ on A↓Π. The sequence of enforcement operations complies to the regular expression
dumpω + dump∗ · off ω . We have ∀σ′ ≺ σ, σ′ ⇓A↓Π σ′. It follows that σ ⇓A↓Π σ. We have
then (13) and (14).

• The second case is ¬Π(σ). The sequence σ is not accepted by AΠ. There are two cases depending
on Pref ≺(φ, σ) = ∅ or not.

– If Pref ≺(φ, σ) = ∅. According to the constraints on safety automata, AΠ starts in a P -state
and stays in (there is no transition from P -states to P -states. We deduce that the execution
trace of σ onAΠ is s.t. ∀i > 0, qi /∈ P . Using the definition of the TransSafety transformation
(TRANSSAFETY3) we can find trace(σ,A↓Π). Then, the enforcement operation performed byA↓Π
is always halt . That is σ ⇓A↓Π ε. (13). Then Pref ≺(φ, σ) = ∅ implies that ∀σ′ ≺ σ,¬φ(σ).
We have (15).

– Else (Pref ≺(φ, σ) 6= ∅), there is at least one prefix of σ satisfying φ. As Π is a safety property,
we can decompose σ into σgood · σbad where σgood is the longest prefix of σ satisfying φ (and
hence Π) and σbad 6= ε.
Using a reasoning similar to the first case, we can find on AΠ a trace
(q0, σ0, q1) · · · (qs−1, σs−1, qs), with s = |σgood|. From which we can associate a trace
on A↓Π: (q0, σ0/dump, q1) · · · (qs−1, σs−1/dump, qs).
The execution of σbad produces a trace (qs, σs, qs+1) · · · (qs+j , σs+j , qs+j+1) · · · , with j > 0.
Then, AΠ switches from qs−1 ∈ P to qs /∈ P . Afterwards, according to (TSAF2), we obtain for
i > s, (q0, σ0/dump, q1) · · · (qs−1, σs−1/dump, qs)·(qs, σs/halt , qs+1) · · · (qi, σi/halt , qi+1) · · ·
(with ∀i > s, qi /∈ P ). As in the first case, since dump(σi, ε) = (σi, ε) we find that
(qinit

A↓Π , σ, ε)
σgood⇒ (qs−1, σbad, ε). Then, using that ∀i > |σgood|, halt(σi, ε) = (ε, ε),

∀i > |σgood|, (qinit
A↓Π , σ, ε)

σgood⇒ (qi, σi···, ε), i.e., σ···i ⇓A↓Π σgood. Thereby we have:

∗ For all σ′ ∈ Σ∗ s.t. σ′ � σgood ≺ σ, we have σ′ ⇓A↓Π σ′, which gives (13). Then as
φ(σ′), we get (14).
∗ For all σ′ ∈ Σ∗ s.t. σgood ≺ σ′ ≺ σ, we have σ′ ⇓A↓Π σgood (13). Moreover
¬φ(σ′), and σgood is the longest prefix of σ satisfying φ, that is Pref ≺(φ, σ) 6= ∅, and
Max (Pref ≺(φ, σ)) = σgood (which gives (15)).

For the class of guarantee properties. The proof for guarantee properties follows the same principle
of the proof for safety properties. Thus we only sketch the proof, the compete proof can be found in
Appendix A.4. Let us consider an execution sequence σ ∈ Exec(PΣ). By examining the run of σ on
AΠ, we can find, using the definition of TransGuarantee transformation, the shape of the sequence of
enforcement operations. We distinguish two cases: Π(σ) or not.

• The first case is Π(σ). It means that the run of σ on AΠ reached an R-state and stays in it. If σ is
finite, then the sequence is of the form store∗ · off +. Else (σ is infinite) the shape of the sequence is
store∗ · off ω .

• The second case is ¬Π(σ). It means that the run of σ on AΠ does not reach a R-state and stays in
R-states. If σ is finite, the sequence is of the form (store + halt)∗. Else (σ is infinite) the sequence
is of the form (store + halt)ω .
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For the class of obligation properties. To prove the theorem, we show that the following property holds:
given AΠ recognizing Π,

∀k ≥ 1,
(
Π ∈ Obligationk(Σ) ∧ A↓Π = TransObligation(AΠ)

)
⇒ Enf (A↓Π,Π,PΣ)

To do so, we perform an induction on k where the property Π is a k-obligation e-property. Complete
proof can be found in Appendix A.5.

• Induction basis. For the induction basis, k = 1, Π is a simple obligation. We note AΠ =
(QAΠ , qinit

AΠ ,Σ,−→AΠ
, {(R,P )}). Let σ ∈ Σ∞, the proof is done by studying the effect of

the submission of σ to A↓Π. We distinguish two cases depending on whether Π(σ) or not. In both
cases, the reasoning leads us to remark that for a simple obligation, using the constraints of simple-
obligation automata, it amounts to the case where Π is either a safety or a guarantee property. Thus
we can apply the previous reasonings.

• Induction step. The proof is done by showing that the two following EMs are equal:

– The first EM is obtained by following the compositional way. First we decompose the (k+1)-
obligation automaton into an intersection product of one simple obligation and one k-obligation
automata. This decomposition uses the principle exposed in Lemma 3.1. It results into a
product of automata recognizing the initial (k+1)-obligation property Π. Second, we apply the
TransObligation transformation (on the two obligation automata) and Intersection operation.
This EM is correct by construction.

– The second EM is obtained by the direct application of TransObligation on the automaton
recognizing Π the (k+1)-obligation property.

The equality is shown by pointing out a bijection between those EMs.

For the class of response properties. Similarly to guarantee properties, we examine the run of an exe-
cution sequence σ ∈ Exec(PΣ), and then, following the definition of the TransResponse transformation,
we deduce the shape of enforcement operations. Complete proof can be found in Appendix A.6.

• The first case is Π(σ). We distinguish according to whether σ is a finite sequence or not.

– If σ is a finite sequence then it means that the run of σ onAΠ ends in a R-state. Hence, the last
enforcement operation performed by A↓Π is dump. The shape of the sequence of enforcement
operations is (store + dump)∗ · (dump + off ∗).

– If σ is an infinite sequence, then it means that an R-state is visited infinitely often. Hence,A↓Π
performs regularly the dump operation or persistently a off operation. Then the shape of the
sequence of enforcement operations is (store∗ · dump)ω +

(
(store + dump)∗ · off ω

)
.

• The second case is ¬Π(σ). We distinguish according to whether σ is a finite sequence or not.

– If σ is a finite sequence then it means that the run of σ on AΠ ends in a R-state. Hence,
following the last enforcement operation performed by A↓Π is store or halt . The shape of the
sequence of enforcement operations is (halt + store + dump)∗ · (halt + store).

– If σ is an infinite sequence, then it means that R-states are visited finitely often. Hence, A↓Π
performs always halt or store operation from a certain prefix of σ. Then the shape of the
sequence of enforcement operations is (halt + store + dump)∗ · (halt + store)ω .

�
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Figure 9: Automaton recognizing the persistence e-property Π5
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Figure 10: Non-enforceable persistence property

6.2.2 Non-enforceable properties.

Pure persistence properties are not enforceable by our enforcement monitors and by any enforcement mech-
anism complying to the soundness and transparency constraints [FFM09]. We give two examples of pure
persistence properties and explain with more details than in [FFM09] the enforcement limitation and why
it is not desirable to enforce pure persistence properties in practice.

EXAMPLE 6.5 (NON-ENFORCEABLE PURE PERSISTENCE PROPERTIES) This property is recognized by
the Streett automaton depicted on Fig. 9 (with acceptance criterion vinf (σ,Π5) ⊆ P and P = {1, 3}).
This property is not enforceable since it has incorrect infinite sequences with an infinite number of correct
prefixes. Indeed consider σbad = d auth · op · (r auth · d auth)ω . Such an (infinite) execution sequence
does not satisfy Π5 since vinf (σbad,Π5) = {3, 4} 6⊆ {1, 3}. Moreover according to the acceptance
criterion for finite sequences, each prefix σ′bad of the form d auth · op · (r auth · d auth)∗ satisfies the
property Π5. We have exhibited an infinite incorrect execution sequence with no longest correct prefix.

The following example permits to understand why it would be unrealistic and undesirable to enforce
pure persistence properties.

EXAMPLE 6.6 (NON-ENFORCEABLE PURE PERSISTENCE PROPERTIES) An example of (pure) persistence
property (depicted in Fig. 10), defined on Σ ⊇ {a} is Σ∗ · aω stating that “it will be eventually true that
a always occurs”. One can notice that this property is neither a safety, guarantee nor obligation property.
Similarly to the property of the previous example, this property has infinite incorrect sequences with an
infinite number of correct prefixes.

One can understand the enforcement limitation intuitively with the following argument: if this property
were enforceable it would imply that an enforcement monitor can decide from a certain point that the
underlying program will always produce the event a. However such a decision can never be taken by a
monitor without memorizing the entire execution sequence beforehand. This is unrealistic for an infinite
sequence. From a more formal perspective, the enforcement limitation can be understood as follows.
As stated in Section 4.2, an e-property (φ, ϕ) is enforceable if for all infinite execution sequences of the
program when ¬ϕ(σ), the longest prefix of σ satisfying φ (Max≺(Pref (φ, σ)) always exists; which is not
the case for this property.

Suppose that we try to build a sound and transparent enforcement monitor for the property “it will be
eventually true that a always occur”. Now, suppose that b ∈ Σ and the sequence (a · b)ω is submitted in
input to such a monitor:

• When receiving a, the monitor has to output the sequence a. Indeed, a is correct wrt. the e-property
and it is the longest correct prefix of the input sequence.

• When receiving a · b, the monitor does not produce a new output (the output is still a). Indeed, a · b
is incorrect wrt. the e-property.
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• When receiving a · b · a, the monitor has to output the sequence a · b · a. Indeed, a · b · a is correct
wrt. the e-property and it is the longest correct prefix of the input sequence.

Thus the enforcement monitor would output the same input sequence: (a ·b)ω; which is not correct wrt.
the considered e-property.

REMARK 6.1 Note that, as a consequence, properties of the reactivity class (containing the persistence
class) are not enforceable by our enforcement monitors.

REMARK 6.2 Due to the transparency constraint, the later properties still remain not enforceable even
with more powerfull enforcement mechanisms (e.g., EM(Ops) with more expressive enforcement opera-
tions).

7 Related works

This section provides a comparison with related works in runtime enforcement monitoring and shows the
differences of the approach proposed here. Also, we refer to the comparison of enforcement mechanisms
provided in [HMS06] as it sets up enforcement at runtime wrt. other enforcement mechanisms from a
computational point of view.

Schneider automata. Schneider introduced security automata as the first runtime mechanism for en-
forcing properties. In [Sch00], he defined a variant of Büchi automaton which runs in parallel with an
underlying program. These automata were endowed of the ability to halt the program whenever the se-
curity automaton detects a violation of the property under scrutiny. Schneider announced in his paper
that the set of enforceable properties with this kind of security automata is the set of safety properties.
Then [HMS06] Schneider, Hamlen, and Morisett refined the set of enforceable properties using such a
mechanism. They notably shown that these security automata were in fact restrained by some computa-
tional limits. Indeed, Viswanathan [Vis00] noticed that the class of enforceable properties is impacted by
the computational power of the enforcement monitor. As the enforcement mechanism can implement no
more than computable functions, the enforceable properties are included in the decidable ones. Hence, they
showed in [HMS06] that the set of safety properties is a strict superior limit to the power of enforcement
execution monitor.

Edit-automata. Ligatti and al. [LBW09, LBW05, Lig06, BLW09] introduced edit-automata as runtime
execution monitors. They noticed that, by only halting the program, the original security automata of
Schneider were too restricted. Depending on the current input and its control state, an edit-automata can
either insert a new action by replacing the current input, or suppress the current input (possibly memorized
in the control state for later on).

The properties enforced by edit-automata are called infinite renewal properties. They have been defined
as the properties for which every infinite valid sequence has an infinite number of valid prefixes [LBW09].
The set of renewal properties is a superset of safety properties, contains some liveness properties (but not
all).

Shallow history automata. Fong [Fon04] studied the effect of restraining the capacity of the runtime
execution monitor and the effect on the enforcement power. Shallow History Automata keep as history a
set of access events the underlying program made. Fong shown that these automata can enforce a set of
properties stricly contained in the set of properties enforceable by Schneider’s automata. The result has
been generalized by using abstraction mechanisms on Schneider’s automata. Fong’s classification has a
practical interest, in the sense that it studies the effect of practical programming constraint (limited mem-
ory). It also shows that some classical security policies remain enforceable using such shallow automata.
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Figure 11: Enforceable properties and enforcement mechanisms wrt. the Safety-Progress classification of
properties

Computability power of enforcement mechanisms. Hamlen, Morisett, and Schneider proposed [Ham06,
HMS06] a classification of enforceable properties with the regard of a program as a Turing machine. Prop-
erties are classified according to the modification the enforcement mechanism can perform on the underly-
ing program. Notably each employed mechanism corresponds to a certain class of property:

• Properties enforceable by static analysis of the underlying program. These are decidable properties
on the underlying program.

• Properties enforceable by runtime execution monitor. These are co-recursively enumerable proper-
ties.

• Properties enforceable by program rewriting. The set of enforceable properties depends on the equiv-
alence relation used between programs.

By modifying the execution sequence, our enforcement monitor can be seen as a restricted form of
program rewriting (also noticed in [HMS06]). However we believe that the proposed mechanism can be
appointed to a program using the constraints of a runtime mechanism. It seems to us a good trade-off
between pure runtime monitoring and program rewriting. In the sense that we give the more enforcement
capability to our mechanism without any modification of the underlying program.

8 Conclusion and perspectives
Conclusion. In this paper our purpose was to extend previous works on property checking through run-
time enforcement in several directions. Firstly, we proposed a generic notion of enforcement monitors
based on a memory device, finite sets of control states and enforcement operations. This notion of EM
encompasses previous similar ones: security-automata (and consequently shallow-history automata) and
edit-automata in a rather obvious way. Moreover, we specified their enforcement abilities wrt. the general
safety-progress classification of properties. It allowed a fine-grain characterization of the space of enforce-
able properties. Furthermore, we studied the question of EM composition wrt. Boolean operators. Also, we
proposed a systematic technique to produce an enforcing monitor from the Streett automaton recognizing
a given safety, guarantee, obligation or response security property.

Perspectives. An important working direction is now to make this runtime enforcement technique better
able to cope with practical limitations in order to deal with larger examples. In particular it is likely the case
that not all events produced by an underlying program can be freely observed, suppressed, or inserted. This
leads to well-known notions of observable and/or controlable events, that have to be taken into account by
the enforcement mechanisms. Moreover, it could be also necessary to limit the resources consumed by the

Verimag Research Report no TR-2008-7 27/36



Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier

monitor by storing in memory only an abstraction of the sequence of events observed (i.e., using a bag
instead of a FIFO queue). From a theoretical point of view, this means to define enforcement up to some
abstraction preserving trace equivalence relations. We strongly believe that our notion of enforcement
monitors (with a generic memory device) is a suitable framework to study and implement these features.

Similarly, it would be of interest to study the notion of enforcement when weakening the transparency
constraint. In this case, the more general form of edit-automata and our generic EMs could be used. Their
complete enforcement potentials remain to be studied. This perspective would involve to define other
relations between the input and the output sequences; and thus define other enforcement primitives so as
to enforce properties in an automatic fashion. It seems to us that such alternative constraints should be
motivated by practical needs.

Another working direction is a prototype tool, currently under development. To validate and extend the
previously defined approach we are elaborating a framework implemented as a Java toolbox, using Aspect
Oriented Programming [KLM+97] as an underlying technique. Taking, as input, an e-property Π specified
by a Streett automaton AΠ, encoded in XML, it uses a first tool (consisting mainly in implementing the
aforementioned transformations) to produce an EM for Π. Then a connected tool, using the generated
EM, produces an ASPECTJ aspect to be weaved with a target Java program. The resulting program then
meets property Π, in the sense that this property is actually enforced. We believe that this prototype
framework will be a good plateform to investigate the impact of the aforementioned practical constraints.
Also, we are currently studying alternative rewriting techniques (non based on aspects) to replace the tool
for monitor integration in the underlying program (such as BCEL [The08] technology, or dynamic binary
code insertion [NS07]). The benefits would be to perform runtime enforcement from binary versions of the
target program.
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A Proofs

A.1 Proof of Lemma 3.2

This proof is inspired from the proof done in [CMP92a]. An obligation e-property is defined as a boolean
combination of safety and guarantee e-properties. Moreover, any boolean combination of safety and guar-
antee e-properties can be brought, using the distributive rule, to the following form:

n⋂
i=1

(
Πi

0 ∪ · · · ∪Πi
ki−1 ∪Πi

ki ∪ · · · ∪Πi
mi−1

)
where Πi

0, . . . ,Π
i
ki−1 are safety properties, and Πi

ki
, . . . ,Πi

mi−1 are guarantee properties. Using the
closure of safety and guarantee properties under union, Πi

0, . . . ,Π
i
ki−1 (resp. Πi

ki
∪ · · · ∪ Πi

mi−1) can be
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replaced by a single safety (resp. guarantee) e-property Πi
S (resp. Πi

G). Thus, for any obligation e-property,
there exists n ∈ N s.t. this e-property can be written as a n-obligation:

n⋂
i=1

(Safetyi ∪Guaranteei)

A.2 Proof of Property 4.2
This proof is done by induction on the length of the input sequence σ.

Induction basis. For the induction basis |σ| = 1; we have σ = a with a ∈ Σ. Using the definition of
evolution of configurations (Def. 4.4), we have ∃q ∈ QA↓ , (qinit

A↓ , σ·σ′, ε) o
=⇒A↓(q, σ′,m) with α(σ, ε) =

(o,m) and qinit
A↓ σ/α−→ q.

• If α = halt , then o = ε,m = ε and q ∈ HaltA↓ . We have o ≺ σ.

• Else, if α = store , then o = ε,m = σ. We have σ = o ·m.

• Else (α = dump or α = off ), o = a,m = ε and σ = o ·m.

Induction step. Let us consider that the property is verified for every execution sequences of length n
and consider an execution sequence σ · a of length n + 1, where a ∈ Σ. By reading σ, A↓ enters a state
q ∈ QA↓ , produces an output o, and has m in its memory. More formally, we have ∃q ∈ QA↓ , (qinit

A↓ , σ ·
a · σ′, ε) o

=⇒A↓(q, a · σ′,m). Moreover, the induction hypothesis gives us: (q ∈ HaltA↓ ∧ o � σ) ∨
(q /∈ HaltA↓ ∧ σ = o · m). As A↓ is complete wrt. QA↓ × Σ (definition of EMs), ∃α ∈ Ops,∃q′ ∈

QA↓ , q
a/α−→A↓q′. So, ∃o′,m′ ∈ Σ∗, (q, a · σ′,m)

o′

↪→A↓(q′, σ′,m′) with α(a,m) = (o′,m′). Which results

in (qinit
A↓ , σ · a ·σ′, ε) o·o

′

=⇒A↓(q′, σ′,m′) and (q ∈ HaltA↓ ∧ o � σ)∨ (q /∈ HaltA↓ ∧σ = o ·m). We want
to show that (q′ ∈ HaltA↓ ∧ o · o′ � σ · a)∨ (q′ 6∈ HaltA↓ ∧σ · a = o · o′ ·m′). Let us treat the three cases
for the enforcement operation α.

• Case α = halt . We have α(a,m) = (ε,m). So o′ = ε and m = m′. And we have also, according
to the definition of EMs (Def. 4.2), q′ ∈ HaltA↓ . Then, we apply the induction hypothesis with σ,
and depending on the membership of q in HaltA↓ . If q ∈ HaltA↓ , o � σ ⇒ o · ε � σ · a. Else
(q /∈ HaltA↓ ), we have o · ε � σ · a.

• Case α = store. We have q /∈ HaltA↓ , and α(a,m) = (ε,m · a), so o′ = ε and m′ = m · a. By
induction hypothesis, q′ /∈ HaltA↓ (Def. 4.2) and σ = o·m. Hence, we have σ·a = o·m·a = o·o′·m′.

• Case α ∈ {dump, off }. We have q /∈ HaltA↓ , and α(a,m) = (m.a, ε). Then o′ = m ·a andm′ = ε.
By induction hypothesis, we have necessarily q′ /∈ HaltA↓ (Def. 4.2), and σ = o · m. Hence, we
have σ · a = o ·m · a = o · o′ ·m′.

A.3 Correctness of the Negation transformation
Proof. Let the e-property Π be (φ, ϕ), with φ ⊆ Σ∗ and ϕ ⊆ Σω . Let us note A↓Π = Negation(A↓Π),
and⇒ the multistep derivation relation defined over configurations of A↓Π and −→. Also, since QA↓Π =

QA↓Π , we will use Q to denote the set of states of both EMs. Similarly qinit denotes the starting states of
both EMs. We have to show Enf (A↓Π,Π,PΣ), meaning that, for all σ ∈ Exec(PΣ), we have to prove
that ∃o ∈ Σ∞ s.t.

σ ⇓A↓Π o (17)

Π(σ)⇒ σ = o (18)

¬Π(σ) ∧ Pref ≺(φ, σ) = ∅ ⇒ o = ε (19)

¬Π(σ) ∧ Pref ≺(φ, σ) 6= ∅ ⇒ o = Max (Pref ≺(φ, σ)) (20)
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The proof is in two stages. The first one is for finite sequences. The second one is for infinite sequences.

Finite sequences. The proof for finite sequences is done by induction on |σ|.
Induction basis. For the induction basis |σ| = 0; we have σ = ε, then we have easily (17) as ε ⇓A↓Π ε.

Moreover, Pref ≺(φ, ε) = ∅, which gives (19).
Inductive step. Let n ∈ N and suppose that for all sequences σ s.t. |σ| = n, we have the existence of an

output o ∈ Σ∗ s.t. the constraints (17), (18), (19) and (20) hold. Now consider a ∈ Σ, and a sequence σ · a
s.t. |σ · a| = n+ 1, we study the effect of the submission in input of the last event a. We want to prove that
there exists a new output s.t. the same constraints hold.

As σ ⇓A↓Π o (induction hypothesis), there exists a configuration (q, ε,m) ∈ Q × Σ∗ × Σ∗ such that

(qinit, σ, ε)
o⇒ (q, ε,m). Which implies that (qinit, σ · a, ε)

o⇒ (q, a,m). That is, after reading σ, A↓Π is
in a state q with a in input, and m as memory content. Then from the configuration (q, a,m), it evolves

towards a configuration (q′, ε,m′), that is (q, a,m)
o′

↪→ (q′, ε,m′) with α(a,m) = (o′,m′), α ∈ Ops . The
reading of σ · a on A↓Π, induces a similar evolution of configurations:

(qinit, σ · a, ε)
o⇒ (q, a,m)

o′

↪→ (q′, ε,m′)

(qinit, σ · a, ε)
p⇒A↓Π(q, a, n)

p′

↪→A↓Π(q′, ε, n′),

with:

• q a/α−→ q′, α(a,m) = (o′,m′), α ∈ Ops; q, q′ ∈ Q;m,m′, o, o′ ∈ Σ∗

• q a/α
′

−→A↓Π q′, α′(a, n) = (p′, n′), α′ ∈ Ops; q, q′ ∈ Q;n, n′, p, p′ ∈ Σ∗

There are two cases depending on φ(σ · a):

• The first case is φ(σ · a). As Enf (Π,A↓Π,PΣ), A↓Π produces σ · a, that is σ · a ⇓A↓Π σ · a.
Necessarily, α′ ∈ {dump, off }. It corresponds to an operation α ∈ {store, halt} on A↓Π. Now we
distinguish according to φ(σ) or not.

– If φ(σ), using the induction hypothesis (|σ| = n), we have either o = ε (when Pref ≺(φ, σ) =
∅) or o = Max (Pref ≺(φ, σ)) (when Pref ≺(φ, σ) 6= ∅).
If Pref ≺(φ, σ) = ∅, then we have also Pref ≺(φ, σ · a) = ∅. The output of A↓Π is still ε, i.e.,
o · o′ = ε (19).

If Pref ≺(φ, σ) 6= ∅, using the induction hypothesis, o = Max (Pref ≺(φ, σ)). Yet φ(σ · a), it
implies that o = Max (Pref ≺(φ, σ · a)) (20).

– If ¬φ(σ), i.e., φ(σ). Using the induction hypothesis, we have that σ ⇓A↓Π o with σ = o. Then
σ = Max (Pref ≺(φ, σ)) since φ(σ). We obtain also (20).

• The second case is φ(σ · a). We have either Pref ≺(φ, σ · a) 6= ∅ or Pref ≺(φ, σ · a) = ∅.

– If Pref ≺(φ, σ · a) 6= ∅, then as Enf (Π,A↓Π,PΣ), we have p = Max (Pref ≺(φ, σ · a)). We
know that p ≺ σ · a (as by hypothesis φ(σ · a)). It follows that α′ ∈ {store, halt}. As a
consequence α ∈ {dump, off } and σ · a ⇓A↓Π σ · a, and by hypothesis, we have φ(σ · a). We
have (17) and (18).

– If Pref ≺(φ, σ ·a) = ∅. Necessarily, α′ ∈ {store, halt} and α ∈ {dump, off }. Thus σ ·a ⇓A↓Π
σ · a.
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Infinite sequences. We now deal with the proof for infinite sequences σ ∈ Σω . In the following we
distinguish according to the class of the property Π. Let us consider σ ∈ Σω .

• Π is a safety e-property. We have two cases, depending on whether ϕ(σ) or not.

– ϕ(σ). As Enf (Π,A↓Π,PΣ), we have that σ ⇓A↓Π σ. Moreover as Π is a safety e-property,
all prefixes of σ satisfy φ (Property 3.1), that is ∀σ′ ≺ σ, φ(σ′), and consequently σ′ ⇓A↓Π
σ′. It follows (Prop. 4.3) that the sequence of enforcement operations on A↓Π belongs to
(dump)ω + dump∗ · off ω . Then using the definition of Negation, we find that the sequence
of enforcement operations on A↓Π is (store + halt)ω . It follows that σ ⇓A↓Π ε, i.e., (17). As
Pref ≺(φ, σ) = ∅, we obtain (19).

– ϕ(σ). As Enf (Π,A↓Π,PΣ), we have that either Pref ≺(φ, σ) = ∅ ∧ o = ε or ∃o ∈ Σ∗ · o =
Max (Pref ≺(φ, σ)).

∗ Let deal first with the case in which Pref ≺(φ, σ) = ∅. In this case we have ∀σ′ ∈ Σ∗, σ′ ≺
σ,¬φ(σ′). It follows that the sequence of enforcement operations on A↓Π belongs to
haltω . Using the definition of Negation, the sequence of enforcement operations belongs
to A↓Π is off ω . It follows that σ ⇓A↓Π σ. We obtain (17).

∗ Now Pref ≺(φ, σ) 6= ∅. Let n = |o|. As Π is a safety e-property, we have that ∀i ≤
n, φ(σ···i−1) ∧ ∀i > n,¬φ(σ···i). Then using the property Prop. 4.3, we can find the
sequence of enforcement operations performed byA↓Π: (dump)n · haltω . OnA↓Π, using
the definition of the transformation Negation, the sequence of enforcement operations
becomes storen · off ω . It follows that σ ⇓A↓Π σ (17). Then, ϕ(σ) and σ = σ ensure (18).

• Π is a guarantee e-property. We have two cases, depending on ϕ(σ) or not.

– ϕ(σ). As Enf (Π,A↓Π,PΣ), we have that σ ⇓A↓Π σ. Moreover as Π is a guarantee e-property,
there exists a prefix σ′ of σ s.t. ∀σ′′ ∈ Σ∗, σ′ � σ′′ ⇒ φ(σ′′)∧∀σ′′ ≺ σ′,¬φ(σ′′). Let us note
n = |σ′|. Consequently, as Π is enforced by A↓Π, we have ∀σ′′ ∈ Σ∗, σ′ � σ′′ ⇒ σ′′ ⇓A↓Π
σ′′ ∧ ∀σ′′ ≺ σ′, σ′′ ⇓A↓Π ε. It follows that the sequence of enforcement operations on A↓Π is
storen−1 · off ω . Then, using the definition of the transformation Negation, we find that the
sequence of enforcement operations on A↓Π is dumpn−1 · haltω . It follows that σ ⇓A↓Π σ′

(17). Moreover we have seen that φ(σ′), we have (20).

– ¬ϕ(σ). Knowing that Π is a guarantee e-property, ¬ϕ(σ) implies that there is no prefix of
σ satisfying φ. As Enf (Π,A↓Π,PΣ), we have that ∀σ′ ≺ σ, σ ⇓A↓Π ε. The sequence of
enforcement operations performed by A↓Π belongs to store∗ · haltω . Using the definition
of the Negation transformation, the sequence of enforcement operations on A↓Π belongs to
dump∗ · off ω . It follows that σ ⇓A↓Π σ. We have (17) and (18).

�

A.4 Correctness of the TransGuarantee transformation

We note AΠ = (QAΠ , qinit
AΠ ,Σ,−→AΠ , (R, ∅)). Let us consider an execution sequence of the program

σ ∈ Exec(PΣ). We study the effect of the submission of σ to A↓Π. We will, as previously, associate the
execution of σ onAΠ to the execution of σ onA↓Π. The execution of σ onAΠ produces a trace (q0, σ0, q1)·
(q1, σ1, q2) · · · (qi, σi, qi+1) · · · which corresponds to a trace (q0, σ0/α0, q1) · · · (qi, σi/αi, qi+1) · · · on
A↓Π with q0 = qinit

A↓Π . We distinguish again depending on whether the sequence σ satisfies the property
Π or not.

• The first case is Π(σ). We know that the automaton AΠ accepts σ, let distinguish whether σ is finite
or not.
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* If σ ∈ Σ∗, then φ(σ). Let n = |σ|. As σ is accepted by AΠ, and according to the acceptance
criterion (Def. 3.2), we have that by reading σ, there exists a state q ∈ R reachable from qinit

AΠ ,
from which we stay in R-states (we have P = ∅ and no transition from R-states to R-states
since AΠ is a guarantee-automaton).
If σ = ε, then we have easily (13) as ε ⇓A↓Π ε. Moreover, Pref ≺(φ, ε) = ∅, which gives (15).
Else (σ 6= ε), according to the constraints of the transition relation of a guarantee-automaton,
the run and the trace of σ on AΠ are such that there exists 0 ≤ k ≤ n such that ∀i ≤ k ≤
n, qi ∈ R ∧ ∀n ≥ i > k, qi ∈ R.

According to (TGUAR1) and (TGUAR2), the trace of σ on A↓Π is such that ∀i < k, αi = store ∧
∀i ≥ k, αi = dump.
From the execution trace on A↓Π and the definition of the enforcement operations, we deduce
the following derivations of configurations:

∗ (qinit
A↓Π , σ, ε)

ε
↪→ (q1, σ1···, σ0) · · · ε

↪→ (qk−1, σk−1···, σ···k−2)
ε
↪→ (qk, σk···, σ···k−1) as

∀i < k, store(σi, σ···i−1) = (ε, σ···i);

∗ (qk, σk···, σ···k−1)
σ···k
↪→ (qk+1, σk+1···, ε) · · ·

σn−2

↪→ (qn−1, σn−1, ε)
σn−1

↪→ (qn, ε, ε) as dump(σk, σ···k−1) =
(σ···k, ε) and ∀i > k, dump(σi, ε) = (σi, ε).

By deduction, using the multistep derivations, we have (qinit
A↓Π , σ, ε)

ε⇒ (qk, σk···, σ···k−1)

and (qk, σk···, σ···k−1)
σ⇒ (qn, ε, ε). That is σ···k−1 ⇓A↓Π ε, and then σ···k ⇓A↓Π σk, and at last

σ ⇓A↓Π σ. Which ensures (13). Besides, according to the acceptance criterion of e-properties,
we have φ(σ), wich permits us to deduce (14), as σ = σ.

* If σ ∈ Σω , and then ϕ(σ). Using Def. 3.2 and the definition of a guarantee-automaton, we
have vinf (σ) ∩R 6= ∅. Meaning that there exists a state of R which is visited infinitely often.
As there is no transition from states in R to states in R, the states of R are visited at most a
finite number of times. That is, we can find an index k and two states q, q′ s.t. q σk−→A↓Π q′

with q /∈ R ∧ q′ ∈ R. The run of σ on AΠ is s.t. ∀i < k, qi /∈ R ∧ ∀i ≥ k, qi ∈ R. Which
by a similar reasoning leads us to find the trace of σ on A↓Π. The sequence of enforcement
operations is then (store)k−1 · (dump)ω . It follows that σ ⇓A↓Π σ. We have then (13) and
(14).

• The second case is ¬Π(σ). The sequence σ is not accepted by AΠ. As ¬ϕ(σ) and Π is guarantee
e-property, we have Pref ≺(φ, σ) = ∅. Indeed, as Π is a guarantee e-property, the existence of a
prefix of σ satisfying ϕ would have implied that ϕ(σ).

According to the constraints on a guarantee-automaton, AΠ starts and ends in R-states and stays
in (there exists no transition from q ∈ R to q′ /∈ R). We deduce that the execution trace of σ
on AΠ is s.t. ∀i > 0, qi /∈ R. Using the definition of the TransGuarantee transformation we
can find trace(σ,A↓Π). Then, the enforcement operation performed by A↓Π is always halt or
store. There exists two possible shapes for the sequence of the αi: either ∀i > 0, αi = store,
or ∃k > 0, (∀i ≤ k, αi = store ∧ ∀k > i, αi = halt). In both cases, using definitions of store and
halt , we can find easily that σ ⇓A↓Π ε (13).

Thus, as σ ⇓A↓Π ε, we have (13) and (15).

A.5 Correctness of the TransObligation transformation
In order to prove the property, we rely on showing that: the EM obtained by the application of TransSafety,
TransGuarantee, and the Intersection transformation (this EM is correct by construction); and the EM
obtained by the direct application of TransObligation, are equal.

To prove the theorem, we show that the following property holds: given AΠ recognizing Π

∀k ≥ 1,
(
Π ∈ Obligationk(Σ) ∧ A↓Π = TransObligation(AΠ)

)
⇒ Enf (A↓Π,Π,PΣ)

To do so, we perform an induction on k where the property Π is a k-obligation.
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• Induction basis. For the induction basis, k = 1, Π is a simple obligation. We noteAΠ = (QAΠ , qinit
AΠ ,Σ,−→AΠ

, {(R,P )}). Let σ ∈ Σ∞. Let study the effect of the submission of σ to A↓ϕ. There are two cases
depending on Π(σ).

– The first case is Π(σ). In this case, the sequence σ is accepted by AΠ. According to the
constraints on obligation-automata, the execution of σ on AΠ produces an execution trace
(q0, σ0, q1) · (q1, σ1, q2) · · · (qi, σi, qi+1) · · · of σ such that q0 = qinit

AΠ and

∗ either each state qi is in P ,
∗ or there exists 0 ≤ k s.t. ∀i < k, qi ∈ R ∧ ∀i ≥ k, qi ∈ R

(there is no transition from q ∈ P to q′ ∈ P and from q ∈ R to q′ ∈ R).
In both cases, we can follow the previous reasoning for safety and guarantee properties to obtain
the trace on A↓Π. Note that if the two previous conditions hold simultaneously, the shape of
the execution trace is the same.

– The second case is ¬Π(σ). Similarly in this case, it amounts to the cases where Π is either a
safety or a guarantee property.

• Induction step. Let n ∈ N∗ and suppose that for k ≤ n, if Π is a k-obligation recognized by a
k-obligation automaton AΠ, then the EM A↓Π = TransObligation(AΠ) enforces Π, that is, we
have Enf (A↓Π,Π,PΣ).

Now consider a (k+1)-obligation Π, AΠ a recognizing (k+1)-obligation automaton, and A↓Π =

TransObligation(AΠ). As Π is a (k+1)-obligation property, Π can be expressed as
⋂k+1
i=1 Πi where

the Πi are simple obligation properties (3.2). The expression of Π can be rewritten as Π = (
⋂k
i=1 Πi)∩

Πk+1. Using Lemma 3.1, one can find two recognizing automata AΠ/{1,...,k} recognizing
⋂k
i=1 Πi

andAΠ/{k+1} recognizing Πk+1. Now using the induction hypothesis, we can apply TransObligation()

to these two automata to obtain two EMs A↓Π/{1,...,k} enforcing
⋂k
i=1 Πi and A↓Π/{k+1} en-

forcing Πk+1. Using the Intersection construction (Def. 5.2), one can obtain the EM A↓Π′ =

Intersection(A↓Π/{1,...,k},A↓Π/{k+1}) enforcing (Theorem 5.1) (
⋂k
i=1 Πi) ∩ Πk+1 =

⋂k+1
i=1 Πi,

that is Π.

Now let us examine the EM A↓Π obtained by applying directly TransObligation transformation on
AΠ. We compare it withA↓Π′ obtained by the induction hypothesis and the intersection construction;
this EM is correct by construction.

– For A↓Π, according to Def. 6.3 of TransObligation:

∗ QA↓Π = QAΠ ,
∗ qinit

A↓Π = qinit
AΠ ,

∗ and ∀a ∈ Σ, q
a/α−→A↓Π q′ where α = uk+1

i=1 t ({βi, γi}).

– For A↓Π′, according to Def. 5.2 of the intersection between EMs:

∗ QA↓Π′ = QA↓Π/{k+1} ×QA↓Π/{1,...,k} = QAΠ ×QAΠ ,
∗ qinit

A↓Π′ = qinit
A↓Π/{k+1} × qinit

A↓Π/{1,...,k} = qinit
AΠ × qinit

AΠ ,

∗ and ∀a ∈ Σ, q
a/α−→A↓Π′ q′ where α = uki=1 t ({βi, γi}) u (t({βk+1, γk+1)), i.e., α =

uk+1
i=1 t ({βi, γi}).

– where, ∀i ∈ {1, . . . , k + 1}:
∗ βi is
· off if q′ ∈ Pi ∧ ReachAΠ

(q′) ∩ Pi = ∅
· dump if q′ ∈ Pi ∧ ReachAΠ

(q′) ∩ Pi 6= ∅
· halt if q′ /∈ Pi

∗ γi is
· off if q′ ∈ Ri
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· halt if q′ /∈ Ri∧ 6 ∃q′′ ∈ Ri, q′′ ∈ ReachAΠ(q′)

· store if q′ /∈ Ri ∧ ∃q′′ ∈ Ri, q′′ ∈ ReachAΠ
(q′)

That is we can exhibit a bijection relation between A↓Π′ and A↓Π: ∀q ∈ QAΠ , the state q in A↓Π is
in relation with the state (q, q) in A↓Π′. Formally, between the two EMs A↓Π and A↓Π′, there is a
relation R ⊆ (QAΠ × (QAΠ × QAΠ)) defined by R = {(q, (q, q)) | q ∈ QAΠ}. The two EMs are
equal (they differ only by the name of their states). As a consequence, the EM produced by directly
applying TransObligation on AΠ is correct. This concludes the proof for the TransObligation
transformation and Obligation properties.

A.6 Correctness of the TransResponse transformation
The proof follows the same principle of the proof for the guarantee properties. Intuitively, the proof can
be understood as follows. When a sequence satisfies a response property, there exists an alternation in the
satisfaction of the prefixes of this sequence. When a sequence does not satisfy the property, there exists an
index from which the run of the recognized sequence is composed of “bad states” forever.

We note AΠ = (QAΠ , qinit
AΠ ,Σ,−→AΠ

, (R, ∅)). Let us consider an execution sequence of the pro-
gram σ ∈ Exec(PΣ). We study the effect of the submission of σ toA↓Π. We will, as previously, associate
the execution of σ on AΠ to the execution of σ on A↓Π. The execution of σ on AΠ produces a trace
(q0, σ0, q1)·(q1, σ1, q2) · · · (qi, σi, qi+1) · · · which corresponds to a trace (q0, σ0/α0, q1) · · · (qi, σi/αi, qi+1) · · ·
on A↓Π with q0 = qinit

A↓Π . We distinguish again depending on whether the sequence σ satisfies the prop-
erty Π or not.

• The first case is Π(σ). We know that the automaton AΠ accepts σ, let distinguish whether σ is finite
or not.

* σ ∈ Σ∗, and then φ(σ). Let n = |σ|. According to the acceptance criterion (Def. 3.2), the run
of AΠ on σ ends in a R-state.
If σ = ε, then we have easily (13) as ε ⇓A↓Π ε. Moreover, Pref ≺(φ, ε) = ∅, which gives (15).
Else (σ 6= ε), according to the constraints of the transition relation of a response-automaton,
the run and the trace of σ on AΠ are such that qn ∈ R. According to (TGUAR1), the trace of σ
on A↓Π is such that αn = dump. From the execution trace on A↓Π and the definition of the
enforcement operations, we deduce the following derivations of configurations:

(qinit
A↓Π , σ, ε)

o0
↪→ (q1, σ1···,m1) · · ·

on−2

↪→ (qn−2, σk−1···,mn−1)
on−1

↪→ (qn, ε, ε)

with o0 · o1 · · · on−1 = σ since the last enforcement operation (αn−1) is dump.

By deduction, using the multistep derivations, we have (qinit
A↓Π , σ, ε)

σ⇒ (qn, ε, ε). That is
σ ⇓A↓Π σ. Which ensures (13). Besides, according to the acceptance criterion of e-properties,
we have φ(σ), which permits to deduce (14), as σ = σ.

* If σ ∈ Σω , then according to the definition of a response-automaton, we find using the accep-
tance criterion that vinf (σ,AΠ) ∩ R 6= ∅. In other words, there exists a state q ∈ QAΠ ∩ R
visited infinitely often. As there is no restriction on the transition function of AΠ, the run
of σ on AΠ contains some states of R, some states of R, but visits q infinitely often. For-
mally, ∀i ∈ N,∃j ∈ N, j ≥ i ∧ qj ∈ R. It follows that the trace of σ on AΠ verifies
∀i ∈ N,∃j ∈ N, j ≥ i ∧ (qj−1, σj−1, qj) ∈ trace(σ,AΠ) ∧ qj ∈ R. Then we deduce that
the trace on the enforcement monitor A↓Π (using the definition of TransResponse, Def. 6.4)
verifies the property: ∀i ∈ N,∃j ∈ N, j ≥ i ∧ (qj−1, σj−1/dump, qj) ∈ trace(σ,A↓Π). That
is: ∀i ∈ N,∃j ∈ N, j ≥ i, αj = dump. Thus we deduce that (using Prop. 4.1) σ ⇓A↓Π σ, i.e.,
(13). Moreover, we have (14) as ϕ(σ) ∧ σ = σ.

• The second case is ¬Π(σ). The sequence σ is not accepted by AΠ, let us distinguish whether σ is
finite or not.
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– σ ∈ Σ∗ and then ¬φ(σ). Let n = |σ|. There are two cases depending on Pref ≺(φ, σ) = ∅ or
not.

∗ If Pref ≺(φ, σ) = ∅. According to the acceptance criterion of response automata, AΠ

starts in a R-state and stays in. We deduce that the execution trace of σ on AΠ is s.t.
∀i > 0, qi /∈ R. Using the definition of the TransResponse transformation we can find
trace(σ,A↓Π). Then, the enforcement operation performed by A↓Π is always halt or
store. That is σ ⇓A↓Π ε (13). Then Pref ≺(φ, σ) = ∅ implies that ∀σ′ ≺ σ,¬φ(σ). We
have (15).

∗ Else (Pref ≺(φ, σ) 6= ∅). There is at least one prefix of σ satisfying φ. Let us note σgood
the longest prefix of σ satisfying φ, i.e., σgood = Max (Pref ≺(σ, φ)). Let k = |σgood|.
Then the run and the trace ofAΠ on σ is s.t. qk−1 ∈ R∧∀i ∈ [k, n−1], qi ∈ R. According
to the TransResponse transformation, the trace of σ on A↓Π is s.t. αk−1 = dump ∧ ∀i ∈
[k, n − 1], αi ∈ {store, halt}. From the execution trace on A↓Π and the definition of the
enforcement operations, we deduce the following derivations of configurations:

(qinit
A↓Π , σ, ε)

o0
↪→ · · ·

ok−2

↪→ (qk−1, σ(k−1)···,mk−1)
ok−1

↪→ (qk, σk···, ε)

(qk, σk···, ε)
ε
↪→ (qk+1, σk+1···,mk+1)

ε
↪→ · · · ε

↪→ (qn, ε,mn)

with σgood = σ···(k−1) = o0 ·o1 · · · ok−1. Indeed we have dump(σk−1,mk−1) = (mk−1 ·
σk−1, ε) and ∀i ≥ k, αi ∈ {store, halt}, αi makes that A↓Π produces ε in output (for
k ≤ i ≤ n − 1). That is σ···k−1 ⇓A↓Π σ···k−1 and σ ⇓A↓Π σ···k−1. Which ensures
(13). Besides, according to the acceptance criterion of e-properties, we have ¬φ(σ), which
permits us to deduce (16), as σ···k−1 = Max (Pref ≺(φ, σ)).

– σ ∈ Σω and then ¬ϕ(σ). This case is similar to the case ¬ϕ(σ) for guarantee properties. The
acceptance criterion for response automata implies that vinf (σ,AΠ) ∩R = ∅. We deduce that
there exists a natural number n such that the run of σ on AΠ is expressed as run(σ,AΠ) =
q0 · · · qn · · · with q0 = qinit

AΠ ∧ (∀i ≥ n, qi ∈ R). Let us consider nmin the smallest integer
n verifying this property. For k ≤ nmin, it is then possible to apply the previous reasoning
(the case φ(σ)) for σ···k. Hence we find an alternation in the run of the execution sequence
σ···nmin

between states belonging to R and R. We find in a similar way that for k > nmin,
σ···k ⇓A↓Π σ···nmin

and φ(σ···nmin
). It is easy to see that σ···nmin

is the longest prefix (by
definition of nmin) satisfying φ

(
σ···nmin

= Max (Pref ≺(φ, σ···k))
)
.
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